

Date(s) of Evaluation	Tes
October 15, 2009	1014
est Report Issue Date	De
October 21, 2009	Sne

Test Report Serial No.I101409BBO-T988-S95UFDescription of Test(s)Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release) <u>RF Exposure Category</u> General Population

SAR	TEST RE	POR	T (FCC	/IC)		
RF EXPOSURE EVAL	JATION SPECIFIC			ABSOF	RPTION RATE	
APPLICANT / MANUFACTURER	CC	OBRA E	LECTRON	ICS CORP	ORATION	
DEVICE UNDER TEST (DUT)	PORTA	BLE GN	IRS/FRS P	TT RADIO	TRANSCEIVER	
	462.5500 - 4	- 462.7250 MHz		GMRS Channels 15-22		
DUT FREQUENCY RANGE(S)	462.5625 - 4	462.712	5 MHz	GMRS	/FRS Channels 1-7	
	467.5625 - 4	467.712	5 MHz	FR	S Channels 8-14	
DUT MODEL(S)			СХТ	225		
DEVICE IDENTIFIER(S)	FCC ID:	BBOC	ХТ90	IC:	906B-CXT90	
APPLICATION TYPE	Class II Permi	ssive C	hange (ado	d new mod	lel with weather band)	
STANDARD(S) APPLIED			FCC 47 CF	R §2.1093		
		Hea	th Canada	Safety Co	ode 6	
	FCC	OET B	ulletin 65,	Suppleme	nt C (01-01)	
	FCC Mobile & Portable RF Exp. Proc. (KDB 447498 D01 v03r03)					
PROCEDURE(S) APPLIED		Indust	ry Canada	RSS-102 I	ssue 3	
			IEEE 15	28-2003		
			IEC 62209	9-2 (Draft)		
RF EXPOSURE CATEGORY			al Populati	on / Uncon		
RF EXPOSURE EVALUATION(S)	Fac	e-held		Body-worn		
DATE(S) OF EVALUATION(S)			October	15, 2009		
TEST REPORT SERIAL NO.				-T988-S95		
TEST REPORT REVISION NO.	Revision 1			Release	October 21, 2009	
	Testing Pe		-		Report Prepared By	
TEST REPORT SIGNATORIES	Sean J Celltech				nathan Hughes Iltech Labs Inc.	
TEST LAB AND LOCATION	Celltech	h Comp	liance Tes	ting and E	ngineering Lab	
	21-364 Lo	ugheed	Road, Kel	owna, B.C.	. V1X 7R8 Canada	
TEST LAB CONTACT INFO.	Tel.: 250	0-765-76	50	Fax	x: 250-765-7645	
	info@cellte	echlabs	.com	www	.celltechlabs.com	
TEST LAB ACCREDITATION(S)	Test Lab Certificate No. 2470.01					

Applicant:	Cob	bra Electronics Corporation		onics Corporation FCC ID: BBOCXT90		IC:	906B-CXT90	Cobra		
Model(s):	СХЛ	225	DUT:	Portable GM	Portable GMRS/FRS PTT Radio Transce			462.5500 - 467.7125 MHz		
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduc	to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

7.			
e	Ite	C	h
Testing and	1 Engineeri	ng Service	es Lat

	Date(s) of Evaluation October 15, 2009	Test Report Serial No. 101409BBO-T988-S95U	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
eech	Test Report Issue Date October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

	DECLAI SAR RF								
Test Lab Information	Name	CELLT	ECH L	ABS I	NC.				
	Address	21-364 Lougheed Road, Kelowna, British Columbia V1X 7R8 Canada						7R8 Canada	
Applicant Information	Name	COBR	A ELE	CTRO	NICS COF	RPORAT	ION		
	Address	6500 V	Vest Co	ortland	Street, Cl	nicago, IL	. 60707 Unite	ed Sta	tes
Standard(s) Applied	FCC	47 CFF	R §2.10	93					
Standard(S) Applied	IC	Health	Canad	a Safe	ty Code 6				
	FCC	OET B	ulletin (65, Sup	oplement	C (Editio	า 01-01)		
Procedure(s) Applied	FCC	Mobile	& Port	able R	F Exposu	re Procec	lures (KDB 4	47498	3 D01 v03r03)
Procedure(s) Applied	IC	RSS-1	02 Issu	e 3					
	IEEE	1528-2	003			IEC	62209-2 (Draft)	н — — — — — — — — — — — — — — — — — — —
	FCC ID:	BBOC	XT90						
Device Identifier(s)	IC:	906B-0	CXT90						
Device identifier(S)	Model(s)	CXT22	5 (new	mode	with wea	ther band	(t		
	Serial No.	Serial No. #1 (Identical Prototype)							
Application Type	FCC/IC	Class I	I Permi	issive (Change -	add new	model CXT2	25 wit	h weather band
Device Description	Portable FM	JHF GN	IRS/FR	S Pusl	n-To-Talk	(PTT) Ra	adio Transcei	ver	
	462.5500 - 46	62.7250	MHz (O	SMRS	Channels	15-22)			
Transmit Frequency Range(s)	462.5625 - 46	62.7125	MHz (C	SMRS/	FRS Char	nnels 1-7)		
	467.5625 - 46	67.7125	MHz (F	RS Ch	annels 8-	14)			
RF Output Power Tested	27.5 dBm	0.5	62 Wat	tts	Conduc	ted	462.7000 N	/Hz	GMRS Ch. 21
Battery Type(s) Tested	Ni-MH Batter	y	4x AA	A		1.2 V		300	mAh
	Alkaline Batte	ery	4x AA	A		1.5 V		Ene	rgizer Industrial
Antenna Type(s) Tested	External Non-	-detacha	ble						
Body-worn Accessories Tested	Plastic Belt-C	lip (supp	blied wi	th DUT	-)				
Audio Accessories Tested	Ear-bud with	Lapel-M	icrophc	one (P/	N: GA-EB	M2)			
Max. SAR Level(s) Evaluated	Face-held	0.609		1g	50% dut		General Population / Uncontrolled		
	Body-worn	0.482		1g	50% dut			-	on / Uncontrolled
FCC/IC Spatial Peak SAR Limit	Head/Body	1.6 V	//kg	1g	50% dut	ty cycle	General Po	-	on / Uncontrolled

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6 for the General Population / Uncontrolled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 3, IEEE Standard 1528-2003 and International Standard IEC 62209-2 (Draft). All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results and statements contained in this report pertain only to the device(s) evaluated.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

Test Report Approved By

Sum dund

Sean Johnston

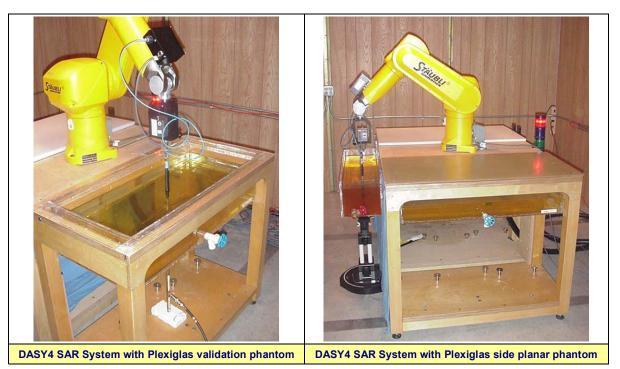
Celltech Labs Inc.

Applicant:	Cob	ora Electronics Corporation		FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra	
Model(s):	СХТ	225	DUT:	Portable GM	RS/FRS PTT R	adio Transceiver	462.5500	- 467.7125 MHz	BLACTING AND COMPLEMENTER
2009 Celltech La	bs Inc.	This d	ocument is	not to be reproduc	Page 2 of 33				

	Date(s) of Evaluation October 15, 2009	Test Report Serial No. 101409BBO-T988-S95U	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Lat	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	ACCREDITED
	October 21, 2009	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 MEASUREMENT SUMMARY	5
4.0 DETAILS OF SAR EVALUATION	6
5.0 EVALUATION PROCEDURES	6
6.0 SYSTEM PERFORMANCE CHECK	7
7.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	8
8.0 SIMULATED EQUIVALENT TISSUES	8
9.0 SAR LIMITS	8
10.0 ROBOT SYSTEM SPECIFICATIONS	9
11.0 PROBE SPECIFICATION (ET3DV6)	10
12.0 SIDE PLANAR PHANTOM	10
13.0 VALIDATION PLANAR PHANTOM	10
14.0 DEVICE HOLDER	10
15.0 TEST EQUIPMENT LIST	11
16.0 MEASUREMENT UNCERTAINTIES	12
17.0 REFERENCES	13
APPENDIX A - SAR MEASUREMENT DATA	14
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	21
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	24
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	27
APPENDIX E - DIPOLE CALIBRATION (FCC KDB 250418) & PROBE CALIBRATION	33

Applicant:	Cob	bra Electronics Corporation		FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra	
Model(s):	СХТ	225	DUT:	Portable GM	RS/FRS PTT R	adio Transceiver	462.5500	- 467.7125 MHz	BLETTRONCE (DONNERSIN)
2009 Celltech La	abs Inc.	This d	is document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 3 of 33


Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
<u>Test Report Issue Date</u> October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.07

1.0 INTRODUCTION

This measurement report demonstrates compliance of the Cobra Electronics Corporation Model: CXT225 Portable FM UHF GMRS/FRS PTT Radio Transceiver with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C Edition 01-01 (see reference [3]), IC RSS-102 Issue 3 (see reference [4]), IEEE Standard 1528-2003 (see reference [5]) and International Standard IEC 62209-2 Draft (see reference [6]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for Body and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

Applicant:	Cob	Cobra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver			462.5500	- 467.7125 MHz	BLACTING AND A CONTRACTOR
2009 Celltech La	bs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 4 of 33	

Celltech

Date(s) of Evaluation	<u>Test Report Serial No.</u>	Test Report Revision No.	
October 15, 2009	101409BBO-T988-S95U	Rev. 1.0 (Initial Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
October 21, 2009	Specific Absorption Rate	General Population	

3.0 MEASUREMENT SUMMARY

					SA	R EV	ALU,		N R	ESU	LTS							
Test Type	Freq.	Ch	nannel	Test Mode			on	DUT Sp Planar I			Cond. Power Before	Measur 1g (V		D	SAR Drift uring		Scaled with d 1g (W	roop
Type				woue	Type	to Planar Te Phantom		Test	PTT Duty Cycle		le	Test	P	TT Duty	y Cycle			
	MHz							DUT	Ant	enna	Watts	100%	50%	6	dB	1	00%	50%
Face	462.7000	21	GMRS	CW	Ni-MH	Front Side 2.5 cm 3.1 cm 0.562		0.562	0.835	0.41	8 -	0.362	0	908	0.454			
	462.7000	21	GMRS	CW	Alkaline	Front S	ide 2	2.5 cm	3.1	l cm	0.562	1.07	0.53	5 -	0.560	1	.22	0.609
Body	462.7000	21	GMRS	CW	Ni-MH	Back S	ide (0.6 cm	1.3	3 cm	0.562	0.723	0.36	2 -	0.226	0	762	0.381
Бойу	462.7000	21	GMRS	CW	Alkaline	Back S	ide (0.6 cm	1.3	3 cm	0.562	0.858	0.42	.9 -	0.504	0	964	0.482
		SAR L	LIMIT(S)			HEA	D & B(YDC		SPA	TIAL PEA	AK		RF EXI	POSUF	REC	ATEGO	RY
FCC 4	CC 47 CFR 2.1093 Health Canada Safety Code 6 1.6 W/kg averaged over 1 gram General Population / Uncontrolled																	
Те	est Date(s)		Octob	er 15, 20	09		Octob	er 15, 20	009		Atmos	s. Pressur	е	H 1	01.1	в	101.1	kPa
Mea	sured Fluid	450	0 MHz Head	460 1	MHz Eval.	450 MH	z Body	460	MHz	Eval.	Relativ	ve Humidi	ty	н	35	в	35	%
Dielec	tric Constant	IE	EE Target	Meas	s. Dev.	IEEE 1	Farget	Mea	IS.	Dev.	Ambi	bient Temp.		н 2	22.0	в	22.1	°C
	٤r	43	.5 <u>+</u> 5%	43.5	0.0%	56.7	<u>+</u> 5%	58.	0	+2.3%	Flu	id Temp.		H 2	21.0	в	21.2	°C
	nductivity	IE	EE Target	Meas	s. Dev.	IEEE 1	Farget	Mea	IS.	Dev.	Flu	id Depth		H 2	≥ 15	в	≥ 15	cm
	(mho/m)	0.8	87 <u>+</u> 5%	0.83	-4.6%	0.94	<u>+</u> 5%	0.9	1	-3.2%	ρ	(Kg/m ³)				1000)	
Notes																		
1.	Detailed me		•		•						•	•	•					
2.	The transmi Bulletin 65,								single	e char	inel data	only is re	quire	d to be	repor	ted (per FC	COEL
3.	The power of report the seport the second se	caled	SAR res	sult as a	shown in	the abo	ve tes	st data	tabl	e. A								
4.	The DUT w transmit key				ted contin	uous tra	Insmit	operati	ion (Contir	nuous Wa	ave mode	e at 1	00% d	uty cy	/cle)	with th	ne PTT
	SARE	value	ation Po	wor Th	resholds	for PT		vicos	f < (0 5 G	47	RF C	ondu	cted C	utput	Pov	ver Te	sted
					8 D01 v0				_	0.5 0	12	GMF	RS Mo	ode		FF	RS Mo	de
									-			PTT C	outy C	ycle	_	PTT	Duty C	ycle
	Exposure			<i>P</i> mW	(General	-	tion)	P mV	•		tional)	100%		50%		00%		50%
5.	Held to face				250					250		562 mW	28	31 mW	25	0 m\ 	V 12	25 mW *******
-	•	prn, $d \ge 1.5$ cm 200 1000																
	Body-worn, d ≥ 1.0 cm 150 750 562 mW 281 mW 250 mW 125 mW 1. The time-averaged output power, corresponding to the required PTT duty factor, is compared with these thresholds. 1. The GMRS conducted output power level exceeds the FCC threshold for SAR evaluation. 2. The closest distance between the user and the device or its antenna is used to determine the power thresholds. 1. The FRS conducted output power level is below the FCC threshold for SAR evaluation.																	

Applicant:	Cob	ra Elec	tronics (Corporation	FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra		
Model(s):	СХТ	225	DUT:	Portable GM	RS/FRS PTT R	adio Transceiver	462.5500	- 467.7125 MHz	BLAETING COMPCINICION		
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduc	ot to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

	<u>Date(s) of Evaluation</u> October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
g and Engineering Services Lat:	<u>Test Report Issue Date</u> October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

4.0 DETAILS OF SAR EVALUATION

The Cobra Electronics Corporation Model: CXT225 Portable FM UHF GMRS/FRS PTT Radio Transceiver was compliant for localized Specific Absorption Rate (General Population / Uncontrolled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

- 1. The DUT was evaluated for SAR in a face-held configuration with the front of the radio placed parallel to the outer surface of the planar phantom. A 2.5 cm spacing was maintained between the front of the DUT and the outer surface of the planar phantom.
- 2. The DUT was evaluated for SAR in a body-worn configuration with the back of the radio placed parallel to the outer surface of the planar phantom. The attached plastic belt-clip accessory was touching the planar phantom and provided a 0.6 cm spacing from the back of the DUT to the outer surface of the planar phantom. The DUT was evaluated for body-worn SAR with the Cobra supplied earbud lapel-microphone audio accessory connected to the audio port.
- 3. The RF conducted output power levels of the DUT referenced in this report were measured by Timco Engineering prior to the SAR evaluations.
- 4. The DUT batteries were fully charged prior to the SAR evaluations.
- 5. The DUT was tested at maximum power preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the PTT transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 6. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- 7. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).

5.0 EVALUATION PROCEDURES

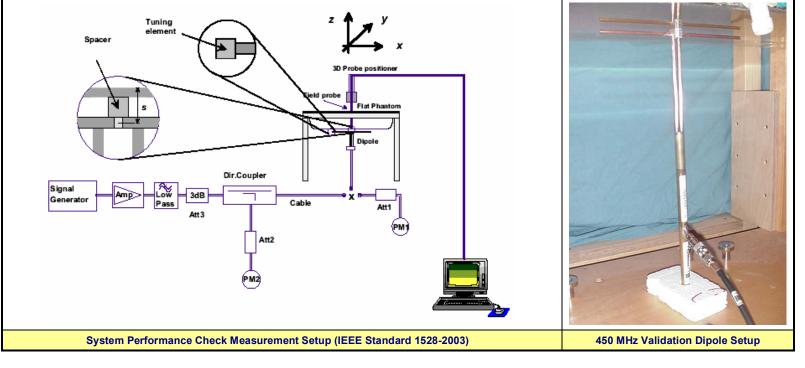
- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix E). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.


Applicant:	Cob	ra Elec	tronics C	Corporation	FCC ID:	CC ID: BBOCXT90		906B-CXT90	Cobra	
Model(s):	СХЛ	225	DUT:	Portable GM	RS/FRS PTT R	adio Transceiver	462.5500	- 467.7125 MHz	BLACTING AND A CONTRACTOR	
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduc	to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Celltech	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat:	Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
	October 21, 2009	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

6.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a daily system check was performed using a Plexiglas planar phantom and 450 MHz dipole (see Appendix B for system performance check test plot) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [5]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ from the system validation target SAR value (see Appendix E for system validation target SAR value listed on page 10 of the dipole calibration report).

	SYSTEM PERFORMANCE CHECK EVALUATION															
Test	Equiv. Tissue		AR 1g W/kg)	Dielectric Constant Conductivity ε _r σ (mho/m)		y	ρ,	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.				
Date	Freq. (MHz)	Sys. Val. Target	Meas.	Dev.	Sys. Val. Target	Meas.	Dev.	Sys. Val. Target	Meas.	Dev.	(Kg/m ³) (°C)		(°C)	(cm)	(%)	_(kPa)
Oct 15	Head 450	1.22 ±10%														
	1.	The targe	t SAR va	alue is re	eferenced	from the	System	Validation	n perforn	ned by (Celltech I	_abs Inc	. (see Ap	pendix	E).	
	2.	The targe	t dielectr	ic parar	neters are	referenc	ced from	n the Syste	m Valida	ation pe	rformed	by Cellte	ch Labs	Inc. (se	e Appenc	lix E).
Notes	3.		he fluid temperature was measured prior to and after the system performance check to ensure the temperature remained ithin +/-2°C of the fluid temperature reported during the dielectric parameter measurements.													
	4.							mixture wo		asured p	prior to t	he syste	em perfo	ormance	check u	sing a

Applicant:	Cob	ra Electronics Corporation			FCC ID:	BBOCXT90	IC: 906B-CXT90		Cobra		
Model(s):	СХТ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver			462.5500	- 467.7125 MHz	BLACTING ACTIVACION AND A		
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduc	to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
ting and Engineering Services Lat:	Test Report Issue Date October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

7.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within \pm 50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within \pm 100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, \pm 25 MHz < 300 MHz and \pm 50 MHz \geq 300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [9]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	<u>+</u> 50 MHz <u>></u> 300 MHz	
450 MHz	462.70 MHz	12.7 MHz	< 50 MHz	
The probe calibration and mea	asurement frequency interval is < 50	MHz; therefore the additior	nal steps are not required.	

8.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [10] and [11]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [5]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

	SIMULATED TISSUE MIXTURES								
INGREDIENT	450 MHz Head	450 MHz Body							
Water	38.56 %	52.00 %							
Sugar	56.32 %	45.65 %							
Salt	3.95 %	1.75 %							
HEC	0.98 %	0.50 %							
Bactericide	0.19 %	0.10 %							

9.0 SAR LIMITS

SAR RF EXPOSURE LIMITS								
FCC 47 CFR 2.1093	Health Canada Safety Code 6	General Population	Occupational)					
Spatial Average (ave	raged over the whole body)	0.08 W/kg	0.4 W/kg					
Spatial Peak (averag	ged over any 1 g of tissue)	1.6 W/kg	8.0 W/kg					
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) 4.0 W/kg 20.0 W/kg								
The Spatial Average value of the SAR averaged over the whole body.								
The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.								
The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.								
Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.								
Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.								

Applicant:	Cob	obra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	F225	DUT:	Portable GMRS/FRS PTT Radio Transceiver			462.5500	- 467.7125 MHz	BLACINGANCE (DUNCHARDON
2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 8 of 33			

Date(s) of Evaluation	<u>Test Report Serial No.</u>	<u>Test Report Revision No.</u>	
October 15, 2009	101409BBO-T988-S95U	Rev. 1.0 (Initial Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
October 21, 2009	Specific Absorption Rate	General Population	

10.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>			
Positioner	Stäubli Unimation Corp. Robot Model: RX60L		
Repeatability	0.02 mm		
No. of axis	6		
Data Acquisition Electronic (DAE) System		
<u>Cell Controller</u>			
Processor	AMD Athlon XP 2400+		
Clock Speed	2.0 GHz		
Operating System	Windows XP Professional		
Data Converter			
Features	Signal Amplifier, multiplexer, A/D converter, and control logic		
Software	Measurement Software: DASY4, V4.7 Build 44		
Software	Postprocessing Software: SEMCAD, V1.8 Build 171		
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock		
DASY4 Measurement Server			
Function	Real-time data evaluation for field measurements and surface detection		
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM		
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface		
E-Field Probe			
Model	ET3DV6		
Serial No.	1590		
Construction	Triangular core fiber optic detection system		
Frequency	10 MHz to 6 GHz		
Linearity	±0.2 dB (30 MHz to 3 GHz)		
Evaluation Phantom			
Туре	Side Planar Phantom		
Shell Material	Plexiglas		
Bottom Thickness	2.0 mm ± 0.1 mm		
Outer Dimensions	75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)		
Validation Phantom (≤ 450MHz)			
Туре	Planar Phantom		
Shell Material	Plexiglas		
Bottom Thickness	6.2 mm ± 0.1 mm		
Outer Dimensions	86.0 cm (L) x 39.5 cm (W) x 21.8 cm (H)		
	1. In the second s		

Applicant:	Cob	obra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	F225	DUT:	Portable GMRS/FRS PTT Radio Transceiver		462.5500	- 467.7125 MHz	BLACTING AND	
2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 9 of 33			

	Date(s) of Evaluation October 15, 2009	Test Report Serial No. 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Lat	<u>Test Report Issue Date</u> October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

11.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic solvents, glycol)
Calibration:	In air from 10 MHz to 2.5 GHz
	In Body simulating tissue at frequencies of 900 MHz
	and 1.8 GHz (accuracy \pm 8%)
Frequency:	10 MHz to > 6 GHz; Linearity: \pm 0.2 dB
	(30 MHz to 3 GHz)
Directivity:	\pm 0.2 dB in Body tissue (rotation around probe axis)
	\pm 0.4 dB in Body tissue (rotation normal to probe axis)
Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB
Surface Detect:	\pm 0.2 mm repeatability in air and clear liquids over
	diffuse reflecting surfaces
Dimensions:	Overall length: 330 mm
	Tip length: 16 mm
	Body diameter: 12 mm
	Tip diameter: 6.8 mm
	Distance from probe tip to dipole centers: 2.7 mm
Application:	General dosimetry up to 3 GHz
	Compliance tests of mobile phone

12.0 SIDE PLANAR PHANTOM

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

13.0 VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450MHz and below. The validation planar phantom is mounted to the table of the DASY4 compact system.

Plexiglas Validation Planar Phantom

14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65° . The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	Cob	bra Electronics Corporation			FCC ID:	BBOCXT90	IC:	IC: 906B-CXT90	
Model(s):	СХТ	225	DUT:	Portable GM	Portable GMRS/FRS PTT Radio Transceiver			- 467.7125 MHz	Cobra
2009 Celltech La	2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 10 of 33		

Date(s) of Evaluation	Test
October 15, 2009	10140
est Report Issue Date	Desc
October 21, 2009	Specif

Test Report Serial No.Test Report Revision No.101409BBO-T988-S95URev. 1.0 (Initial Release)Description of Test(s)RF Exposure CategorySpecific Absorption RateGeneral Population

15.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	AUDET NO.	OLIVIAL NO.	CALIBRATED	DUE DATE
x	Schmid & Partner DASY4 System	-	-	-	-
x	-DASY4 Measurement Server	00158	1078	CNR	CNR
x	-Robot	00046	599396-01	CNR	CNR
x	-DAE4	00019	353	28Apr09	28Apr10
x	-ET3DV6 E-Field Probe	00017	1590	16Jul09	16Jul10
x	-Celltech 450 MHz Validation Dipole	00024	136	19Jan09	19Jan10
x	-Plexiglas Side Planar Phantom	00156	161	CNR	CNR
x	-Plexiglas Validation Planar Phantom	00157	137	CNR	CNR
x	HP 85070C Dielectric Probe Kit	00033	US39240170	CNR	CNR
x	HP E4408B Spectrum Analyzer	00015	US39240170	23Apr08	28Apr10
x	Gigatronics 8652A Power Meter	00007	1835272	23Apr08	28Apr10
x	Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	28Apr10
x	HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr10
x	Rohde & Schwarz SMR20 Signal Generator	00006	100104	CNR	CNR
x	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required				

Applicant:	Cob	Cobra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХЛ	225	DUT:	Portable GM	Portable GMRS/FRS PTT Radio Transceiver			- 467.7125 MHz	ALACTING NEW COMPONENTIAN
2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 11 of 33			

Celltech	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat:	Test Report Issue Date October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

16.0 MEASUREMENT UNCERTAINTIES

	UNCERT	AINTY BUD	GET FOR D	EVICE EVAL	UATIO	NC			
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (450 MHz)	E.2.1	6.65	Normal	1	1	1	6.65	6.65	œ
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	x
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	x
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	×
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	00
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	x
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	00
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	œ
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	œ
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	œ
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	œ
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	œ
Test Sample Related									
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	œ
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	x
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measured)	E.3.3	4.6	Normal	1	0.64	0.43	2.9	2.0	8
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	œ
Liquid Permittivity (measured)	E.3.3	2.3	Normal	1	0.6	0.49	1.4	1.1	x
Combined Standard Uncertainty			RSS				11.48	11.11	
Expanded Uncertainty (95% Confidence	e Interval)		k=2				22.95	22.22	
Measu	urement Un	certainty Table	e in accordance	e with IEEE Sta	ndard 1	528-20	03		

Applicant:	Cob	ra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra	
Model(s):	СХТ	225	DUT:	Portable GM	RS/FRS PTT R	adio Transceiver	462.5500	- 467.7125 MHz	BLACTING AND	
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduc	o be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Date(s) of Evaluation	<u>Test Report Serial No.</u>	<u>Test Report Revision No.</u>	
October 15, 2009	101409BBO-T988-S95U	Rev. 1.0 (Initial Release)	
<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
October 21, 2009	Specific Absorption Rate	General Population	

17.0 REFERENCES

[1] Federal Communications Commission - "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.

[2] Health Canada - "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.

[3] Federal Communications Commission - "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[4] Industry Canada - "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 3: June 2009.

[5] IEEE Standard 1528-2003 - "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.

[6] International Standard IEC 62209-2 Draft (106-62209-2-CDV 090323) - "Human exposure to radio frequency fields from hand-held & body-mounted wireless comm. devices - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (30 MHz to 6 GHz)".

[7] International Standard IEC 62209-1:2005 - "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices - Human models, instrumentation, and procedures."

[8] Federal Communications Commission, Office of Engineering and Technology - "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01 v03r03: January 2009.

[9] Federal Communications Commission, Office of Engineering and Technology - "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz"; KDB 450824 D01 v01r01: January 2007.

[[10] Schmid & Partner Engineering AG - DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.

[11] Schmid & Partner Engineering AG - DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.

Applicant:	Cob	bra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХЛ	225	DUT:	Portable GM	RS/FRS PTT Radio Transceiver		462.5500 - 467.7125 MHz		BLACTINGONCH (DOWNCHARDON
2009 Celltech La	ibs Inc.	This d	ocument is	not to be reproduc	b be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				

Date(s) of Evaluation	<u>Test Report Serial No.</u>	<u>Test Report Revision No.</u>	
October 15, 2009	101409BBO-T988-S95U	Rev. 1.0 (Initial Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
October 21, 2009	Specific Absorption Rate	General Population	

APPENDIX A - SAR MEASUREMENT DATA

Applicant:	Cob	ra Elec	tronics (Corporation	FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХЛ	225	DUT:	Portable GM	RS/FRS PTT F	Radio Transceiver	462.5500	- 467.7125 MHz	BLACTING COUNCILLAND
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduc	t to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				

Callback	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Celitech	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lab	October 21, 2009	Specific Absorption Rate	General Population	

Date Tested: 10/15/2009

Face-held SAR - GMRS Channel 21 - 462.7000 MHz - Ni-MH AAA Rechargeable Batteries

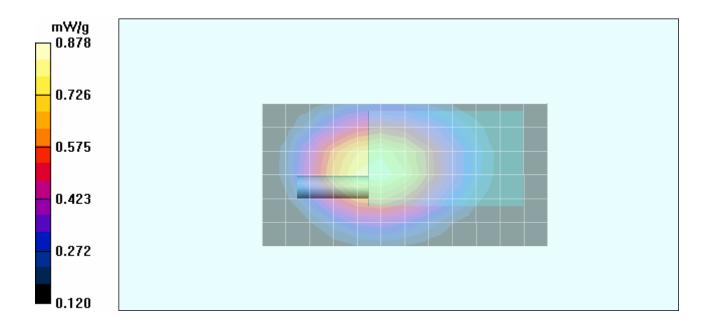
DUT: Cobra; Model: CXT225; Type: Portable GMRS/FRS PTT Radio Transceiver; Serial: FCC Sample #1

Ambient Temp: 22.0°C; Fluid Temp: 21.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: UHF FM (CW) Frequency: 462.700 MHz; Duty Cycle: 1:1 Medium: HSL450 Medium parameters used: f = 462.7 MHz; $\sigma = 0.83$ mho/m; $\epsilon_r = 43.5$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.34, 7.34, 7.34); Calibrated: 16/07/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE4 Sn353; Calibrated: 28/04/2009

- Phantom: Side Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom

Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.825 mW/g Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 32.1 V/m; Power Drift = -0.362 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.835 mW/g; SAR(10 g) = 0.600 mW/g Maximum value of SAR (measured) = 0.878 mW/g

Applicant:	Cob	bra Electronics Corporation			FCC ID:	BBOCXT90	IC: 906B-CXT90		Cobra
Model(s):	СХТ	225	DUT:	Portable GM	RS/FRS PTT F	Radio Transceiver	462.5500	- 467.7125 MHz	BLACTINGONICH (DONNCHARAESH
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduc	to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				

Callback	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Celitech	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lab	October 21, 2009	Specific Absorption Rate	General Population	

Date Tested: 10/15/2009

Face-held SAR - GMRS Channel 21 - 462.7000 MHz - Energizer Alkaline AAA Batteries

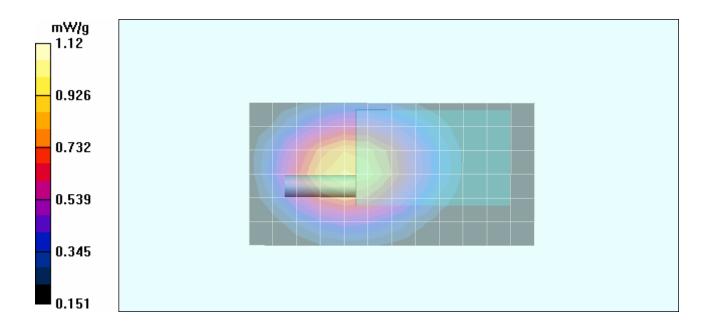
DUT: Cobra; Model: CXT225; Type: Portable GMRS/FRS PTT Radio Transceiver; Serial: FCC Sample #1

Ambient Temp: 22.0°C; Fluid Temp: 21.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: UHF FM (CW) Frequency: 462.700 MHz; Duty Cycle: 1:1 Medium: HSL450 Medium parameters used: f = 462.7 MHz; $\sigma = 0.83$ mho/m; $\epsilon_r = 43.5$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.34, 7.34, 7.34); Calibrated: 16/07/2009

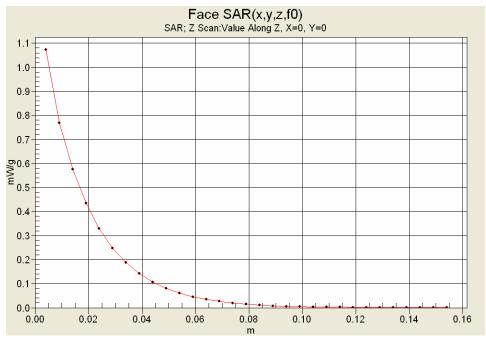
- Sensor-Surface: 4mm (Mechanical Surface Detection)

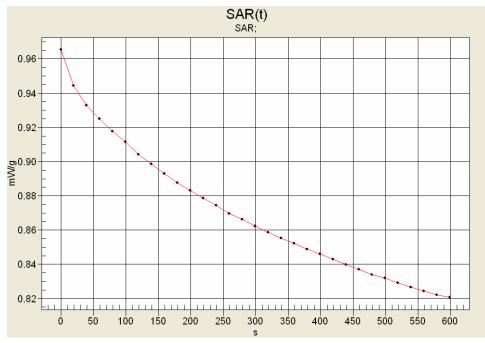

- Electronics: DAE4 Sn353; Calibrated: 28/04/2009

- Phantom: Side Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.944 mW/g Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 38.8 V/m; Power Drift = -0.560 dB Peak SAR (extrapolated) = 1.52 W/kg SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.773 mW/g Maximum value of SAR (measured) = 1.12 mW/g


Applicant:	Cob	bbra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХЛ	225	DUT:	Portable GM	Portable GMRS/FRS PTT Radio Transceiver			- 467.7125 MHz	BLAETING ACCOUNTS
2009 Celltech La	ibs Inc.	This c	locument is	not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 16 of 33

Celltech	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat:	Test Report Issue Date October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

Z-Axis Scan

SAR-versus-Time Droop Evaluation Face-held Configuration GMRS Ch. 21 (462.7000 MHz) Alkaline AAA Batteries

Start SAR: 0.965404 mW/g End SAR: 0.820802 mW/g (-0.705 dB) SAR after 340s: 0.855284 mW/g (-0.526 dB) (340s = Zoom Scan Duration) (600s = Area Scan Duration)

Applicant:	Cob	bra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90 Cobra	Calma
Model(s):	СХТ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver			462.5500	- 467.7125 MHz	BLACTING AND
2009 Celltech La	ibs Inc.	This c	locument is	not to be reproduc	to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				

Celltech	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat:	Test Report Issue Date October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

Date Tested: 10/15/2009

Body-worn SAR - GMRS Channel 21 - 462.7000 MHz - Ni-MH AAA Rechargeable Batteries

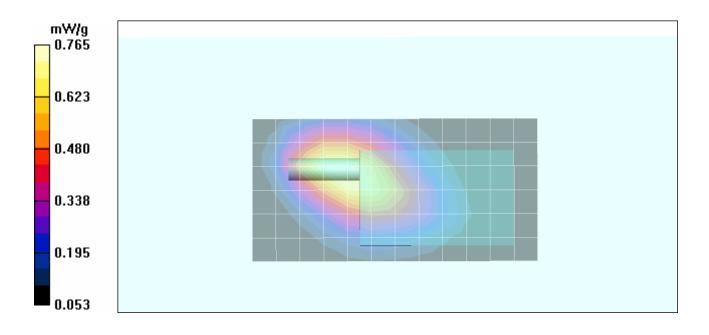
DUT: Cobra; Model: CXT225; Type: Portable GMRS/FRS PTT Radio Transceiver; Serial: FCC Sample #1

Body-worn Accessory: Plastic Belt-Clip; Audio Accessory: Earbud Lapel-Microphone (P/N: GA-EBM2)

Ambient Temp: 22.1°C; Fluid Temp: 21.2°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: UHF FM (CW) Frequency: 462.700 MHz; Duty Cycle: 1:1 Medium: M450 Medium parameters used: f = 462.7 MHz; σ = 0.91 mho/m; ε_r = 58; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.34, 7.34, 7.34); Calibrated: 16/07/2009


- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 28/04/2009

- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 0.6 cm Belt-Clip Spacing from Back of DUT to Planar Phantom

Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.755 mW/g Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 27.9 V/m; Power Drift = -0.226 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.723 mW/g; SAR(10 g) = 0.498 mW/g Maximum value of SAR (measured) = 0.765 mW/g

Applicant:	Cob	bra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver			462.5500	- 467.7125 MHz	BLACTING AND
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 18 of 33

Celltech	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat:	Test Report Issue Date October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

Date Tested: 10/15/2009

Body-worn SAR - GMRS Channel 21 - 462.7000 MHz - Energizer Alkaline AAA Batteries

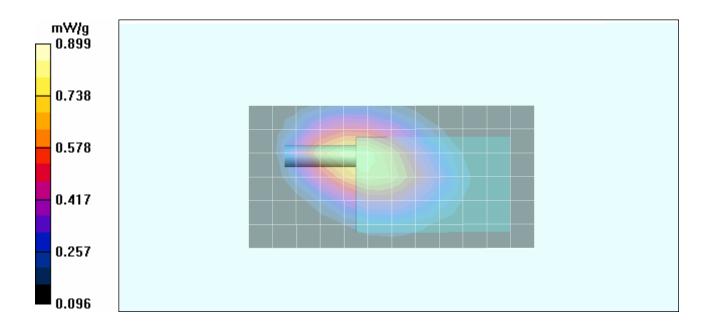
DUT: Cobra; Model: CXT225; Type: Portable GMRS/FRS PTT Radio Transceiver; Serial: FCC Sample #1

Body-worn Accessory: Plastic Belt-Clip; Audio Accessory: Earbud Lapel-Microphone (P/N: GA-EBM2)

Ambient Temp: 22.1°C; Fluid Temp: 21.2°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: UHF FM (CW) Frequency: 462.700 MHz; Duty Cycle: 1:1 Medium: M450 Medium parameters used: f = 462.7 MHz; σ = 0.91 mho/m; ϵ_r = 58; ρ = 1000 kg/m³

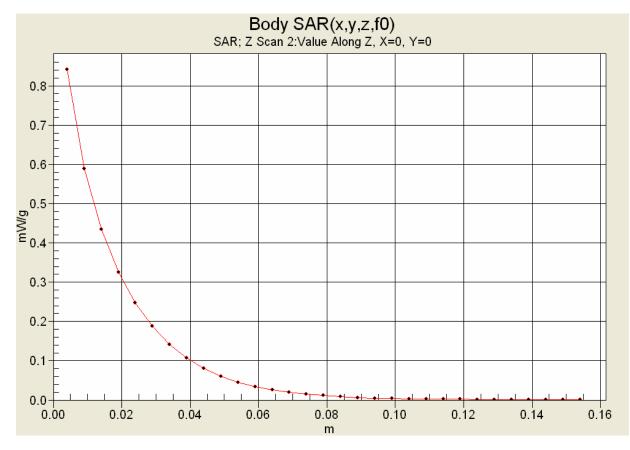
- Probe: ET3DV6 - SN1590; ConvF(7.34, 7.34, 7.34); Calibrated: 16/07/2009


- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 28/04/2009

- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 0.6 cm Belt-Clip Spacing from Back of DUT to Planar Phantom


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.769 mW/g Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 29.9 V/m; Power Drift = -0.504 dB Peak SAR (extrapolated) = 1.28 W/kg SAR(1 g) = 0.858 mW/g; SAR(10 g) = 0.585 mW/g Maximum value of SAR (measured) = 0.899 mW/g

Applicant:	Cob	bra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver			462.5500	- 467.7125 MHz	BLACTING AND
2009 Celltech La	ibs Inc.	This d	locument is	s not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 19 of 33

Celltech	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat:	Test Report Issue Date October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

Z-Axis Scan

Applicant:	Cob	obra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	F225	DUT:	Portable GMRS/FRS PTT Radio Transceiver			462.5500	- 467.7125 MHz	BLAETING MCSI COMPCINATION
2009 Celltech La	ibs Inc.	This c	locument is	not to be reproduc	Page 20 of 33				

Date(s) of Evaluation	<u>Test Report Serial No.</u>	<u>Test Report Revision No.</u>	
October 15, 2009	101409BBO-T988-S95U	Rev. 1.0 (Initial Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
October 21, 2009	Specific Absorption Rate	General Population	

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	Cob	bra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver			462.5500	- 467.7125 MHz	BLAETING ACTIVICATION
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduc	to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				

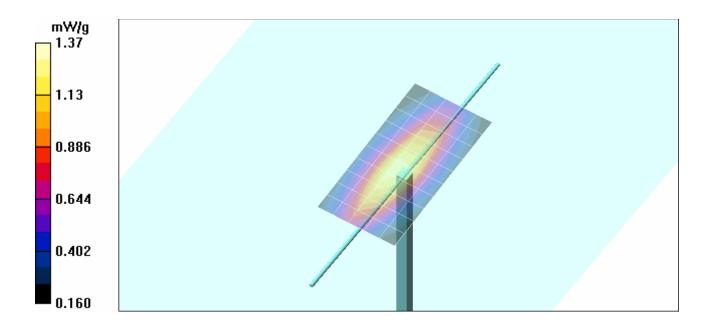
Celltech	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat	Test Report Issue Date October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

Date Tested: 10/15/2009

System Performance Check - 450 MHz Dipole - HSL

DUT: Dipole 450 MHz; Asset: 00024; Serial: 136; Calibration: 01/19/2009

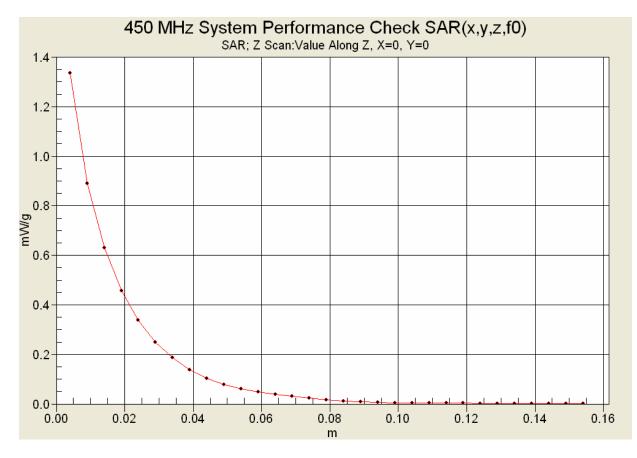
Ambient Temp: 22.0°C; Fluid Temp: 21.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%


Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.83 mho/m; ϵ_r = 43.4; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1590; ConvF(7.34, 7.34, 7.34); Calibrated: 16/07/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: Validation Planar; Type: Plexiglas; Serial: TE#137
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

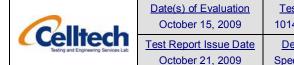
System Performance Check - 450 MHz Dipole


Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.26 mW/g Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 41.2 V/m; Power Drift = -0.081 dB Peak SAR (extrapolated) = 2.00 W/kg SAR(1 g) = 1.28 mW/g; SAR(10 g) = 0.857 mW/g Maximum value of SAR (measured) = 1.37 mW/g

Applicant:	Cob	bra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver			462.5500	- 467.7125 MHz	BLAETING AND
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduc	to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 22 of 33

Celltech	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat:	Test Report Issue Date October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

Z-Axis Scan


Applicant:	Cobra Electronics Corporation		FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra	
Model(s):	СХЛ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver		462.5500	- 467.7125 MHz	BLACTINGONICH (DOWNCHARAEDA
2009 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 23 of 33		

Date(s) of Evaluation	Test Report Serial No.	<u>Test Report Revision No.</u>	
October 15, 2009	101409BBO-T988-S95U	Rev. 1.0 (Initial Release)	
<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
October 21, 2009	Specific Absorption Rate	General Population	

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Cob	Cobra Electronics Corporation		FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХЛ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver		462.5500	- 467.7125 MHz	BLAETING ACTION AND A
2009 Celltech La	ibs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 24 of 33	

450 MHz System Performance Check & 460 MHz DUT Evaluation (Head)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter 15/Oct/2009 Frequency (GHz) FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM Test s Sigma of UIM

*******	**************************************									
Freq	FCC_eH	FCC_sl	HTest_e	Test_s						
0.3500	44.70	0.87	45.63	0.76						
0.3600	44.58	0.87	45.73	0.75						
0.3700	44.46	0.87	45.35	0.75						
0.3800	44.34	0.87	44.64	0.78						
0.3900	44.22	0.87	44.98	0.77						
0.4000	44.10	0.87	44.81	0.79						
0.4100	43.98	0.87	44.37	0.79						
0.4200	43.86	0.87	44.48	0.80						
0.4300	43.74	0.87	44.04	0.81						
0.4400	43.62	0.87	43.73	0.82						
<mark>0.4500</mark>	43.50	0.87	43.39	<mark>0.83</mark>						
<mark>0.4600</mark>	43.45	0.87	43.53	0.83						
0.4700	43.40	0.87	43.39	0.85						
0.4800	43.34	0.87	42.76	0.84						
0.4900	43.29	0.87	43.06	0.85						
0.5000	43.24	0.87	42.64	0.86						
0.5100	43.19	0.87	42.36	0.87						
0.5200	43.14	0.88	41.91	0.88						
0.5300	43.08	0.88	41.86	0.89						
0.5400	43.03	0.88	41.53	0.88						
0.5500	42.98	0.88	41.70	0.91						

Applicant:	Cob	ra Elec	tronics (Corporation	FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver		462.5500	- 467.7125 MHz	BLETHENCE CONVENIENCE	
2009 Celltech La	ibs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 25 of 33		

	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
rvices Lat	Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
	October 21, 2009	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

460 MHz DUT Evaluation (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Frequency (GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon 15/Oct/2009

CC Bulletin 65 S	Supplement (C (June	2001) Lin	nits for He
FCC el	B FCC Limits	s for Boo	dy Epsilor	1 I
FCC s	B FCC Limit	s for Bo	dy Sigma	
- 7	Fest e Eps	ilon of L	ЛМ	
	Test_s Sig	ma of U	IM	
*****				******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.3500	57.70	0.93	59.14	0.85
0.3600	57.60	0.93	58.86	0.84
0.3700	57.50	0.93	58.94	0.84
0.3800	57.40	0.93	58.29	0.86
0.3900	57.30	0.93	58.90	0.86
0.4000	57.20	0.93	58.78	0.88
0.4100	57.10	0.93	57.80	0.87
0.4200	57.00	0.94	58.26	0.87
0.4300	56.90	0.94	57.89	0.87
0.4400	56.80	0.94	57.33	0.89
<mark>0.4500</mark>	56.70	0.94	57.57	0.91
<mark>0.4600</mark>	56.66	0.94	58.00	0.91
0.4700	56.62	0.94	57.31	0.92
0.4800	56.58	0.94	57.14	0.92
0.4900	56.54	0.94	57.23	0.91
0.5000	56.51	0.94	57.40	0.94
0.5100	56.47	0.94	57.39	0.95

56.43

56.39

56.35

56.31

0.95

0.95

0.95

0.95

56.80

56.52

56.55

56.61

0.95

0.96

0.96

0.98

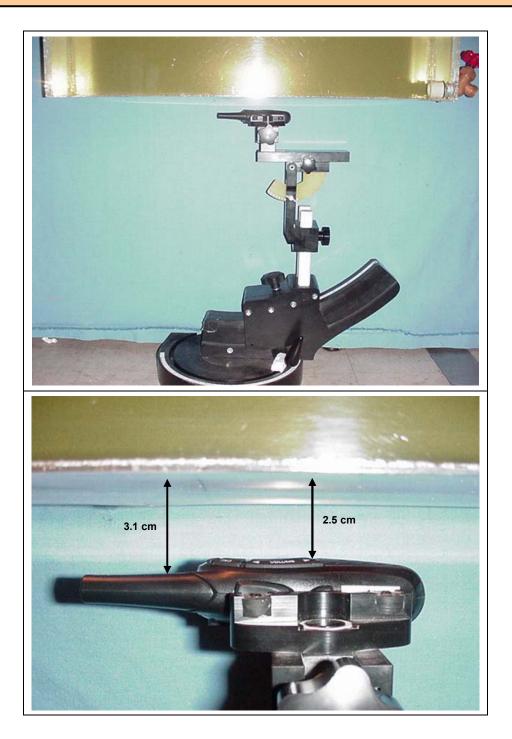
0.5200

0.5300

0.5400

0.5500

Applicant:	Cob	ra Elec	tronics (Corporation	FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver		462.5500	- 467.7125 MHz	BLACTINGONCH (DOWNCHARDON	
2009 Celltech La	ibs Inc.	This c	locument is	ment is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 26 of 33


Date(s) of Evaluation	Test Report Serial No.	<u>Test Report Revision No.</u>	
October 15, 2009	101409BBO-T988-S95U	Rev. 1.0 (Initial Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
October 21, 2009	Specific Absorption Rate	General Population	

APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

Applicant:	Cob	ra Elec	tronics (Corporation	FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	225	DUT:	Portable GMRS/FRS PTT Radio Transceiver		462.5500	- 467.7125 MHz	BLACTING COUNCILLAND	
2009 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 27 of 33			

Celltech	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat:	Test Report Issue Date October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

FACE-HELD SAR TEST SETUP PHOTOGRAPHS 2.5 cm Spacing from Front of DUT to Planar Phantom

Applicant:	Cob	ra Elec	tronics (Corporation	FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХЛ	225	DUT:	Portable GM	RS/FRS PTT F	adio Transceiver	462.5500	- 467.7125 MHz	BLACTRONACE (CONSCIENCE)
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduc	ed in whole or in p	part without the prior writte	en permission	of Celltech Labs Inc.	Page 28 of 33

Celltech

Date(s) of Evaluation	Test Report Serial No.	Test Report Revision No.	
October 15, 2009	101409BBO-T988-S95U	Rev. 1.0 (Initial Release)	
Test Report Issue DateOctober 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

BODY-WORN SAR TEST SETUP PHOTOGRAPHS 0.6 cm Belt-Clip Spacing from Back of DUT to Planar Phantom DUT with Earbud Lapel-Microphone Audio Accessory

Applicant:	Cob	ra Elec	tronics C	Corporation	FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХЛ	225	DUT:	Portable GM	RS/FRS PTT R	adio Transceiver	462.5500	- 467.7125 MHz	BLACTING ACCOUNTS
2009 Celltech La	ibs Inc.	This d	locument is	not to be reproduc	ed in whole or in p	art without the prior writte	n permission	of Celltech Labs Inc.	Page 29 of 33

Date(s) of Evaluation	
October 15, 2009	
Test Report Issue Date	

October 21, 2009

Test Report Serial No. Test Report Revision No. 101409BBO-T988-S95U Rev. 1.0 (Initial Release) RF Exposure Category Description of Test(s) General Population Specific Absorption Rate

DUT PHOTOGRAPHS

Applicant:	Cob	ora Elec	tronics (Corporation	FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	CXT	Г225	DUT:	Portable GM	RS/FRS PTT R	adio Transceiver	462.5500	- 467.7125 MHz	REALING CONCINCTON
2009 Celltech La	abs Inc.	This c	locument is	not to be reproduc	ed in whole or in p	art without the prior writte	n permission	of Celltech Labs Inc.	Page 30 of 33

Callback	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Celltech	Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
Testing and Engineering Services Lab	October 21, 2009	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

DUT PHOTOGRAPHS

Applicant:	Col	ora Elec	tronics C	Corporation	FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХ	T225	DUT:	Portable GM	RS/FRS PTT R	adio Transceiver	462.5500	- 467.7125 MHz	BLAETRONKS CONVORATOR
2009 Celltech L	abs Inc.	This c	locument is	not to be reproduc	ced in whole or in p	art without the prior writte	n permission	of Celltech Labs Inc.	Page 31 of 33

Date(s) of Evaluation October 15, 2009	Test Report Serial No. 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
<u>Test Report Issue Date</u> October 21, 2009	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

DUT PHOTOGRAPHS

Applicant:	Cob	ra Elec	tronics C	Corporation	FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra
Model(s):	СХТ	225	DUT:	Portable GM	RS/FRS PTT F	Radio Transceiver	462.5500	- 467.7125 MHz	BLACTING AND
2009 Celltech La	abs Inc.	This d	locument is	not to be reproduc	ced in whole or in p	part without the prior writte	en permission	of Celltech Labs Inc.	Page 32 of 33

Colling	Date(s) of Evaluation October 15, 2009	<u>Test Report Serial No.</u> 101409BBO-T988-S95U	Test Report Revision No. Rev. 1.0 (Initial Release)	
Celitech	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lab	October 21, 2009	Specific Absorption Rate	General Population	

APPENDIX E - DIPOLE CALIBRATION (FCC KDB 250418) & PROBE CALIBRATION

FCC Home | Search | Updates | E-Filing | Initiatives | For Consumers | Find People

OF

Office of Engineering and Technology

Inquiry:

Uploading 300 MHz and 450 MHz Dipole Calibration Reports

Response:

FCC confirmation attached for Celltech Labs Dipoles with following identifications:

Serial #: 136 / 450 MHz / Head Tissue-Equivalent Medium / Expires 02/28/2010 Serial #: 135 / 300 MHz / Head Tissue-Equivalent Medium / Expires 02/28/2010

A copy of the confirmation and corresponding Dipole Report(s) are required to be included in SAR reports of applicable equipment certification filings. Each filing must have KDB tracking number 250418 included on 731 Form.

	A	OET
The dipoles listed below have privalidation and verification by Cel specific operating parameters and these dipoles must be in accordan shell and tissue dielectric requiren certification by the FCC or TCB, specific device and wireless techn results.	Itech Labs through February 201 identifications are indicated beloce with the parameters specified nents etc. These will be verified according to measurement proto	 The SAR target values, bw. SAR measurements using below; for example, phantom during each equipment cols required for testing the
This confirmation and copies of the reports for equipment certification dipoles. The information is availand number provided to Celltech Labor Form of the corresponding equiption and the corresponding equiption for the corres	n containing SAR system verifica able and can be verified through s. The same tracking number mu	ation results involving these the KDB inquiry tracking
Dipole Serial Number	136	135
Calibration Document No.	DC450H-021209-R1.2	DC300H-021209-R1.2
Frequency	450 MHz	300 MHz
Dipole Impedance	58.21 + j 5.69 Ohms	46.39 + j 6.25 Ohms
Dipole Return Loss	-20.7 dB	- 22.6 dB
Tissue-Equivalent Dielectric Type	He	ad
Tissue Dielectric Constant	43.5	45.3
Fissue Conductivity	0.87 S/m	0.87 S/m
Phantom Shell Thickness	6.0 mm	Plexiglas
Phantom Shell Dielectric Constant	2	.7
Dipole Axis to Tissue Medium Separation Distance	15.17	5 mm
Numerical Simulation:	ED	TD
1-g SAR Target Value	4.893 W/kg @ 1.0 W	3.019 W/kg @ 1.0 W
10-g SAR Target Value	3.263 W/kg @ 1.0 W	2.051 W/kg @ 1.0 W
SAR at Phantom Surface above Dipole Feed-Point	6.845 W/kg @ 1.0 W	4.046 W/kg @ 1.0 W
SAR at Phantom Surface at 2.0 cm offset from Dipole Feed- Point	3.101 W/kg @ 1.0 W	2.049 W/kg @ 1.0 W
Experimental Verification:	SAR Mea	surements
1-g SAR Target Value	1.21 ~ 1.23 W/kg @ 0.25 W	0.753 ~ 0.765 W/kg @ 0.25 W
10-g SAR Target Value	0.787 ~ 0.803 W/kg @ 0.25W	0.503 ~ 0.509 W/kg @ 0.25 W
SAR at Phantom Surface above Dipole Feed-Point	1.93 W/kg (average) @ 0.25 W	1.20 W/kg (average) @ 0.25 W
SAR at Phantom Surface at 2.0 cm offset from Dipole Feed- Point	0.79 W/kg @ 0.25 W	0.56 W/kg @ 0.25 W

Expires February 2010

Celltech Labs Inc.

February 13, 2009

Applicant:	Cob	Cobra Electronics Corporation			FCC ID:	BBOCXT90	IC:	906B-CXT90	Cobra	
Model(s):	CXT225		DUT:	Portable GM	MRS/FRS PTT Radio Transceiver		462.5500 - 467.7125 MHz		REALING COULD	
2009 Celltech Labs Inc. This docume			locument is	s not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 33 of 33	

450 MHz Dipole Calibration

Туре:	450 MHz Validation Dipole
Asset Number:	00024
Serial Number:	136
Place of Calibration:	Celltech Labs Inc.
Date(s) of Calibration:	Jan. 19 & Feb. 09, 2009

Celltech Labs Inc. certifies that the 450 MHz Dipole Calibration was performed on the date(s) indicated above.

Calibrated by:

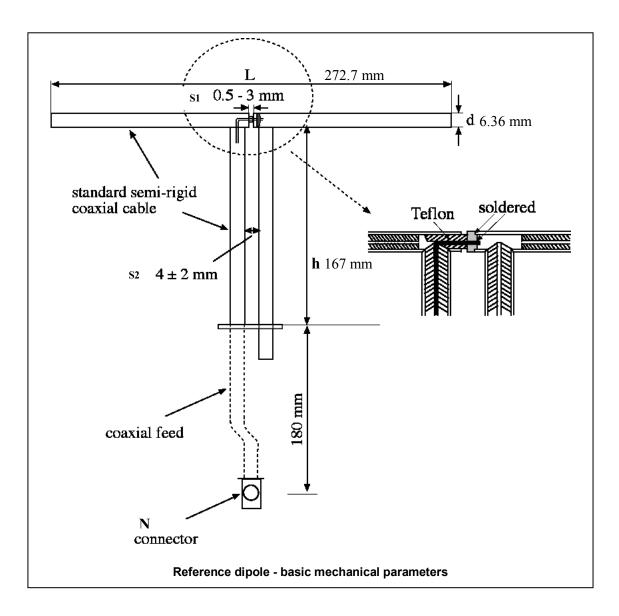
Sean Johnston

Signature:

Sum Jund

Celltech Labs Inc. 21-364 Lougheed Rd., Kelowna, B.C. V1X 7R8 Canada Tel. 250-765-7650 • Fax. 250-765-7645 • e-mail: info@celltechlabs.com www.celltechlabs.com

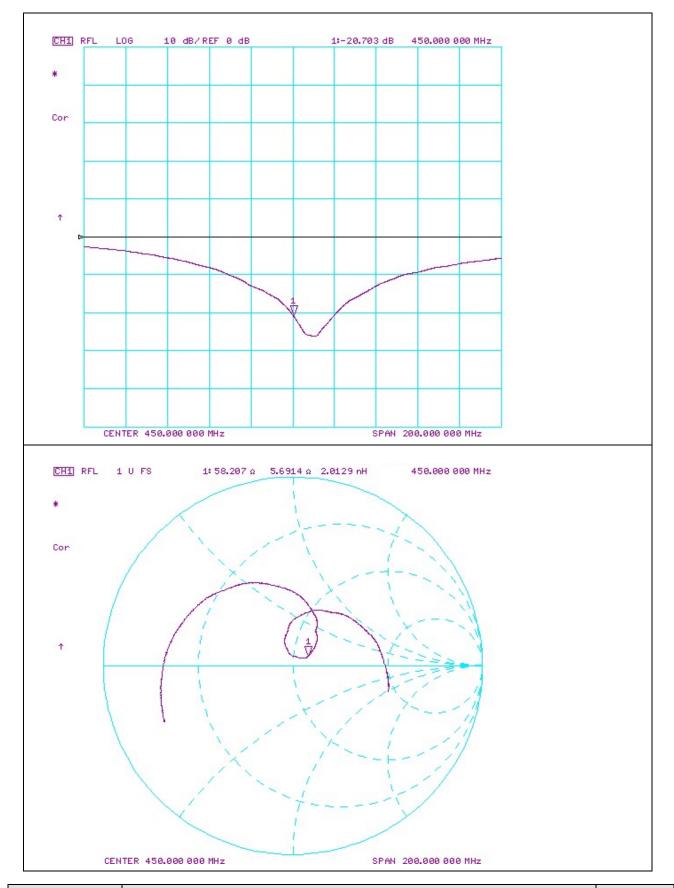
Celltech	Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009 Calibration Docum		ent Serial No.:	DC450H-021	450H-021209-R1.2	
	Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head	


1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed with RG401/U semi-rigid coax in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.1 mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 450 MHz Re{Z} = 58.207 Ω Im{Z} = 5.6914 Ω

Return Loss at 450 MHz


-20.703 dB

Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	DC450H-021209-R1.2		
Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

2. Validation Dipole VSWR Data

Celltech

3. Validation Dipole Dimensions

Dimension	IEEE 1528 (mm)	Measured (mm)	Difference (mm)	Tolerance (1528 1%)
L (mm)	270.0	272.7	+2.7	+1%
h (mm)	166.7	167.0	+0.3	+0.2%
d (mm)	6.35	6.36	+0.01	+0.2%

The L, h and d dimensions should be within <u>+</u>1% tolerance per 1528-2003.

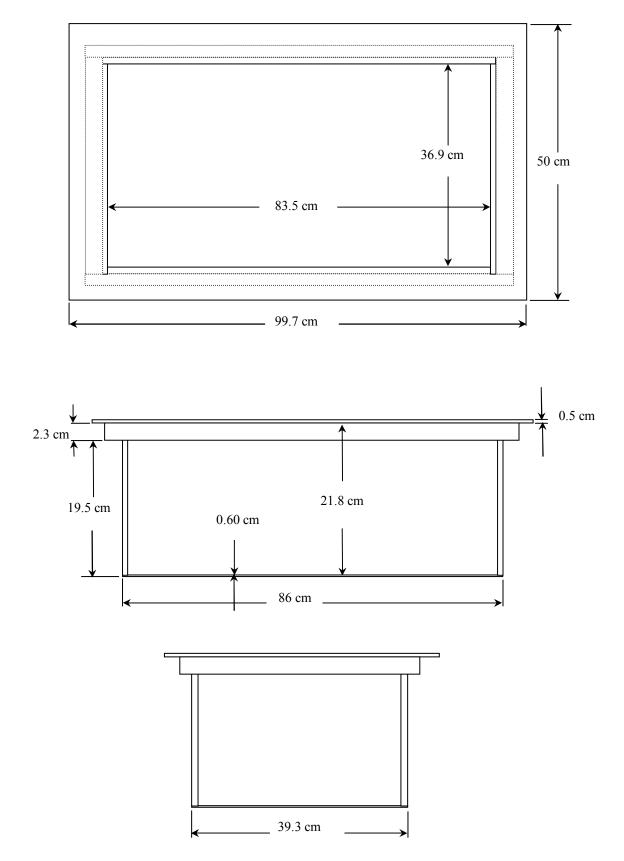
4. Validation Phantom

The validation phantom (planar) was constructed using relatively low-loss tangent Plexiglas material. The dielectric constant used for the numerical analysis was 2.7. The typical range of 2.5 - 3 was selected and the mean of this value was used for the simulation.

The inner dimensions of the validation phantom are as follows:

Length:	83.5 cm
Width:	36.9 cm
Height:	21.8 cm

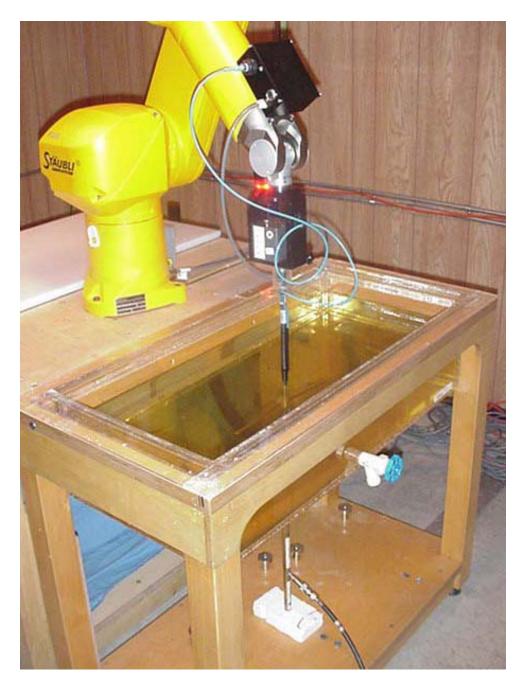
The bottom section of the validation phantom is constructed of 6.0 ± 0.1 mm Plexiglas.


s = 3.175mm(d/2) + 6.0mm(phantom) + 6.0mm(spacer) = 15.175mm

5. Test Equipment List

TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	CNR	CNR
SPEAG Robot	00046	599396-01	CNR	CNR
SPEAG DAE4	00019	353	22Apr08	22Apr09
SPEAG ET3DV6 E-Field Probe	00017	1590	21Jul08	21Jul09
Plexiglas Validation Planar Phantom	00157	137	CNR	CNR
HP 85070C Dielectric Probe Kit	00033	US39240170	CNR	CNR
Gigatronics 8652A Power Meter	00007	1835272	23Apr08	23Apr09
Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	23Apr09
HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr09
HP 8648D Signal Generator	00005	3847A00611	CNR	CNR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
CNR = Calibration Not Required				

Celltech	Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	DC450H-021209-R1.2		
	Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head


6. Dimensions of Plexiglas Planar Validation Phantom

Celltech	Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	DC450H-021209-R1.2		
	Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

7. Plexiglas Planar Validation Phantom

(

8. 450 MHz Validation Dipole

Celltech

9. SAR Target Validation

							Par	amete	ər									Re	sult	
	Frequency (MHz)	Shell thickness (mm)	Shell permittivity	Shell permeability	Shell Conductivity (σ) (S/m)	Phantom dimensions (mm) [x, y, z]	Liquid Relative permittivity	Liquid Conductivity (o) (S/m)	Liquid permeability	Reference dipole distances from the liquid (mm)	Spacer (mm)	Dipole L (mm)	Dipole h (mm)	Dipole d (mm)	Distance between dipole feedpoint gap S1 (mm)	Distance between dipole balun elements S2 (mm)	1 g SAR (1 Watt)	10 g SAR (1 Watt)	Local SAR at surface (above feed-point)	Local SAR at surface (y = 2 cm offset from feed-point)
SEMCAD Simulation	450	6	2.7	1	0	700, 600, 170	43.5	0.87	1	15.175	6	270	166.7	6.35	1	4	4.893	3.263	6.845	3.101
										CEL	LTEC	H TAR	GET							
											1.223	W/kg	1g	0.25 W						
																	0.816	W/kg	10g	0.25 W

1. Standard dipole dimensions used in simulation per 1528-2003 mechanical dimensions of the reference dipole.

2. Reference distance from liquid is actual measured distance.

Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	DC450H-021209-R1.2		
Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

10. SAR Measurement

Measurements were made using a dosimetric E-field probe ET3DV6 (S/N: 1590, Conversion Factor 7.66). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the procedures described below.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

<u>11. Measurement Conditions</u>

The validation phantom was filled with 450 MHz Head tissue simulant.

Relative Permittivity: Conductivity: Fluid Temperature: Fluid Depth:	 43.8 (+0.7% deviation from target) 0.86 mho/m (-1.1% deviation from target) 22.1°C (Start of Test) / 22.3°C (End of Test) ≥ 15.0 cm
Environmental Conditio Ambient Temperature: Barometric Pressure: Humidity:	

The 450 MHz Head tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight				
Water	38.56%				
Sugar	56.32%				
Salt	3.95%				
HEC	0.98%				
Dowicil 75	0.19%				
IEEE/IEC Target Dielectric Parameters (450 MHz):	ε _r = 43.5 (+/- 5%)	σ = 0.87 S/m (+/- 5%)			

12. System Performance Check SAR Results

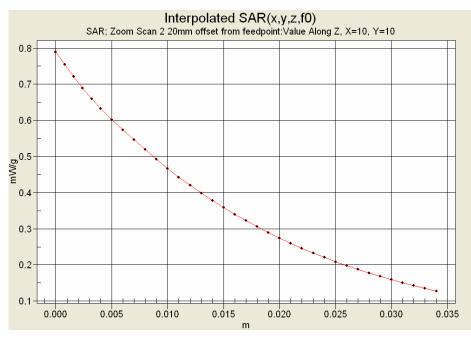
SAR @ 0.	25W Input av	veraged over	1g (W/kg)	SAR @ 1W Input averaged over 1g (W/kg)					
Validation 1	Farget (450)	Measured	Deviation	Validation	Target (450)	Measured	Deviation		
1.223	+/- 10%	1.216	-0.57%	4.892 +/- 10%		4.864	-0.57%		
SAR @ 0.2	25W Input av	eraged over '	10g (W/kg)	SAR @ 1W Input averaged over 10g (W/kg)					
Validation 1	Farget (450)	Measured	Deviation	Validation	Target (450)	Measured	Deviation		
0.816	+/- 10%	0.799	-2.08%	3.264	+/- 10%	3.196	-2.08%		

Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	ent Serial No.:	DC450H-021209-R1.2		
Type of Evaluation: Dipole Calibration		Dipole Frequency:	450 MHz	Fluid Type:	Head	

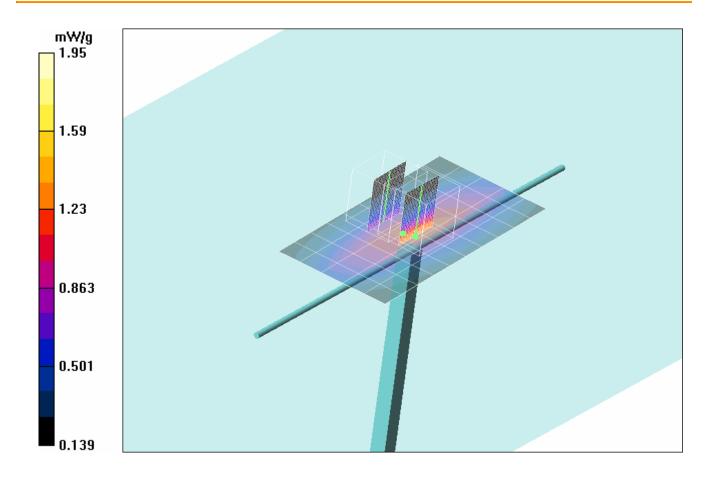
	450 MHz System Performance Check @ 250mW (1g)								
	SAR 1g (mW/g)	Numerical SIDEV Mean		Coefficient of Variation					
Test 1	1.21	-1.06%	0.008	1.216	0.007				
Test 2	1.22	-0.25%							
Test 3	1.22	-0.25%							
Test 4	1.21	-1.06%							
Test 5	1.22	-0.25%							
Test 6	1.20	-1.88%							
Test 7	1.22	-0.25%							
Test 8	1.22	-0.25%							
Test 9	1.23	0.57%							
Test 10	1.21	-1.06%							
	1.216	-0.57%							

	450 MHz System Performance Check @ 250mW (10g)								
	SAR 10g (mW/g)	Deviation From 450 MHz Numerical Simulation (0.816 mW/g)	STDEV	Mean Coefficient of Variation					
Test 1	0.799	-2.08%	0.006	0.799	0.007				
Test 2	0.800	-1.96%							
Test 3	0.803	-1.59%							
Test 4	0.796	-2.45%							
Test 5	0.801	-1.84%							
Test 6	0.793	-2.82%							
Test 7	0.802	-1.72%							
Test 8	0.802	-1.72%							
Test 9	0.807	-1.10%							
Test 10	0.787	-3.55%							
	0.799	-2.08%							

Celltech	Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	ent Serial No.:	DC450H-021209-R1.2		
Centern Serves Lat	Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head	

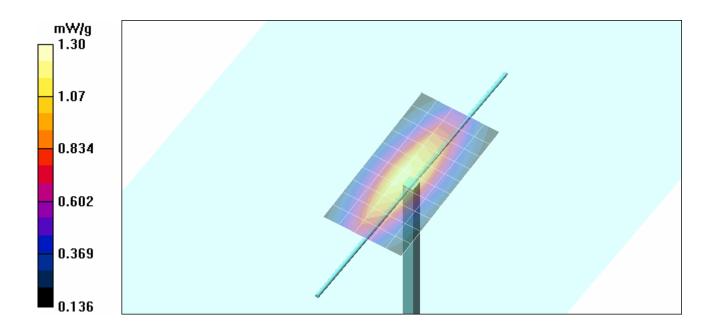

b) Extrapolation Routine:

The zoom scan routine was used to extrapolate the peak SAR above the feed point and offset at 20mm. Two zoom scans were used, the first centered above the feedpoint and the second offset 20mm. The interpolated SAR at these points are shown in the table below. Note: Center point of zoom scan located at x=10, y=10.


Measurement Location	Measured SAR mW/g	SAR 1W Normalized	Peak Target mW/g	Deviation	System Performance Check Expanded Uncertainty +-%
Feed Point	1.93*	7.72	6.85	12.7%	17.86
2 cm Offset	0.79	3.16	3.10	1.9%	17.86

*Note: measured SAR level is the average from the 10 evaluations

Celltech	Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	DC450H-021209-R1.2		
C Centrecn Dating and Engineering Environ Lat	Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head



System Performance Check - 450 MHz Dipole - HSL DUT: Dipole 450 MHz; Asset: 00024; Serial: 136

Maximum value of SAR (measured) = 1.30 mW/g ⁻ 450 MHz Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.5 V/m; Power Drift = -0.022 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.800 mW/g 450 MHz Zoom Scan 3 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.803 mW/g 450 MHz Zoom Scan 4 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = 0.001 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.796 mW/g Maximum value of SAR (measured) = 1.29 mW/g 450 MHz Zoom Scan 5 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.5 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.796 mW/g Maximum value of SAR (measured) = 1.32 mW/g 450 MHz Zoom Scan 5 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.5 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.793 mW/g Maximum value of SAR (measured) = 1.32 mW/g 450 MHz Zoom Scan 6 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = -0.017 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 1.20 mW/g; SAR(10 g) = 0.793 mW/g Maximum value of SAR (measured) = 1.31 mW/g 450 MHz Zoom Scan 7 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.31 mW/g 450 MHz Zoom Scan 8 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Max	Ambient Temp: 23.1°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35% Communication System: CW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.86 mho/m; ϵ_r = 43.8; ρ = 1000 kg/m ³ - Probe: ET3DV6 - SN1590; ConvF(7.66, 7.66, 7.66); Calibrated: 21/07/2008 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353; Calibrated: 22/04/2008 - Phantom: Validation Planar; Type: Plexiglas; Serial: TE#137 - Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171 450 MHz Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.20 mW/g 450 MHz Zoom Scan 1 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.6 V/m; Power Drift = -0.035 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.799 mW/g
 450 MHz Zoom Scan 3 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.803 mW/g 450 MHz Zoom Scan 4 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = 0.001 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.796 mW/g Maximum value of SAR (measured) = 1.29 mW/g 450 MHz Zoom Scan 5 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.5 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.801 mW/g Maximum value of SAR (measured) = 1.32 mW/g 450 MHz Zoom Scan 6 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = -0.017 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 1.20 mW/g; SAR(10 g) = 0.793 mW/g Maximum value of SAR (measured) = 1.29 mW/g 450 MHz Zoom Scan 7 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = -0.017 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 1.20 mW/g; SAR(10 g) = 0.793 mW/g Maximum value of SAR (measured) = 1.29 mW/g 450 MHz Zoom Scan 7 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.31 mW/g 450 MHz Zoom Scan 8 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.7 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.30 mW/g 450 MHz Zoom Scan 9 (5x5x7)/Cube 0: Measurement grid: d	Maximum value of SAR (measured) = 1.30 mW/g 450 MHz Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.5 V/m; Power Drift = -0.022 dB Peak SAR (extrapolated) = 1.93 W/kg
 450 MHz Zoom Scan 4 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = 0.001 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.21 mWig; SAR(10 g) = 0.796 mW/g Maximum value of SAR (measured) = 1.29 mW/g 450 MHz Zoom Scan 5 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.5 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.801 mW/g Maximum value of SAR (measured) = 1.32 mW/g 450 MHz Zoom Scan 6 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = -0.017 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 1.20 mW/g; SAR(10 g) = 0.793 mW/g Maximum value of SAR (measured) = 1.29 mW/g 450 MHz Zoom Scan 7 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.31 mW/g 450 MHz Zoom Scan 8 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.7 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.30 mW/g 450 MHz Zoom Scan 8 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.7 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.30 mW/g 450 MHz Zoom Scan 9 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.6 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.95 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.807 mW/g<!--</td--><td>450 MHz Zoom Scan 3 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.803 mW/g</td>	450 MHz Zoom Scan 3 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.803 mW/g
 450 MHz Zoom Scan 5 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.5 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.801 mW/g Maximum value of SAR (measured) = 1.32 mW/g 450 MHz Zoom Scan 6 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = -0.017 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 1.20 mW/g; SAR(10 g) = 0.793 mW/g Maximum value of SAR (measured) = 1.29 mW/g 450 MHz Zoom Scan 7 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.31 mW/g A50 MHz Zoom Scan 8 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.7 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.31 mW/g 450 MHz Zoom Scan 8 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.7 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.30 mW/g 450 MHz Zoom Scan 9 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.6 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.95 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of SAR (measured) = 1.32 mW/g SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of SAR (measured) = 1.32 mW/g SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of SAR (measured) = 1.32 mW/g SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of S	450 MHz Zoom Scan 4 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = 0.001 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.796 mW/g
 450 MHz Zoom Scan 6 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = -0.017 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 1.20 mW/g; SAR(10 g) = 0.793 mW/g Maximum value of SAR (measured) = 1.29 mW/g 450 MHz Zoom Scan 7 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.31 mW/g 450 MHz Zoom Scan 8 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.7 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.30 mW/g 450 MHz Zoom Scan 9 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.7 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.30 mW/g 450 MHz Zoom Scan 9 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.6 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.95 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of SAR (measured) = 1.32 mW/g 	450 MHz Zoom Scan 5 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.5 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.801 mW/g
 450 MHz Zoom Scan 7 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.31 mW/g 450 MHz Zoom Scan 8 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.7 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.30 mW/g 450 MHz Zoom Scan 9 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.6 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.95 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of SAR (measured) = 1.32 mW/g 450 MHz Zoom Scan 10 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm 	450 MHz Zoom Scan 6 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = -0.017 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 1.20 mW/g; SAR(10 g) = 0.793 mW/g
 450 MHz Zoom Scan 8 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.7 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.30 mW/g 450 MHz Zoom Scan 9 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.6 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.95 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of SAR (measured) = 1.32 mW/g 450 MHz Zoom Scan 10 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm 	450 MHz Zoom Scan 7 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.4 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g
Reference Value = 39.6 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.95 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of SAR (measured) = 1.32 mW/g 450 MHz Zoom Scan 10 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm	450 MHz Zoom Scan 8 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.7 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.802 mW/g
	Reference Value = 39.6 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.95 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.807 mW/g
Reference Value = 39.3 V/m; Power Drift = 0.007 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.787 mW/g Maximum value of SAR (measured) = 1.29 mW/g	Reference Value = 39.3 V/m; Power Drift = 0.007 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.787 mW/g

Celltech	Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	DC450H-021209-R1.2		
Centering and Engineering Environ Lat	Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

13. Measured Fluid Dielectric Parameters

450 MHz (Head)

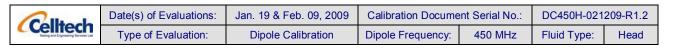
Celltech Labs Ind Test Result for U 19/Jan/2009 Frequency (GHz IEEE_eH IEEE 1 IEEE_sH IEEE 1 Test_e Epsilon Test_s Sigma c	IIM Dielec) 528-2003 528-2003 of UIM of UIM	3 Limits fo 3 Limits fo	or Head E or Head S	Sigma	
Freq			HTest_e		
0.3500	44.70	0.87	44.61	0.78	
0.3600	44.58	0.87	46.57	0.79	
0.3700	44.46	0.87	45.58	0.79	
0.3800	44.34	0.87	44.52	0.80	
0.3900	44.22 44.10	0.87 0.87	44.68	0.82 0.83	
0.4000 0.4100	44.10 43.98	0.87	44.30 43.79	0.83	
0.4200	43.96	0.87	43.79 44.67	0.85	
0.4200	43.74	0.87	43.93	0.85	
0.4400	43.62	0.87	43.86	0.86	
0.4500	43.50	0.87	43.79	0.86	
0.4600	43.45	0.87	43.00	0.86	
0.4700	43.40	0.87	42.82	0.88	
0.4800	43.34	0.87	42.69	0.89	
0.4900	43.29	0.87	42.38	0.91	
0.5000	43.24	0.87	42.02	0.90	
0.5100	43.19	0.87	42.04	0.92	
0.5200	43.14	0.88	42.26	0.95	
0.5300	43.08	0.88	41.66	0.94	
0.5400	43.03	0.88	41.84	0.95	
0.5500	42.98	0.88	41.33	0.96	

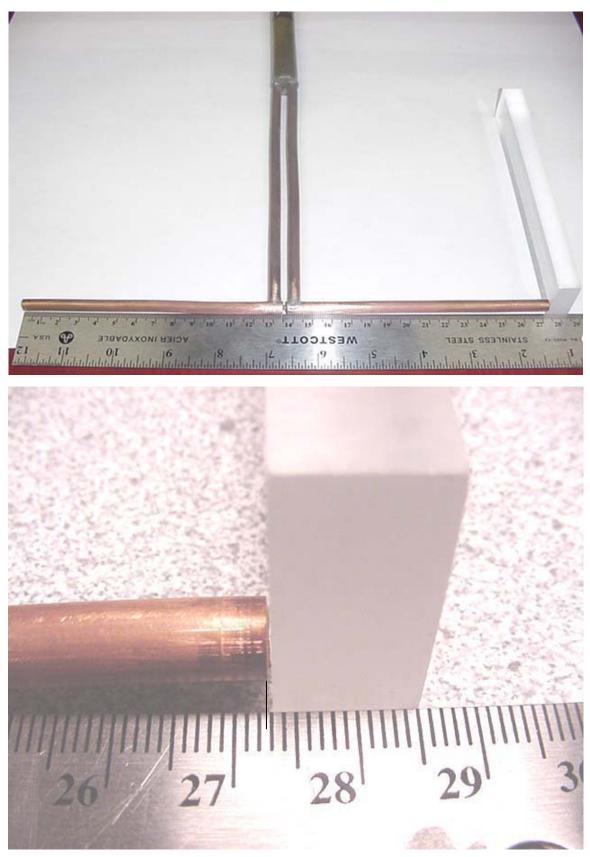
Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	Calibration Document Serial No.:		
Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

14. Measurement Uncertainties

UNCERTAINTY BUDGET FOR SYSTEM PERFORMANCE CHECK									
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (450 MHz)	E.2.1	6.65	Normal	1	1	1	6.65	6.65	x
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	1	1	2.7	2.7	x
Hemispherical Isotropy	E.2.2	0	Rectangular	1.732050808	1	1	0.0	0.0	x
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	00
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	00
Response Time	E.2.7	0	Rectangular	1.732050808	1	1	0.0	0.0	x
Integration Time	E.2.8	0	Rectangular	1.732050808	1	1	0.0	0.0	8
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	00
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	8
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	x
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	ø
Dipole									
Dipole Positioning	E.4.2	2	Normal	1.732050808	1	1	1.2	1.2	8
SAR Drift Measurement	6.6.2	0.5	Normal	1.732050808	1	1	0.3	0.3	x
Phantom and Tissue Parameters	·								
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	x
Liquid Conductivity (measured)	E.3.3	1.1	Normal	1	0.64	0.43	0.7	0.5	×
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	×
Liquid Permittivity (measured)	E.3.3	0.7	Normal	1	0.6	0.49	0.4	0.3	8
Combined Standard Uncertainty			RSS				8.93	8.75	
Expanded Uncertainty (95% Confidence	e Interval)		k=2				17.86	17.50	
Measurement Uncertainty Ta	· · · · ·	ordance with IE	EE Standard 1	528-2003 and IE	C Inter	nationa	I Standard 622	09-1:2005	

Celltech

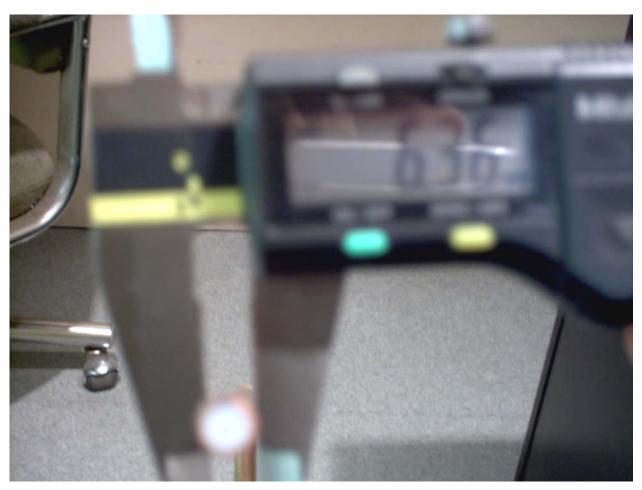

Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Document Serial No.:		DC450H-021209-R1.2	
Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head


15. Dipole Calibration History

	450 MHz Dipole Calibration History										
	54	R Probe Infor	mation			Celltech Measured	Data				
Dipole Calibration	БА	K Probe infor	nation	SAR (W/kg)	% Deviation from	% Deviation from	Dielec	tric			
Date	Serial	Calibration	Calibration		IEEE 1528 Target	Target validated by Celltech (4.893	Parame	eters	RL (dB)	Impedance	
	Number	ber Factor Proc	Procedure	250 mW	(4.9 W/kg @ 1 W)	W/kg @ 1 W)	ε _r	σ	()		
2003	1387	7.50	Numerical	1.30	6.12		43.70	0.88	-22.60	49.98	
2004	1387	7.50	Numerical	1.23	0.41		42.90	0.85	-23.74	54.04	
2005	1387	7.50	Numerical	1.24	1.22		43.20	0.84	-20.40	58.50	
2006	1387	7.40	Numerical	1.27	3.67		44.70	0.90	-21.60	56.17	
2007	1387	7.00	Numerical	1.29	5.31		43.10	0.85	-22.20	55.20	
2008	1387	7.32	Measured	1.19		-2.72	43.60	0.86	-23.10	55.60	
2008	1590	7.66	Measured	1.18		-3.53	43.44	0.89	-20.70	58.20	
2008	1590	7.66	Measured	1.22		-0.26	43.80	0.86	-20.70	58.20	
			Target	Dielectric Par	ameters: ε _r = 43.5, σ	= 0.87 s/m		-			

APPENDIX A - PHOTOGRAPHS

Dipole Dimension L = 272.7mm



	Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	DC450H-021209-R1.2		
Ļ	Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

Dipole Dimension h = 167mm

Dipole Dimension d = 6.36mm

Celltech	Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	DC450H-021209-R1.2		
Teeling and Engineering Services Lat	Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

0

Dipole Spacer Dimension = 6.0mm

Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Document Serial No.:		DC450H-021	209-R1.2
Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

APPENDIX B - SEMCAD SIMULATION LOG FILE

iSolve X, Version 13.4, Build 34, 64Bit Windows, Single Precision Simulation name 'Dielec Const = 2.7, Low Conduct' Maxwell Solver started the 2009-Feb-09 10:40:20. Initializing FDTD (x1 CFL) Harmonic Simulation at 450 MHz Overall discretization: Smallest number of cells per wavelength = 20.202, largest = 422.988, average = 113.419 Simulation time-step = 9.781e-013 s Simulation time-step / minimum of CFL criteria = 0.999938 Maximum of CFL criteria / minimum of CFL criteria = 64.6059 Average of CFL criteria / minimum of CFL criteria = 9.92029Discretization by solids: Background: epsr = 1, mur = 1, sigma = 0, sigma* = 0 - smallest number of cells per wavelength = 133.241, largest = 422.988, average = 145.219 Phantom/Shell: epsr = 2.7, mur = 1, sigma = 0, sigma* = 0 - smallest number of cells per wavelength = 81.0879, largest = 237.738, average = 120.104 Phantom/Liquid: epsr = 43.5, mur = 1, sigma = 0.87, sigma* = 0 - smallest number of cells per wavelength = 20.202, largest = 55.4378, average = 23.1303 Boundary conditions: Side X-: U-PML(8) Side X+: U-PML(8) Side Y-: U-PML(8) Side Y+: U-PML(8) Side Z-: U-PML(8) Side Z+: U-PML(8) Grid: Number of nodes=285x233x175, number of voxels=11464512 Excitations: Initializing (Voltage) edge source Quelle Overall duration : 3.33333e-008 s or 34080 iterations Probes & Sensors: Initializing near-field sensor 1g Initializing near-field sensor 10g Initializing near to far field transformation Initializing near-field sensor Overall Field Initializing near-field sensor Unnamed Initializing port sensor Sensor of Quelle Initializing port sensor TDSensor Initializing port sensor FDSensor Initializing port sensor ObererSensor Enable monitoring: Sensor of Quelle, V(t) Sensor of Quelle, I(t) TDSensor, V(t) TDSensor, I(t) FDSensor, V(t) FDSensor, I(t) ObererSensor, V(t) ObererSensor, I(t) Checking out the license feature ISOLVEX SOLVER FDTD, expiring the 1-mar-2009, version 10.0, (1). Calculating update coefficients: Created thread pool with 2 thread(s). Calculating update coefficients: completed. Time: 17.8 seconds. Hardware acceleration not used, please contact SPEAG for more information. Yee (explicit) iterations starting using U-PML Boundary Condition. 0% - iterations: 8 / 34079 - [9.38 MCells/s] - Estimated time to completion: 11:34:02 0% - iterations: 16 / 34079 - [7.64 MCells/s] - Estimated time to completion: 14:11:34 0% - iterations: 24 / 34079 - [8.34 MCells/s] - Estimated time to completion: 13:00:25 0% - iterations: 32 / 34079 - [7.64 MCells/s] - Estimated time to completion: 14:11:10 0% - iterations: 43 / 34079 - [11.5 MCells/s] - Estimated time to completion: 09:27:16 0% - iterations: 53 / 34079 - [10.4 MCells/s] - Estimated time to completion: 10:23:48 0% - iterations: 62 / 34079 - [9.38 MCells/s] - Estimated time to completion: 11:32:56

Celltech	Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Document Serial No.:		DC450H-021209-R1.2	
Testing and Engineering Environ Lat	Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

0.0	=0 / 040=0	
		[8.34 MCells/s] - Estimated time to completion: 12:59:22
		<pre>[7.3 MCells/s] - Estimated time to completion: 14:50:31 [6.69 MCells/s] - Estimated time to completion: 16:11:17</pre>
		[7.3 MCells/s] - Estimated time to completion: 14:50:09
		- [9.38 MCells/s] - Estimated time to completion: 11:32:09
		- [10.4 MCells/s] - Estimated time to completion: 10:22:45
		- [8.34 MCells/s] - Estimated time to completion: 12:58:16
		[7.64 MCells/s] - Estimated time to completion: 14:08:49
		- [7.3 MCells/s] - Estimated time to completion: 14:49:03
		- [7.3 MCells/s] - Estimated time to completion: 14:48:52
		- [7.3 MCells/s] - Estimated time to completion: 14:48:41
		- [7.3 MCells/s] - Estimated time to completion: 14:48:30
		- [7.3 MCells/s] - Estimated time to completion: 14:48:19
		- [9.38 MCells/s] - Estimated time to completion: 11:30:44 - [9.38 MCells/s] - Estimated time to completion: 11:30:33
		- [7.3 MCells/s] - Estimated time to completion: 11:30:35
		- [5.21 MCells/s] - Estimated time to completion: 20:42:33
		- [6.69 MCells/s] - Estimated time to completion: 16:08:01
		- [4.78 MCells/s] - Estimated time to completion: 22:35:02
		- [4.78 MCells/s] - Estimated time to completion: 22:34:50
		[6.25 MCells/s] - Estimated time to completion: 17:14:45
		- [6.69 MCells/s] - Estimated time to completion: 16:07:22
		- [7.3 MCells/s] - Estimated time to completion: 14:46:34
1% - iterations:	235 / 34079 ·	- [6.69 MCells/s] - Estimated time to completion: 16:06:58
		- [8.34 MCells/s] - Estimated time to completion: 12:55:24
		- [7.94 MCells/s] - Estimated time to completion: 13:34:21
		- [5.21 MCells/s] - Estimated time to completion: 20:40:08 - [5.21 MCells/s] - Estimated time to completion: 20:39:57
		- [7.3 MCells/s] - Estimated time to completion: 14:45:30
1% - iterations:	277 / 34079 -	- [8.34 MCells/s] - Estimated time to completion: 14.45.36
		- [8.6 MCells/s] - Estimated time to completion: 12:30:57
		- [3.82 MCells/s] - Estimated time to completion: 28:09:27
		- [4.78 MCells/s] - Estimated time to completion: 22:31:21
1% - iterations:	300 / 34079 ·	- [4.78 MCells/s] - Estimated time to completion: 22:31:09
		- [5.21 MCells/s] - Estimated time to completion: 20:38:22
1% - iterations:	313 / 34079 ·	- [8.34 MCells/s] - Estimated time to completion: 12:53:48
1% - iterations:	320 / 34079 ·	- [7.3 MCells/s] - Estimated time to completion: 14:44:09
		- [7.3 MCells/s] - Estimated time to completion: 14:43:58
		- [12.5 MCells/s] - Estimated time to completion: 08:35:28 - [8.34 MCells/s] - Estimated time to completion: 12:53:01
		- [8.34 MCells/s] - Estimated time to completion: 12:52:50
		- [6.69 MCells/s] - Estimated time to completion: 12.52.50
		- [7.3 MCells/s] - Estimated time to completion: 14:42:52
		- [6.69 MCells/s] - Estimated time to completion: 16:02:56
1% - iterations:	383 / 34079 ·	- [7.3 MCells/s] - Estimated time to completion: 14:42:30
1% - iterations:	391 / 34079 ·	- [7.64 MCells/s] - Estimated time to completion: 14:02:12
		- [8.6 MCells/s] - Estimated time to completion: 12:28:25
		- [7.3 MCells/s] - Estimated time to completion: 14:41:53
		- [8.34 MCells/s] - Estimated time to completion: 12:51:28
		- [9.38 MCells/s] - Estimated time to completion: 11:25:33
		- [8.6 MCells/s] - Estimated time to completion: 12:27:41 - [9.38 MCells/s] - Estimated time to completion: 11:25:11
		- [7.3 MCells/s] - Estimated time to completion: 11:25:11
		- [6.69 MCells/s] - Estimated time to completion: 16:00:39
		- [5.21 MCells/s] - Estimated time to completion: 20:32:39
		[6.69 MCells/s] - Estimated time to completion: 16:00:18
		[7.3 MCells/s] - Estimated time to completion: 14:40:06
		- [6.25 MCells/s] - Estimated time to completion: 17:06:36
		- [4.78 MCells/s] - Estimated time to completion: 22:23:43
		- [5.21 MCells/s] - Estimated time to completion: 20:31:33
		- [7.3 MCells/s] - Estimated time to completion: 14:39:30
		- [5.73 MCells/s] - Estimated time to completion: 18:39:10
		- [5.29 MCells/s] - Estimated time to completion: 20:12:12 - [5.73 MCells/s] - Estimated time to completion: 18:38:46
		- [5.73 Mcells/s] - Estimated time to completion: 18:38:46 - [7.3 Mcells/s] - Estimated time to completion: 14:38:50
		- [8.34 MCells/s] - Estimated time to completion: 12:48:48
		- [8.34 MCells/s] - Estimated time to completion: 12:48:37
		- [9.38 MCells/s] - Estimated time to completion: 11:23:02
		[9.38 MCells/s] - Estimated time to completion: 11:22:51
		[8.6 MCells/s] - Estimated time to completion: 12:24:44
2% - iterations:	575 / 34079 ·	- [9.38 MCells/s] - Estimated time to completion: 11:22:29

Iltoolo	Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	ent Serial No.:	DC450H-021	209-R1.2
elltech	Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

62% - iterations: 21213 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:22:05
62% - iterations: 21221 / 34079 - [7.64 MCells/s] - Estimated time to completion: 05:21:27
62% - iterations: 21229 / 34079 - [8.34 MCells/s] - Estimated time to completion: 04:54:28
62% - iterations: 21238 / 34079 - [8.6 MCells/s] - Estimated time to completion: 04:45:21
62% - iterations: 21246 / 34079 - [8.34 MCells/s] - Estimated time to completion: 04:54:05
62% - iterations: 21254 / 34079 - [8.34 MCells/s] - Estimated time to completion: 04:53:54
62% - iterations: 21263 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:21:03
62% - iterations: 21271 / 34079 - [8.34 MCells/s] - Estimated time to completion: 04:53:31
62% - iterations: 21280 / 34079 - [8.6 MCells/s] - Estimated time to completion: 04:44:25
62% - iterations: 21289 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:20:32
62% - iterations: 21298 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:20:21
63% - iterations: 21307 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:20:10
63% - iterations: 21316 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:19:59
63% - iterations: 21329 / 34079 - [13.5 MCells/s] - Estimated time to completion: 02:59:48
63% - iterations: 21340 / 34079 - [10.5 MCells/s] - Estimated time to completion: 03:51:37
63% - iterations: 21349 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:19:18
63% - iterations: 21358 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:19:07
63% - iterations: 21367 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:19:07
63% - iterations: 21376 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:18:45
63% - iterations: 21383 / 34079 - [7.3 MCells/s] - Estimated time to completion: 05:32:30
63% - iterations: 21390 / 34079 - [6.69 MCells/s] - Estimated time to completion: 06:02:32
63% - iterations: 21397 / 34079 - [6.69 MCells/s] - Estimated time to completion: 06:02:32
63% - iterations: 21404 / 34079 - [6.69 MCells/s] - Estimated time to completion: 06:02:08
63% - iterations: 21411 / 34079 - [7.3 MCells/s] - Estimated time to completion: 05:31:46
63% - iterations: 21411 / 34079 - [7.3 MCells/s] - Estimated time to completion: 05:31:40
63% - iterations: 21425 / 34079 - [7.3 MCells/s] - Estimated time to completion: 05:31:24
63% - iterations: 21423 / 34079 - [7.3 Mcells/s] - Estimated time to completion: 04:49:48
63% - iterations: 21442 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:17:25
63% - iterations: 21451 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:17:14
63% - iterations: 21457 / 34079 - [6.25 MCells/s] - Estimated time to completion: 06:25:40
63% - iterations: 21462 / 34079 - [5.21 MCells/s] - Estimated time to completion: 07:42:37
63% - iterations: 21467 / 34079 - [5.21 MCells/s] - Estimated time to completion: 07:42:26
63% - iterations: 21473 / 34079 - [5.29 MCells/s] - Estimated time to completion: 07:35:13
63% - iterations: 21482 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:16:36
63% - iterations: 21491 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:16:25
63% - iterations: 21499 / 34079 - [8.34 MCells/s] - Estimated time to completion: 04:48:17
63% - iterations: 21508 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:16:04
63% - iterations: 21516 / 34079 - [8.34 MCells/s] - Estimated time to completion: 04:47:54
63% - iterations: 21525 / 34079 - [8.6 MCells/s] - Estimated time to completion: 04:38:58
63% - iterations: 21534 / 34079 - [9.38 MCells/s] - Estimated time to completion: 04:15:32
63% - iterations: 21546 / 34079 - [12.5 MCells/s] - Estimated time to completion: 03:11:28
63% - iterations: 21557 / 34079 - [11.5 MCells/s] - Estimated time to completion: 03:28:42
63% - iterations: 21569 / 34079 - [12.5 MCells/s] - Estimated time to completion: 03:11:07
63% - iterations: 21581 / 34079 - [12.5 MCells/s] - Estimated time to completion: 03:10:56
Steady state detected at iteration: 21585 - the simulation will end shortly.
Please wait saving the sensor 'Overall Field' (E-fields) on disk.
Please wait saving the sensor 'Overall Field' (H-fields) on disk.
Please wait saving the sensor 'Unnamed' (E-fields) on disk.

Please wait ... saving the sensor 'Unnamed' (H-fields) on disk.

97% - iterations: 21585 / 22153 - [0.0356 MCells/s] - Estimated time to completion: 50:45:54 97% - iterations: 21592 / 22153 - [6.69 MCells/s] - Estimated time to completion: 00:16:01 98% - iterations: 21600 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:12:40 98% - iterations: 21618 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:11:04 98% - iterations: 21618 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:10:53 98% - iterations: 21627 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:10:42 98% - iterations: 21636 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:10:31 98% - iterations: 21664 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:10:31 98% - iterations: 21664 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:10:31 98% - iterations: 21664 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:10:31 98% - iterations: 21662 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:10:11 98% - iterations: 21662 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:10:20 98% - iterations: 21662 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:10:42 98% - iterations: 21669 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:10:42 98% - iterations: 21671 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:10:42 98% - iterations: 21680 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:00:927 98% - iterations: 21689 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:09:27 98% - iterations: 21698 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:09:27 98% - iterations: 2169 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:11:10 98% - iterations: 21706 / 22153 - [7.3 MCells/s] - Estimated time to completion: 00:11:10 98% - iterations: 21707 / 22153 - [7.3 MCells/s] - Estimated time to completion: 00:11:20 98% - iterations: 21720 / 22153 - [7.3 MCells/s] - Estimated time to completion: 00:11:20 98% - iterations: 21727 / 22153 - [6.69 MCell

elltech	Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Docume	ent Serial No.:	DC450H-021	209-R1.2
g and Engineering Envices Lat	Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

98% - iterations: 21735 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:09:34
98% - iterations: 21743 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:09:23
98% - iterations: 21751 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:09:12
98% - iterations: 21760 / 22153 - [8.6 MCells/s] - Estimated time to completion: 00:08:44
98% - iterations: 21769 / 22153 - [8.6 MCells/s] - Estimated time to completion: 00:08:32
98% - iterations: 21778 / 22153 - [8.6 MCells/s] - Estimated time to completion: 00:08:20
98% - iterations: 21786 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:08:24
98% - iterations: 21794 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:08:13
98% - iterations: 21802 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:08:02
98% - iterations: 21810 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:07:51
98% - iterations: 21818 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:07:40
99% - iterations: 21826 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:07:29
99% - iterations: 21834 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:07:18
99% - iterations: 21841 / 22153 - [7.3 MCells/s] - Estimated time to completion: 00:08:10
99% - iterations: 21849 / 22153 - [7.64 MCells/s] - Estimated time to completion: 00:07:36
99% - iterations: 21857 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:06:47
99% - iterations: 21865 / 22153 - [7.64 MCells/s] - Estimated time to completion: 00:07:12
99% - iterations: 21873 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:06:25
99% - iterations: 21881 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:06:14
99% - iterations: 21889 / 22153 - [7.64 MCells/s] - Estimated time to completion: 00:06:36
99% - iterations: 21897 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:05:52
99% - iterations: 21905 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:05:41
99% - iterations: 21913 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:05:30
99% - iterations: 21921 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:05:19
99% - iterations: 21929 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:05:08
99% - iterations: 21938 / 22153 - [8.6 MCells/s] - Estimated time to completion: 00:04:46
99% - iterations: 21947 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:04:11
99% - iterations: 21956 / 22153 - [8.6 MCells/s] - Estimated time to completion: 00:04:22
99% - iterations: 21965 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:03:49
99% - iterations: 21972 / 22153 - [7.3 MCells/s] - Estimated time to completion: 00:04:44
99% - iterations: 21981 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:03:30
99% - iterations: 21990 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:03:19
99% - iterations: 22001 / 22153 - [11.5 MCells/s] - Estimated time to completion: 00:02:32
99% - iterations: 22012 / 22153 - [11.5 MCells/s] - Estimated time to completion: 00:02:21
99% - iterations: 22021 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:02:41
99% - iterations: 22030 / 22153 - [8.6 MCells/s] - Estimated time to completion: 00:02:44
99% - iterations: 22039 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:02:19
100% - iterations: 22048 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:02:08
100% - iterations: 22056 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:02:13
100% - iterations: 22065 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:01:47
100% - iterations: 22072 / 22153 - [7.3 MCells/s] - Estimated time to completion: 00:02:07
100% - iterations: 22078 / 22153 - [6.25 Mcells/s] - Estimated time to completion: 00:02:17
100% - iterations: 22084 / 22153 - [6.25 MCells/s] - Estimated time to completion: 00:02:06
100% - iterations: 22092 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:01:23
100% - iterations: 22101 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:01:03
100% - iterations: 22109 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:01:00
100% - iterations: 22118 / 22153 - [9.38 Mcells/s] - Estimated time to completion: 00:00:42
100% - iterations: 22126 / 22153 - [8.34 MCells/s] - Estimated time to completion: 00:00:37
100% - iterations: 22135 / 22153 - [9.38 MCells/s] - Estimated time to completion: 00:00:22
100% - iterations: 22133 / 22133 - [8.6 MCells/s] - Estimated time to completion: 00:00:12
Please wait saving the sensor 'Overall Field' (E-fields) on disk.

Please wait ... saving the sensor 'Overall Field' (H-fields) on disk.

Please wait ... saving the sensor 'Unnamed' (E-fields) on disk.

Please wait ... saving the sensor 'Unnamed' (H-fields) on disk.

100% - iterations: 22153 / 22153 - [0.0834 MCells/s] - Estimated time to completion: 00:00:00

Convert time-domain data to frequency-domain data.

Maxwell Solver run ended the 2009-Feb-09 21:12:38. Total simulation time was 10:32:18 (hh:mm:ss, wall-clock time).

Date(s) of Evaluations:	Jan. 19 & Feb. 09, 2009	Calibration Document Serial No.:		DC450H-021	209-R1.2
Type of Evaluation:	Dipole Calibration	Dipole Frequency:	450 MHz	Fluid Type:	Head

APPENDIX C - PROBE CALIBRATION REPORT

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS CPU Z CPU SRATIO

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

С

S

Client Celitech		Ce	rtificate No: ET3-1590_Jul08
CALIERATION	BERTIFICA		
Object	ET3DV6 - SN:1	5 90	
Calibration procedure(s)		QA CAL-12.v5 and QA C/ edure for dosimetric E-fie	
Calibration date:	July 21, 2008		And
Condition of the calibrated item	In Tolerance		
The measurements and the unco	ertainties with confidence	tional standards, which realize the probability are given on the followin ory facility: environment temperatur	physical units of measurements (SI). Ig pages and are part of the certificate. re (22 ± 3)°C and humidity < 70%.
		Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4419B	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	1-Jul-08 (No. 217-00865)	Jul-09
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	1-Jul-08 (No. 217-00866)	Jul-09
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. ES3-3013_Jan0	
DAE4	SN: 660	3-Sep-07 (No. DAE4-660_Sep	· · · · · · · · · · · · · · · · · · ·
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-	07) In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oc	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manag	" Anilles
Approved by:	Niels Kuster	Quality Manager	N. Jos
			Issued: July 21, 2008
This calibration certificate shall r	not be reproduced except	in full without written approval of th	e laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1590

Manufactured: Last calibrated: Recalibrated: March 19, 2001 May 20, 2005 July 21, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Fre	Diode Compression ^B				
NormX	1.81 ± 10.1%	μV/(V/m) ²	DCP X	87 mV	
NormY	2.00 ± 10.1%	μV/(V/m) ²	DCP Y	92 mV	
NormZ	1.72 ± 10.1%	μV/(V/m) ²	DCP Z	85 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

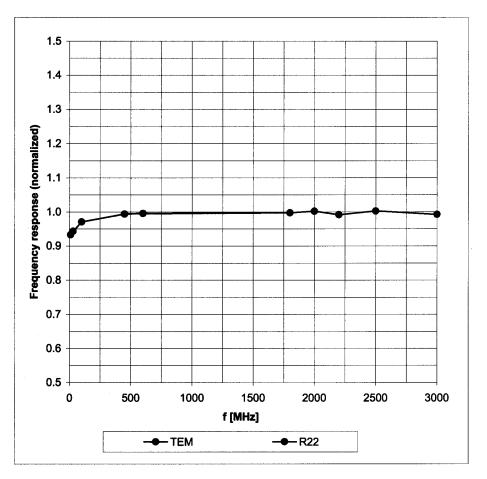
TSL 835 MHz Typical SAR gradient: 5 % per mm

Sensor Center to	3.7 mm 4.7 mm		
SAR _{be} [%]	Without Correction Algorithm	10.7	7.2
SAR _{be} [%]	With Correction Algorithm	0.8	0.5

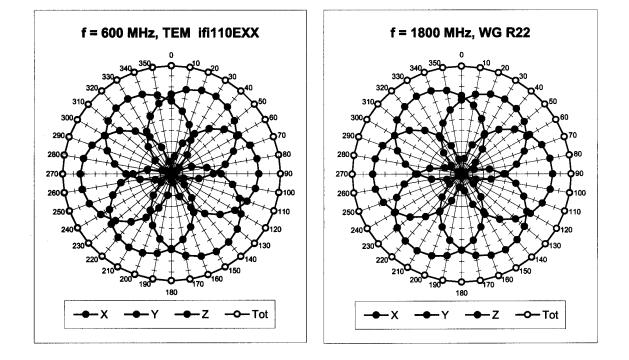
Sensor Offset

Probe Tip to Sensor Center

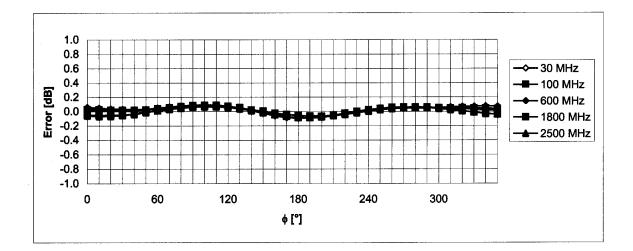
2.7 mm

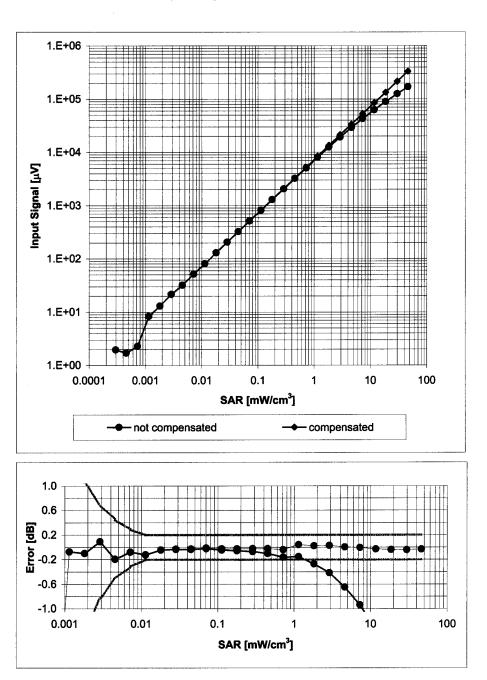

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

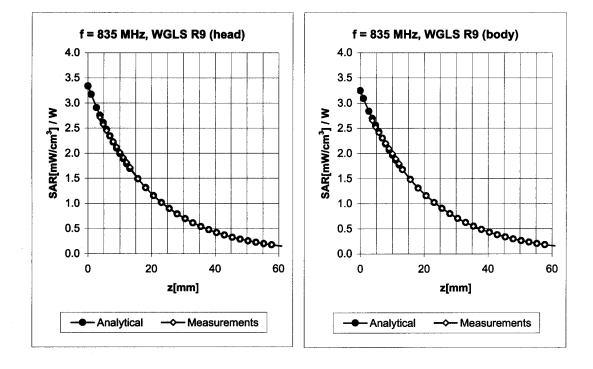

^B Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

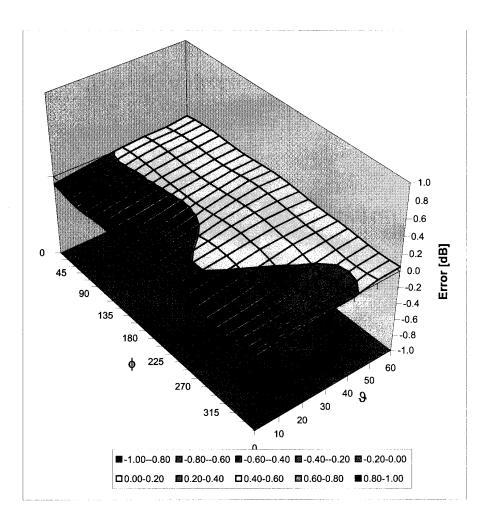
Receiving Pattern (\phi), \vartheta = 0^{\circ}



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.34	1.75	7.66	± 13.3% (k=2)
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.32	3.52	6.54	± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.28	1.77	8.27	± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.36	3.31	6.39	± 11.0% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)