

2.983(e) Test Data

Refer to 2.983(e) (1) through 2.983(e) (7).

2.983(e)(1) Measurement of RF Power Output per 2.985

Definition: For RF Power Amplifiers.

Test Method: See FIGURE 2.

Output Power Is measured across a precision 50 ohm load with a wide band sampling RF Voltmeter.

Test Results:

POWER OUTPUT

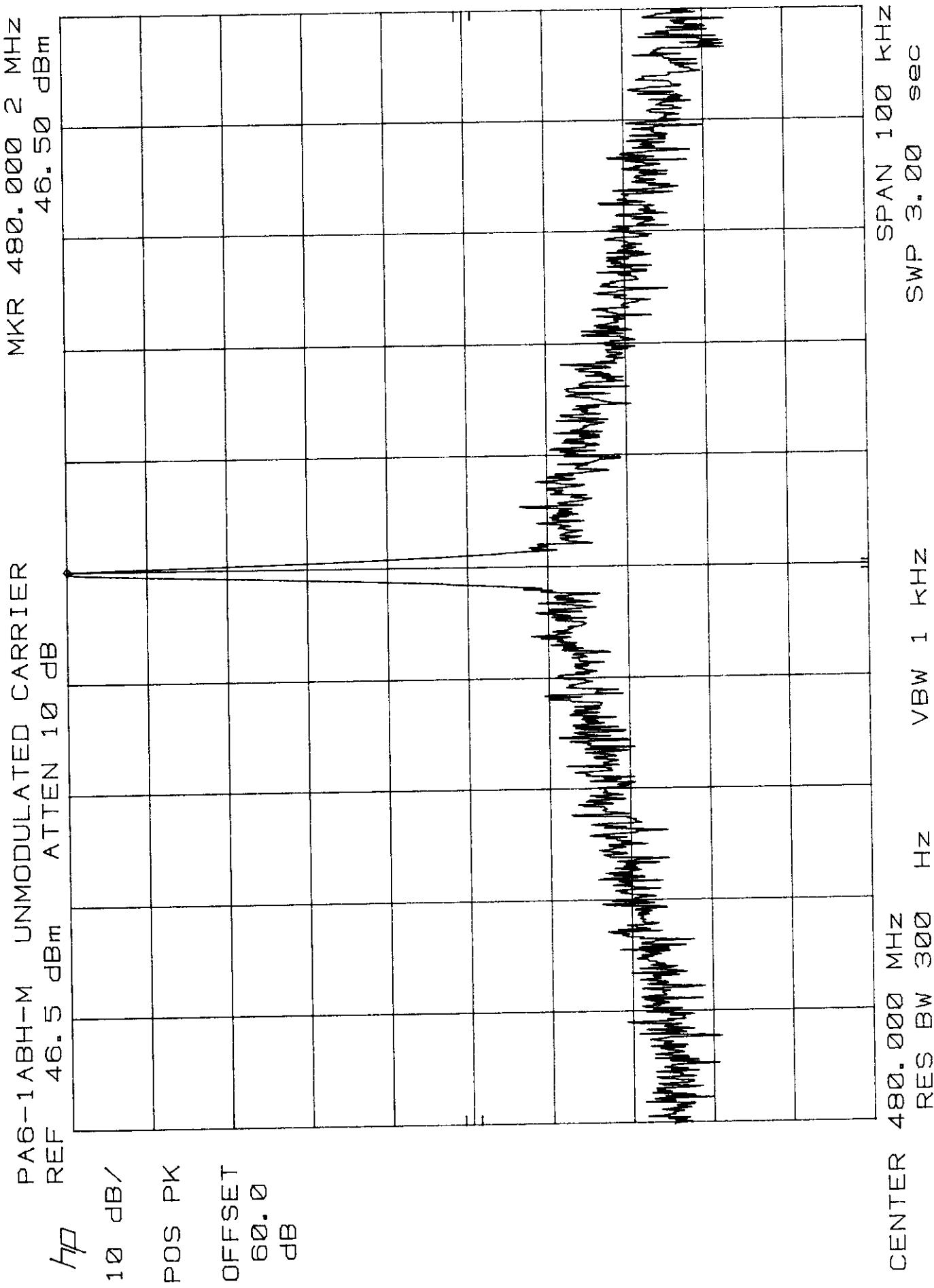
FREQUENCY	NOMINAL VOLTAGE	85% VOLTAGE	115% VOLTAGE
	13.8 VDC	11.73 VDC	15.87 VDC
480 MHz	45 Watts	35 Watts	45.7 Watts

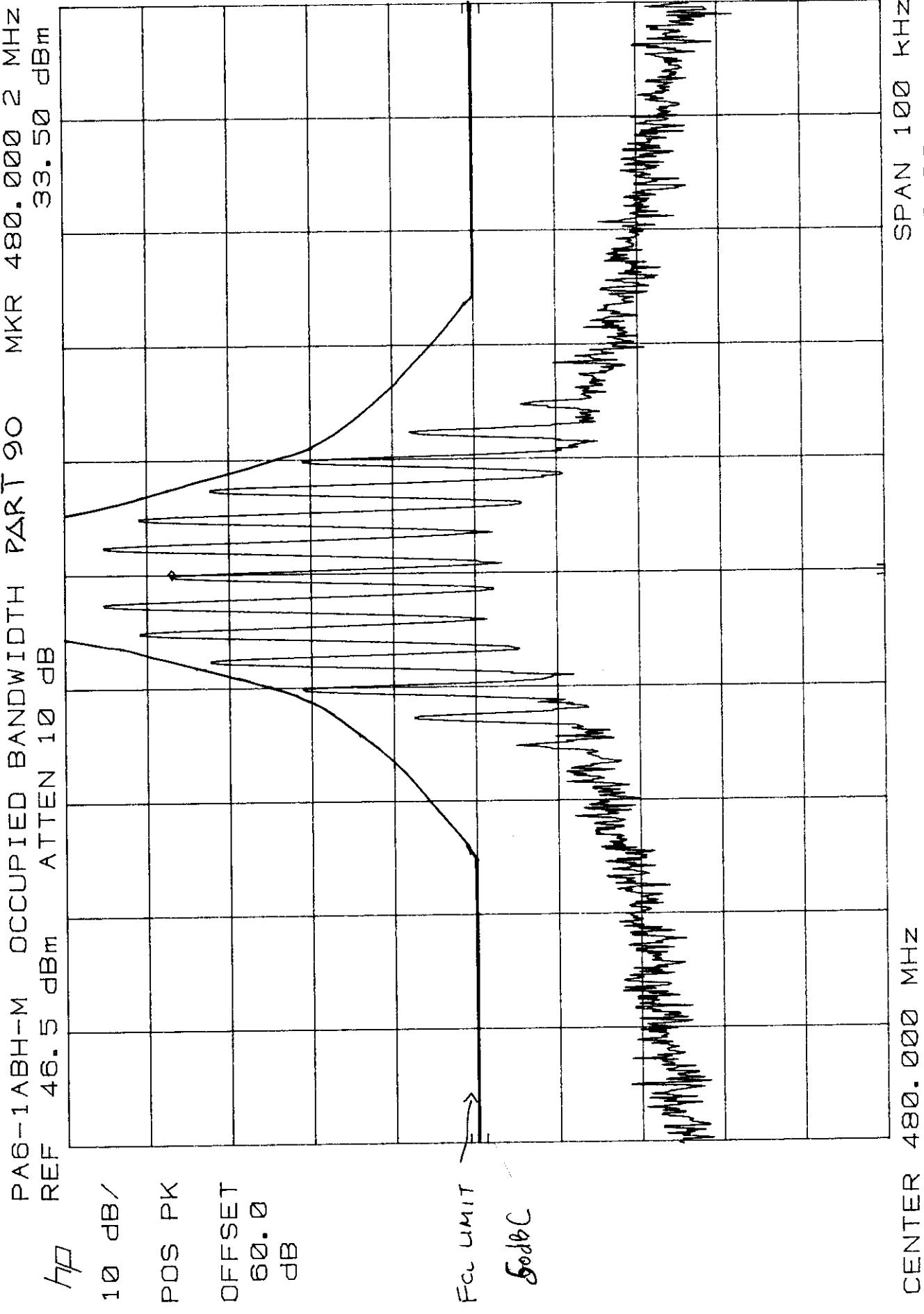
2.983(e)(2) Measurement of Modulation Characteristics per 2.987(b) (1)

This EUT is a Power Amplifier and contains no circuitry to modify the RF signal provided by the driver except to raise the power level.

2.983(e)(3) Measurement of Occupied Bandwidth per 2.989

Definition:

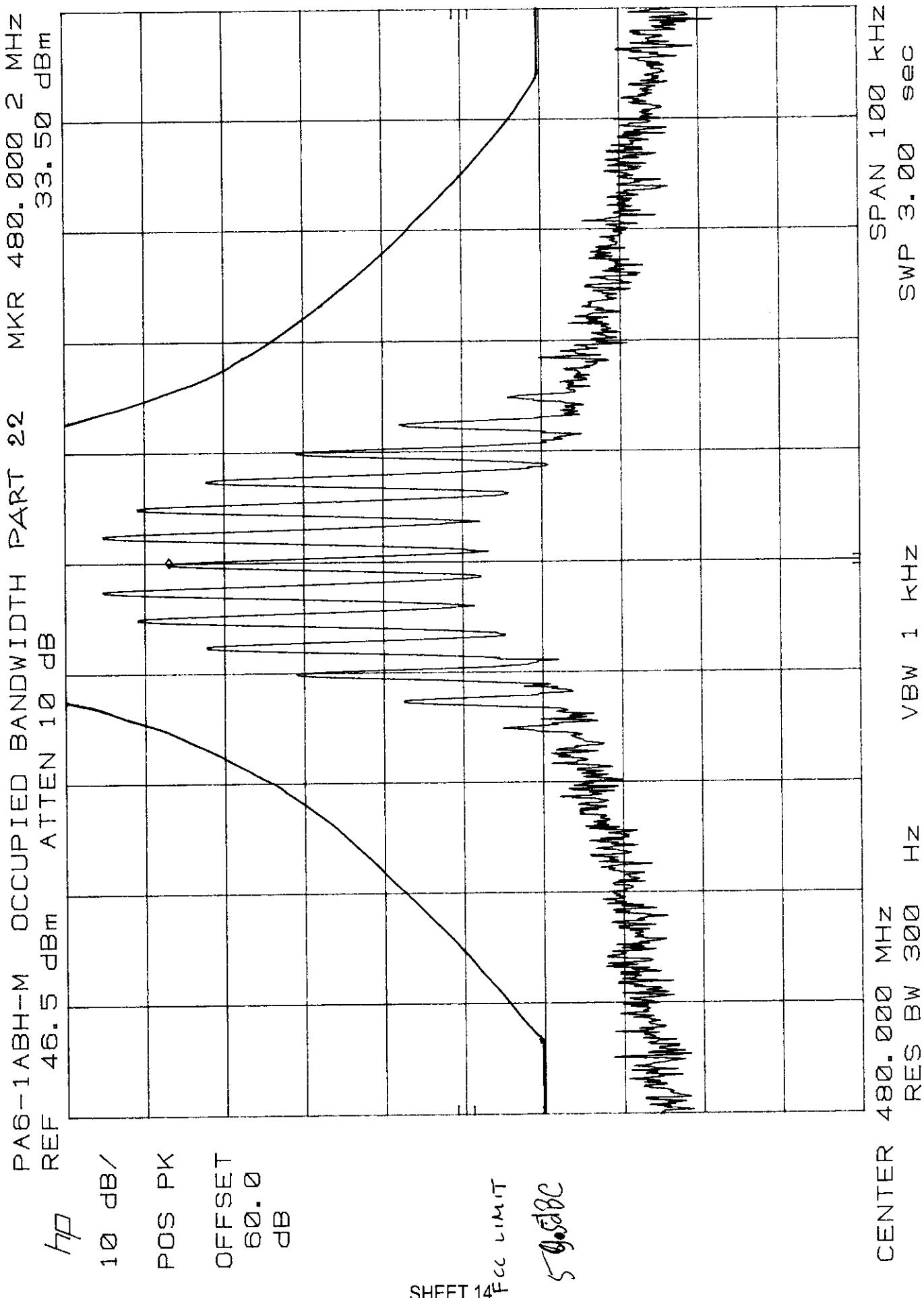

Occupied Bandwidth, that is the frequency bandwidth such that, below its upper frequency limits, the mean power radiated by a given emission.


Test Method: Connect the Equipment per FIGURE 3.

Measurements were made with the modulating signal at 2.5 kHz with 5 kHz of FM deviation.

Test Results: See Plots following FIGURE 3.

The center frequency of the signal did not shift with modulation. The Spectrum Bandwidth was well within the limits specified in the FCC Regulations.



SPAN 100 kHz
SWP 3.00 sec

CENTER 480.000 MHz
RES BW 300 Hz

VBW 1 kHz

SHEET 14

2.983(e)(4) Measurement of Antenna Conducted Spurious Emissions per 2.991

Definition:

Conducted Spurious Emissions are emissions at the antenna terminals on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communication desired. The reduction in the level of these spurious emissions will not affect the quality of the information being transmitted.

Conducted Spurious Emissions shall be attenuated below the maximum level of the carrier frequency in accordance with the following formula:

$$\text{Spurious attenuation in dB} = 43 + 10 \log_{10} P_o$$

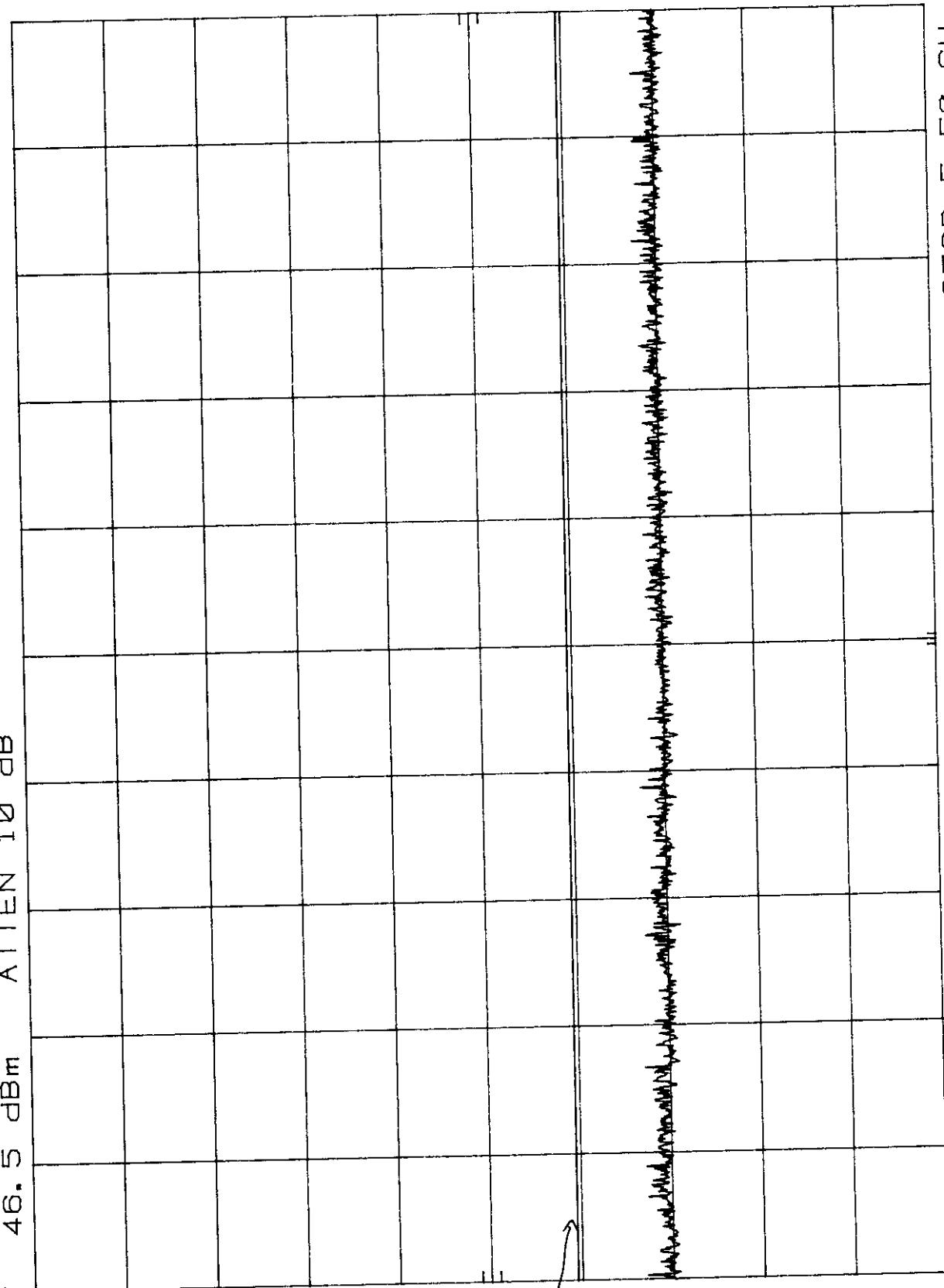
Where P_o = Output in Watts

$$= 43 + 10 \log_{10} (45)$$

$$= 60 \text{ dB}$$

Test Method: Per EIA RS 152-B, Paragraph 4.

Connect the equipment as shown in FIGURE 4.


Adjust the Audio Oscillator so that the frequency deviation of the transmitter is a 5 kHz at a modulation frequency of 2.5 kHz. Adjust the Spectrum Analyzer to display the Modulated Carrier.

Scan the frequency spectrum from the lowest radio frequency generated in the equipment through the 10th harmonic of the carrier frequency.

Test Results: See Plots following FIGURE 4.

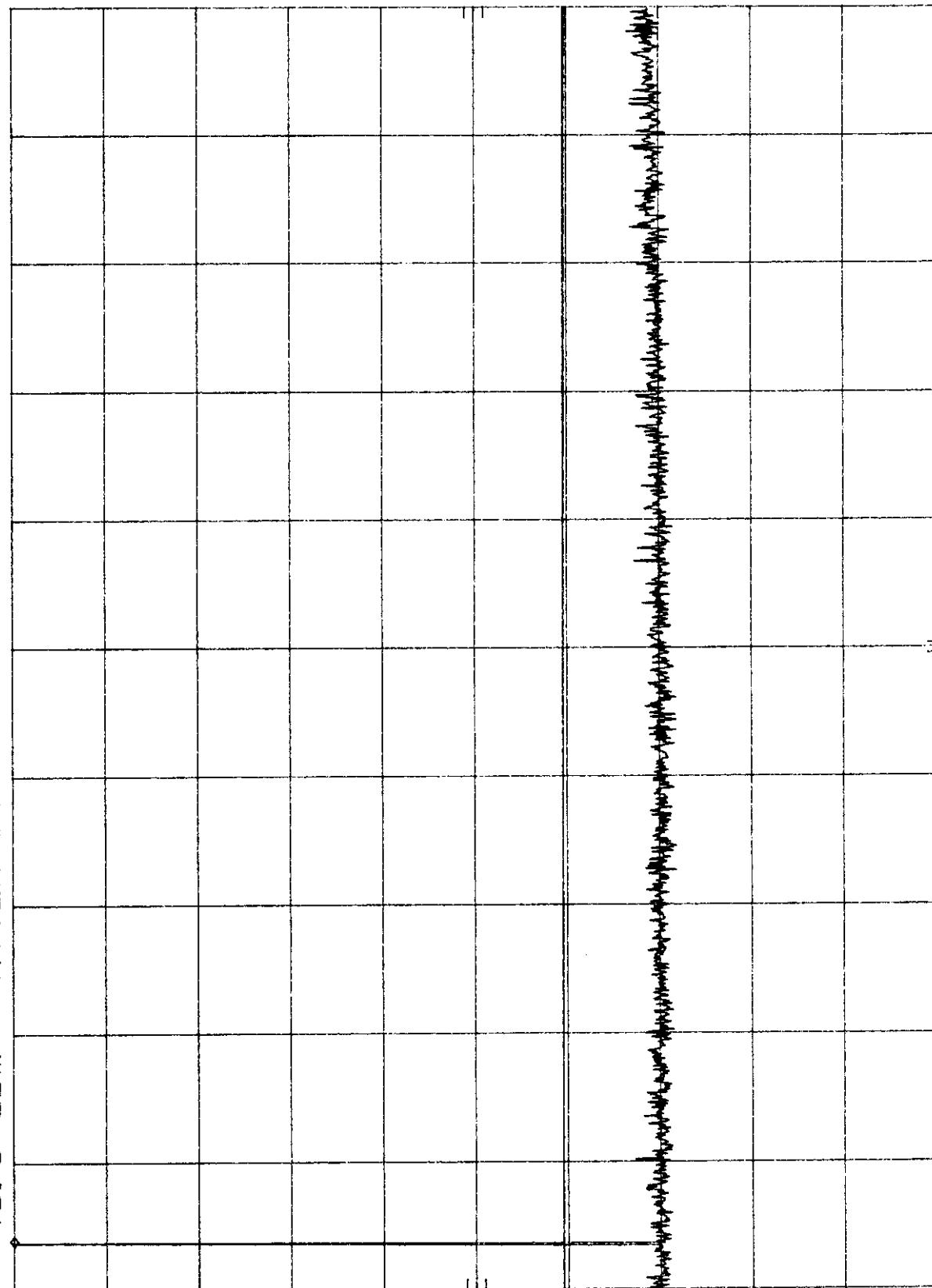
All spurious antenna conducted emissions are below the FCC Specifications.

PAG-1ABH-M ANT. CONDUCTED SPURIOUS
REF 46. 5 dBm ATTN 10 dB

10 dB /

POS PK

OFFSET
60. 0
dBm


DL
-13. 0
dBm

FCC LIMIT

59.5 dBc

SHEET 17

START 2. 50 GHz
RES BW 30 kHz
VBW 1000 kHz
STOP 5. 50 GHz
SWP 9. 00 sec

MKR Δ 479 MHz
-70. 10 dBPA6-1ABH-M ANT. CONDUCTED SPURIOUS
REF 46. 5 dBm ATTN 10 dB $\frac{dP}{dF}$

10 dB/

POS PK

OFFSET
60. 0
dBDL
-13. 0
dBm

SHEET 18

FCC

LIMIT

59.5 dBc

START 400 MHz
RES BW 30 kHz

VBW 100 kHz

STOP 2. 50 GHz
SWP 6. 30 sec

2.983(e)(5) Measurement of Radiated Spurious Emissions per 2.993

Definition:

Emissions from the equipment when connected into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communication desired. The reduction in the level of these spurious emissions will not affect the quality of the information being transmitted.

Test Method: Per EIA RS 152-B.

Connect the equipment and follow the procedure described in paragraph 2.2.1.1 and paragraph 5.0. Measure the amplitude of each spurious radiated signal through the 10th harmonic. The level in dBuV/m is calculated on the following page. The spurious signals are then measured on the 3 meter range.

$$\text{Spurious attenuation dB} = 10 \log \frac{\text{Po Watts}}{\text{Calc. Spurious power}}$$

Test Results: See TABLE I on following Page.

All radiated spurious emissions are below the FCC Specifications.

SPURIOUS RADIATED SIGNAL MEASUREMENTS

FCC ID: RBD6-1AB-H

(Ref: Part 2, Subpart J, 2.991 & 2.993)

Date	7-23-99	Pass	✓	Fail	(at Freq.)
EUT	RF POWER AMPLIFIER	Operating Power	45 WATTS		
Part No.	PA6-1ABH-M	Operating Mode	SATURATED		
Serial No.	0001	Test Engineer	CHI CAI		

FREQUENCY TUNED TO 480 MHz

ANT POL	FREQ MHz	SPECTRUM ANALYZER (dB μ V)	ANT. FACTOR (dB)	CABLE LOSS (dB)	AMP GAIN (dB)	dB μ V/m	FUND FIELD STRENGTH dB μ V/m	SPUR BELOW CARRIER (dBc)
H	960	48.9	23.5	2.5	22	52.9	143.9	91
H	1440	28.6	28.0	5.0	22	39.6	143.9	104.3
H	1920	36.1	32.5	6.0	22	52.6	143.9	91.3
H	2400	46.8	29.5	6.5	42	40.8	143.9	103.1
H	2880	43.6	30.5	7.5	42	39.6	143.9	104.3
H	3360	46.8	32	8.0	42	44.8	143.9	99.1
H	3840	46.6	33	9.5	42	46.1	143.9	97.8
H	4320	40.2	33.5	10.0	42	41.7	143.9	102.2
H	4800	31.3	34	11.0	42	34.3	143.9	109.6

$$\text{Fundamental Field Strength (V/m)} = \frac{1}{3} (R_o \times P_o)^{\frac{1}{2}} = \frac{1}{3} (50 \times 45)^{\frac{1}{2}}$$

$$R_o = \text{Amplifier Output Impedance (Ohms)} = 50 \Omega = 15.8 \text{ V/m}$$

$$P_o = \text{Amplifier Output Power (Watts)} = 45 \text{ W} = 1413.9 \text{ dBuV/m}$$

$$\text{Conversion from } \mu\text{V/m to dB}\mu\text{V/m} = (\mu\text{V/m}) \log \times 20$$

$$\text{FCC LIMIT.} = 43 - \frac{1}{2} \log (45) = 63 \text{ dBc}$$

(Ref: Part 2, Subpart J, 2.991 & 2.993)

Date 7-23-99 Pass ✓ Fail (at Freq.)
 EUT RF POWER AMPLIFIER Operating Power 45 WATTS
 Part No. PAG-1ABH-M Operating Mode SATURATED
 Serial No. 0001 Test Engineer CHI CAI

FREQUENCY TUNED TO 480 MHz

ANT POL	FREQ MHz	SPECTRUM ANALYZER (dB μ V)	ANT. FACTOR (dB)	CABLE LOSS (dB)	AMP GAIN (dB)	dB μ V/m	FUND FIELD STRENGTH dB μ V/m	SPUR BELOW CARRIER (dBc)
V	960	57.5	23.5	2.5	22	61.5	143.9	82.4
V	1440	21.0	28.0	5.0	22	42		101.9
V	1920	35.5	22.5	6.0	22	52		91.9
V	2400	54.7	29.5	6.5	42	48.7		99.2
V	2880	50.0	30.5	7.5	42	46		97.9
V	3360	46.7	32	8.0	42	44.7		99.2
V	3840	48.4	33	9.5	42	48.9		95.0
V	4320	39.3	33.5	10.0	42	40.8		103.1
V	4800	32.7	34	11.	42	35.7	143.9	108.2

$$\text{Fundamental Field Strength (V/m)} = \frac{1}{3} (R_o \times P_o)^{\frac{1}{2}} = \frac{1}{3} (50 \times 45)^{\frac{1}{2}} = 15.8 \text{ V/m}$$

$$R_o = \text{Amplifier Output Impedance (Ohms)} = 50 \Omega$$

$$P_o = \text{Amplifier Output Power (Watts)} = 45 \text{ W}$$

$$= 143.9 \text{ dB}\mu\text{V/m}$$

Conversion from μ V/m to dB μ V/m = $(\mu\text{V/m}) \log_{10} \times 20$

-- FCC LIMIT = 43 SHEET 81 Log (45) = 60 dBc

2.983(e)(6) Measurement of Frequency Stability per 2.995

The EUT is a power amplifier and contains no circuitry for generating or stabilizing the RF signal. The driver will be responsible for this task.

2.983(e)(7) Frequency Spectrum to be investigated per 2.997

The Frequency was searched from the lowest radio frequency generated in the equipment through the 10th harmonic of the carrier frequency.

APPENDIX A
TEST EQUIPMENT

TEST EQUIPMENT LOG

TYPE OF TEST : FCC TYPE ACCEPTANCE

DATE 08-03-99 TEST PROCEDURE PART 2, 22, & 90EUT RF AMP OTHER _____MODEL # / SERIAL # PA6-1ABH-MTEST ENGINEER CHI CAI

DESCRIPTION	MANUFACTURER	MODEL # / SERIAL #	CAL. DUE DATE
SIGNAL GEN.	MARCONI	2024 / 112236-002	3-17-2000
SPEC. ANALYZER	HP	8566B/2403A06307&2407A03212	2-10-2000
PLOTTER	HP	7070A	N/R
DUAL DIR. COUPLER	HP	778D	CAL @ TIME OF TEST
50 OHM LOAD	ELECTRO IMPULSE LAB.	DA-242A/4/7940097	CAL @ TIME OF TEST
50 OHM LOAD	TERMALINE	8053 / 8945	CAL @ TIME OF TEST
50 OHM LOAD	INMET	IN020M-100W	CAL @ TIME OF TEST
40 Db ATT.	INMET	18N50W-40Db	CAL @ TIME OF TEST
POWER SUPPLY	ACOPIAN	28PT10AFHP / 6	N/R
MULTI-VOLTMETER	GOLDSTAR	DM-333 / S61004151	4-1-2000
LOG PERIODIC ANT.	A.H. SYSTEMS.	SAA-200-512 / 347	10-10-1999
DRG ANT.	EMCO	3115 / 2280	1-8-2000
WIDEBAND AMP.	IFI	5500	N/R
PREAMP.	MINI-CIRCUITS	ZFL-2000 / 001	5-7-2000
PREAMP.	AVANTEK	SWL88-6176 / 1847	5-7-2000

FCC/TA