

RADIO TEST REPORT

Test Report No. 15398805H-C-R1

Customer	DENSO TEN Limited	
Description of EUT	Car Audio	
Model Number of EUT	TN0047A	
FCC ID	BABTN0047A	
Test Regulation	FCC Part 15 Subpart E	
Test Result	Complied	
Issue Date	November 1, 2024	
Remarks	-	

Representative Test Engineer	Approved By
Sone	Ryata yamanaka
Tomoya Sone Engineer	Ryota Yamanaka Engineer ACCREDITED
	CERTIFICATE 5107.02
☐ The testing in which "Non-accreditation" is displayed☐ There is no testing item of "Non-accreditation".	is outside the accreditation scopes in UL Japan, Inc.

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15398805H-C-R1 Page 2 of 53

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 15398805H-C

This report is a revised version of 15398805H-C. 15398805H-C is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	15398805H-C	October 15, 2024	-
1	15398805H-C-R1	November 1, 2024	P.15 Correction of SVSWR Volume for 1 GHz to 10 GHz band from 2 m to 1.5 m, and recalculation Test distance result

Test Report No. 15398805H-C-R1 Page 3 of 53

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	IEC	International Electrotechnical Commission
AC	Alternating Current	IEEE	Institute of Electrical and Electronics Engineers
AFH	Adaptive Frequency Hopping	IF	Intermediate Frequency
AM	Amplitude Modulation	ILAC	International Laboratory Accreditation Conference
Amp, AMP	Amplifier	ISED	Innovation, Science and Economic Development Canada
ANSI	American National Standards Institute	ISO	International Organization for Standardization
Ant, ANT	Antenna	JAB	Japan Accreditation Board
AP	Access Point	LAN	Local Area Network
ASK	Amplitude Shift Keying	LIMS	Laboratory Information Management System
Atten., ATT	Attenuator	MCS	Modulation and Coding Scheme
AV	Average	MRA	Mutual Recognition Arrangement
BPSK	Binary Phase-Shift Keying	N/A	Not Applicable
BR	Bluetooth Basic Rate	NIST	National Institute of Standards and Technology
BT	Bluetooth	NS	No signal detect.
BT LE	Bluetooth Low Energy	NSA	Normalized Site Attenuation
BW	BandWidth	NVLAP	National Voluntary Laboratory Accreditation Program
Cal Int	Calibration Interval	OBW	Occupied Band Width
CCK	Complementary Code Keying	OFDM	Orthogonal Frequency Division Multiplexing
Ch., CH	Channel	OFDMA	Orthogonal Frequency Division Multiple Access
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PP	Preamble Puncturing
DSSS	Direct Sequence Spread Spectrum	PRBS	Pseudo-Random Bit Sequence
EDR	Enhanced Data Rate	PSD	Power Spectral Density
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QAM	Quadrature Amplitude Modulation
EMC	ElectroMagnetic Compatibility	QP	Quasi-Peak
EMI	ElectroMagnetic Interference	QPSK	Quadri-Phase Shift Keying
EN	European Norm	RBW	Resolution Band Width
ERP, e.r.p.	Effective Radiated Power	RDS	Radio Data System
EU	European Union	RE	Radio Equipment
EUT	Equipment Under Test	RF	Radio Frequency
Fac.	Factor	RMS	Root Mean Square
FCC	Federal Communications Commission	RSS	Radio Standards Specifications
FHSS	Frequency Hopping Spread Spectrum	Rx	Receiving
FM	Frequency Modulation	SA, S/A	Spectrum Analyzer
Freq.	Frequency	SG	Signal Generator
FSK	Frequency Shift Keying	SVSWR	Site-Voltage Standing Wave Ratio
GFSK	Gaussian Frequency-Shift Keying	TR	Test Receiver
GNSS	Global Navigation Satellite System	Tx	Transmitting
GPS	Global Positioning System	VBW	Video BandWidth
Hori.	Horizontal	Vert.	Vertical
ICES	Interference-Causing Equipment Standard	WLAN	Wireless LAN

CONTENTS		PAGE
SECTION 1: C	ustomer Information	5
	quipment Under Test (EUT)	
SECTION 3: Te	est specification, Procedures & Results	7
	peration of EUT during testing	
	adiated Spurious Emission and Band Edge Compliance	
	ntenna Terminal Conducted Tests	
APPENDIX 1:	Fest Data	17
	pied Bandwidth	
	vidth	
	Conducted Output Power	
Maximum I	Power Spectral Density	35
Radiated S	purious Emission	38
Conducted	Spurious Emission	49
	Test Instruments	
	Photographs of Test Setup	
	purious Emission	
	erminal Conducted Tests	

Test Report No. 15398805H-C-R1 Page 5 of 53

SECTION 1: Customer Information

Company Name	DENSO TEN Limited	
Address 2-28, Gosho-dori 1-Chome, Hyogo-ku, KOBE 652-8510 JAPAN		
Telephone Number	+81 78 682 2159	
Contact Person	Kaoru Abe	

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Car Audio	
Model Number	TN0047A	
Serial Number	Refer to SECTION 4.2	
Condition	Production prototype	
	(Not for Sale: This sample is equivalent to mass-produced items.)	
Modification	No Modification by the test lab	
Receipt Date	August 9, 2024	
Test Date	August 22 to September 12, 2024	

2.2 Product Description

General Specification

Rating	DC 12 V
Operating temperature	-20 deg. C to +65 deg. C

Radio Specification-1/2

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

[WLAN (IEEE802.11b/11g/11n-20)]

Equipment Type	Transceiver
Frequency of Operation	2437 MHz
Type of Modulation	DSSS, OFDM
Antenna Gain	-0.57 dBi

[Bluetooth (BR/EDR)]

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	FHSS (GFSK, π/4 DQPSK, 8 DPSK)
Antenna Gain	-0.49 dBi

Test Report No. 15398805H-C-R1 Page 6 of 53

Radio Specification-2/2

WLAN (IEEE802.11a/11n-20/11ac-20/11n-40/11ac-40/11ac-80)

Equipment Type	Transceiver	
Frequency of Operation	20 MHz Band	5765 MHz
	40 MHz Band	5755 MHz
	80 MHz Band	5775 MHz
Type of Modulation	OFDM	
Antenna Gain a)	0.31 dBi	

[AM/FM/DAB]

Equipment Type	Receiver	
Frequency of Operation	AM: 530 kHz to 1625 kHz	
	FM: Band II: 87.5 MHz to 108.0 MHz	
	DAB (Band III): 174.928 MHz to 239.200 MHz	
Type of Modulation	AM	
	FM	
	DAB: OFDM	
Antenna Connector Type	HFC IV	
Impedance	AM, FM: 75 ohm	
	DAB: 50 ohm	

^{*} WLAN and Bluetooth do not transmit simultaneously.

2.3 Variant models

There has five types; A, B, C, D, E and H. Tests were performed to Type A (base model) as representative model.

Frequency of Operation for WLAN is as following table.

	Type A (EUT)	Type B	Тур	e C	Тур	e D	Type E	Type H
	A-1	B-1	C-1	C-3	D-1	D-3	E-1	H-1,
			C-2	C-4	D-2	D-4	E-2	H-2
5735 MHz to 5815 MHz	Υ	Y	Y	-	Y	-	Y	Y
2426 MHz to 2448 MHz	Y	-	-	Υ	-	Y	-	-

^{*}Wireless block hardware is the same as Type A.

Wifi frequency can be selected between 2.4 GHz or 5 GHz by the product's built-in software.

Test Report No. 15398805H-C-R1 Page 7 of 53

SECTION 3: Test specification, Procedures & Results

3.1 **Test Specification**

Test	FCC Part 15 Subpart E
Specification	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart E
	Unlicensed National Information Infrastructure Devices
	Section 15.407 General technical requirements

3.2 **Procedures and Results**

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: 15.407 (b) (9) / 15.207	-	N/A	*1)
Emission	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8]		
26 dB Emission	FCC: KDB Publication	FCC : 15.407 (a) (1) (2) (3)	See data	N/A	*2)
Bandwidth	Number 789033				
	ISED: -	ISED: -			
Maximum	FCC: KDB Publication	FCC : 15.407 (a) (1) (2) (3)		Complied	Conducted
Conducted	Number 789033				
Output Power	ISED: -	ISED: RSS-247 6.2			
Maximum Power	FCC: KDB Publication	FCC: 15.407 (a) (1) (2) (3)	1	Complied	Conducted
Spectral Density	Number 789033				
	ISED: -	ISED: RSS-247 6.2			
Spurious	FCC: ANSI C63.10-2013	FCC: 15.407 (b), 15.205 and	7.8 dB	Complied	Conducted
Emission	KDB Publication Number	15.209	400.0 MHz,		(below 30 MHz) /
Restricted Band	789033		QP, Vertical		Radiated
Edge	ISED: -	ISED: RSS-247 6.2			(above 30 MHz)
					*3)
6 dB Emission	FCC: ANSI C63.10-2013	FCC: 15.407 (e)	See data	Complied	Conducted
Bandwidth	ISED: -	ISED: RSS-247 6.2			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF part regardless of input voltage.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 **Addition to Standard**

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99 % Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Band Width					

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*2)} The test is not applicable since this product is a 5.8 GHz band product.
*3) Radiated test was selected over 30 MHz based on FCC 15.407 (b) and KDB 789033 D02 G.3.b).

Test Report No. 15398805H-C-R1 Page 8 of 53

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz	Hz to 30 MHz		3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	5.0
		Vertical	dB	5.0
	200 MHz to 1000 MHz	Horizontal	dB	5.2
		Vertical	dB	6.2
10 m	30 MHz to 200 MHz	Horizontal	dB	5.5
		Vertical	dB	5.4
	200 MHz to 1000 MHz	Horizontal	dB	5.5
		Vertical	dB	5.5
3 m	1 GHz to 6 GHz	1 GHz to 6 GHz		
	6 GHz to 18 GHz	6 GHz to 18 GHz		
1 m	10 GHz to 18 GHz	10 GHz to 18 GHz		
	18 GHz to 26.5 GHz	dB	5.3	
	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz		
0.5 m	26.5 GHz to 40 GHz		dB	5.0

Antenna Terminal Conducted

Item	Unit	Calculated
		Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg. C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

Test Report No. 15398805H-C-R1 Page 9 of 53

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 15398805H-C-R1 Page 10 of 53

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*
IEEE 802.11a (11a)	48 Mbps, PN9
IEEE 802.11n 20 MHz BW (11n-20)	MCS 4 (Long GI), PN9
IEEE 802.11ac 20 MHz BW (11ac-20)	MCS 8 (Long GI), PN9
IEEE 802.11n 40 MHz BW (11n-40)	MCS 6 (Long GI), PN9
IEEE 802.11ac 40 MHz BW (11ac-40)	MCS 8 (Long GI), PN9
IEEE 802.11ac 80 MHz BW (11ac-80)	MCS 3 (Long GI), PN9

^{*}The worst condition was determined based on the test result of Maximum Conducted Output Power.

Power Setting: 11a: 6.5 dBm

11n-20: 6.5 dBm 11ac-20: 6.5 dBm 11n-40: 6.5 dBm 11ac-40: 6.5 dBm 11ac-80: 6.5 dBm

Software: Wi-Fi Test FW WF1 Version: WF1

(Date: August 8, 2024, Storage location: EUT memory)

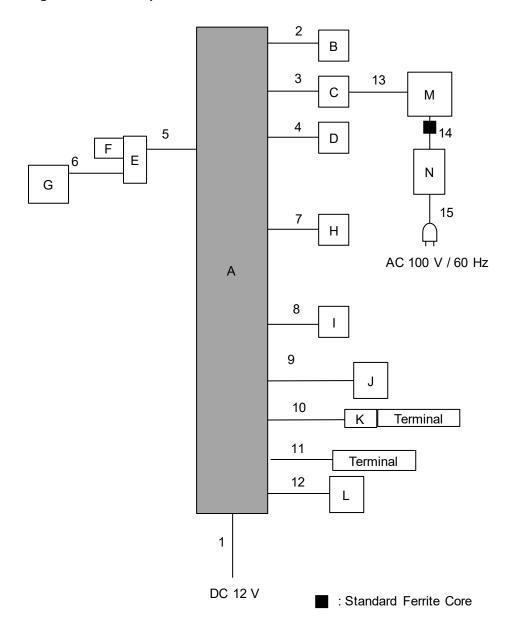
Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009 and also was judged the necessity of 802.11ac mode by the pre-test.

*The Details of Operation Mode(s)

Test Item	Operating	Tested Fred	quency		
	Mode	Lower Band	Middle Band	Additional Band	Upper Band
99 % Occupied Bandwidth, 6 dB Bandwidth, Maximum Conducted Output Power,	Tx 11a Tx 11n-20 Tx 11ac-20	-	-	-	5765 MHz
Maximum Power Spectral Density	Tx 11n-40 Tx 11ac-40				5755 MHz
Radiated Spurious Emission (Below 1 GHz)	Tx 11ac-80 Tx 11ac-80 *1)	-	-	-	5775 MHz 5775 MHz
Radiated Spurious Emission (Above 1 GHz)	Tx 11a Tx 11ac-20 *2)	-	-	-	5765 MHz
	Tx 11n-40 Tx 11ac-40	-	-	-	5755 MHz
	Tx 11ac-80				5775 MHz
Conducted Spurious Emission	Tx 11a	-	-	-	5765 MHz


^{*1)} The mode was tested as a representative, because it had the highest power at antenna terminal test.

^{*}Power of the EUT was set by the software as follows;

^{*}This setting of software is the worst case.

^{*2)} Since each of 20 MHz BW (11n-20 / 11ac-20) have the same modulation method and no differences in transmitting specification, the test was performed on the representative mode that had the highest output power.

4.2 Configuration and Peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No. 15398805H-C-R1 Page 12 of 53

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Car Audio	TN0047A	100292248-0004	DENSO TEN Limited	EUT
В	Micro Phone	86730-78010	31C043761	Panasonic	-
С	Jig board	=	-	-	-
D	Digital Camera	867B0-78070	THX4235Q05385	Panasonic	-
E	USB I/F BOX	86190-78020	500870	Panasonic	-
F	USB Memory	RUF3-K16GB	P10416	Buffalo Inc.	-
G	iPod touch	MC540J/A	C3RJ4SLADT75	Apple	-
Н	Steering Switch	84250-58150-BO	NO2	-	-
I	GNSS Antenna	86880-78010	34347	Harada Industry Co.,	-
				Ltd.	
J	Speaker Dummy	SP Dummy	DUMMY-210810-	DENSO TEN Limited	-
			001		
K	AM / FM Dummy	AM / FM Dummy	NO1	DENSO TEN Limited	-
L	Analog Camera	86790-60670	D310026	Panasonic	-
M	Laptop PC	CF-N8HWCDPS	0BKSA08729	Panasonic	*1)
N	AC Adapter	CF-AA6372B	6372BM610909023E	Panasonic	*1)

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	5.0	Unshielded	Unshielded	-
2	Signal Cable	3.0	Unshielded	Unshielded	-
3	Flat Cable	0.1	Unshielded	Unshielded	=
4	Signal Cable	5.0	Unshielded	Unshielded	=
5	Signal Cable	3.0	Unshielded	Unshielded	=
6	USB Cable	1.0	Shielded	Shielded	=
7	Signal Cable	3.0	Unshielded	Unshielded	=
8	GNSS Antenna Cable	3.0	Shielded	Shielded	=
9	Speaker Cable	3.0	Unshielded	Unshielded	=
10	AM / FM Cable	0.2	Shielded	Shielded	=
11	DAB Cable	3.5	Unshielded	Unshielded	=
12	Signal Cable	3.0	Unshielded	Unshielded	=
13	USB Cable	0.9	Shielded	Shielded	*1)
14	DC Cable	1.0	Unshielded	Unshielded	*1)
15	AC Cable	0.8	Unshielded	Unshielded	*1)

^{*1)} Antenna Terminal Conducted test only

Test Report No. 15398805H-C-R1 Page 13 of 53

SECTION 5: Radiated Spurious Emission and Band Edge Compliance

Test Procedure

< Below 1 GHz >

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

< Above 1 GHz >

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

< Below 1 GHz >

The result also satisfied with the general limits specified in section 15.209 (a).

< Above 1 GHz >

Inside of restricted bands (Section 15.205):

Apply to limit in the Section 15.209 (a).

Outside of the restricted bands:

Apply to limit 68.2 dBuV/m, 3 m (-27 dBm e.i.r.p.*) in the Section 15.407 (b) (1) (2) (3).

For 5.8 GHz band Bandedge

-27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge in the section 15.407(b)(4)(i).

Restricted band edge:

Apply to limit in the Section 15.209 (a).

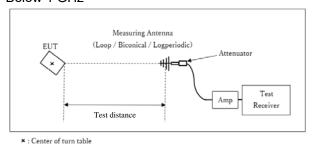
Since this limit is severer than the limit of the inside of restricted bands.

*Electric field strength to e.i.r.p. conversion:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 (uV/m) : *P* is the e.i.r.p. (Watts)

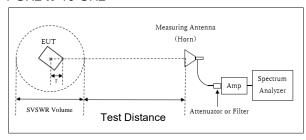
Test Report No. 15398805H-C-R1 Page 14 of 53

Test Antennas are used as below;


Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

Frequency	Below 1 GHz	Above 1 GHz	
Instrument Used	Test Receiver	Spectrum Analyzer	
Detector	QP	Peak	Average
IF Bandwidth	BW: 120 kHz	RBW: 1 MHz	Method AD
		VBW: 3 MHz	RBW: 1 MHz
			VBW: 3 MHz
			Detector: Power
			Averaging (RMS)
			Trace: ≥ 100 traces
			If duty cycle was less
			than 98%, a duty factor
			was added to the results.

Test Report No. 15398805H-C-R1 Page 15 of 53


Figure 1: Test Setup

Below 1 GHz

Test Distance: 3 m

1 GHz to 10 GHz

- r: Radius of an outer periphery of EUT
- ×: Center of turn table

[1 GHz to 6 GHz]

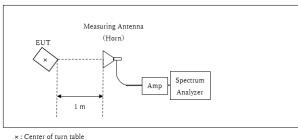
Distance Factor: $20 \times \log (3.55 \text{ m} / 3.0 \text{ m}) = 1.47 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 3.55 m

SVSWR Volume: 1.5 m

(SVSWR Volume has been calibrated based on

CISPR 16-1-4.) r = 0.2 m

[6 GHz to 10 GHz]


Distance Factor: 20 x log (3.55 m / 3.0 m) = 1.47 dB * Test Distance: (3 + SVSWR Volume /2) - r = 3.55 m

SVSWR Volume: 1.5 m

(SVSWR Volume has been calibrated based on

CISPR 16-1-4.) r = 0.2 m

10 GHz to 40 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

The test was made on EUT at the normal use position.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range : 30 MHz to 40 GHz

Test Data : APPENDIX

Test Result : Pass

Test Report No. 15398805H-C-R1 Page 16 of 53

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used and Test method
26 dB Bandwidth	Enough to capture the emission	Close to 1 % of EBW	> RBW	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth *1)	Enough width to display emission skirts	1 % to 5 % of OBW	≥ 3 RBW	Auto	Peak	Max Hold	Spectrum Analyzer
6 dB Bandwidth	Enough to capture the emission	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Conducted Output Power	-	-	-	Auto	Average	-	Power Meter (Sensor: 80 MHz BW) (Method PM)
Maximum Power Spectral Density	Encompass the entire EBW	470 kHz *2)	≥ 3 RBW	Auto	RMS Power Averaging (200 times)	Clear Write	Spectrum Analyzer
Conducted Spurious	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission*3) *4)	150 kHz to 30 MHz	10 kHz	30 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX
Test Result : Pass

^{*2)} KDB 789033 D02 says that RBW is set to be 500 kHz for 5.725 GHz to 5.850 GHz, but it is not possible with spectrum analyzer, so RBW Correction Factor (10 log(500 kHz / 470 kHz)) was added to the test result.

^{*3)} In the frequency range below 30 MHz, RBW was narrowed to separate the noise contents. Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz to 150 kHz: RBW = 200 Hz, 150 kHz to 30 MHz: RBW = 10 kHz)

^{*4)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test Report No. 15398805H-C-R1 Page 17 of 53

APPENDIX 1: Test Data

99 % Occupied Bandwidth

Ise EMC Lab. No.6 Measurement Room

Test place Date Temperature / Humidity Engineer

September 12, 2024 24 deg. C / 48 % RH Nachi Konegawa

Mode

114					
Antenna	Antenna Tested 26 dB Emission		99 % Occupied		
	Frequency	Bandwidth	Bandwidth		
	[MHz]	[MHz]	[kHz]		
Antenna 1	5765	-	16580.9		

11n-20

Antenna	Tested	26 dB Emission	99 % Occupied	
	Frequency	Bandwidth	Bandwidth	
	[MHz]	[MHz]	[kHz]	
Antenna 1	5765	=	17773.1	

11ac-20

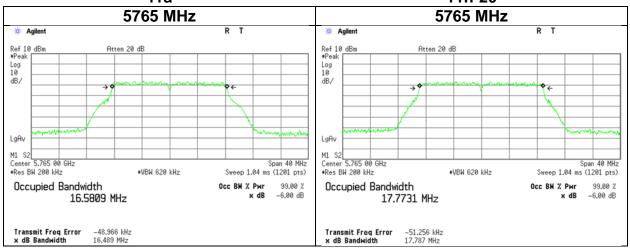
Antenna	Tested	26 dB Emission	99 % Occupied
	Frequency	Bandwidth	Bandwidth
	[MHz]	[MHz]	[kHz]
Antenna 1	5765	=	17752.3

11n-40

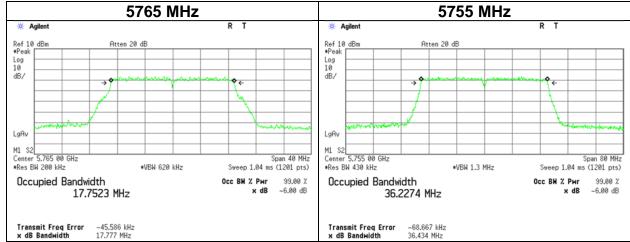
Antenna Tested		26 dB Emission	99 % Occupied		
	Frequency	Bandwidth	Bandwidth		
	[MHz]	[MHz]	[kHz]		
Antenna 1	5755	-	36227.4		

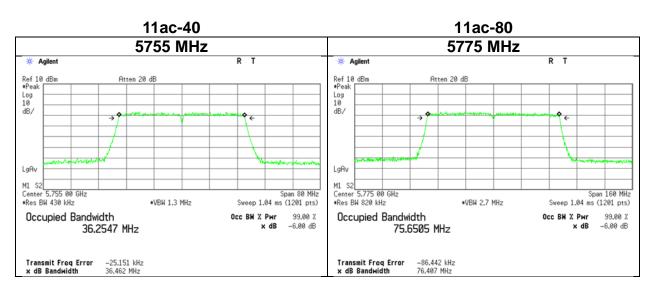
11ac-40

Antenna	Tested	26 dB Emission	99 % Occupied
	Frequency	Bandwidth	Bandwidth
	[MHz]	[MHz]	[kHz]
Antenna 1	5755	-	36254.7


11ac-80

Antenna Tested		26 dB Emission	99 % Occupied	
	Frequency	Bandwidth	Bandwidth	
	[MHz]	[MHz]	[kHz]	
Antenna 1	5775	-	75650.5	


Test Report No. 15398805H-C-R1 Page 18 of 53


99 % Occupied Bandwidth

11a 11n-20

11ac-20 11n-40

Test Report No. 15398805H-C-R1 Page 19 of 53

6 dB Bandwidth

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.6 Measurement Room September 12, 2024 24 deg. C / 48 % RH Nachi Konegawa Tx

11a

Antenna	Tested	6 dB	Limit
	Frequency	Bandwidth	
	[MHz]	[MHz]	[MHz]
Antenna 1	5765	16.468	> 0.500

11n-20

Antenna	Tested	6 dB	Limit
	Frequency	Bandwidth	
	[MHz]	[MHz]	[MHz]
Antenna 1	5765	17.737	> 0.500

11ac-20

Antenna	Tested	6 dB	Limit
	Frequency	Bandwidth	
	[MHz]	[MHz]	[MHz]
Antenna 1	5765	17.721	> 0.500

11n-40

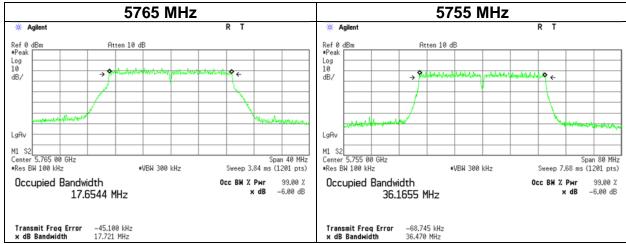
Antenna	Tested	6 dB	Limit
	Frequency	Bandwidth	
	[MHz]	[MHz]	[MHz]
Antenna 1	5755	36.470	> 0.500

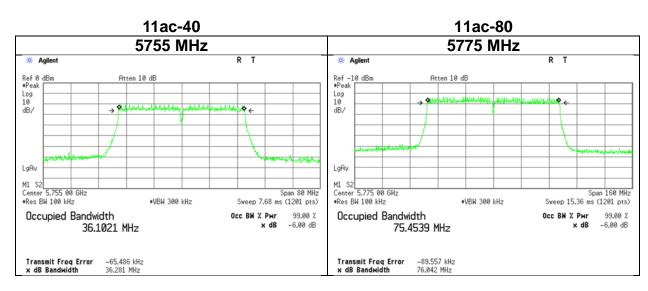
11ac-40

Antenna	Tested	6 dB	Limit
	Frequency	Bandwidth	
	[MHz]	[MHz]	[MHz]
Antenna 1	5755	36.281	> 0.500

11ac-80

Antenna	Tested	6 dB	Limit
	Frequency	Bandwidth	
	[MHz]	[MHz]	[MHz]
Antenna 1	5775	76.042	> 0.500


Test Report No. 15398805H-C-R1 Page 20 of 53


6 dB Bandwidth

11a 11n-20

11ac-20 11n-40

Test Report No. 15398805H-C-R1 Page 21 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room Date August 22, 2024 22 deg. C / 68 % RH Temperature / Humidity Engineer Junki Nagatomi Mode Tx 11a

11a

Tested	Power	Cable	Atten.	Duty	Antenna			Conducte	ed Power					e.i.ı	r.p.		
Frequency	Meter	Loss	Loss	Factor	Gain	Res	sult	FCC 1	5.407	RSS	-247	Res	sult	FCC 1	5.407	RSS	-247
	Reading							Limit	Margin	Limit	Margin			Limit	Margin	Limit	Margin
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]
5765	4.42	1.12	0.00	1.72	0.31	7.26	5.32	30.00	22.74	30.00	22.74	7.57	5.71	36.00	28.43	36.00	28.43

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor e.i.r.p. Result = Conducted Power Result + Antenna Gain

15.407 Limit

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower

Conducted Power Limit (5725 MHz-5850 MHz) = 1W

For all test frequencies, B was applied the minimum value (18.000 MHz) as conservative limit.

RSS-247 Limit

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower Conducted Power Limit (5725 MHz-5850 MHz) = 1W

e.i.r.p. Limit (5150 MHz-5250 MHz) = 200mW or (10 + 10logB) dBm, whichever is lower e.i.r.p. Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 1W or (17 + 10logB) dBm, whichever is lower

For all test frequencies, B was applied the minimum value (16.581 MHz) as conservative limit.

Test Report No. 15398805H-C-R1 Page 22 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room Date August 22, 2024 22 deg. C / 68 % RH Temperature / Humidity Engineer Junki Nagatomi

Tx 11n-20 Mode

11n-20

	Tested	Power	Cable	Atten.	Duty	Antenna			Conducte	ed Power					e.i.r	.р.		
F	requency	Meter	Loss	Loss	Factor	Gain	Res	sult	FCC 1	5.407	RSS	-247	Res	sult	FCC 1	5.407	RSS	-247
		Reading							Limit	Margin	Limit	Margin			Limit	Margin	Limit	Margin
	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]
	5765	4.25	1.12	0.00	1.35	0.31	6.72	4.70	30.00	23.28	30.00	23.28	7.03	5.04	36.00	28.97	36.00	28.97

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower Conducted Power Limit (5725 MHz-5850 MHz) = 1W

For all test frequencies, B was applied the minimum value (18.000 MHz) as conservative limit.

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower Conducted Power Limit (5725 MHz-5850 MHz) = 1W

e.i.r.p. Limit (5150 MHz-5250 MHz) = 200mW or (10 + 10logB) dBm, whichever is lower e.i.r.p. Limit (5250 MHz-5250 MHz) = 200mW or (10 + 10logB) dBm, whichever is lower e.i.r.p. Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 1W or (17 + 10logB) dBm, whichever is lower For all test frequencies, B was applied the minimum value (17773.100 MHz) as conservative limit.

Test Report No. 15398805H-C-R1 Page 23 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room Date August 22, 2024 22 deg. C / 68 % RH Temperature / Humidity Engineer Junki Nagatomi

Mode Tx 11ac-20

11ac-20

Tested	Power	Cable	Atten.	Duty	Antenna			Conducte	ed Power					e.i.ı	.р.		
Frequency	Meter	Loss	Loss	Factor	Gain	Res	sult	FCC 1	5.407	RSS	-247	Res	sult	FCC 1	5.407	RSS-	-247
	Reading							Limit	Margin	Limit	Margin			Limit	Margin	Limit	Margin
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]
5765	3.94	1.12	0.00	2.09	0.31	7.15	5.19	30.00	22.85	30.00	22.85	7.46	5.57	36.00	28.54	36.00	28.54

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower

Conducted Power Limit (5725 MHz-5850 MHz) = 1W

For all test frequencies, B was applied the minimum value (18.000 MHz) as conservative limit.

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower Conducted Power Limit (5725 MHz-5850 MHz) = 1W

e.i.r.p. Limit (5150 MHz-5250 MHz) = 200mW or (10 + 10logB) dBm, whichever is lower e.i.r.p. Limit (5250 MHz-5250 MHz) = 200mW or (10 + 10logB) dBm, whichever is lower e.i.r.p. Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 1W or (17 + 10logB) dBm, whichever is lower For all test frequencies, B was applied the minimum value (17752.300 MHz) as conservative limit.

Test Report No. 15398805H-C-R1 Page 24 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room Date August 22, 2024 22 deg. C / 68 % RH Temperature / Humidity

Engineer Junki Nagatomi Tx 11n-40 Mode

11n-40

Tested	Power	Cable	Atten.	Duty	Antenna			Conducte	ed Power					e.i.	r.p.		
Frequency	Meter	Loss	Loss	Factor	Gain	Re	sult	FCC 1	5.407	RSS	-247	Res	sult	FCC 1	5.407	RSS	-247
	Reading							Limit	Margin	Limit	Margin			Limit	Margin	Limit	Margin
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]
5755	3.11	1.09	0.00	2.68	0.31	6.88	4.88	30.00	23.12	30.00	23.12	7.19	5.24	36.00	28.81	36.00	28.81

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor e.i.r.p. Result = Conducted Power Result + Antenna Gain

15.407 Limit

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower

Conducted Power Limit (5725 MHz-5850 MHz) = 1W

For all test frequencies, B was applied the minimum value (18.000 MHz) as conservative limit.

RSS-247 Limit

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower Conducted Power Limit (5725 MHz-5850 MHz) = 1W

e.i.r.p. Limit (5150 MHz-5250 MHz) = 200mW or (10 + 10logB) dBm, whichever is lower e.i.r.p. Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 1W or (17 + 10logB) dBm, whichever is lower

For all test frequencies, B was applied the minimum value (36227.400 MHz) as conservative limit.

Test Report No. 15398805H-C-R1 Page 25 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room

Date August 22, 2024 22 deg. C / 68 % RH Temperature / Humidity Engineer Junki Nagatomi Mode Tx 11ac-40

11ac-40

Teste	ed F	Power	Cable	Atten.	Duty	Antenna			Conducte	ed Power					e.i.	r.p.		
Freque	ncy	Meter	Loss	Loss	Factor	Gain	Res	sult	FCC 1	5.407	RSS	-247	Res	sult	FCC 1	5.407	RSS	-247
	R	Reading							Limit	Margin	Limit	Margin			Limit	Margin	Limit	Margin
[MH:	z]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]
5	755	2.86	1.09	0.00	2.61	0.31	6.56	4.53	30.00	23.44	30.00	23.44	6.87	4.86	36.00	29.13	36.00	29.13

 $\dot{\text{Conducted Power Result}} = \text{Reading} + \text{Cable Loss (including the cable(s) customer supplied)} + \text{Atten. Loss} + \text{Duty Factor}$ e.i.r.p. Result = Conducted Power Result + Antenna Gain

15.407 Limit

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower

Conducted Power Limit (5725 MHz-5850 MHz) = 1W

For all test frequencies, B was applied the minimum value (18.000 MHz) as conservative limit.

RSS-247 Limit

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower Conducted Power Limit (5725 MHz-5850 MHz) = 1W

e.i.r.p. Limit (5150 MHz-5250 MHz) = 200mW or (10 + 10logB) dBm, whichever is lower e.i.r.p. Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 1W or (17 + 10logB) dBm, whichever is lower

For all test frequencies, B was applied the minimum value (36254.700 MHz) as conservative limit.

Test Report No. 15398805H-C-R1 Page 26 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room Date August 22, 2024 22 deg. C / 68 % RH Temperature / Humidity

Engineer Junki Nagatomi Mode Tx 11ac-80

11ac-80

Tested	Power	Cable	Atten.	Duty	Antenna			Conducte	ed Power					e.i.ı	r.p.		
Frequency	Meter	Loss	Loss	Factor	Gain	Re	sult	FCC 1	5.407	RSS	-247	Res	sult	FCC 1	5.407	RSS	-247
	Reading							Limit	Margin	Limit	Margin			Limit	Margin	Limit	Margin
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[dB]
5775	2.82	1.14	0.00	3.67	0.31	7.63	5.79	30.00	22.37	30.00	22.37	7.94	6.22	36.00	28.06	36.00	28.06

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor e.i.r.p. Result = Conducted Power Result + Antenna Gain

15.407 Limit

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower

Conducted Power Limit (5725 MHz-5850 MHz) = 1W

For all test frequencies, B was applied the minimum value (18.000 MHz) as conservative limit.

RSS-247 Limit

Conducted Power Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 250 mW or (11 + 10logB) dBm, whichever is lower Conducted Power Limit (5725 MHz-5850 MHz) = 1W

e.i.r.p. Limit (5150 MHz-5250 MHz) = 200mW or (10 + 10logB) dBm, whichever is lower e.i.r.p. Limit (5250 MHz-5350 MHz, 5470 MHz-5600 MHz, 5650 MHz-5725 MHz) = 1W or (17 + 10logB) dBm, whichever is lower

For all test frequencies, B was applied the minimum value (75650.500 MHz) as conservative limit.

Test Report No. 15398805H-C-R1 Page 27 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room

Date August 22, 2024
Temperature / Humidity 22 deg. C / 68 % RH
Engineer Junki Nagatomi
Mode Tx 11a

11a, 5765 MHz

1 1a, 37 03 W	1 12	
Data	Reading	Remark
rate	Antenna	
[Mbps]	[dBm]	
6	5.29	
9	5.35	
12	5.64	
18	5.68	
24	6.12	
36	5.97	
48	6.20	*
54	5.88	

^{*} Worst data rate

Cable Loss and Attenuator Loss are included in the P/M(AV) Reading

All comparizon were carried out on same frequency and measurement factors.

Test Report No. 15398805H-C-R1 Page 28 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room

Date August 22, 2024
Temperature / Humidity 22 deg. C / 68 % RH
Engineer Junki Nagatomi
Mode Tx 11n-20

11n-20, 5765 MHz

Data	Reading	Reading	Remark
rate	Antenna	Antenna	
	Long GI	Short GI	
[MCS]	[dBm]	[dBm]	
0	5.50	-	
1	5.72	-	
2	5.51	-	
3	6.07	-	
4	6.17	6.16	*
5	6.14	-	
6	6.09	-	
7	6.03	-	

^{*} Worst data rate

Cable Loss and Attenuator Loss are included in the P/M(AV) Reading

All comparizon were carried out on same frequency and measurement factors.

Test Report No. 15398805H-C-R1 Page 29 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room

Date August 22, 2024
Temperature / Humidity 22 deg. C / 68 % RH
Engineer Junki Nagatomi
Mode Tx 11ac-20

11ac-20, 5765 MHz

1140 20, 07	JO 1111 IL		
Data	Reading	Reading	Remark
rate	Antenna	Antenna	
	Long GI	Short GI	
[MCS]	[dBm]	[dBm]	
0	5.43	-	
1	5.74	-	
2	5.77	-	
3	6.02	-	
4	6.12	-	
5	6.26	-	
6	6.27	-	
7	6.24	-	
8	6.29	6.27	*

^{*} Worst data rate

Cable Loss and Attenuator Loss are included in the P/M(AV) Reading

All comparizon were carried out on same frequency and measurement factors.

Test Report No. 15398805H-C-R1 Page 30 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room

Date August 22, 2024
Temperature / Humidity 22 deg. C / 68 % RH
Engineer Junki Nagatomi
Mode Tx 11n-40

11n-40, 5755 MHz

1111 40, 0700			
Data	Reading	Reading	Remark
rate	Antenna	Antenna	
	Long GI	Short GI	
[MCS]	[dBm]	[dBm]	
0	5.54	-	
1	5.49	-	
2	5.60	-	
3	5.98	-	
4	5.79	-	
5	5.92	-	
6	6.00	5.98	*
7	5.98	-	

^{*} Worst data rate

Cable Loss and Attenuator Loss are included in the P/M(AV) Reading

All comparizon were carried out on same frequency and measurement factors.

Test Report No. 15398805H-C-R1 Page 31 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room

Date August 22, 2024
Temperature / Humidity 22 deg. C / 68 % RH
Engineer Junki Nagatomi
Mode Tx 11ac-40

11ac-40, 5755 MHz

Data	Reading	Reading	Remark
rate	Antenna	Antenna	
	Long GI	Short GI	
[MCS]	[dBm]	[dBm]	
0	5.93	-	
1	5.56	-	
2	5.61	-	
3	5.95	-	
4	5.78	-	
5	5.92	-	
6	5.88	-	
7	5.90	-	
8	5.97	5.96	*
9	5.69	-	

^{*} Worst data rate

Cable Loss and Attenuator Loss are included in the P/M(AV) Reading

All comparizon were carried out on same frequency and measurement factors.

Test Report No. 15398805H-C-R1 Page 32 of 53

Maximum Conducted Output Power

Test place Ise EMC Lab. No.8 Measurement Room

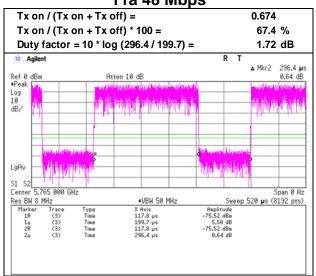
Date August 22, 2024
Temperature / Humidity 22 deg. C / 68 % RH
Engineer Junki Nagatomi
Mode Tx 11ac-80

11ac-80, 5775 MHz

Data	Reading	Reading	Remark
rate	Antenna	Antenna	
	Long GI	Short GI	
[MCS]	[dBm]	[dBm]	
0	5.65	-	
1	5.71	-	
2	5.50	-	
3	5.88	5.86	*
4	5.70	-	
5	5.76	-	
6	5.73	-	
7	5.83	-	
8	5.78	-	
9	5.85	-	

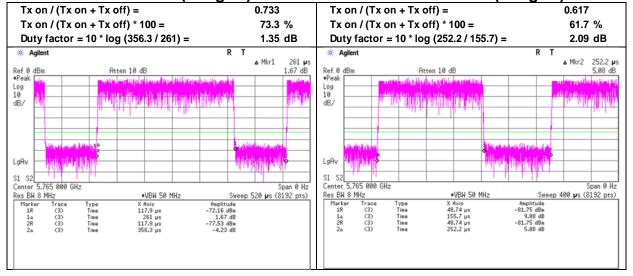
^{*} Worst data rate

Cable Loss and Attenuator Loss are included in the P/M(AV) Reading


All comparizon were carried out on same frequency and measurement factors.

Test Report No. 15398805H-C-R1 Page 33 of 53

Burst rate confirmation


Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room August 22, 2024 22 deg. C / 68 % RH Junki Nagatomi Tx

11a 48 Mbps

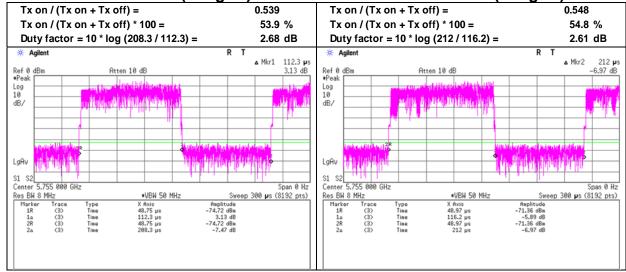
11n-20 MCS 4 (Long GI)

11ac-20 MCS 8 (Long GI)

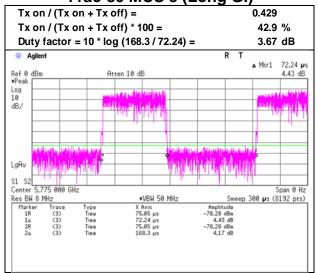
Test Report No. 15398805H-C-R1 Page 34 of 53

Burst rate confirmation

Test place Ise EMC Lab. No.8 Measurement Room


Tx

Date August 22, 2024
Temperature / Humidity 22 deg. C / 68 % RH
Engineer Junki Nagatomi


Mode

11n-40 MCS 6 (Long GI)

11ac-40 MCS 8 (Long GI)

11ac-80 MCS 3 (Long GI)

Test Report No. 15398805H-C-R1 Page 35 of 53

Maximum Power Spectral Density

Test place Ise EMC Lab. No.6 Measurement Room Date

September 12, 2024 24 deg. C / 48 % RH Temperature / Humidity Engineer Nachi Konegawa

Mode Tx

Tested	PSD	Cable	Atten.	Duty	Antenna	RBW		PSD	(Conduc	ted)		PSD (e.i.r.p.)				
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Result FCC 15.407			RSS-247		FCC 15.407		RSS-247	
						Factor		Limit	Margin	Limit	Margin		Limit	Margin	Limit	Margin
[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]
5765	-21.34	2.76	9.58	1.72	0.31	0.27	-7.01	30.00	37.01	30.00	37.01	-6.70	36.00	42.70	36.00	42.70

11n-20

Tested	PSD	Cable	Atten.	Duty	Antenna	RBW		PSD	(Conduc	ted)		PSD (e.i.r.p.)				
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	FCC 1	5.407	RSS-247		Result FCC 15.407		5.407	RSS-247	
	_					Factor		Limit	Margin	Limit	Margin		Limit	Margin	Limit	Margin
[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]
5765	-21.48	2.76	9.58	1.35	0.31	0.27	-7.52	30.00	37.52	30.00	37.52	-7.21	36.00	43.21	36.00	43.21

11ac-20

ſ	Tested	PSD	Cable	Atten.	Duty	Antenna	RBW		PSD	(Conduc	ted)			P	.p.)		
١	Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	FCC 1	5.407	RSS	RSS-247		FCC 15.407		RSS-247	
١							Factor		Limit	Margin	Limit	Margin		Limit	Margin	Limit	Margin
١	[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]
ı	5765	-22.56	2.76	9.58	2.09	0.31	0.27	-7.87	30.00	37.87	30.00	37.87	-7.56	36.00	43.56	36.00	43.56

11n-40

ſ	Tested	PSD	Cable	Atten.	Duty	Antenna	RBW		PSE	(Conduc	ted)		PSD (e.i.r.p.)					
	Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result FCC 15.407			RSS	RSS-247		FCC 15.407		RSS-	-247	
							Factor		Limit	Margin	Limit	Margin		Limit	Margin	Limit	Margin	
	[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]	
ı	5755	-25.64	2.73	9.58	2.68	0.31	0.27	-10.38	30.00	40.38	30.00	40.38	-10.07	36.00	46.07	36.00	46.07	

11ac-40

Tested	PSD	Cable	Atten.	Duty	Antenna	RBW		PSD	(Conduc	ted)		PSD (e.i.r.p.)					
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	FCC 1	5.407	RSS	RSS-247		FCC 15.407		RSS-247		
						Factor		Limit	Margin	Limit	Margin		Limit	Margin	Limit	Margin	
[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]	
5755	-25.80	2.73	9.58	2.61	0.31	0.27	-10.61	30.00	40.61	30.00	40.61	-10.30	36.00	46.30	36.00	46.30	

11ac-80

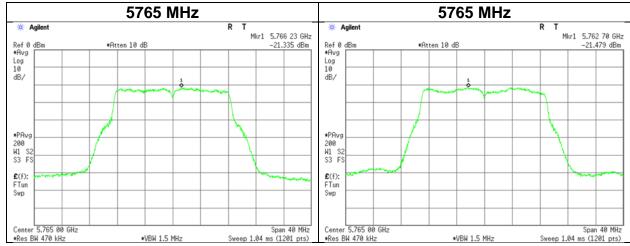
Tested	PSD	Cable	Atten.	Duty	Antenna	RBW		PSD	(Conduc	ted)	PSD (e.i.r.p.)					
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result FCC 15.407			RSS-247		Result	FCC 15.407		RSS-247	
						Factor		Limit	Margin	Limit	Margin		Limit	Margin	Limit	Margin
[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]	[dBm/MHz]	[dBm/MHz]	[dB]	[dBm/MHz]	[dB]
5775	-28.89	2.78	9.58	3.67	0.31	0.27	-12.60	30.00	42.60	30.00	42.60	-12.29	36.00	48.29	36.00	48.29

Sample Calculation:
PSD: Power Spectral Density
The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

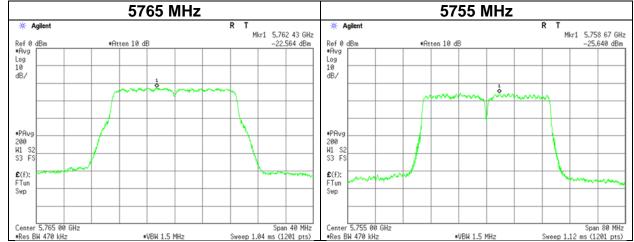
RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor + RBW Correction Factor PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

Test Report No. 15398805H-C-R1 Page 36 of 53


Maximum Power Spectral Density

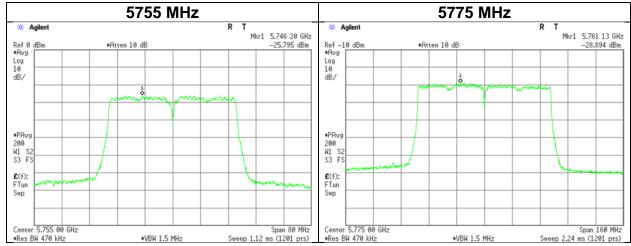
Test place Ise EMC Lab. No.6 Measurement Room


Date September 12, 2024 Temperature / Humidity 24 deg. C / 48 % RH Engineer Nachi Konegawa Tx

Mode

11n-20 11a

Test Report No. 15398805H-C-R1 Page 37 of 53


Maximum Power Spectral Density

Test place Ise EMC Lab. No.6 Measurement Room

Date September 12, 2024 Temperature / Humidity 24 deg. C / 48 % RH Engineer Nachi Konegawa Tx

Mode

11ac-80 11ac-40

Test Report No. 15398805H-C-R1 Page 38 of 53

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

September 1, 2024 22 deg. C / 71 % RH Date August 30, 2024 Temperature / Humidity 22 deg. C / 70 % RH Tetsuro Yoshida Engineer Tomoya Sone (1 GH to 18 GHz) (Above 18 GHz)

Mode Tx 11a 5765 MHz

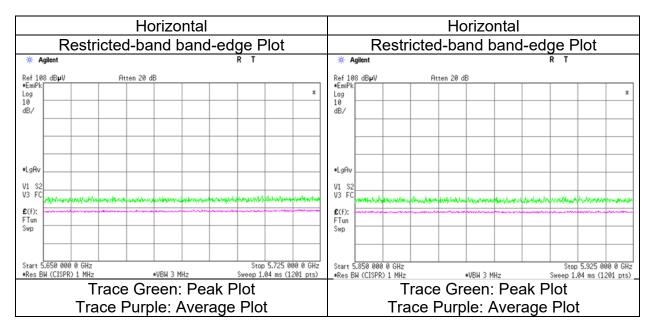
Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	5650.0	40.9		31.8	5.2	31.2	-	46.8	-	68.2	-	21.5	-	
Hori.	5700.0	42.6	-	31.9	5.2	31.2	-	48.6	-	105.2	-	56.6	-	
Hori.	5720.0	42.7	-	32.0	5.3	31.2	-	48.7	-	110.8	-	62.1	-	
Hori.	5725.0	42.0	-	32.0	5.3	31.2	-	48.1	-	122.2	-	74.1	-	
Hori.	5850.0	40.8	-	32.3	5.3	31.2	-	47.2	-	122.2	-	75.0	-	
Hori.	5855.0	40.9	-	32.3	5.3	31.2	-	47.3	-	110.8	-	63.5	-	
Hori.	5875.0	40.7	-	32.3	5.3	31.2	-	47.2	-	105.2	-	58.0	-	
Hori.	5925.0	41.1	-	32.4	5.3	31.2	-	47.7	-	68.2	-	20.5	-	*1)
Hori.	11530.0	41.6	33.8	37.5	-2.2	32.8	-	44.2	36.3	73.9	53.9	29.7	17.6	Floor noise
Hori.	17295.0	42.7	-	39.8	-0.8	31.9	-	49.9	-	68.2	-	18.3	-	Floor noise
Vert.	5650.0	41.8	-	31.8	5.2	31.2	-	47.7	-	68.2	-	20.5	-	
Vert.	5700.0	42.6	-	31.9	5.2	31.2	-	48.6	-	105.2	-	56.7	-	
Vert.	5720.0	44.0	-	32.0	5.3	31.2	-	50.0	-	110.8	-	60.8	-	
Vert.	5725.0	44.4	-	32.0	5.3	31.2	-	50.5	-	122.2	-	71.7	-	
Vert.	5850.0	41.7	-	32.3	5.3	31.2	-	48.1	-	122.2	-	74.1	-	
Vert.	5855.0	41.0	-	32.3	5.3	31.2	-	47.4	-	110.8	-	63.4	-	
Vert.	5875.0	41.5	-	32.3	5.3	31.2	-	47.9	-	105.2	-	57.3	-	
Vert.	5925.0	41.0	-	32.4	5.3	31.2	-	47.6	-	68.2	-	20.6	-	*1)
Vert.	11530.0	41.6	33.8	37.5	-2.2	32.8	-	44.2	36.3	73.9	53.9	29.7	17.6	Floor noise
Vert.	17295.0	42.7	-	39.8	-0.8	31.9	-	49.9	-	68.2	-	18.3	-	Floor noise

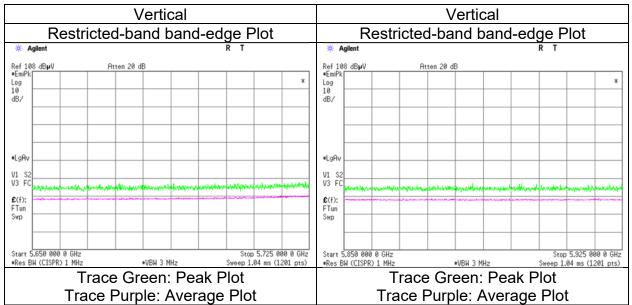
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20log (3.55 m / 3.0 m) = 1.47 dB Distance factor: 1 GHz - 6 GHz

20log (3.55 m / 3.0 m) = 1.47 dB 6 GHz - 10 GHz 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Dutyfactor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.


^{*1)} Not Out of Band emission(Leakage Power)


Test Report No. 15398805H-C-R1 Page 39 of 53

Radiated Spurious Emission

Test place Ise EMC Lab. Semi Anechoic Chamber No.2

Date August 30, 2024
Temperature / Humidity 22 deg. C / 70 % RH
Engineer Tomoya Sone
Mode Tx 11a 5765 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Test Report No. 15398805H-C-R1 Page 40 of 53

Radiated Spurious Emission

Test place

Ise EMC Lab.

Semi Anechoic Chamber

No.2

No.2 August 30, 2024

Date Temperature / Humidity

22 deg. C / 70 % RH Tomoya Sone

September 1, 2024 22 deg. C / 71 % RH

Engineer

(1 GHz to 18 GHz)

Tetsuro Yoshida (Above 18 GHz)

Mode

Tx 11ac-20 5765 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
,	' '	(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	5650.0	41.9	_	31.8	5.2	31.2	-	47.7	-	68.2	-	20.5	-	
Hori.	5700.0	41.1	-	31.9	5.2	31.2	-	47.1	-	105.2	-	58.1	-	
Hori.	5720.0	43.0	-	32.0	5.3	31.2	-	49.1	-	110.8	-	61.7	-	
Hori.	5725.0	42.6	-	32.0	5.3	31.2	-	48.7	-	122.2	-	73.5	-	
Hori.	5850.0	41.5	-	32.3	5.3	31.2	-	47.9	-	122.2	-	74.3	-	
Hori.	5855.0	42.4	-	32.3	5.3	31.2	-	48.8	-	110.8	-	62.0	-	
Hori.	5875.0	40.8	-	32.3	5.3	31.2	-	47.3	-	105.2	-	57.9	-	
Hori.	5925.0	41.3	-	32.4	5.3	31.2	-	47.9	-	68.2	-	20.4	-	*1)
Hori.	11530.0	41.5	33.4	37.5	-2.2	32.8	-	44.0	35.9	73.9	53.9	29.9	18.0	Floor noise
Hori.	17295.0	42.9	-	39.8	-0.8	31.9	-	50.0	-	68.2	-	18.2	-	Floor noise
Vert.	5650.0	42.2	-	31.8	5.2	31.2	-	48.0	-	68.2	-	20.2	-	
Vert.	5700.0	42.8	-	31.9	5.2	31.2	-	48.8	-	105.2	-	56.4	-	
Vert.	5720.0	44.5	-	32.0	5.3	31.2	-	50.6	-	110.8	-	60.2	-	
Vert.	5725.0	44.7	-	32.0	5.3	31.2	-	50.8	-	122.2	-	71.4	-	
Vert.	5850.0	41.1	-	32.3	5.3	31.2	-	47.5	-	122.2	-	74.7	-	
Vert.	5855.0	41.4	-	32.3	5.3	31.2	-	47.8	-	110.8	-	63.0	-	
Vert.	5875.0	41.5	-	32.3	5.3	31.2	-	48.0	-	105.2	-	57.2	-	
Vert.	5925.0	41.0	-	32.4	5.3	31.2	-	47.5	-	68.2	-	20.7		*1)
Vert.	11530.0	41.5	33.4	37.5	-2.2	32.8	-	44.0	35.9	73.9	53.9			Floor noise
Vert.	17295.0	42.9	-	39.8	-0.8	31.9	-	50.0	-	68.2	-	18.2	-	Floor noise

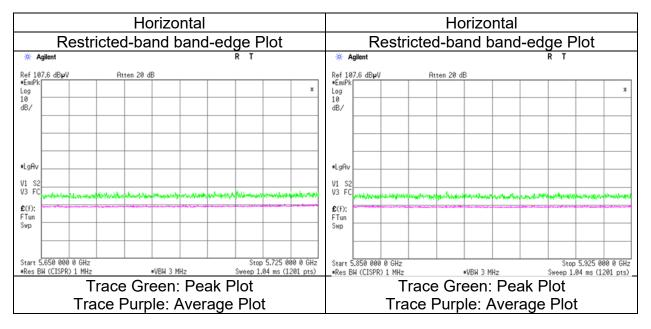
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

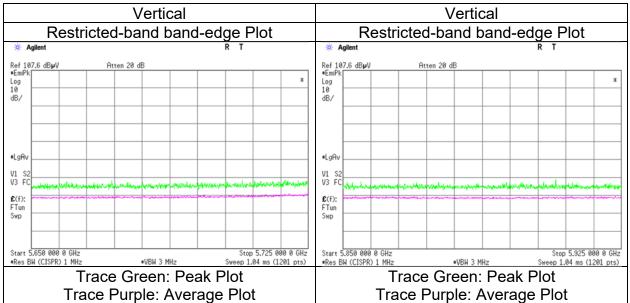
Distance factor:

1 GHz - 6 GHz 20log (3.55 m / 3.0 m) = 1.47 dB

6 GHz - 10 GHz 10 GHz - 40 GHz

20log (3.55 m / 3.0 m) = 1.47 dB 20log (1.0 m / 3.0 m) = -9.5 dB


Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).


^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

Radiated Spurious Emission

Test place Ise EMC Lab. Semi Anechoic Chamber No.2

Date August 30, 2024
Temperature / Humidity 22 deg. C / 70 % RH
Engineer Tomoya Sone
Mode Tx 11ac-20 5765 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Test Report No. 15398805H-C-R1 Page 42 of 53

Radiated Spurious Emission

Test place

Ise EMC Lab.

Semi Anechoic Chamber Date

No.2 August 30, 2024

Temperature / Humidity Engineer

22 deg. C / 70 % RH Tomoya Sone (1 GHz to 18 GHz)

No.2 September 1, 2024 22 deg. C / 71 % RH Tetsuro Yoshida

(Above 18 GHz)

Tx 11n-40 5755 MHz

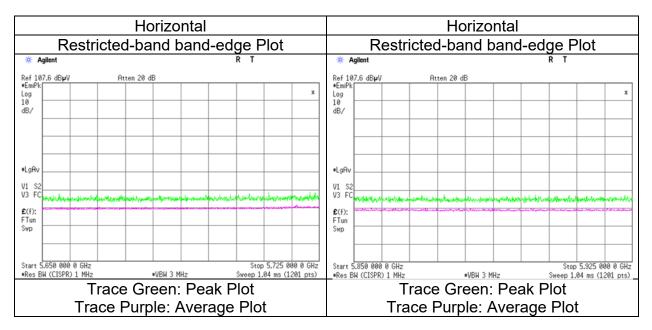
Mode

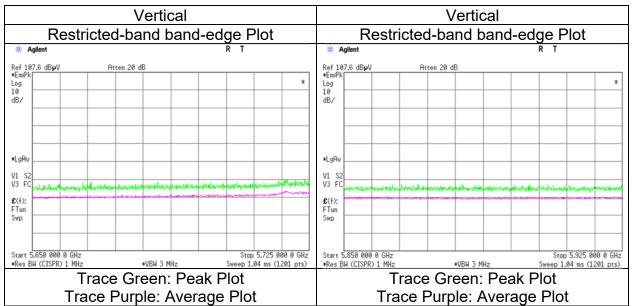
Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	5650.0	42.4	-	31.8	5.2	31.2	-	48.2	-	68.2	-	20.0	-	
Hori.	5700.0	42.1	-	31.9	5.2	31.2	-	48.1	-	105.2	-	57.2	-	
Hori.	5720.0	42.5	-	32.0	5.3	31.2	-	48.5	-	110.8	-	62.3	-	
Hori.	5725.0	42.9	-	32.0	5.3	31.2	-	49.0	-	122.2	-	73.2	-	
Hori.	5850.0	40.9	-	32.3	5.3	31.2	-	47.3	-	122.2	-	74.9	-	
Hori.	5855.0	40.6	-	32.3	5.3	31.2	-	47.0	-	110.8	-	63.8	-	
Hori.	5875.0	41.4	-	32.3	5.3	31.2	-	47.9	-	105.2	-	57.3	-	
Hori.	5925.0	40.5	-	32.4	5.3	31.2	-	47.1	-	68.2	-	21.2	-	*1)
Hori.	11510.0	41.2	33.4	37.5	-2.2	32.8	-	43.8	35.9	73.9	53.9	30.2	18.0	Floor noise
Hori.	17265.0	42.7	-	39.7	-0.8	31.9	-	49.8	-	68.2	-	18.4	-	Floor noise
Vert.	5650.0	42.5	-	31.8	5.2	31.2	-	48.3	-	68.2	-	19.9	-	
Vert.	5700.0	44.0	-	31.9	5.2	31.2	-	50.0	-	105.2	-	55.2	-	
Vert.	5720.0	46.5	-	32.0	5.3	31.2	-	52.6	-	110.8	-	58.2	-	
Vert.	5725.0	47.0	-	32.0	5.3	31.2	-	53.0	-	122.2	-	69.2	-	
Vert.	5850.0	42.1	-	32.3	5.3	31.2	-	48.6	-	122.2	-	73.6	-	
Vert.	5855.0	41.4	-	32.3	5.3	31.2	-	47.9	-	110.8	-	62.9	-	
Vert.	5875.0	40.9	-	32.3	5.3	31.2	-	47.4	-	105.2	-	57.8	-	
Vert.	5925.0	41.0	-	32.4	5.3	31.2	-	47.6	-	68.2	-	20.6	-	*1)
Vert.	11510.0	41.2	33.4	37.5	-2.2	32.8	-	43.8	35.9	73.9	53.9			Floor noise
Vert.	17265.0	42.7	-	39.7	-0.8	31.9	-	49.8	-	68.2	-	18.4	-	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 6 GHz 20log (3.55 m / 3.0 m) = 1.47 dB

20log (3.55 m / 3.0 m) = 1.47 dB 6 GHz - 10 GHz 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB


Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).


^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

Radiated Spurious Emission

Test place Ise EMC Lab. Semi Anechoic Chamber No.2

Date August 30, 2024
Temperature / Humidity 22 deg. C / 70 % RH
Engineer Tomoya Sone
Mode Tx 11n-40 5755 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Test Report No. 15398805H-C-R1 Page 44 of 53

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date August 30, 2024 September 1, 2024 22 deg. C / 71 % RH Temperature / Humidity 22 deg. C / 70 % RH Engineer Tomoya Sone Tetsuro Yoshida (1 GHz to 18 GHz) (Above 18 GHz)

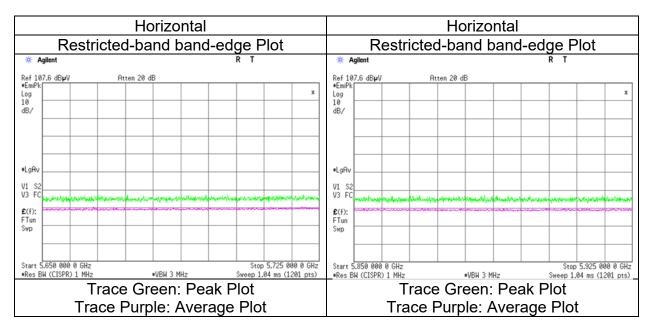
Mode Tx 11ac-40 5755 MHz

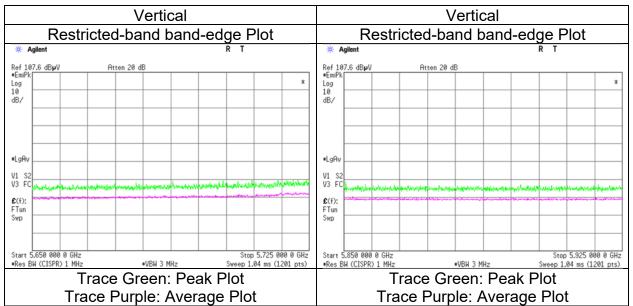
Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	(QI / I IX)	(AV) [dB]	
Hori.	5650.0	41.3	-	31.8	5.2	31.2	-	47.2	-	68.2	-	21.0	-	
Hori.	5700.0	41.7	-	31.9	5.2	31.2	-	47.7	-	105.2	-	57.5	-	
Hori.	5720.0	43.0	-	32.0	5.3	31.2	-	49.1	-	110.8	-	61.7	-	
Hori.	5725.0	42.4	-	32.0	5.3	31.2	-	48.5	-	122.2	-	73.7	-	
Hori.	5850.0	41.6	-	32.3	5.3	31.2	-	48.1	-	122.2	-	74.2	-	
Hori.	5855.0	41.5	-	32.3	5.3	31.2	-	47.9	-	110.8	-	62.9	-	
Hori.	5875.0	40.9	-	32.3	5.3	31.2	-	47.4	-	105.2	-	57.8	-	
Hori.	5925.0	41.6	-	32.4	5.3	31.2	-	48.1	-	68.2	-	20.1	-	*1)
Hori.	11510.0	41.1	33.3	37.5	-2.2	32.8	-	43.7	35.8	73.9	53.9	30.3	18.1	Floor noise
Hori.	17265.0	42.6	-	39.7	-0.8	31.9	-	49.7	-	68.2	-	18.5	-	Floor noise
Vert.	5650.0	42.0	-	31.8	5.2	31.2	-	47.9	-	68.2	-	20.3	-	
Vert.	5700.0	44.5	-	31.9	5.2	31.2	-	50.5	-	105.2	-	54.8	-	
Vert.	5720.0	46.7	-	32.0	5.3	31.2	-	52.7	-	110.8	-	58.1	-	
Vert.	5725.0	45.8	-	32.0	5.3	31.2	-	51.9	-	122.2	-	70.3	-	
Vert.	5850.0	41.5	-	32.3	5.3	31.2	-	47.9	-	122.2	-	74.3	-	
Vert.	5855.0	41.3	-	32.3	5.3	31.2	-	47.7	-	110.8	-	63.1	-	
Vert.	5875.0	41.1	-	32.3	5.3	31.2	-	47.5	-	105.2	-	57.7	-	
Vert.	5925.0	41.3	-	32.4	5.3	31.2	-	47.8	-	68.2	-	20.4	-	*1)
Vert.	11510.0	41.1	33.3	37.5	-2.2	32.8	-	43.7	35.8	73.9	53.9	30.3	18.1	Floor noise
Vert.	17265.0	42.6	-	39.7	-0.8	31.9	-	49.7	-	68.2	-	18.5	-	Floor noise

vert. 17265.0 42.6 - 39.7 -0.8 31.9 - 49.7 - 6
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).
*QP detector was used up to 1GHz.

Distance factor: 1 GHz - 6 GHz 20log (3.55 m / 3.0 m) = 1.47 dB

20log (3.55 m / 3.0 m) = 1.47 dB 6 GHz - 10 GHz 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB


^{*1)} Not Out of Band emission(Leakage Power)


Test Report No. 15398805H-C-R1 Page 45 of 53

Radiated Spurious Emission

Test place Ise EMC Lab. Semi Anechoic Chamber No.2

Date August 30, 2024
Temperature / Humidity 22 deg. C / 70 % RH
Engineer Tomoya Sone
Mode Tx 11ac-40 5755 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Test Report No. 15398805H-C-R1 Page 46 of 53

Radiated Spurious Emission

Test place

Semi Anechoic Chamber

Date

Temperature / Humidity

Engineer

Ise EMC Lab.

No.2

August 30, 2024 22 deg. C / 70 % RH

Tomoya Sone

(1 GHz to 18 GHz)

No.2

September 1, 2024 22 deg. C / 71 % RH

Tetsuro Yoshida (Above 18 GHz) No.3

September 2, 2024 22 deg. C / 74% RH Tetsuro Yoshida (Below 1 GHz)

Mode

Tx 11ac-80 5775 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	65.9	31.6	-	6.8	7.5	32.2	-	13.7	-	40.0	-	26.3	-	
Hori.	200.0	37.4	-	16.6	8.9	32.1	-	30.8	-	43.5	-	12.7	-	
Hori.	400.0	40.4	-	15.6	10.3	32.0	-	34.4	-	46.0	-	11.6	-	
Hori.	438.7	30.1	-	16.2	10.6	32.0	-	24.8	-	46.0	-	21.2	-	
Hori.	891.0	31.4	-	22.0	12.9	31.0	-	35.2	-	46.0	-	10.8	-	
Hori.	1000.0	33.7	-	22.3	13.4	30.4	-	39.0	-	53.9	-	14.9	-	
Hori.	5650.0	42.5	-	31.8	5.2	31.2	-	48.4	-	68.2	-	19.8	-	
Hori.	5700.0	42.3	-	31.9	5.2	31.2	-	48.3	-	105.2	-	56.9	-	
Hori.	5720.0	42.9	-	32.0	5.3	31.2	-	49.0	-	110.8	-	61.8	-	
Hori.	5725.0	42.0	-	32.0	5.3	31.2	-	48.0	-	122.2	-	74.2	-	
Hori.	5850.0	41.5	-	32.3	5.3	31.2	-	47.9	-	122.2	-	74.3	-	
Hori.	5855.0	40.9	-	32.3	5.3	31.2	-	47.3	-	110.8	-	63.5	-	
Hori.	5875.0	41.0	-	32.3	5.3	31.2	-	47.5	-	105.2	-	57.7	-	
Hori.	5925.0	41.5	-	32.4	5.3	31.2	-	48.1	-	68.2	-	20.1	-	*1)
Hori.	11550.0	41.0	33.3	37.5	-2.2	32.8	-	43.6	35.9	73.9	53.9	30.3	18.0	Floor noise
Hori.	17325.0	42.6	-	39.8	-0.8	31.9	-	49.7	-	68.2	-	18.5	-	Floor noise
Vert.	66.0	34.8	-	6.8	7.5	32.2	-	16.9	-	40.0	-	23.2	-	
Vert.	200.0	36.3	-	16.6	8.9	32.1	-	29.7	-	43.5		13.8	-	
Vert.	400.0	44.2	-	15.6	10.3	32.0	-	38.2	-	46.0		7.8	-	
Vert.	438.7	34.3	-	16.2	10.6	32.0	-	29.0	-	46.0		17.0	-	
Vert.	891.0	22.4	-	22.0	12.9	31.0	-	26.2	-	46.0		19.8	-	
Vert.	1000.0	32.0	-	22.3	13.4	30.4	-	37.3	-	53.9	-	16.6	-	
Vert.	5650.0	43.8	-	31.8	5.2	31.2	-	49.7	-	68.2	-	18.5	-	
Vert.	5700.0	47.1	-	31.9	5.2	31.2	-	53.1	-	105.2	-	52.1	-	
Vert.	5720.0	48.4	-	32.0	5.3	31.2	-	54.4	-	110.8	-	56.4	-	
Vert.	5725.0	46.6	-	32.0	5.3	31.2	-	52.7	-	122.2	-	69.5	-	
Vert.	5850.0	42.2	-	32.3	5.3	31.2	-	48.6	-	122.2	-	73.6	-	
Vert.	5855.0	41.6	-	32.3	5.3	31.2	-	48.1	-	110.8	-	62.7	-	
Vert.	5875.0	41.2	-	32.3	5.3	31.2	-	47.7	-	105.2	-	57.5	-	
Vert.	5925.0	41.9	-	32.4	5.3	31.2	-	48.5	-	68.2	-	19.8	-	*1)
Vert.	11550.0	41.0	33.3	37.5	-2.2	32.8	-	43.6	35.9	73.9	53.9			Floor noise
Vert.	17325.0	42.6	-	39.8	-0.8	31.9	-	49.7	-	68.2	-	18.5	-	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

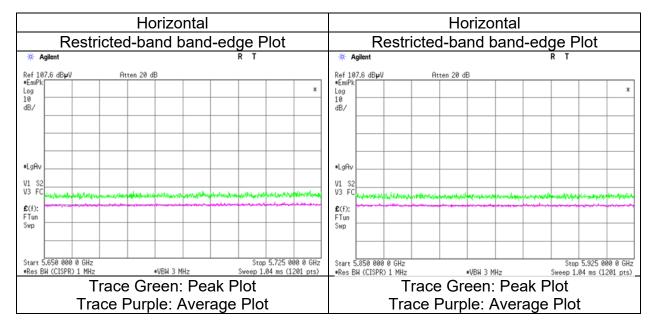
Distance factor: 1 GHz - 6 GHz 20log (3.55 m / 3.0 m) = 1.47 dB

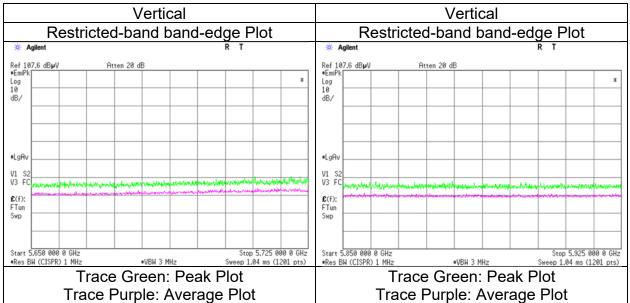
6 GHz - 10 GHz 20log (3.55 m / 3.0 m) = 1.47 dB 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

Test Report No. 15398805H-C-R1 Page 47 of 53


Radiated Spurious Emission


Test place Semi Anechoic Chamber

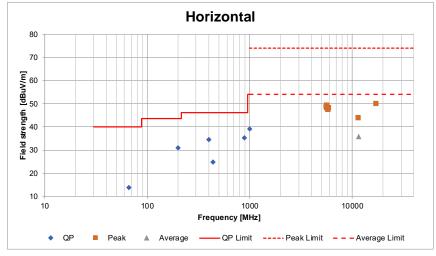
Date August 30, 2024
Temperature / Humidity 22 deg. C / 70 % RH
Engineer Tomoya Sone
Mode Tx 11ac-80 5775 MHz

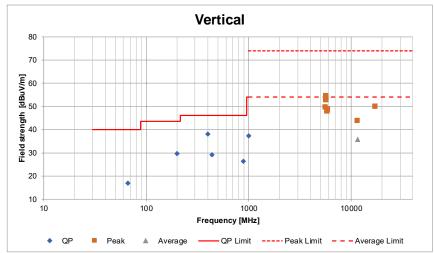
Ise EMC Lab.

No.2

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Test Report No. 15398805H-C-R1 Page 48 of 53

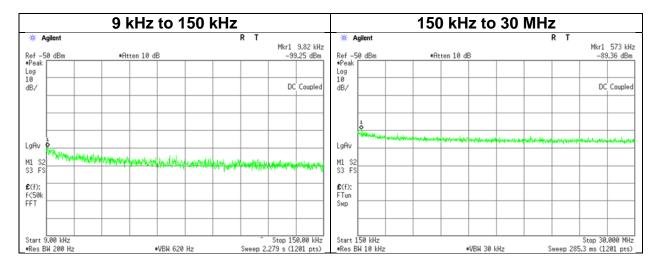

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Conducted Output Power)


Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.2 August 30, 2024 22 deg. C / 70 % RH Tomoya Sone (1 GHz to 18 GHz) Tx 11ac-80 5775 MHz

No.2 September 1, 2024 22 deg. C / 71 % RH Tetsuro Yoshida (Above 18 GHz) No.3 September 2, 2024 22 deg. C / 74 % RH Tetsuro Yoshida (Below 1 GHz)


^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15398805H-C-R1 Page 49 of 53

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Date September 12, 2024
Temperature / Humidity 24 deg. C / 48 % RH
Engineer Nachi Konegawa
Mode Tx 11a 5765 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss		Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.82	-99.3	1.14	9.8	2.0	1	-86.3	300	6.0	-25.0	47.7	72.7	
573.00	-89.4	1.31	9.9	2.0	1	-76.1	30	6.0	5.1	32.4	27.3	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 \ ^* \ log \ (N)$

N: Number of output

 $^{^{\}star}2.0$ dBi was applied to the test result based on KDB 789033 since antenna gain was less than 2.0 dBi.

Test Report No. 15398805H-C-R1 Page 50 of 53

APPENDIX 2: Test Instruments

Test Equipment

	Equipm			I			
Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	141279	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S303	03/04/2024	12
RE	141323	Coaxial cable	UL Japan	-	-	09/10/2023	12
RE	141406	High Pass Filter 7-20GHz	TOKIMEC	TF37NCCA	7001	09/11/2024	12
RE	141424	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	1915	03/15/2024	12
RE	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	254	10/17/2023	12
RE	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170306	07/19/2024	12
RE	141517	Horn Antenna 26.5-40GHz	ETS-Lindgren	3160-10	152399	11/20/2023	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE		Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/06/2024	12
RE	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2024	12
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/17/2024	12
RE	141588	Pre Amplifier	L3 Narda-MITEQ	AMF-6F-2600400-33-8P / AMF-4F-2600400-33- 8P	1871355 /1871328	01/22/2024	12
RE	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	05/30/2024	12
RE		Test Receiver	Rohde & Schwarz	ESCI	100767	06/05/2024	12
RE		Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180899	05/09/2024	12
RE	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/17/2023	24
RE	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
RE		Measure	KOMELON	KMC-36	-	10/20/2023	12
RE	142228		KOMELON	KMC-36	-	-	-
RE		Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/06/2024	12
RE		Coaxial Cable	Huber+Suhner	SUCOFLEX 102A	MY009/2A	10/05/2023	12
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE		Logperiodic Antenna	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	00728	11/29/2023	12
RE		Thermo-Hygrometer	HIOKI E.E. CORPORATION		231202102	01/25/2024	12
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION		231202103	01/25/2024	12
RE	245787	Double Ridge Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	689	03/06/2024	12
RE	246001	Microwave Cable	Huber+Suhner	SF103/11PC35/ 11PC35/1000mm / SF126E/5000mm	800673(1m) / 610204(5m)	03/06/2024	12
ΑT	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/17/2023	12
ΑT		Attenuator(10dB)	Suhner	6810.19.A	-	12/12/2023	12
AT		Coaxial Cable	UL Japan	-	-	11/21/2023	12
AT		Microwave Cable	Junkosha	MWX221	1207S407	07/06/2024	12
AT	141557	DIGIITAL HITESTER			070900530	01/31/2024	12
AT	141815	Power Meter	Raditeq (Formerly DARE!! Instruments)	RPR3006W	14I00048SNO 083	10/04/2023	12
AT	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	05/09/2024	12
AT		Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/26/2024	12
AT	244711	Thermo-Hygrometer			231202105	01/25/2024	12
AT	244712	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202106	01/25/2024	12

Test Report No. 15398805H-C-R1 Page 51 of 53

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

RE: Radiated Emission