

: 14483770H-A-R2 : 1 of 45

RADIO TEST REPORT

Test Report No.: 14483770H-A-R2

Customer	DENSO TEN Limited
Description of EUT	Car Audio
Model Number of EUT	TN0040B
FCC ID	BABTN0040B
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied (Refer to SECTION 3)
Issue Date	July 18, 2023
Remarks	Wireless LAN (2.4 GHz band) part

Representative Test Engineer	Approved By
I. Nishida	Ryata yamanaka
Takumi Nishida Engineer	Ryota Yamanaka Engineer
Eligilicei	INC-MRA ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed	d is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 21.0

Test Report No. : 14483770H-A-R2 Page : 2 of 45

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14483770H-A

This report is a revised version of 14483770H-A-R1. 14483770H-A-R1 is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	14483770H-A	June 14, 2023	-
1	14483770H-A-R1	July 4, 2023	SECTION 2.2: Radio Specification
			from 4.40 dBi to 3.06 dBi (U-NII-1)
			3.34 dBi (U-NII-3)
1	14483770H-A-R1	July 4, 2023	SECTION 2.2
			Deletion of sentence about simultaneous transmission.
1	14483770H-A-R1	July 4, 2023	SECTION 4.2
			Correction of Shield of Cable number 9 from
			Unshielded to Shielded
1	14483770H-A-R1	July 4, 2023	Data of Radiated Spurious Emission
			(Tx 11n-20 2412 MHz)
			Exchanging of Horizontal and Vertical values
1	14483770H-A-R1	July 4, 2023	Data of Conducted Spurious Emission
			Addition of data table
1	14483770H-A-R1	July 4, 2023	Data of Maximum Peak Output Power
2	1440255011 4 D2	T 1 10 2022	Correction of value of Rate check
2	14483770H-A-R2	July 18, 2023	Cover page and SECTION 1:
			Correction of Company Name from "Denso TEN
			Limited" to "DENSO TEN Limited"

Test Report No. : 14483770H-A-R2 Page : 3 of 45

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics
AM	Amplitude Modulation	IF	Engineers Intermediate Frequency
	1		International Laboratory Accreditation
Amp, AMP	Amplifier	ILAC	Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

Test Report No. Page : 14483770H-A-R2 : 4 of 45

CONTENTS PAGE SECTION 1: SECTION 2: Equipment Under Test (EUT)......5 **SECTION 3:** Operation of EUT during testing......10 **SECTION 4: SECTION 5:** Radiated Spurious Emission ______14 **SECTION 6:** APPENDIX 1: Maximum Peak Output Power 21 Test Instruments.......42 **APPENDIX 2: APPENDIX 3:**

Test Report No. : 14483770H-A-R2 Page : 5 of 45

SECTION 1: Customer Information

Company Name	DENSO TEN Limited
Address	2-28, Gosho-dori 1-chome, Hyogo-ku, Kobe, 652-8510 Japan
Telephone Number	+81-78-682-2159
Contact Person	Kaoru Abe

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Car Audio
Model Number	TN0040B
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	September 20, 2022
Test Date	September 28 to October 12, 2022

Test Report No. : 14483770H-A-R2 Page : 6 of 45

2.2 Product Description

General Specification

Rating	DC 12 V
Operating temperature	-30 deg. C to 65 deg. C

Radio Specification

WLAN (IEEE802.11b/11g/11n-20)

Equipment Type	Transceiver
Frequency of Operation	2412 MHz to 2462 MHz
Type of Modulation	DSSS/CCK(11b), OFDM(11g, 11n)
Antenna Gain	0.19 dBi

WLAN (IEEE802.11a/11n-20/11ac-20/11n-40/11ac-40/11ac-80)

Equipment Type	Transceiver	,
Frequency of Operation	20 MHz Band:	5180 MHz to 5240 MHz
		5745 MHz to 5805 MHz
	40 MHz Band:	5190 MHz to 5230 MHz
		5755 MHz to 5795 MHz
	80 MHz Band:	5210 MHz
		5775 MHz
Type of Modulation	OFDM(11a,11n,11ac)	
Antenna Gain	3.06 dBi (U-NII-1)	
	3.34 dBi (U-NII-3)	

Bluetooth (BR / EDR)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	FHSS (GFSK, π/4 DQPSK, 8 DPSK)
Antenna Gain	-1.78 dBi

AM/FM (incl. RDS) / DAB

AMI/TMI (IIICI, KDS) / DAD		
Equipment Type	Receiver	
Frequency of Operation	AM: MW:522 kHz to 1710 kHz	
	FM: 87.5 MHz to 108.0 MHz	
	DAB (Band III): 174.928 MHz to 239.200 MHz	
Type of Modulation	AM	
	FM	
	DAB: OFDM	
Antenna Connector Type	GT21	
Impedance	AM, FM: 75 ohm	
	DAB: 50 ohm	

Test Report No. : 14483770H-A-R2 Page : 7 of 45

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted Emission	ANSI C63.10-2013	Section 15.207	-	N/A	*1)
	6. Standard test methods				
6dB Bandwidth	KDB 558074 D01 15.247	Section 15.247(a)(2)	See data.	Complied	Conducted
	Meas Guidance v05r02			a)	
Maximum Peak	KDB 558074 D01 15.247	Section 15.247(b)(3)		Complied	Conducted
Output Power	Meas Guidance v05r02			b)	
Power Density	KDB 558074 D01 15.247	Section 15.247(e)		Complied	Conducted
	Meas Guidance v05r02			c)	
Spurious Emission	KDB 558074 D01 15.247	Section15.247(d)	2.0 dB	Complied	Conducted
Restricted Band	Meas Guidance v05r02		200.0 MHz, QP, Vert.	d), e)	(below 30 MHz)/
Edges					Radiated
					(above 30 MHz)
X . X . X . X	THE STATE OF THE S			VD 002502	*2)

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks	
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted	
Bandwidth				a)		
a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)						

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)

b) Refer to APPENDIX 1 (data of Maximum Peak Output Power)

c) Refer to APPENDIX 1 (data of Power Density)

d) Refer to APPENDIX 1 (data of Conducted Spurious Emission)

e) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

Test Report No. : 14483770H-A-R2 Page : 8 of 45

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement	Frequency range		Uncertainty (+/-)
distance			
3 m	9 kHz to 30 MHz		3.2 dB
10 m			3.0 dB
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	5.0 dB
	200 MHz to 1000 MHz	Horizontal	5.1 dB
		Vertical	6.2 dB
10 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	4.8 dB
	200 MHz to 1000 MHz	Horizontal	5.0 dB
		Vertical	5.0 dB
3 m	1 GHz to 6 GHz		4.9 dB
	6 GHz to 18 GHz		5.2 dB
1 m	10 GHz to 26.5 GHz	10 GHz to 26.5 GHz 26.5 GHz to 40 GHz	
	26.5 GHz to 40 GHz		
10 m	1 GHz to 18 GHz		5.4 dB

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.5 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.7 dB

Test Report No. : 14483770H-A-R2 Page : 9 of 45

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	_	_

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. : 14483770H-A-R2
Page : 10 of 45

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**

[WLAN]

Software:

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.

Mode	Remarks*
IEEE 802.11b (11b)	11 Mbps, PN9
IEEE 802.11g (11g)	6 Mbps, PN9
IEEE 802.11n 20 MHz BW (11n-20)	MCS 0 (Short GI,), PN9

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

Power Setting: 11b: +13 dBm

11g: +11 dBm 11n-20: +10 dBm 1A.00.12.78.40

(Date: September 27, 2022, Storage location: EUT memory)

Any conditions under the normal use do not exceed the condition of setting.

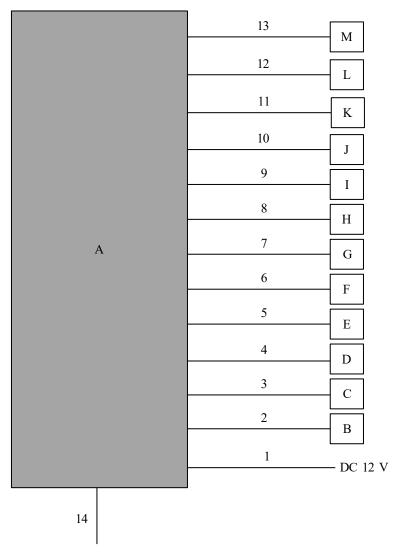
In addition, end users cannot change the settings of the output power of the product.

*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested Frequency
Conducted Spurious Emission,	Tx 11n-20 *1)	2462 MHz
Radiated Spurious Emission (Below 1 GHz)		
6dB Bandwidth,	Tx 11b	2412 MHz
Maximum Peak Output Power,	Tx 11g	2437 MHz
Power Density,	Tx 11n-20	2462 MHz
99% Occupied Bandwidth		
Radiated Spurious Emission (Above 1 GHz)	Tx 11b	2412 MHz
	Tx 11n-20 *2)	2437 MHz
		2462 MHz

^{*1)} The mode was tested as a representative, because it had the highest power at antenna terminal test.

^{*}Power of the EUT was set by the software as follows;


^{*}This setting of software is the worst case.

^{*2)} Since 11g and 11n-20 have the same modulation method, tests were conducted for 11n-20.

Test Report No. : 14483770H-A-R2 Page : 11 of 45

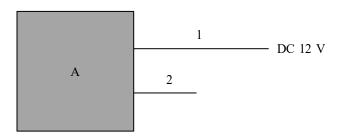
4.2 Configuration and Peripherals

For Radiated Emission tests

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

: 14483770H-A-R2 Test Report No. : 12 of 45 Page

Description of EUT and Support Equipment


No.	Item	Model Number	Serial Number	Manufacturer	Remarks
A	Car Audio	TN0040B	MID1-0013	DENSO TEN Limited	EUT
В	Microphone	8983963631	1Y141500310277	Transtron	-
С	Analog Camera	8983980531	0289018	Faurecia Clarion Electronics	-
D	Digital Camera	5JX4707170	0112	AISIN	-
E	Steering Switch	876521340	-	TOYODENSO	-
F	Meter	8976834551	A220405111418	YAZAKI	-
G	Radio and DAB Antenna	8983960350	-	HARADA INDUSTRY	-
Н	GPS Antenna	8983963531	GPS-cert-No.2	JVCKENWOOD	_
I	USB Memory	RUF3-K8GA-BK/N	P90611	BUFFALO	-
J	Speaker	-	-	-	-
K	Speaker	-	-	-	-
L	Speaker	-	-	-	-
M	Speaker	-	-	-	-

List of Cables Used

No.	Name	Length (m)	Shield	Shield	
			Cable	Connector	
1	DC Cable	5.0	Unshielded	Unshielded	-
2	MIC Cable	3.0	Unshielded	Unshielded	-
3	Signal Cable	3.0	Unshielded	Unshielded	-
4	Signal Cable	9.6	Unshielded	Unshielded	-
5	Signal Cable	3.0	Unshielded	Unshielded	-
6	Signal Cable	3.0	Unshielded	Unshielded	-
7	Antenna Cable	2.7	Shielded	Shielded	-
8	GNSS Antenna Cable	3.0	Shielded	Shielded	-
9	USB Cable	3.0	Shielded	Shielded	-
10	Speaker Cable	3.0	Unshielded	Unshielded	-
11	Speaker Cable	3.0	Unshielded	Unshielded	-
12	Speaker Cable	3.0	Unshielded	Unshielded	-
13	Speaker Cable	3.0	Unshielded	Unshielded	-
14	Flexible Flat Cable	0.1	Unshielded	Unshielded	-

Test Report No. : 14483770H-A-R2 Page : 13 of 45

For Antenna Terminal Conducted tests

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial Number	Manufacturer	Remarks
A	Car Audio	TN0040B	MID1-0014	DENSO TEN Limited	EUT

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	5.0	Unshielded	Unshielded	-
2	Flexible Flat Cable	0.1	Unshielded	Unshielded	-

Test Report No. : 14483770H-A-R2 Page : 14 of 45

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

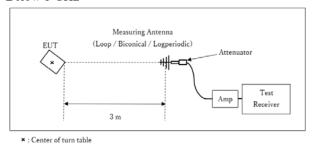
When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

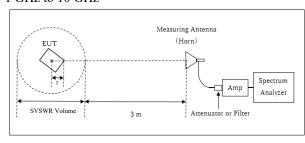
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).


the restricted band	1 01 FCC15.205 / 1	table o of KSS-G	ren 9.10 (12ED).	
Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument Used	Test Receiver	Spectrum Analy	yzer	Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.1	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			<u>11.12.2.5.2</u>	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	

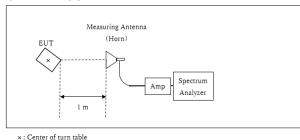
^{*1)} Average Power Measurement was performed based on ANSI C63.10-2013.

Test Report No. : 14483770H-A-R2 Page : 15 of 45


Figure 2: Test Setup

Below 1 GHz

Test Distance: 3 m


1 GHz to 10 GHz

- Distance Factor: $20 \times \log (3.6 \text{ m} / 3.0 \text{ m}) = 1.58 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 3.6 m
- SVSWR Volume : 1.5 m (SVSWR Volume has been calibrated based on CISPR 16-
- 1-4.) r = 0.15 m

- r: Radius of an outer periphery of EUT
- ×: Center of turn table

$10~\mathrm{GHz}$ to $26.5~\mathrm{GHz}$

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

The test was made on EUT at the normal use position.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX

Test Result : Pass

Test Report No. : 14483770H-A-R2 Page : 16 of 45

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument Used
				time			
6dB Bandwidth	20 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak	Max Hold	Spectrum Analyzer
Bandwidth *1)	emission skirts	of OBW	of RBW				
Maximum Peak	-	-	-	Auto	Peak/	-	Power Meter
Output Power					Average *2)		(Sensor: 50 MHz BW)
Peak Power Density	1.5 times the	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
	6dB Bandwidth						*3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4) *5)	150kHz to 30MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX

Test Result : Pass

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)

^{*5)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

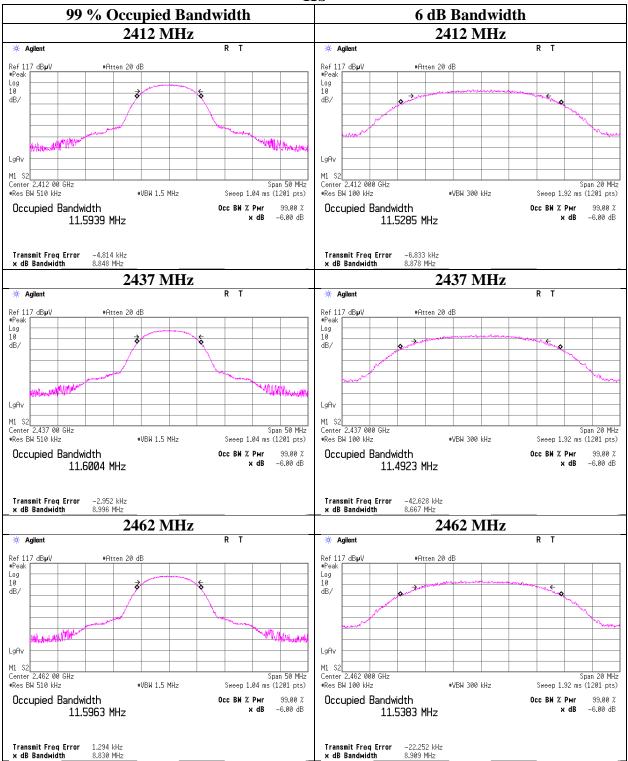
Test Report No. : 14483770H-A-R2 Page : 17 of 45

APPENDIX 1: Test Data

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Ise EMC Lab. No.8 Measurement Room

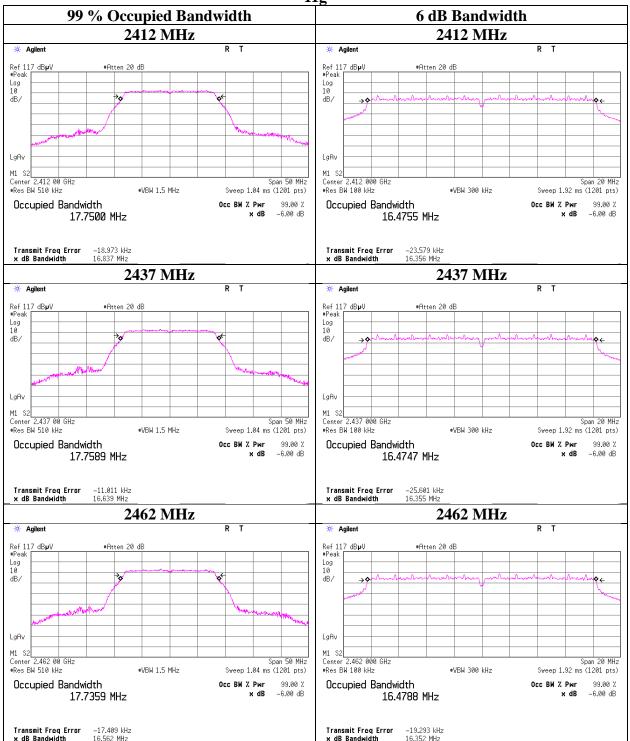
Date October 12, 2022
Temperature / Humidity 23 deg. C / 51 % RH
Engineer Takumi Nishida


Mode Tx

Mode	Frequency	99 % Occupied	6 dB Bandwidth	Limit for
		Bandwidth		6 dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
11b	2412	11593.9	8.878	> 0.5000
	2437	11600.4	8.667	> 0.5000
	2462	11596.3	8.909	> 0.5000
11g	2412	17750.0	16.356	> 0.5000
	2437	17758.9	16.355	> 0.5000
	2462	17735.9	16.352	> 0.5000
11n-20	2412	18503.6	17.599	> 0.5000
	2437	18501.1	17.606	> 0.5000
	2462	18477.3	17.593	> 0.5000

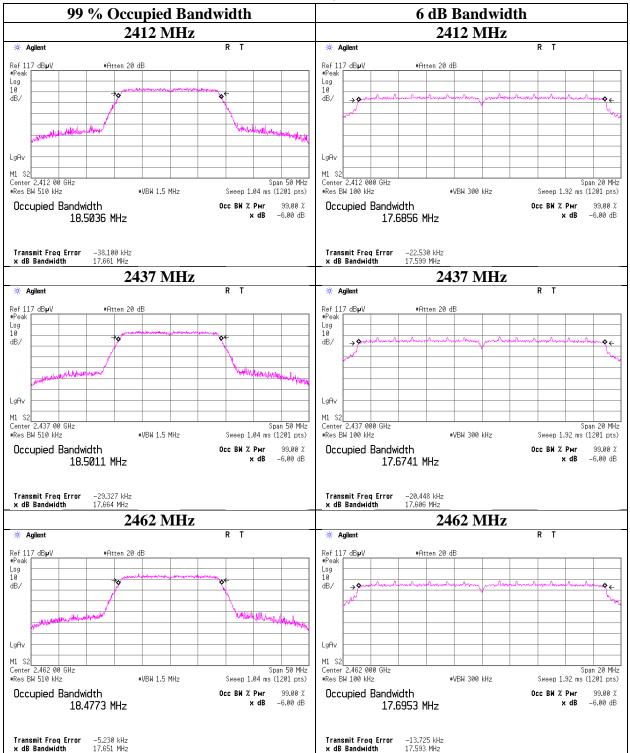
Test Report No. : 14483770H-A-R2
Page : 18 of 45

99 % Occupied Bandwidth and 6 dB Bandwidth


11b

Test Report No. : 14483770H-A-R2 Page : 19 of 45

99 % Occupied Bandwidth and 6 dB Bandwidth


11g

Test Report No. : 14483770H-A-R2 Page : 20 of 45

99 % Occupied Bandwidth and 6 dB Bandwidth

11n-20

Test Report No. : 14483770H-A-R2 : 21 of 45 Page

Maximum Peak Output Power

Test place Ise EMC Lab. No.7 Shielded Room

Date September 28, 2022 October 12, 2022 Temperature / Humidity 22 deg. C / 50 % RH 23 deg. C / 50~% RH

Engineer Junki Nagatomi Sayaka Hara

Mode Tx 11b

					Conducted Power					e.i.r.p. for RSS-247				
Freq.	Reading	Cable	Atten.	Res	sult	Li	mit	Margin	Antenna	Res	sult	Lii	mit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	5.01	0.91	10.00	15.92	39.08	30.00	1000	14.08	0.19	16.11	40.83	36.02	4000	19.91
2437	5.28	0.88	10.00	16.16	41.30	30.00	1000	13.84	0.19	16.35	43.15	36.02	4000	19.67
2462	5.42	0.84	10.01	16.27	42.36	30.00	1000	13.73	0.19	16.46	44.26	36.02	4000	19.56

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

2437MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
1	5.23	
2	5.46	
5.5	5.48	
11	5.70	*

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

e.i.r.p. Result = Conducted Power Result + Antenna Gain
*The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. : 14483770H-A-R2 Page : 22 of 45

Maximum Peak Output Power

Engineer Junki Nagatomi Sayaka Hara

Mode Tx 11g

					Con	ducted Po	ower		e.i.r.p. for RSS-247					
Freq.	Freq. Reading Cable Atten.		Atten.	Result		Li	Limit		Antenna	Result		Limit		Margin
		Loss	Loss					Gain	I					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	0.23	0.91	19.72	20.86	121.90	30.00	1000	9.14	0.19	21.05	127.35	36.02	4000	14.97
2437	0.59	0.88	19.72	21.19	131.52	30.00	1000	8.81	0.19	21.38	137.40	36.02	4000	14.64
2462	0.70	0.84	19.73	21.27	133.97	30.00	1000	8.73	0.19	21.46	139.96	36.02	4000	14.56

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

2437 MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
6	10.76	*
9	10.40	
12	10.29	
18	10.21	
24	9.48	
36	9.57	
48	10.62	
54	9.23	

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. : 14483770H-A-R2 Page : 23 of 45

Maximum Peak Output Power

Test place Ise EMC Lab. No.8 Measurement Room
Date September 28, 2022 October 12, 2022
Temperature / Humidity 22 deg. C / 50 % RH 23 deg. C / 50 % RH

Engineer Junki Nagatomi Sayaka Hara

Mode Tx 11n-20

					Con	ducted Po	ower		e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Re	Result Limit I		Margin	Antenna	Result		Limit		Margin	
		Loss	Loss					Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	0.22	0.91	19.72	20.85	121.62	30.00	1000	9.15	0.19	21.04	127.06	36.02	4000	14.98
2437	0.56	0.88	19.72	21.16	130.62	30.00	1000	8.84	0.19	21.35	136.46	36.02	4000	14.67
2462	0.72	0.84	19.73	21.29	134.59	30.00	1000	8.71	0.19	21.48	140.60	36.02	4000	14.54

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

2437 MHz

Rate	Rea	ding	Remark
	SGI	LGI	
[Mbps]	[dBm]	[dBm]	
0	11.16	11.04	*
1	10.97		
2	10.63		
3	10.61		
4	10.47		
5	10.93		
6	10.48		
7	9.42		

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. : 14483770H-A-R2 Page : 24 of 45

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Ise EMC Lab. No.8 Measurement Room
Date September 28, 2022 October 12, 2022
Temperature / Humidity 22 deg. C / 50 % RH 23 deg. C / 50 % RH
Engineer Junki Nagatomi Sayaka Hara

Mode T:

11b **1 Mbps**

110	I MIDPS							
Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	1.37	0.91	10.00	12.28	16.90	0.04	12.32	17.06
2437	1.64	0.88	10.00	12.52	17.86	0.04	12.56	18.03
2462	1.77	0.84	10.01	12.62	18.28	0.04	12.66	18.45

11g **6 Mbps**

115	O III DPS							
Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst power aver	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-10.30	0.91	19.72	10.33	10.79	0.29	10.62	11.53
2437	-9.89	0.88	19.72	10.71	11.78	0.29	11.00	12.59
2462	-9.84	0.84	19.73	10.73	11.83	0.29	11.02	12.65

11n-20 MCS 0 SGI

Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-10.32	0.91	19.72	10.31	10.74	0.34	10.65	11.61
2437	-9.94	0.88	19.72	10.66	11.64	0.34	11.00	12.59
2462	-9.86	0.84	19.73	10.71	11.78	0.34	11.05	12.74

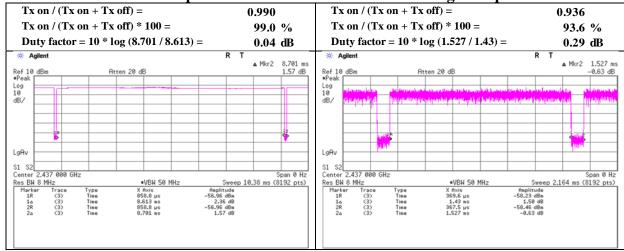
Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

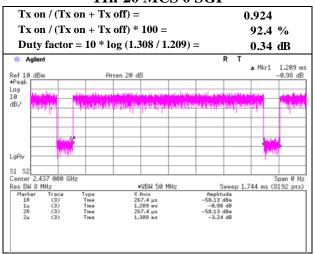
The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. : 14483770H-A-R2 Page : 25 of 45


Burst rate confirmation

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber


Date October 2, 2022 Temperature / Humidity 22 deg. C / 44 % RH

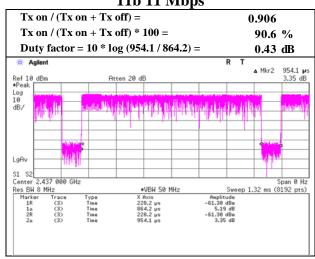
Engineer Keiya Ido Mode Tx

11b 1 Mbps 11g 6 Mbps

11n-20 MCS 0 SGI

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. : 14483770H-A-R2 Page : 26 of 45


Burst rate confirmation

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Date October 2, 2022 Temperature / Humidity 22 deg. C / 44 % RH

Engineer Keiya Ido Mode Tx

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. : 14483770H-A-R2 Page : 27 of 45

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2 No.2

(1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 26.5 GHz)

Mode Tx 11b 2412 MHz

D. 1. 1.	-	Reading	Reading	Ant.		G :	Duty	Result	Result	Limit	Limit	Margin	Margin	ъ .
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	56.1	42.9	27.6	4.8	34.9	0.4	53.6	40.8	73.9	53.9	20.3	13.1	*1)
Hori.	4824.0	44.9	37.8	31.5	7.1	34.1	-	49.4	42.3	73.9	53.9	24.5	11.6	Floor noise
Hori.	7236.0	46.0	36.0	35.9	8.3	34.1	-	56.1	46.1	73.9	53.9	17.8	7.8	Floor noise
Hori.	9648.0	46.4	34.4	38.8	9.2	34.7	-	59.7	47.7	73.9	53.9	14.2	6.2	Floor noise
Vert.	2390.0	50.8	38.3	27.6	4.8	34.9	0.4	48.3	36.3	73.9	53.9	25.7	17.7	*1)
Vert.	4824.0	43.3	37.8	31.5	7.1	34.1	-	47.8	42.3	73.9	53.9	26.1	11.6	Floor noise
Vert.	7236.0	44.2	36.0	35.9	8.3	34.1	-	54.3	46.1	73.9	53.9	19.6	7.8	Floor noise
Vert.	9648.0	46.9	34.4	38.8	9.2	34.7	-	60.2	47.7	73.9	53.9	13.7	6.2	Floor noise

 $Result \; (QP \ / \ PK) = Reading + Ant \; Factor + Loss \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amp \; lifter) + Cable +$

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (Available + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (Available + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (Available + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (Available + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1$

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	M argin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	91.0	27.5	4.8	34.9	88.5	-	-	Carrier
Hori.	2400.0	57.6	27.6	4.8	34.9	55.1	68.5	13.4	
Vert.	2412.0	94.2	27.5	4.8	34.9	91.7	-	-	Carrier
Vert.	2400.0	49.8	27.6	4.8	34.9	47.3	71.7	24.4	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

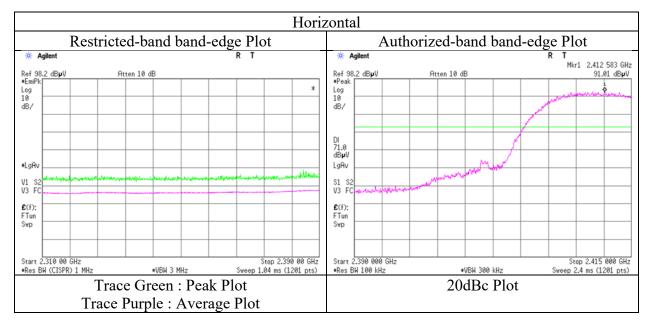
Distance factor: 1 GHz - 10 GHz 20log (3.6 m / 3.0 m) = 1.59 dB

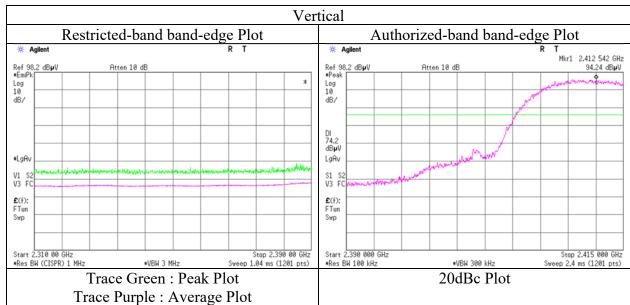
 $10~GHz - 26.5~GHz \qquad \quad 20log \, (1.0~m \, / \, 3.0~m) = ~ -9.5~dB$

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)


Test Report No. : 14483770H-A-R2 Page : 28 of 45


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.2

Date October 3, 2022
Temperature / Humidity 24 deg. C / 54 % RH
Engineer Nachi Konegawa
(1 GHz - 10 GHz)

Mode Tx 11b 2412 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

Test Report No. : 14483770H-A-R2 Page : 29 of 45

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2 No.2

Date October 3, 2022 October 4, 2022 October 4, 2022
Temperature / Humidity 24 deg. C / 54 % RH 24 deg. C / 60 % RH 23 deg. C / 54 % RH

Engineer Nachi Venegawa Nachi Venegawa Venegaw

Engineer Nachi Konegawa Nachi Konegawa Keiya Ido (1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 26.5 GHz)

Mode Tx 11b 2437 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP/PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4874.0	43.4	35.0	31.5	7.1	34.1	-	47.9	39.5	73.9	53.9	26.0	14.4	Floor noise
Hori.	7311.0	42.7	34.3	36.0	8.3	34.1	-	52.9	44.5	73.9	53.9	21.0	9.5	Floor noise
Hori.	9748.0	44.9	34.3	39.0	9.2	34.7	-	58.4	47.8	73.9	53.9	15.5	6.1	Floor noise
Vert.	4874.0	43.4	35.0	31.5	7.1	34.1	-	47.9	39.5	73.9	53.9	26.0	14.4	Floor noise
Vert.	7311.0	42.7	34.3	36.0	8.3	34.1	-	52.9	44.5	73.9	53.9	21.0	9.5	Floor noise
Vert.	9748.0	44.9	34.3	39.0	9.2	34.7	-	58.4	47.8	73.9	53.9	15.5	6.1	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz $20 \log (3.6 \text{ m} / 3.0 \text{ m}) = 1.59 \text{ dB}$

 $10~GHz - 26.5~GHz \qquad \quad 20log \, (1.0~m \, / \, 3.0~m) = \ \text{-}9.5~dB$

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz)$

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. : 14483770H-A-R2 Page : 30 of 45

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2 No.2

Engineer Nachi Konegawa Nachi Konegawa Keiya Ido

(1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 26.5 GHz) Mode Tx 11b 2462 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	54.2	40.9	27.5	4.9	34.9	0.4	51.6	38.8	73.9	53.9	22.3	15.1	*1)
Hori.	4924.0	43.0	34.2	31.5	7.1	34.1	-	47.5	38.7	73.9	53.9	26.5	15.2	Floor noise
Hori.	7386.0	42.9	34.2	36.1	8.3	34.1	-	53.2	44.5	73.9	53.9	20.7	9.5	Floor noise
Hori.	9848.0	45.5	34.3	39.1	9.2	34.7	-	59.1	47.9	73.9	53.9	14.8	6.0	Floor noise
Vert.	2483.5	52.2	39.2	27.5	4.9	34.9	0.4	49.6	37.1	73.9	53.9	24.3	16.8	*1)
Vert.	4924.0	43.0	34.2	31.5	7.1	34.1	-	47.5	38.7	73.9	53.9	26.5	15.2	Floor noise
Vert.	7386.0	42.9	34.2	36.1	8.3	34.1	-	53.2	44.5	73.9	53.9	20.7	9.5	Floor noise
Vert.	9848.0	45.5	34.3	39.1	9.2	34.7	-	59.1	47.9	73.9	53.9	14.8	6.0	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (AMPlifier$

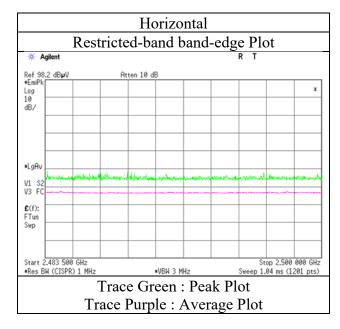
Distance factor: 1 GHz - 10 GHz 20log (3.6 m / 3.0 m) = 1.59 dB

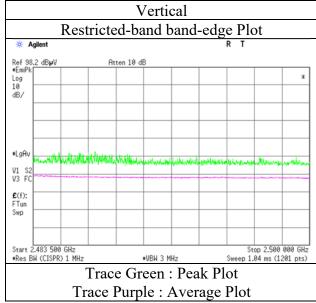
 $10~GHz - 26.5~GHz \qquad \quad 20log \, (1.0~m \, / \, 3.0~m) = ~ -9.5~dB$

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)


Test Report No. : 14483770H-A-R2 Page : 31 of 45


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.2

Date October 3, 2022
Temperature / Humidity 24 deg. C / 54 % RH
Engineer Nachi Konegawa
(1 GHz - 10 GHz)

Mode Tx 11b 2462 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

Test Report No. : 14483770H-A-R2 Page : 32 of 45

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2 No.2

Date October 3, 2022 October 4, 2022 October 4, 2022
Temperature / Humidity 24 deg. C / 54 % RH Engineer Nachi Konegawa Nachi Konegawa Keiya Ido

(1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 26.5 GHz)

Mode Tx 11n-20 2412 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	65.7	48.2	27.6	4.8	34.9	0.3	63.2	46.1	73.9	53.9	10.7	7.8	*1)
Hori.	4824.0	44.9	37.8	31.5	7.1	34.1	-	49.4	42.3	73.9	53.9	24.5	11.6	Floor noise
Hori.	7236.0	46.0	36.0	35.9	8.3	34.1	-	56.1	46.1	73.9	53.9	17.8	7.8	Floor noise
Hori.	9648.0	46.4	34.4	38.8	9.2	34.7	-	59.7	47.7	73.9	53.9	14.2	6.2	Floor noise
Vert.	2390.0	59.7	42.1	27.6	4.8	34.9	0.3	57.2	39.9	73.9	53.9	16.7	14.0	*1)
Vert.	4824.0	44.9	37.8	31.5	7.1	34.1	-	49.4	42.3	73.9	53.9	24.5	11.6	Floor noise
Vert.	7236.0	46.0	36.0	35.9	8.3	34.1	-	56.1	46.1	73.9	53.9	17.8	7.8	Floor noise
Vert.	9648.0	46.4	34.4	38.8	9.2	34.7	-	59.7	47.7	73.9	53.9	14.2	6.2	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (Available + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (Available + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (Available + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (Available + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1$

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	M argin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	85.3	27.5	4.8	34.9	82.8	-	-	Carrier
Hori.	2400.0	57.9	27.6	4.8	34.9	55.4	62.8	7.4	
Vert.	2412.0	89.9	27.5	4.8	34.9	87.4	-	-	Carrier
Vert.	2400.0	59.7	27.6	4.8	34.9	57.1	67.4	10.2	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

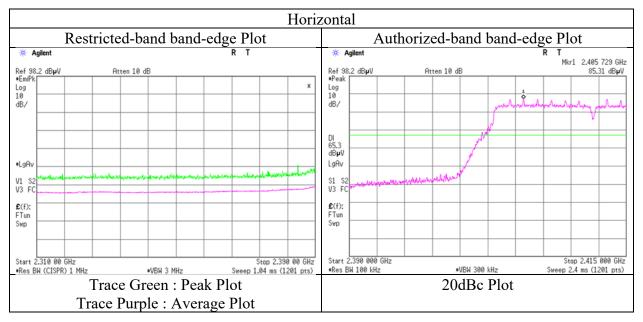
Distance factor: 1 GHz - 10 GHz 20log (3.6 m / 3.0 m) = 1.59 dB

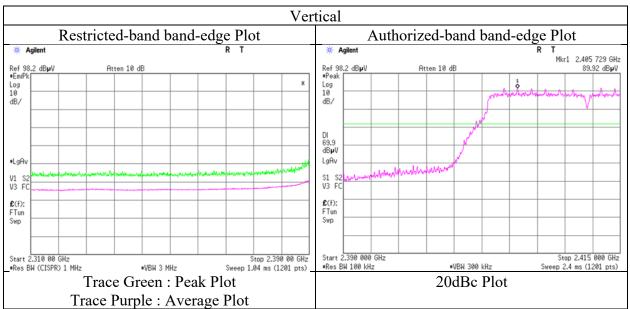
 $10~GHz - 26.5~GHz \qquad \quad 20log \, (1.0~m \, / \, 3.0~m) = ~ -9.5~dB$

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)


Test Report No. : 14483770H-A-R2 Page : 33 of 45


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.2

Date October 3, 2022
Temperature / Humidity Engineer 24 deg. C / 54 % RH
Nachi Konegawa (1 GHz - 10 GHz)

Mode Tx 11n-20 2412 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

Test Report No. : 14483770H-A-R2 Page : 34 of 45

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2 No.2

Date October 3, 2022 October 4, 2022 October 4, 2022
Temperature / Humidity 24 deg. C / 54 % RH 24 deg. C / 60 % RH 23 deg. C / 54 % RH

Engineer Nachi Venegawa Nachi Venegawa Venegaw

Engineer Nachi Konegawa Nachi Konegawa Keiya Ido (1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 26.5 GHz)

Mode Tx 11n-20 2437 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4874.0	43.4	35.0	31.5	7.1	34.1	-	47.9	39.5	73.9	53.9	26.0	14.4	Floor noise
Hori.	7311.0	42.7	34.2	36.0	8.3	34.1	-	52.9	44.4	73.9	53.9	21.0	9.5	Floor noise
Hori.	9748.0	44.9	34.3	39.0	9.2	34.7	-	58.4	47.8	73.9	53.9	15.5	6.1	Floor noise
Vert.	4874.0	43.4	35.0	31.5	7.1	34.1	-	47.9	39.5	73.9	53.9	26.0	14.4	Floor noise
Vert.	7311.0	42.7	34.2	36.0	8.3	34.1	-	52.9	44.4	73.9	53.9	21.0	9.5	Floor noise
Vert.	9748.0	44.9	34.3	39.0	9.2	34.7	-	58.4	47.8	73.9	53.9	15.5	6.1	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz $20 \log (3.6 \text{ m} / 3.0 \text{ m}) = 1.59 \text{ dB}$

 $10~GHz - 26.5~GHz \qquad \quad 20log \, (1.0~m \, / \, 3.0~m) = ~ -9.5~dB$

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz)$

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. : 14483770H-A-R2 Page : 35 of 45

Radiated Spurious Emission

(10 GHz - 18 GHz)

Test place

Ise EMC Lab.

Semi Anechoic Chamber Date

No.2 No.2 October 3, 2022 October 24 deg. C / 54 % RH 24 deg.

No.2 No.2 October 4, 2022 October 4, 2022 24 deg. C / 60 % RH Nachi Konegawa No.2 October 4, 2022 23 deg. C / 54 % RH Keiya Ido

No.2 October 6, 2022 22 deg. C / 52 % RH

Temperature / Humidity Engineer

Nachi Konegawa (1 GHz - 10 GHz) Keiya Ido T (18 GHz - 26.5 GHz) (1

Takumi Nishida (Below 1 GHz)

Mode Tx 11n-20 2462 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	146.2	34.9	-	14.8	7.7	28.3	-	29.1	-	43.5	-	14.4	-	
Hori.	200.0	48.7	-	11.9	8.1	28.0	-	40.6	-	43.5	-	2.9	-	
Hori.	243.8	42.4	-	12.1	8.4	27.8	-	35.1	-	46.0	-	10.9	-	
Hori.	292.5	44.3	-	13.9	8.7	27.7	-	39.2	-	46.0	-	6.8	-	
Hori.	400.0	42.9	-	16.1	9.3	28.5	-	39.8	-	46.0	-	6.2	-	
Hori.	926.2	36.3	-	22.2	11.3	28.8	-	41.1	-	46.0	-	4.9	-	
Hori.	2483.5	66.7	50.0	27.5	4.9	34.9	0.3	64.2	47.8	73.9	53.9	9.7	6.1	*1)
Hori.	4924.0	43.0	34.2	31.5	7.1	34.1	-	47.5	38.7	73.9	53.9	26.5	15.2	Floor noise
Hori.	7386.0	42.9	34.2	36.1	8.3	34.1	-	53.2	44.5	73.9	53.9	20.7	9.5	Floor noise
Hori.	9848.0	45.5	34.3	39.1	9.2	34.7	-	59.1	47.9	73.9	53.9	14.8	6.0	Floor noise
Vert.	146.2	38.7		14.8	7.7	28.3	-	33.0	-	43.5	-	10.5	-	
Vert.	200.0	49.6	-	11.9	8.1	28.0	-	41.5	-	43.5	-	2.0	-	
Vert.	243.8	41.8	-	12.1	8.4	27.8	-	34.5	-	46.0	-	11.5	-	
Vert.	292.5	39.7	-	13.9	8.7	27.7	-	34.5	-	46.0	-	11.5	-	
Vert.	400.0	43.6	-	16.1	9.3	28.5	-	40.5	-	46.0	-	5.5	-	
Vert.	926.2	35.6	-	22.2	11.3	28.8	-	40.3	-	46.0	-	5.7	-	
Vert.	2483.5	66.9	50.3	27.5	4.9	34.9	0.3	64.4	48.1	73.9	53.9	9.5	5.8	*1)
Vert.	4924.0	43.0	34.2	31.5	7.1	34.1	-	47.5	38.7	73.9	53.9	26.5	15.2	Floor noise
Vert.	7386.0	42.9	34.2	36.1	8.3	34.1	-	53.2	44.5	73.9	53.9	20.7	9.5	Floor noise
Vert.	9848.0	45.5	34.3	39.1	9.2	34.7	-	59.1	47.9	73.9	53.9	14.8	6.0	Floor noise

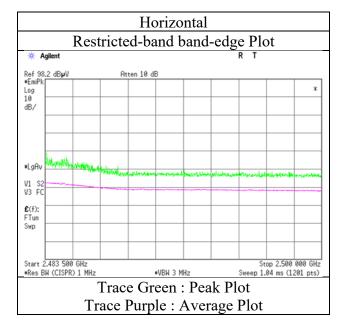
 $Result \ (QP\ /\ PK) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier)$

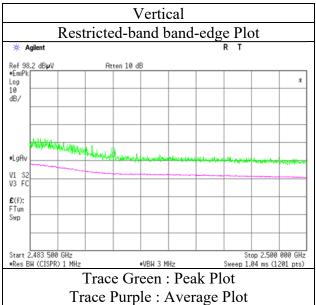
*1) Not Out of Band emission(Leakage Power)

 $\begin{array}{lll} \mbox{Distance factor:} & 1 \mbox{ GHz} & -10 \mbox{ GHz} & 20 \mbox{log} (3.6 \mbox{ m}/3.0 \mbox{ m}) = 1.59 \mbox{ dB} \\ & 10 \mbox{ GHz} & -26.5 \mbox{ GHz} & 20 \mbox{log} (1.0 \mbox{ m}/3.0 \mbox{ m}) = -9.5 \mbox{ dB} \end{array}$

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor *Other\ frequency\ noises\ omitted\ in this\ report\ were\ not\ seen\ or\ had\ enough\ margin\ (more\ than\ 20\ dB).$

^{*}QP detector was used up to 1GHz.


Test Report No. : 14483770H-A-R2 Page : 36 of 45


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.2

Date October 3, 2022
Temperature / Humidity Engineer Vachi Konegawa (1 GHz - 10 GHz)

Mode Tx 11n-20 2462 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

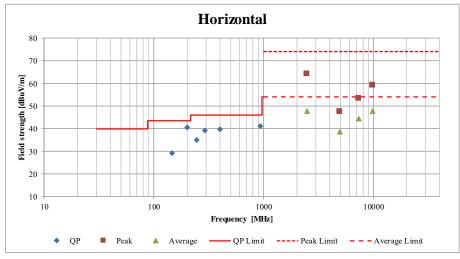
Test Report No. : 14483770H-A-R2 Page : 37 of 45

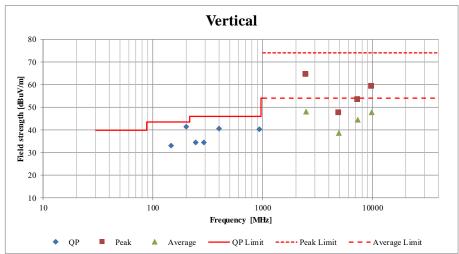
<u>Radiated Spurious Emission</u> (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Ise EMC Lab. Semi Anechoic Chamber No.2

Date

Temperature / Humidity Engineer

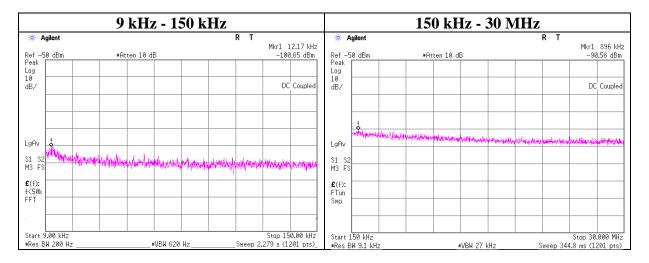

Mode


No.2 October 3, 2022 24 deg. C / 54 % RH Nachi Konegawa (1 GHz - 10 GHz)

Tx 11n-20 2462 MHz

No.2 October 4, 2022 24 deg. C / 60 % RH Nachi Konegawa (10 GHz - 18 GHz) No.2 October 4, 2022 23 deg. C / 54 % RH Keiya Ido No.2 October 6, 2022 22 deg. C / 52 % RH Takumi Nishida

(18 GHz - 26.5 GHz) Takumi Nishida (Below 1 GHz)


^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

Test Report No. : 14483770H-A-R2 Page : 38 of 45

Conducted Spurious Emission

Test place Ise EMC Lab. No.8 Measurement Room

Date October 12, 2022
Temperature / Humidity 23 deg. C / 51 % RH
Engineer Takumi Nishida
Mode Tx 11n-20 2462 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss		Gain	(Number			bounce	(field strength)			
L	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	12.17	-100.7	0.02	9.8	2.0	1	-88.8	300	6.0	-27.5	45.8	73.3	
Ī	896.00	-90.6	0.15	9.9	2.0	1	-78.5	30	6.0	2.7	28.5	25.8	

 $\hline E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \ log \left(Distance \left[m \right] \right) + Ground \ bounce \left[dB \right] + 104.8 \ \left[dBuV/m \right]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

 $^{*2.0~\}mathrm{dBi}$ was applied to the test result based on ANSI C63.10 since antenna gain was less than $2.0~\mathrm{dBi}$.

Test Report No. : 14483770H-A-R2 Page : 39 of 45

Power Density

Test place Ise EMC Lab. No.8 Measurement Room

Date October 12, 2022
Temperature / Humidity 23 deg. C / 51 % RH
Engineer Takumi Nishida
Mode Tx

11b

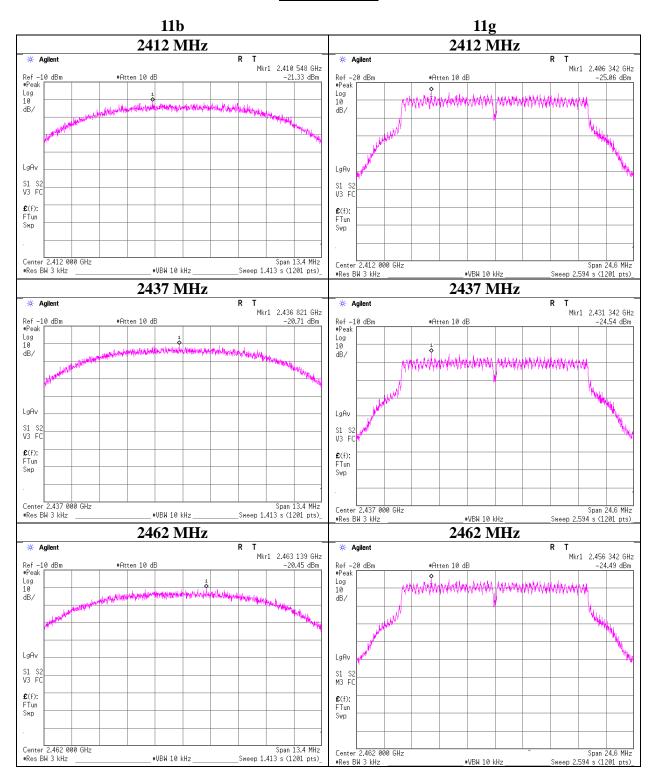
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	dBm/3 kHz	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-21.33	1.40	10.08	-9.85	8.00	17.85
2437	-20.71	1.36	10.08	-9.27	8.00	17.27
2462	-20.45	1.32	10.08	-9.05	8.00	17.05

11g

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	dBm/3 kHz	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-25.06	1.40	10.08	-13.58	8.00	21.58
2437	-24.54	1.36	10.08	-13.10	8.00	21.10
2462	-24.49	1.32	10.08	-13.09	8.00	21.09

11n-20

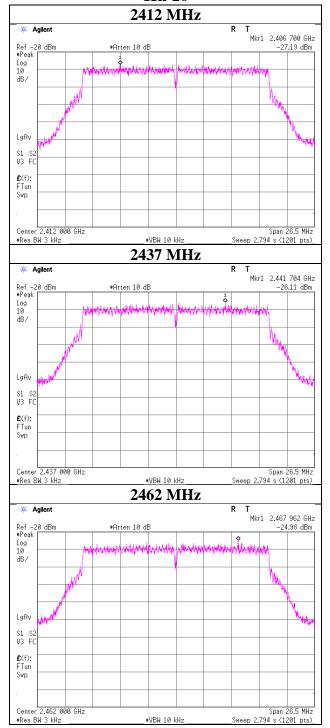
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	dBm/3 kHz	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-27.19	1.40	10.08	-15.71	8.00	23.71
2437	-26.11	1.36	10.08	-14.67	8.00	22.67
2462	-24.98	1.32	10.08	-13.58	8.00	21.58


Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. : 14483770H-A-R2
Page : 40 of 45


Power Density

Test Report No. : 14483770H-A-R2 Page : 41 of 45

Power Density

11n-20

Test Report No. : 14483770H-A-R2 Page : 42 of 45

APPENDIX 2: Test Instruments

Test Equipment

Tes	Test Equipment								
Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int	
	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-	
RE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	05/30/2022	24	
RE	MAEC-02- SVSWR	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/09/2021	24	
RE	MAT-112	220646	Attenuator	Huber+Suhner	6806 N-50-1	_	06/07/2022	12	
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+ BBA9106	VHA 91031302	08/26/2022	12	
RE	MCC-12	141317	Coaxial Cable	UL Japan	-	-	09/27/2022	12	
RE	MCC-218	141394	Microwave Cable	Junkosha	MWX221	1607S141(1 m) / 1608S264(5 m)	09/12/2022	12	
RE	MHA-06	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	254	10/21/2021	12	
RE	MHA-17	141506	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170307	07/22/2022	12	
RE	MHF-26	141296	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	002	09/08/2022	12	
RE	MJM-27	142228	Measure	KOMELON	KMC-36	-	-	_	
RE	MLA-21	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-190	07/30/2022	12	
RE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/12/2022	12	
RE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/19/2021	12	
RE	MPA-10	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	02/22/2022	12	
RE	MPA-24	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/25/2022	12	
RE	MSA-04	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/10/2021	12	
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	07/29/2022	12	
ΑT	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/09/2021	12	
AT	MAT-20	141173	Attenuator(10dB) (above1GHz)	HIROSE ELECTRIC CO.,LTD.		_	12/08/2021	12	
AT	MAT-20	141173	Attenuator(10dB) (above1GHz)	HIROSE ELECTRIC CO.,LTD.		-	12/08/2021	12	
AT	MAT-88	141312	Attenuator	Weinschel Associates		56100304	05/02/2022	12	
ΑT	MAT-91	141420	Attenuator	Weinschel Associates	WA56-10	56100307	05/02/2022	12	
AT	MCC-245	197220	Microwave cable	Huber+Suhner	SF126E/11PC35/ 11PC35/2000MM	537003/126E	03/17/2022	12	
AT	MCC-245	197220	Microwave cable	Huber+Suhner	SF126E/11PC35/ 11PC35/2000MM	537003/126E	03/17/2022	12	
ΑT	MCC-38	141395	Coaxial Cable	UL Japan	-	-	11/19/2021	12	
AT	MCC-98	141377	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	30819/2	06/15/2022	12	
AT	MMM-16	141360		HIOKI E.E. CORPORATION	3805	70900532	01/16/2022	12	
AT	MMM-17	141557	DIGIITAL HITESTER	CORPORATION	3805	70900530	01/16/2022	12	
AT	MMM-17	141557	DIGIITAL HITESTER	HIOKI E.E. CORPORATION	3805	70900530	01/16/2022	12	
ΑT	MOS-28	141567	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0008	01/10/2022	12	
ΑT	MOS-28	141567	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0008	01/10/2022	12	
ΑT	MOS-34	141572	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	3401	01/10/2022	12	
ΑT	MPM-08	141805	Power Meter	Anritsu Corporation	ML2495A	6K00003338	07/04/2022	12	
ΑT	MPM-12	141809	Power Meter	Anritsu Corporation	ML2495A	825002	05/18/2022	12	
ΑT	MPSE-11	141840	Power sensor	Anritsu Corporation	MA2411B	11737	07/04/2022	12	
ΑT	MPSE-17	141830	Power sensor	Anritsu Corporation	MA2411B	738285	05/18/2022	12	
AT	MSA-03	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	03/31/2022	12	
AT	MSA-14	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/10/2022	12	

Test Report No. : 14483770H-A-R2 Page : 43 of 45

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission

AT: Antenna Terminal Conducted