

: 14617448H-C-R2 : 1 of 40

1

RADIO TEST REPORT

Test Report No.: 14617448H-C-R2

Customer	DENSO TEN Limited
Description of EUT	Car Audio
Model Number of EUT	TN0036B
FCC ID	BABTN0036B
Test Regulation	FCC Part 15 Subpart E
Test Result	Complied (Refer to SECTION 3)
Issue Date	July 18, 2023
Remarks	-

KO Ryata Yamanaka	
Keiya Ido Ryota Yamanaka	
Engineer Engineer	
ACCREDITE	D
CERTIFICATE 510	7.02
The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.	
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 21.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14617448H-C

This report is a revised version of 14617448H-C-R1. 14617448H-C-R1 is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14617448H-C	February 20, 2023	-
(Original)			
1	14617448H-C-R1	July 14, 2023	P.6 Correction of Frequency of Operation (WLAN)
			from 5755 MHz to 5775 MHz to 5765 MHz
2	14617448H-C-R2	July 18, 2023	P.23, 24 Deletion of "+ Duty Factor" in the
			Calculation formula of Conducted Power Result
2	14617448H-C-R2	July 18, 2023	P.27 Correction of Duty factor from 0.28 to 0.34,
			and re-calculation of Result (Burst power average)
2	14617448H-C-R2	July 18, 2023	P.28 Re-calculation Duty factor for 11n-20 MCS0
			SGI
2	14617448H-C-R2	July 18, 2023	P.36 Correction of Plot data

Test Report No.	: 14617448H-C-R2
Page	: 3 of 40

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	РК	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
	Giobai mavigation batemite bystelli	1011	
GPS	Global Positioning System	Vert.	Vertical

Reference: Abbreviations (Including words undescribed in this report)

: 14617448H-C-R2 : 4 of 40

CONTENTS

PAGE

SECTION 1: Customer Information	5
SECTION 1: Customer mormation	
SECTION 2: Equipment Under Test (EUT)	5
SECTION 3: Test specification, Procedures & Results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated Spurious Emission and Band Edge Compliance	
SECTION 6: Antenna Terminal Conducted Tests	18
APPENDIX 1: Test Data	19
99 % Occupied Bandwidth	
6 dB Bandwidth	
Maximum Conducted Output Power	
Average Output Power	
Maximum Power Spectral Density	
Radiated Spurious Emission	
Conducted Spurious Emission	37
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of Test Setup	39
Radiated Spurious Emission	39
Antenna Terminal Conducted Tests	

Test Report No.	: 14617448H-C-R2
Page	: 5 of 40

SECTION 1: Customer Information

Company Name	DENSO TEN Limited
Address	2-28, Gosho-dori 1-chome, Hyoto-ku, Kobe 652-8510 Japan
Telephone Number	+81 78 682 2159
Contact Person	Kaoru Abe

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages

- SECTION 1: Customer Information

- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date

- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Car Audio
Model Number	TN0036B
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	December 20, 2022
Test Date	December 22, 2022 to January 11, 2023

2.2 **Product Description**

General Specification

Rating	DC 12 V
Operating temperature	-20 deg. C to +65 deg. C

Test Report No.	: 14617448H-C-R2
Page	: 6 of 40

Radio Specification

WLAN (IEEE802.11a/11n-20)

Equipment Type	Transceiver
Frequency of Operation	5765 MHz
Type of Modulation	OFDM
Antenna Gain	0.72 dBi

Bluetooth (BR / EDR)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	FHSS (GFSK, $\pi/4$ DQPSK, 8 DPSK)
Antenna Gain	0.14 dBi

AM / FM (incl. RDS) / DAB

Equipment Type	Receiver
Frequency of Operation	AM: 531 kHz to 1602 kHz
	FM: 87.5 MHz to 108.0 MHz
	DAB (Band III): 174.928 MHz to 229.072 MHz
Type of Modulation	AM
	FM
	DAB: OFDM
Antenna Connector Type	HFC IV
Impedance	AM, FM: 75 ohm
	DAB: 50 ohm

SECTION 3: Test specification, Procedures & Results

3.1 **Test Specification**

Test Specification	FCC Part 15 Subpart E The latest version on the first day of the testing period
	The fatest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart E
	Unlicensed National Information Infrastructure Devices
	Section 15.407 General technical requirements

3.2 **Procedures and Results**

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013	FCC: 15.407 (b) (6) / 15.207	-	N/A	*1)
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			,
26 dB Emission	FCC: KDB Publication Number	FCC: 15.407 (a) (1) (2) (3)	See data	N/A	*2)
Bandwidth	789033				
	ISED: -	ISED: -			
Maximum	FCC: KDB Publication Number	FCC: 15.407 (a) (1) (2) (3)		Complied	Conducted
Conducted	789033			a)	
Output Power	ISED: -	ISED: RSS-247 6.2.1.1			
		6.2.2.1			
		6.2.3.1			
		6.2.4.1			
Maximum Power	FCC: KDB Publication Number	FCC : 15.407 (a) (1) (2) (3)		N/A	Conducted
Spectral Density	789033			b)	
	ISED: -	ISED: RSS-247 6.2.1.1			
	10220	6.2.2.1			
		6.2.3.1			
		6.2.4.1			
Spurious Emission	FCC: ANSI C63.10-2013	FCC: 15.407 (b), 15.205 and	4.4 dB	Complied	Conducted
Restricted Band	KDB Publication Number	15.209	243.7 MHz,	c) / d)	(< 30 MHz)
Edge	789033		QP, Hori.		1
-	ISED: -	ISED: RSS-247 6.2.1.2			Radiated
		6.2.2.2			(> 30 MHz)
		6.2.3.2			*3)
		6.2.4.2			
6 dB Emission	FCC: ANSI C63.10-2013	FCC: 15.407 (e)	See data	Complied	Conducted
Bandwidth	ISED: -	ISED: RSS-247 6.2.4.1		e)	

.ID-003591 and Work Instructions-ULID-003593.

In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

*2) The test is not applicable since the EUT does not support W53 and W56 bands. *3) Radiated test was selected over 30 MHz based on RSS-247 6.2 and KDB 789033 D02 G.3.b).

a) Refer to APPENDIX 1 (data of Maximum Conducted Output Power)

b) Refer to APPENDIX 1 (data of Maximum Power Spectral Density)

c) Refer to APPENDIX 1 (data of Radiated Spurious Émission)

d) Refer to APPENDIX 1 (data of Conducted Spurious Emission)

e) Refer to APPENDIX 1 (data of 6 dB Bandwidth)

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF part regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 **Addition to Standard**

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99 % Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Band Width				a)	
a) Defents ADDENIDIV 1 (dots of 26 dD Emission Dandwidth and 00 % Occurried Dandwidth)					

a) Refer to APPENDIX 1 (data of 26 dB Emission Bandwidth and 99 % Occupied Bandwidth)

Other than above, no addition, exclusion nor deviation has been made from the standard.

Test Report No.	: 14617448H-C-R2
Page	: 8 of 40

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Measurement distance	Frequency range	Frequency range		
3 m	9 kHz to 30 MHz		3.2 dB	
10 m			3.0 dB	
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB	
		Vertical	5.0 dB	
	200 MHz to 1000 MHz	Horizontal	5.1 dB	
		Vertical	6.2 dB	
10 m	30 MHz to 200 MHz	Horizontal	4.8 dB	
		Vertical	4.8 dB	
	200 MHz to 1000 MHz	Horizontal	4.9 dB	
		Vertical	5.0 dB	
3 m	1 GHz to 6 GHz	1 GHz to 6 GHz		
	6 GHz to 18 GHz	6 GHz to 18 GHz		
1 m	10 GHz to 26.5 GHz	10 GHz to 26.5 GHz		
	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz		
0.5m	26.5 GHz to 40 GHz		5.4 dB	
10 m	1 GHz to 18 GHz		5.3 dB	

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.5 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.7 dB

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

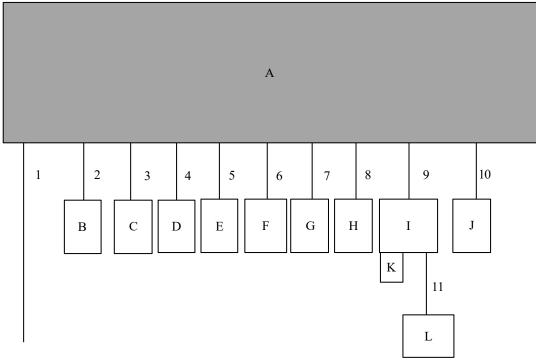
3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**

Mode		Remarks*
IEEE 802.11a (1	1a)	6 Mbps, PN9
IEEE 802.11n SI	SO 20 MHz BW (11n-20)	MCS 7 (Short GI), PN9
*Power of the EU	T was set by the software as follows;	
Power Setting:	11a: 6.5 dBm	
	11n-20: 6.5 dBm	
Software:	Wi-Fi Test FW_WF1 Version: W	F1
	(Date: December 1, 2022, Storage	e location: EUT memory)
*This setting of software is the worst case.		
Any conditions under the normal use do not exceed the condition of setting.		
In addition, end users cannot change the settings of the output power of the product.		


*The Details of Operation Mode(s)

Test Item	Operating	Tested Fr	Tested Frequency		
	Mode	Lower	Middle	Additional	Upper
		Band	Band	Band	Band
99 % Occupied Bandwidth,	Tx 11a	-	-	-	5765 MHz
6 dB Bandwidth	Tx 11n-20				
Maximum Conducted Output Power,					
Maximum Power Spectral Density,					
Radiated Spurious Emission (Above 1 GHz)					
Radiated Spurious Emission (Below 1 GHz)	Tx 11n-20 *1)	-	-	-	5765 MHz
Conducted Spurious Emission					
*1) The mode was tested as a representative, because it had the highest power at antenna terminal test.					

Test Report No. Page	: 14617448H-C-R2 : 11 of 40

4.2 Configuration and Peripherals

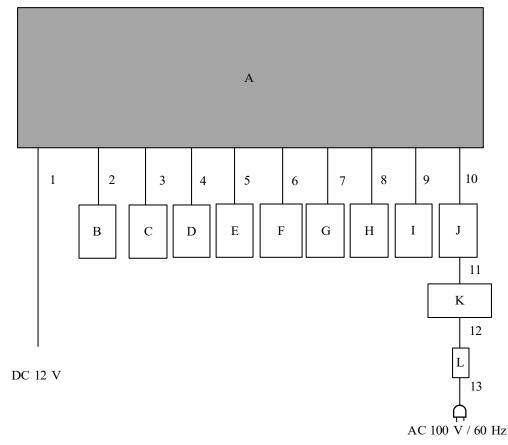
for Radiated Spurious Emission test

DC 12 V

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No.	: 14
Page	: 1

: 14617448H-C-R2 : 12 of 40


Descr	Jescription of EUT and Support Equipment					
No.	Item	Model number	Serial Number	Manufacturer	Remarks	
А	Car Audio	TN0036B	1100229982-0011	DENSO TEN Limited	EUT	
В	Microphone module	86730-78010	No.5	Panasonic	-	
С	Back camera	867B0-78070	No.5	Panasonic	-	
D	Steering switch	84250-58150-BO	No.4	TOKAI RIKA	-	
Е	Speaker Dummy Load	SP Dummy	-	DENSO TEN Limited	-	
F	AM/FM Sharkfin AMP	86760-K0010	-	YOKOWO	-	
G	DAB Antenna AMP	863C0-60050	No.2	DENSO TEN Limited	-	
Η	GNSS Antenna	86880-78010	UI034346	HARADA	-	
Ι	USB I/F Box	86190-78020	501002	Panasonic	-	
J	Jig Board	-	-	-	-	
Κ	USB Memory	RUF3-K16GB	P10416	Buffalo Inc.	-	
L	iPhone6 64GB	MG4H2J/A	F78P6KZCG5MT	Apple	-	

Description of EUT and Support Equipment

List of Cables Used

No.	Name	Length (m)	Shield	Shield		
			Cable	Connector		
1	DC Cable	4.0	Unshielded	Unshielded	-	
2	Audio Cable	3.0	Shielded	Shielded	-	
3	Signal Cable	4.0	Unshielded	Unshielded	-	
4	Signal Cable	3.0	Unshielded	Unshielded	-	
5	Speaker Cable	3.0	Unshielded	Unshielded	-	
6	Antenna Cable	3.2	Shielded	Shielded	-	
7	Antenna Cable	3.0	Shielded	Shielded	-	
8	Antenna Cable	3.0	Shielded	Shielded	-	
9	Signal Cable	2.8	Unshielded	Unshielded	-	
10	Signal Cable	0.2	Unshielded	Unshielded	-	
11	USB Cable	1.0	Shielded	Shielded	-	

for Antenna Terminal Conducted Tests

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No.	: 1
Page	:

: 14617448H-C-R2 : 14 of 40

Desci	escription of EO1 and Support Equipment					
No.	Item	Model number	Serial Number	Manufacturer	Remarks	
А	Car Audio	TN0036B	115000-40690000	DENSO TEN Limited	EUT	
В	Microphone module	86730-78010	No.5	Panasonic	-	
С	Back camera	867B0-78070	No.5	Panasonic	-	
D	Steering switch	84250-58150-ВО	No.4	TOKAI RIKA	-	
Е	Speaker Dummy Load	SP Dummy	-	DENSO TEN Limited	-	
F	AM/FM Sharkfin AMP	86760-K0010	-	YOKOWO	-	
G	DAB Antenna AMP	863C0-60050	No.2	DENSO TEN Limited	-	
Η	GNSS Antenna	86880-78010	UI034346	HARADA	-	
Ι	USB I/F Box	86190-78020	501002	Panasonic	-	
J	Jig Board	-	-	-	-	
Κ	Laptop PC	PR63PBAA337AD7X	6F053913H	TOSHIBA	-	
L	AC Adapter	PA51770-1ACA	FX10800NSKACC	TOSHIBA	-	

Description of EUT and Support Equipment

List of Cables Used

No.	Name	Length (m)	Shield	Shield		
		_	Cable	Connector		
1	DC Cable	4.0	Unshielded	Unshielded	-	
2	Audio Cable	3.0	Shielded	Shielded	-	
3	Signal Cable	4.0	Unshielded	Unshielded	-	
4	Signal Cable	3.0	Unshielded	Unshielded	-	
5	Speaker Cable	3.0	Unshielded	Unshielded	-	
6	Antenna Cable	3.2	Shielded	Shielded	-	
7	Antenna Cable	3.0	Shielded	Shielded	-	
8	Antenna Cable	3.0	Shielded	Shielded	-	
9	Signal Cable	2.8	Unshielded	Unshielded	-	
10	Signal Cable	0.2	Unshielded	Unshielded	-	
11	USB Cable	1.0	Shielded	Shielded	-	
12	DC Cable	1.7	Unshielded	Unshielded	-	
13	AC Cable	0.8	Unshielded	Unshielded	-	

Test Report No. Page	: 14617448H-C-R2 : 15 of 40

SECTION 5: Radiated Spurious Emission and Band Edge Compliance

Test Procedure

< Below 1 GHz >

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

< Above 1 GHz >

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

< Below 1 GHz >

The result also satisfied with the general limits specified in section 15.209 (a).

< Above 1 GHz >

Inside of restricted bands (Section 15.205): Apply to limit in the Section 15.209 (a).

Outside of the restricted bands:

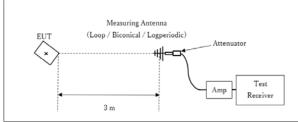
Apply to limit 68.2 dBuV/m, 3 m (-27 dBm e.i.r.p.*) in the Section 15.407 (b) (1) (2) (3).

For W58 Bandedge

-27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge in the section 15.407(b)(4)(i).

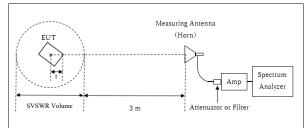
Restricted band edge:

Apply to limit in the Section 15.209 (a). Since this limit is severer than the limit of the inside of restricted bands.


*Electric field strength to e.i.r.p. conversion:

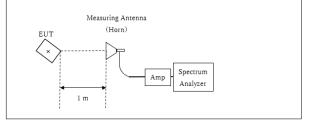
 $E = \frac{1000000 \sqrt{30 P}}{3}$ (uV/m) :*P* is the e.i.r.p. (Watts)

		Test Report No. Page	: 14617448H-C-R2 : 16 of 40
<u>Test Antennas are use</u>	ed as below;		
Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn
Frequency	Below 1 GHz	Above 1 GHz	
Instrument Used	Test Receiver	Spectrum Analyzer	
Detector	QP	Peak	Average
IF Bandwidth	BW: 120 kHz	RBW: 1 MHz	Method AD
		VBW: 3 MHz	RBW: 1 MHz
			VBW: 3 MHz
			Detector: Power Averaging
			(RMS)
			Trace: ≥ 100 traces
			If duty cycle was less than
			98%, a duty factor was
			added to the results.


Figure 1: Test Setup

Below 1 GHz

× : Center of turn table


1 GHz to 10 GHz

r : Radius of an outer periphery of EUT

× : Center of turn table

10 GHz to 40 GHz

× : Center of turn table

The test was made on EUT at the normal use position.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range	: 30 MHz to 40 GHz
Test Data	: APPENDIX
Test Result	: Pass

Test Distance: 3 m

Distance Factor: 20 x log (3.85 m / 3.0 m) = 2.17 dB* Test Distance: (3 + SVSWR Volume / 2) - r = 3.85 m

SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.15 m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$ *Test Distance: 1 m

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used and Test method
99 % Occupied Bandwidth *1)	Enough width to display emission skirts	1 % to 5 % of OBW	≥ 3 RBW	Auto	Peak	Max Hold	Spectrum Analyzer
6 dB Bandwidth	Enough to capture the emission	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Conducted Output Power	-	-	-	Auto	Average	-	Power Meter (Sensor: 80 MHz BW) (Method PM-G)
Maximum Power Spectral Density	Encompass the entire EBW	1 MHz or 470 kHz *2)	≥ 3 RBW	Auto	RMS Power Averaging (200 times)	Clear Write	Spectrum Analyzer
Conducted Spurious Emission*3) *4)	9 kHz to 150 kHz 150 kHz to 30 MHz	200 Hz 9.1 kHz	620 Hz 27 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

*1) Peak hold was applied as Worst-case measurement.

*2) KDB 789033 D02 says that RBW is set to be 500 kHz for 5.725 GHz to 5.850 GHz, but it is not possible with spectrum analyzer, so RBW Correction Factor (10 log(500 kHz / 470 kHz)) was added to the test result.

*3) In the frequency range below 30 MHz, RBW was narrowed to separate the noise contents. Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz to 150 kHz: RBW = 200 Hz, 150 kHz to 30 MHz: RBW = 9.1 kHz)

*4) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

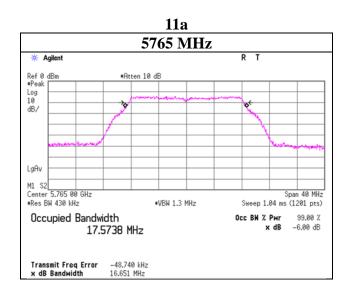
The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

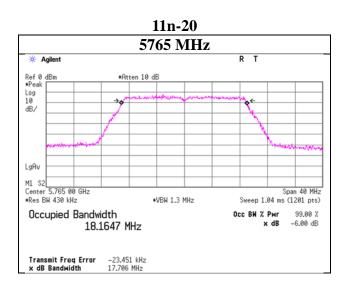
Test Data: APPENDIXTest Result: Pass

APPENDIX 1: Test Data

99 % Occupied Bandwidth

Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 23, 2022
Temperature / Humidity	22 deg. C / 38 % RH
Engineer	Tetsuro Yoshida
Mode	Tx

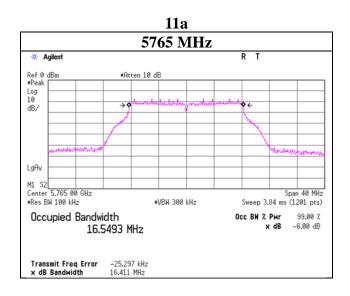

11a

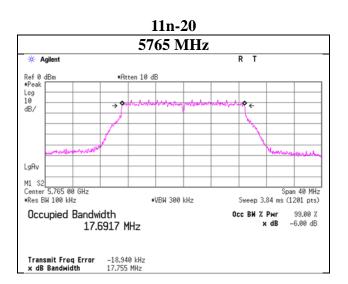

11a	
Tested	99 % Occupied
Frequency	Bandwidth
[MHz]	[kHz]
5765	17573.8

11n-20

Tested	99 % Occupied			
Frequency	Bandwidth			
[MHz]	[kHz]			
5765	18164.7			

99 % Occupied Bandwidth


6 dB Bandwidth


Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 23, 2022
Temperature / Humidity	22 deg. C / 38 % RH
Engineer	Tetsuro Yoshida
Mode	Tx

11a		
Tested	6 dB	Limit
Frequency	Bandwidth	
[MHz]	[MHz]	[MHz]
5765	16.411	> 0.500

11n-20		
Tested	6 dB	Limit
Frequency	Bandwidth	
[MHz]	[MHz]	[MHz]
5765	17.755	> 0.500

<u>6 dB Bandwidth</u>

: 14617448H-C-R2 : 23 of 40

Maximum Conducted Output Power

Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 22, 2022
Temperature / Humidity	23 deg. C / 45 % RH
Engineer	Tetsuro Yoshida
Mode	Tx 11a

11a Applied limit: 15.407, mobile and portable client device														
Tested	Power	Cable	Atten.	Antenna	26 dB	99%	Conducted Power				e.i.r.p.			
Frequency	Meter	Loss	Loss	Gain	EBW	OBW	Re	sult	Limit	M argin	Res	sult	Limit	Margin
	Reading				(B for FCC)	(B for IC)								
[MHz]	[dBm]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]
5765	-5.55	0.75	10.07	0.72	-	17.574	5.27	3.37	30.00	24.73	5.99	3.97	36.00	30.01

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5725 MHz-5850 MHz) = 1W

: 14617448H-C-R2 : 24 of 40

Maximum Conducted Output Power

Ise EMC Lab. No.8 Measurement Room
December 22, 2022
23 deg. C / 45 % RH
Tetsuro Yoshida
Tx 11n-20

11n-20 Applied limit: 15.407, mobile and portable client device														
Tested	Power Cable Atten. Antenna 26 dB 99% Conducted Power						e.i.r.p.							
Frequency	Meter	Loss	Loss	Gain	EBW	OBW	Res	sult	Limit	M argin	Res	sult	Limit	M argin
	Reading				(B for FCC)	(B for IC)								
[MHz]	[dBm]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]
5765	-5.30	0.75	10.07	0.72	-	18.165	5.52	3.57	30.00	24.48	6.24	4.21	36.00	29.76

Samp le Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5725 MHz-5850 MHz) = 1W

Maximum Conducted Output Power

Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 22, 2022
Temperature / Humidity	23 deg. C / 45 % RH
Engineer	Tetsuro Yoshida
Mode	Tx

5765 MHz

Mode	Rate	Reading	Remarks
		(Burst average)	
	Mbps	[dBm]	
11a	6	-5.55	*
	9	-6.00	
	12	-5.75	
	18	-5.90	
	24	-5.59	
	36	-5.57	
	48	-5.77	
	54	-6.01	

* Worst rate

This test was conducted by the use of Gate function.

All comparison were carried out on same frequency and measurement factors.

5765 MHz

Mode	MCS	Readi	Remarks	
	Number	(Burst av	verage)	
		SGI	LGI	
		[dBm]	[dB]	
11n-20	0	-5.75		
	1	-5.63	-5.63	
	2	-5.46		
	3	-5.57		
	4	-5.46	-5.46	
	5	-5.40	-5.40	
	6	-5.35		
	7	-5.30	-5.33	*

* Worst rate

This test was conducted by the use Gate function.

All comparison were carried out on same frequency and measurement factors.

: 14617448H-C-R2 : 26 of 40

<u>Average Output Power</u> (Reference data for RF Exposure)

Test placeIse EMC Lab. No.8 Measurement RoomDateDecember 22, 2022Temperature / Humidity23 deg. C / 45 % RHEngineerTetsuro YoshidaModeTx 11a

Tested	Power	Cable	Atten.	Result Duty		Duty	Re	sult
Frequency	Meter	Loss	Loss	(Timed average)		factor	(Burst power average)	
	Reading							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
5765	-6.26	0.75	10.07	4.56	2.86	0.28	4.84	3.05

Sample Calculation:

Result (Timed average) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss Result (Burst power average) = Time average + Duty factor

*The equipment and cables were not used for factor 0 dB of the data sheets.

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

: 14617448H-C-R2 : 27 of 40

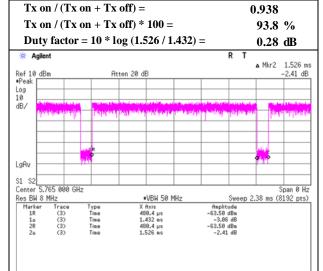
<u>Average Output Power</u> (Reference data for RF Exposure)

Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 22, 2022
Temperature / Humidity	23 deg. C / 45 % RH
Engineer	Tetsuro Yoshida
Mode	Tx 11n-20
e	

Tested	Power	Cable	Atten.	Result		Duty	Re	sult
Frequency	Meter	Loss	Loss	(Timed average)		factor	(Burst power average	
	Reading							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
5765	-6.33	0.75	10.07	4.49	2.81	0.34	4.83	3.04

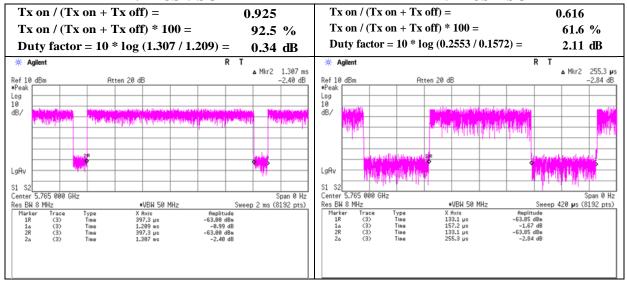
Sample Calculation:

Result (Timed average) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Lose Result (Burst power average) = Time average + Duty factor


*The equipment and cables were not used for factor 0 dB of the data sheets.

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

Burst rate confirmation


Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 23, 2022
Temperature / Humidity	22 deg. C / 38 % RH
Engineer	Tetsuro Yoshida
Mode	Tx

11a 6 Mbps

11n-20 MCS 0 SGI

11n-20 MCS 7 SGI

Maximum Power Spectral Density

Ise EMC Lab. No.8 Measurement Room
December 23, 2022
22 deg. C / 38 % RH
Tetsuro Yoshida
Tx 11a

Applied limit: 15.407, mobile and portable client device

Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSI) (Conduc	ted)	Р	SD (e.i.r.p	.)
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	M argin	Result	Limit	Margin
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm	
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]
5765	-21.04	0.75	10.07	0.28	0.72	0.27	-9.67	30.00	39.67	-8.95	36.00	44.95

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = $10 * \log$ (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor + RBW Correction Factor

 $PSD \ Result \ (e.i.r.p.) = Conducted \ PSD \ Result + Antenna \ Gain$

The conducted PSD limit was reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. (All frequencies for FCC, 5725 MHz-5850 MHz for IC)

: 14617448H-C-R2 : 30 of 40

Maximum Power Spectral Density

Test placeIse EMC Lab. No.8 Measurement RoomDateDecember 23, 2022Temperature / Humidity22 deg. C / 38 % RHEngineerTetsuro YoshidaModeTx 11n-20

Applied limit: 15.407, mobile and portable client device

Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSI) (Conduc	ted)	Р	SD (e.i.r.p	.)
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	M argin	Result	Limit	Margin
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm	
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]
5765	-22.70	0.75	10.07	2.11	0.72	0.27	-9.50	30.00	39.50	-8.78	36.00	44.78

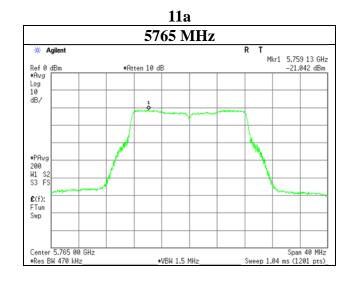
Sample Calculation:

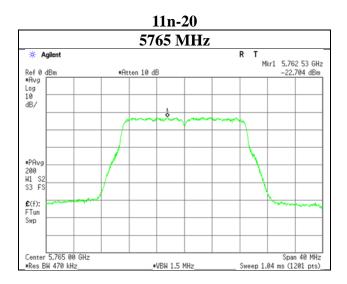
PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = $10 * \log$ (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor + RBW Correction Factor


PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain


The conducted PSD limit was reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. (All frequencies for FCC, 5725 MHz-5850 MHz for IC)

: 14617448H-C-R2 : 31 of 40

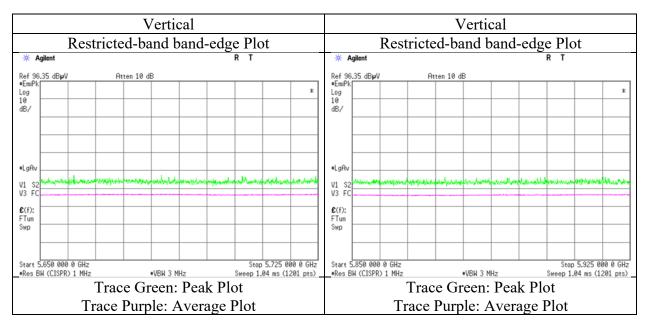
Maximum Power Spectral Density

Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 23, 2022
Temperature / Humidity	22 deg. C / 38 % RH
Engineer	Tetsuro Yoshida
Mode	Tx

: 14617448H-C-R2 : 32 of 40

Radiated Spurious Emission

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.1	No.1
Date	January 6, 2023	January 8, 2023
Temperature / Humidity	21 deg. C / 40 % RH	22 deg. C / 42 % RH
Engineer	Keiya Ido	Keiya Ido
	(1 GHz - 10 GHz)	(Above 10 GHz)
Mode	Tx 11a 5765 MHz	


		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	1300.0	58.5	47.2	26.0	4.0	36.7	-	51.8	40.5	73.9	53.9	22.1	13.4	
Hori.	5650.0	42.6	-	31.8	6.2	35.7	-	44.9	-	68.2	-	23.3	-	
Hori.	5700.0	42.7	-	31.9	6.2	35.7	-	45.1	-	105.2	-	60.1	-	
Hori.	5720.0	43.6	-	31.9	6.2	35.7	-	46.1	-	110.8	-	64.7	-	
Hori.	5725.0	44.1	-	31.9	6.2	35.7	-	46.6	-	122.2	-	75.6	-	
Hori.	5850.0	42.9	-	32.3	6.3	35.7	-	45.7	-	122.2	-	76.5	-	
Hori.	5855.0	43.0	-	32.3	6.3	35.7	-	45.8	-	110.8	-	65.0	-	
Hori.	5875.0	43.3	-	32.3	6.3	35.7	-	46.1	-	105.2	-	59.1	-	
Hori.	5925.0	43.3	-	32.4	6.3	35.7	-	46.3	-	68.2	-	21.9	-	
Hori.	11530.0	43.5	35.6	39.4	-1.7	35.7	-	45.5	37.6	73.9	53.9	28.4	16.3	Floor noise
Hori.	17295.0	45.3	-	43.0	-0.1	35.2	-	53.0	-	68.2	-	15.2	-	Floor noise
Vert.	1300.0	60.7	50.5	26.0	4.0	36.7	-	54.0	43.8	73.9	53.9	19.9	10.1	
Vert.	5650.0	42.4	-	31.8	6.2	35.7	-	44.7	-	68.2	-	23.5	-	
Vert.	5700.0	42.5	-	31.9	6.2	35.7	-	44.9	-	105.2	-	60.3	-	
Vert.	5720.0	42.6	-	31.9	6.2	35.7	-	45.1	-	110.8	-	65.7	-	
Vert.	5725.0	43.5	-	31.9	6.2	35.7	-	46.0	-	122.2	-	76.2	-	
Vert.	5850.0	42.8	-	32.3	6.3	35.7	-	45.6	-	122.2	-	76.6	-	
Vert.	5855.0	42.9	-	32.3	6.3	35.7	-	45.7	-	110.8	-	65.1	-	
Vert.	5875.0	42.9	-	32.3	6.3	35.7	-	45.8	-	105.2	-	59.4	-	
Vert.	5925.0	43.1	-	32.4	6.3	35.7	-	46.0	-	68.2	-	22.2	-	
Vert.	11530.0	44.2	35.5	39.4	-1.7	35.7	-	46.2	37.6	73.9	53.9		16.3	Floor noise
Vert.	17295.0	45.5	-	43.0	-0.1	35.2	-	53.3	-	68.2	-	14.9	-	Floor noise

: 14617448H-C-R2 : 33 of 40

Radiated Spurious Emission

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	January 6, 2023
Temperature / Humidity	21 deg. C / 40 % RH
Engineer	Keiya Ido
	(1 GHz - 10 GHz)
Mode	Tx 11a 5765 MHz

Horizontal							Horizontal								
Restricted-band band-edge Plot						Restricted-band band-edge Plot									
* *	* Agilent R T						jilent						RΤ		
Ref 10 •EmiPk	3.9 dBµV	Atten 10	dB		3.9 dBµV		Atten 10 d	B							
•EmiPk Log 10 dB/					*	•EmiPk Log 10 dB/									*
						-									
■LgAv						■LgAv									
V1 S2 V3 FC	alation and a fearing	visities the many time	Ne have been service	and distant with post-straight	a hast the mark	V1 S2 V3 FC	himphan	Hand and the states of	and the state of the	an state of the second	menders	homen	www	da yan nagala	-
£(f): FTun Sмр						£(f): FTun Swp									
	5.650 000 0 GHz 3W (CISPR) 1 MHz		•VBW 3 MHz		5.725 000 0 GHz 34 ms (1201 pts)		.850 000 N (CISPR)			•VBW 3 M	Hz		Stop Sweep 1.		00 0 GHz 201 pts)
		Trace G	reen: Pe			Trace Green: Peak Plot									
	Tı	ace Pur	ple: Ave	rage Plot		Trace Purple: Average Plot									

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

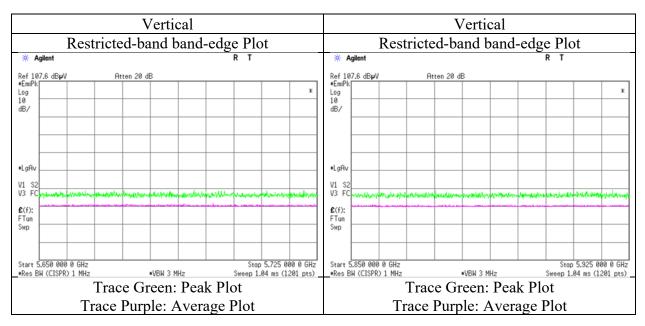
Final result of restricted band edge was shown in tabular data.

Radiated Spurious Emission

Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No.1	No.1	No.1
Date	January 6, 2023	January 8, 2023	January 11, 2023
Temperature / Humidity	21 deg. C / 40 % RH	22 deg. C / 42 % RH	19 deg. C / 39 % RH
Engineer	Keiya Ido	Keiya Ido	Keiya Ido
	(1 GHz - 10 GHz)	(Above 10 GHz)	(Below 1 GHz)
Mode	Tx 11n-20 5765 MHz		

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	146.2	40.1	-	14.7	9.0	39.1	-	24.7	-	43.5	-	18.8	-	
Hori.	200.0	43.3	-	16.5	9.6	39.1	-	30.3	-	43.5	-	13.2	-	
Hori.	243.7	57.8	-	12.9	10.0	39.0	-	41.6	-	46.0	-	4.4	-	
Hori.	370.9	47.5	-	15.4	11.0	38.7	-	35.2	-	46.0	-	10.8	-	
Hori.	408.0	46.6	-	16.7	11.3	38.7	-	36.0	-	46.0	-	10.0	-	
Hori.	926.3	35.0	-	22.3	14.4	38.2	-	33.5	-	46.0	-	12.5	-	
Hori.	1300.0	58.6	47.3	26.0	4.0	36.7	-	51.9	40.6	73.9	53.9	22.0	13.3	
Hori.	5650.0	43.0	-	31.8	6.2	35.7	-	45.3	-	68.2	-	22.9	-	
Hori.	5700.0	43.4	-	31.9	6.2	35.7	-	45.8	-	105.2	-	59.4	-	
Hori.	5720.0	43.6	-	31.9	6.2	35.7	-	46.0	-	110.8	-	64.8	-	
Hori.	5725.0	45.0	-	31.9	6.2	35.7	-	47.5	-	122.2	-	74.7	-	
Hori.	5850.0	43.4	-	32.3	6.3	35.7	-	46.2	-	122.2	-	76.0	-	
Hori.	5855.0	43.2	-	32.3	6.3	35.7	-	46.1	-	110.8	-	64.8	-	
Hori.	5875.0	42.9	-	32.3	6.3	35.7	-	45.8	-	105.2	-	59.4	-	
Hori.	5925.0	43.3	-	32.4	6.3	35.7	-	46.3	-	68.2	-	21.9	-	
Hori.	11530.0	43.7	35.5	39.4	-1.7	35.7	-	45.8	37.5	73.9	53.9	28.2	16.4	Floor noise
Hori.	17295.0	45.1	-	43.0	-0.1	35.2	-	52.9	-	68.2	-	15.3	-	Floor noise
Vert.	146.2	35.9	-	14.7	9.0	39.1	-	20.5	-	43.5	-	23.0	-	
Vert.	200.0	37.9	-	16.5	9.6	39.1	-	24.9	-	43.5	-	18.6	-	
Vert.	243.7	51.7	-	12.9	10.0	39.0	-	35.5	-	46.0	-	10.5	-	
Vert.	370.9	43.3	-	15.4	11.0	38.7	-	31.0	-	46.0	-	15.0	-	
Vert.	408.0	43.8	-	16.7	11.3	38.7	-	33.2	-	46.0	-	12.8	-	
Vert.	926.3	33.6	-	22.3	14.4	38.2	-	32.1	-	46.0	-	13.9	-	
Vert.	1300.0	60.6	50.6	26.0	4.0	36.7	-	53.9	43.9	73.9	53.9	20.0	10.0	
Vert.	5650.0	42.6	-	31.8	6.2	35.7	-	44.9	-	68.2	-	23.3	-	
Vert.	5700.0	42.8	-	31.9	6.2	35.7	-	45.2	-	105.2	-	60.0	-	
Vert.	5720.0	42.6	-	31.9	6.2	35.7	-	45.0	-	110.8	-	65.8	-	
Vert.	5725.0	43.4	-	31.9	6.2	35.7	-	45.9	-	122.2	-	76.3	-	
Vert.	5850.0	43.1	-	32.3	6.3	35.7	-	45.9	-	122.2	-	76.3	-	
Vert.	5855.0	43.0	-	32.3	6.3	35.7	-	45.9	-	110.8	-	64.9	-	
Vert.	5875.0	42.9	-	32.3	6.3	35.7	-	45.8	-	105.2	-	59.5	-	
Vert.	5925.0	42.9	-	32.4	6.3	35.7	-	45.9	-	68.2	-	22.3	-	
Vert.	11530.0	44.4	35.6	39.4	-1.7	35.7	-	46.4	37.6	73.9	53.9	27.5	16.3	Floor noise
Vert.	17295.0 / PK) = Rea	45.5	-	43.0	-0.1	35.2	-	53.3	-	68.2	-	15.0	-	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.


Distance factor:	1 GHz - 10 GHz	20log (3.85 m / 3.0 m) = 2.17 dB
	10 GHz - 40 GHz	$20\log(1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

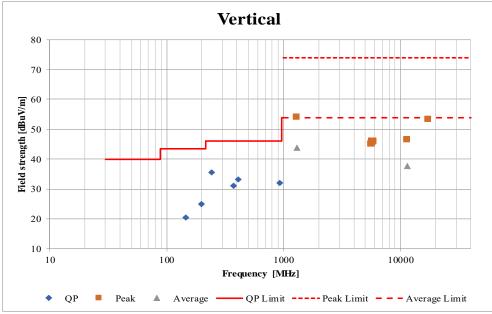
: 14617448H-C-R2 : 35 of 40

Radiated Spurious Emission

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	January 6, 2023
Temperature / Humidity	21 deg. C / 40 % RH
Engineer	Keiya Ido
-	(1 GHz - 10 GHz)
Mode	Tx 11n-20 5765 MHz
Mode	

			Horizo	ntal								Но	orizo	ntal				
	Res	tricted	-band b	and-ed	ge Plo	ot				Rest	ricte	d-ba	ınd l	band	-edg	e Plo	ot	
¥ A																RT		
Ref 10	7.6 dBµV	Atten	20 dB						7.6 dBµV		At	ten 20 d	B					
•EmiPk Log 10 dB/							*	●EmiPk Log 10 dB/										*
■LgAv								•LgAv										
V1 S2 V3 FC		Junasmontheres	and as search and a star starts	nderstational and the second	montant	an har a stand and and a	win	V1 S2 V3 FC	aded ballander	Ny TATYA MA	wayot disayon	by the Approximate	angenaput	e.itherattere	ang the state of t	a star set from	geti densta	Kirkmills
£(f): FTun Swp								£(f): FTun Swp				4.14 CC 44.						
	5.650 000 0 GHz 3W (CISPR) 1 MHz		•VBW 3 M	12		5.725 000 0 .04 ms (1201 p			.850 000 W (CISPR				•VBW 3 M	(Hz				00 0 GHz 201 pts)
	Trace Green: Peak Plot										Trac				k Pl			
	Trace Purple: Average Plot									Tr	ace]	Purp	le: A	\ver	age]	Plot		

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.


Final result of restricted band edge was shown in tabular data.

Test Report No.	: 14617448H-C-R2
Page	: 36 of 40

<u>Radiated Spurious Emission</u> (Plot data, Worst case mode for Maximum Conducted Output Power)

Ise EMC Lab.		
No.1	No.1	No.1
January 6, 2023	January 8, 2023	January 11, 2023
21 deg. C / 40 % RH	22 deg. C / 42 % RH	19 deg. C / 39 % RH
Keiya Ido	Keiya Ido	Keiya Ido
(1 GHz - 10 GHz)	(Above 10 GHz)	(Below 1 GHz)
Tx 11n-20 5765 MHz		
	No.1 January 6, 2023 21 deg. C / 40 % RH Keiya Ido (1 GHz - 10 GHz)	No.1 No.1 January 6, 2023 January 8, 2023 21 deg. C / 40 % RH 22 deg. C / 42 % RH Keiya Ido Keiya Ido (1 GHz - 10 GHz) (Above 10 GHz)

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

: 14617448H-C-R2 : 37 of 40

Conducted Spurious Emission

Test placeIse EMC Lab. No.8 Measurement RoomDateDecember 23, 2022Temperature / Humidity22 deg. C / 38 % RHEngineerTetsuro YoshidaModeTx 11n-20 5765 MHz

			9	kHz	to 1	50 k	Hz				150 kHz to 30 MHz										
¥ A	gilent							RΤ			* A	gilent							RΤ		
Ref -5 #Peak	0 dBm		#At	ten 10 d	B					15.11 kHz 2.89 dBm	Ref -5 Peak	-	1	#At	ten 10 d	B		1	1		200 kHz .45 dBm
Log 10 dB/									D	C Coupled	Log 10 dB/									DC	Coupled
												1 Nin Jackar		A contract of the			and a factor			i i i i i i i i i i i i i i i i i i i	
LgAv S1 S2 M3 FS AA		North A	Wiyilyyanilar	vinniranda	unit/unitadas	Whyme	todativne	huydayarn	Ny Marine Malay	WWWWWWW	LgAv S1 S2 M3 FS AA		1000 Y 1000 Y	in the second	1979,61,41,4 9		or man management	no-ang-pangua	ar drugad	4**(*3)4 # \$*19>	AWARIN'NAR
€(f): f<50k FFT											£(f): FTun Swp										
Start 9	9.00 kHz								Stop 1	50.00 kHz	Start 1	.50 kHz								Stop 30	.000 MHz
	W 200 Hz				VBW 620	Hz		Sweep 2		201 pts)_		W 9.1 kH	z			#VBW 27	kHz		Sweep 34		

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss		Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
15.11	-102.9	0.75	9.8	2.0	1	-90.3	300	6.0	-29.0	44.0	73.0	
200.00	-91.5	0.75	10.0	2.0	1	-78.7	300	6.0	-17.5	21.5	39.0	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 \ * \ log \ (N)$

N: Number of output

*2.0 dBi was applied to the test result based on KDB 789033 since antenna gain was less than 2.0 dBi.

APPENDIX 2: Test Instruments

Test Equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	KBA-05	141198	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	2513	05/14/2022	12
RE	MAEC-01	141998	AC1_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	06/28/2022	24
RE	MAEC-01- SVSWR	141994	AC1_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 10m	DA-06881	04/05/2021	24
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/25/2022	12
RE	MCC-02	141350	Coaxial Cable	Suhner/storm/Agilent/ TSJ	-	-	03/08/2022	12
RE	MCC-176	141279	Microwave Cable	Junkosha	MMX221-00500DMSDMS	1502S303	03/15/2022	12
RE	MCC-217	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/02/2022	12
RE	MCC-241	196413	Microwave Cable	Huber+Suhner	SF101EA/11PC24/ 11PC24/2500MM	SN 800094/1EA	01/20/2022	12
RE	MHA-05	141511	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	253	09/20/2022	12
RE	MHA-17		Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170307	07/22/2022	12
RE	MHF-16		High Pass Filter 7-20GHz	TOKIMEC	TF37NCCA	7001	09/07/2022	12
RE	MJM-25			KOMELON	KMC-36	-	-	-
RE	MLA-20	141264	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	189	05/14/2022	12
RE	MMM-09	141533	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201195	01/16/2022	12
RE	MOS-27	141566		CUSTOM. Inc	CTH-201	A08Q26	01/10/2022	12
RE	MPA-01	141576	Pre Amplifier	Keysight Technologies Inc	8449B	3008A01671	02/22/2022	12
RE	MPA-19		Pre Amplifier	MITEQ	MLA-10K01-B01-35	1237616	02/28/2022	12
RE	MPA-33		Broadband Amplifier	SAGE Millimeter, Inc.	SBB-0115033218-2F2F-E3	0001	05/13/2022	12
RE	MSA-03		Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	03/31/2022	12
RE	MTR-09	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	10/11/2022	12
AT	MAT-10		Attenuator(10dB)	Weinschel Corp	2	BL1173	11/10/2022	12
AT	MAT-57		Attenuator(10dB)	Suhner	6810.19.A	-	12/21/2022	12
AT	MCC-38	141395	Coaxial Cable	UL Japan	-	-	11/18/2022	12
AT	MCC-98	141377	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	30819/2	06/15/2022	12
AT	MMM-17	141557	DIGIITAL HITESTER	HIOKI E.E. CORPORATION	3805	70900530	01/16/2022	12
AT	MOS-28	141567	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0008	01/10/2022	12
AT	MPM-12		Power Meter	Anritsu Corporation	ML2495A	825002	05/18/2022	12
AT	MPSE-17		Power sensor	Anritsu Corporation	MA2411B	738285	05/18/2022	12
AT	MSA-14	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/10/2022	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission

AT: Antenna Terminal Conducted test