

CONFORMANCE TEST REPORT FOR FCC 47 CFR, Part 15 Subpart C

Report No.: 13-04-MAS-068-02

Client: FUJITSU TEN LIMITED

Product: Car Audio
Model: FT0058A
FCC ID: BABFT0058A

Manufacturer/supplier: FUJITSU TEN LIMITED

Date test item received: 2013/04/08
Date test campaign completed: 2013/04/19
Date of issue: 2013/05/06

The test result only corresponds to the tested sample. It is not permitted to copy this report, in part or in full, without the permission of the test laboratory.

Total number of pages of this test report: 76 pages

Total number of pages of photos: External photos 1 pages

Internal photos 2 pages Setup photos 1 pages

Test Engineer Checked By Approved By

Phillip Luo Perry Lin

Phillip Luo Perry Lin

y Lin James Cheng

ELECTRONICS TESTING CENTER, TAIWAN

NO.8, LANE 29, WENMING RD.,

LESHAN TSUEN, GUISHAN SHIANG, TAOYUAN COUNTY, TAIWAN 33383,

R.O.C.TAIWAN, R.O.C.

TEL: (03) 3276170~4

INT: +886-3-3276170~4

FAX: (03) 3276188

INT: +886-3-3276188

Sheet 2 of 76 Sheets ETC Report No. : 13-04-MAS-068-02

Client : FUJITSU TEN LIMITED

Address : 2-28, Gosho-dori, 1-chome, Hyogo-ku, Kobe 652-8510 Japan

Manufacturer : FUJITSU TEN LIMITED

Address : 2-28, Gosho-dori, 1-chome, Hyogo-ku, Kobe 652-8510 Japan

EUT : Car Audio

Trade name : ----

Model No. : FT0058A

Power Source : 12Vdc battery

Regulations applied : FCC 47 CFR, Part 15 Subpart C

The testing described in this report has been carried out to the best of our knowledge and ability, and our responsibility is limited to the exercise of reasonable care. This certification is not intended to believe the sellers from their legal and/or contractual obligations.

The compliance test is only certified for the test equipment and the results of the testing report relate only to the item tested. The compliance test of this report was conducted in accordance with the appropriate standards. It's not intention to assure the quality and performance of the product. This report shall not be reproduced except in full, without the approval of ETC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Laboratory Introduction: Electronics Testing Center, Taiwan is recognized, filed and mutual recognition arrangement as following:

- ② ISO/IEC 17025: BSMI, TAF, NCC, NVLAP, ILAC MRA, UL, Compliance
- ③ Filing: FCC, Industry Canada, VCCI
- MRA: Australia, Hong Kong, New Zealand, Singapore, USA, Japan, Korea, China, APLAC through TAF
- © FCC Registration Number: 91095, 392735, 278818
- © Industry Canada Site Registration Number: IC 2949A-2

NVLAP

NVLAP Lab Code 200133-0

Table of Contents	Page
1 GENERAL INFORMATION	5
1.1 Product Description	5
	5
1.3 Test Methodology	5
	5
1.5 Test Facility	5
1.6 Test Summary	5
2 PROVISIONS APPLICABLE	6
2.1 Definition	6
2.2 Requirement for Compliance	7
2.3 Restricted Bands of Operation	9
2.4 Labeling Requirement	9
2.5 User Information	10
3. SYSTEM TEST CONFIGURATION	11
3.1 Justification	11
3.2 Devices for Tested System	
4 RADIATED EMISSION MEASUREMENT	13
4.1 Applicable Standard	
4.2 Measurement Procedure	
4.3 Measuring Instrument	
4.4 Radiated Emission Data	16
4.5 Field Strength Calculation	23
5 CONDUCTED EMISSION MEASUREMEN	NT24
6 ANTENNA REQUIREMENT	25
6.1 Standard Applicable	25
6.2 Antenna Construction and Directional Gain.	
7 20DB EMISSION BANDWIDTH MEASUR	EMENT 26
7.1 Standard Applicable	
7.2 Measurement Procedure	26
7.3 Measurement Equipment	26
7.4 Measurement Data	27
8 OUTPUT POWER MEASUREMENT	35
8.1 Standard Applicable	
8.2 Measurement Procedure	35

8.3	Measurement Equipment	35
	Measurement Data	
9 O	OUT-OF-BAND RF CONDUCTED SPURIOUS EMISSION MEASUREMENT	44
9.1	Standard Applicable	44
	Measurement Procedure	
9.3	Measurement Equipment	44
	Measurement Data	
10	NUMBER OF HOPPING CHANNELS	61
10.1	Standard Applicable	61
10.2	2 Measurement Procedure	61
10.3	Measurement Equipment	61
10.4	4 Measurement Data	61
11	HOPPING CHANNEL CARRIER FREQUENCY SEPARATED	65
11.1	Standard Applicable	65
11.2	2 Measurement Procedure	65
11.3	Measurement Equipment	65
11.4	4 Measurement Data	66
12	DWELL TIME	68
12.1	Standard Applicable	68
12.2	2 Measurement Procedure	68
12.3	3 Measurement Equipment	68
12.4	Measurement Data	68

1 GENERAL INFORMATION

1.1 Product Description

a) Type of EUT : Car Audio

b) Trade Name : ----

c) Model No. : FT0058A d) FCC ID : BABFT0058A

1.2 Characteristics of Device

The EUT is a Car Audio based on the Bluetooth technology. Bluetooth is a short-range radio link intended to be a cable replacement between portable or fixed electronic devices. operates in the unlicensed ISM Band at 2.4GHz. In this band, 79 RF channels spaced 1MHz apart are defined. The rated output power is -0.47 dBm (0.90 mW).

1.3 Test Methodology

All testing were performed according to the procedures in ANSI C63.4 (2009) and FCC CFR 47 Part 2 and Part 15 and DA 00-705.

1.4 Modifiction List of EUT

N/A

1.5 Test Facility

The semi-anechoic chamber and conducted measurement facility used to collect the radiated and conducted data are located inside the Building at No.8, Lane 29, Wen-ming Road, Lo-shan Tsun, Kweishan Hsiang, Taoyuan, Taiwan, R.O.C.

This site has been accreditation as a FCC filing site.

1.6 Test Summary

Requirement	FCC Paragraph #	Test Pass	
Radiated Emission	15.247 (c)		
Conducted Emission	15.207	N/A	
Antenna Requirement	15.203		
20dB Emission Bandwidth	15.247 (a)(1)	\boxtimes	
Output Power	15.247 (b)(1)		
OUT-OF-BAND RF Conducted Spurious Emission	15.247 (c)	\boxtimes	
Number of Hopping Channels	15.247 (b)(1)		
Hopping Channel Carrier Frequency Seperated	15.247 (a)(1)	\boxtimes	
Dwell Time	15.247 (a)(1)(iii)		
Maximum Permissible Exposure	15.247 (b)(5)	\boxtimes	

2 PROVISIONS APPLICABLE

2.1 Definition

Unintentional radiator:

A device that intentionally generates and radio frequency energy for use within the device, or that sends radio frequency signals by conduction to associated equipment via connecting wiring, but which is not intended to emit RF energy by radiation or induction.

Class A Digital Device:

A digital device which is marketed for use in commercial or business environment; exclusive of a device which is market for use by the general public, or which is intended to be used in the home.

Class B Digital Device:

A digital device which is marketed for use in a residential environment notwithstanding use in a commercial, business of industrial environment. Example of such devices that are marketed for the general public.

Note: A manufacturer may also qualify a device intended to be marketed in a commercial, business, or industrial environment as a Class B digital device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B Digital Device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B Digital Device, Regardless of its intended use.

Intentional radiator:

A device that intentionally generates and emits radio frequency energy by radiation or induction.

FCC ID: BABFT0058A ETC Report No.: 13-04-MAS-068-02

2.2 Requirement for Compliance

(1) Conducted Emission Requirement

For unintentional device, according to §15.107(a) Line Conducted Emission Limits is as following:

Frequency MHz	Quasi Peak dB μ V	Average dB μ V
0.15 - 0.5	66-56*	56-46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

^{*}Decreases with the logarithm of the frequency.

For intentional device, according to §15.207(a) Line Conducted Emission Limits is same as above table.

(2) Radiated Emission Requirement

For unintentional device, according to §15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency MHz	Distance Meters	Radiated dB μ V/m	Radiated μV/m
30 - 88	3	40.0	100
88 - 216	3	43.5	150
216 - 960	3	46.0	200
above 960	3	54.0	500

For intentional device, according to §15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

(3) Antenna Requirement

For intentional device, according to \$15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to §15.247 (c),(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. (ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

Sheet 8 of 76 Sheets ETC Report No.: 13-04-MAS-068-02

(4) 20dB Bandwidth Requirement

For frequency hopping systems, according to 15.247(a)(1), hopping channel carrier frequencies seperated by a minimum of 25kHz or the 20dB bandwidth of hopping channel, whichever is greater.

(5) Output Power Requirement

For frequency hopping systems, according to 15.247(1), operating in the 2400-2483.5MHz band employing at least 75 hopping channels. The maximum peak output power of the transmitter shall not exceed 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(6) 100 kHz Bandwidth of Frequency Band Edges Requirement

According to 15.247(c), if any 100 kHz bandwidth outside these frequency bands, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in §15.209(a), whichever results in the lesser attenuation.

(7) Number of Hopping Channels

According to 15.247(b)(1), for frequency hopping systems, operating in the 2400-2483.5MHz band employing at least 75 hopping channels.

(8) Channel Carrier Frequencies Seperation

According to 15.247(a)(1)(iii), the frequency hopping systems shall have hopping channel carrier frequencies seperated by minimum of 25kHz or the 20dB bandwidth of hopping channel, whichever is greater.

(9) Dwell Time

According to 15.247(a)(1)(iii), frequency hopping system in the 2400-2483.5MHz band employing at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 second multiplied by the number of hopping channels employed.

(10) Power Spectral Density

According to 15.247(d), for bluetooth device, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater them 8dBm in any 3kHz band during any time interral of continuous transmission.

FCC ID: BABFT0058A

2.3 Restricted Bands of Operation

Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42-16.423	399.9-410	4.5-5.25
0.495 - 0.505 **	16.69475 - 16.69525	608-614	5.35-5.46
2.1735 - 2.1905	16.80425 - 16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475 - 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

^{**:} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

2.4 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device :

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Sheet 10 of 76 Sheets ETC Report No.: 13-04-MAS-068-02

2.5 User Information

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual.

The Federal Communications Commission Radio Frequency Interference Statement includes the following paragraph.

This equipment has been tested and found to comply with the limits for a Class B Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -- Reorient or relocate the receiving antenna.
- -- Increase the separation between the equipment and receiver.
- -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -- Consult the dealer or an experienced radio / TV technician for help.

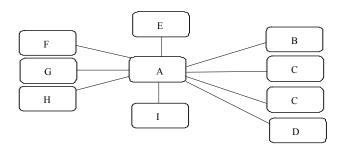
To comply with the FCC RF exposure compliance requirement, this device and its antenna must not be co-located or operating to conjunction with any other antenna or transmitter.

Sheet 11 of 76 Sheets ETC Report No. : 13-04-MAS-068-02

3. SYSTEM TEST CONFIGURATION

3.1 Justification

For the purposes of this test report ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT during the test. Notebook PC was used to control the RF channel under the hightest, middle and lowest frequency and transmit the maximum RF power. Customer would not use it. But never the less ancillary equipment can influence the test results..


3.2 Devices for Tested System

3.2.1

			•	
No	Device	Manufacture	Model No.	Cable Description
A	* Car Audio	FUJITSU TEN LIMITED	FT0058A	
В	DC Power Supply	GW	GPS-3030D	1.8m*1, Unshielded Power Line 3.5m*1 Unshielded Signal Line
С	Speaker	N/A	N/A	3.7m*1 Unshielded Signal Line
С	Speaker	N/A	N/A	3.7m*1 Unshielded Signal Line
D	Camera	N/A	GP-KD3325S	3.6m*1 Unshielded Signal Line
Е	Microphone	N/A	N/A	6.0m*1 Unshielded Signal Line
F	Steering SW	N/A	N/A	3.6m*1 Unshielded Signal Line
G	USB Dongle	Transcend	N/A	1.8m*1 Unshielded Signal Line
Н	iPod	Apple	A1320	1.8m*1 Unshielded Signal Line(Audio)
I	Radio Antenna Amplifier	FUJITSU TEN LIMITED	N/A	5.1m*1 Unshielded Signal Line

Remark

1. "*" means equipment under test.

- 2. Software: Car LanchControl Version 1.3.2.10.
- 3. During Conducted testing, cable loss is 0.6 dB.

Sheet 12 of 76 Sheets ETC Report No. : 13-04-MAS-068-02

3.2.2 Test Mode Description

3.2.2.1 Modulation Type

Test Mode	Type	Note		
A	NON-EDR	GFSK		
В	EDR	$\pi/4$ -DQPSK, 8-DPSK (note 1)		

Test Channel	Frequency (MHz)
Channel Low(L)	2402
Channel Mid(M)	2441
Channel High(H)	2480

3.2.2.2 Test Mode and Worse Case Determination

The EUT was set in continuous operation function for all measurements.

Item	Test Item	Test Mode	Test Frequency (MHz)
1	Output Power	A	L, M, H
		В	L, M, H
	Worse Case	Mode A (note 1))
2.	20dB Emission Bandwidth	Α·Β	M (Worse Case)
3	Conducted Emission	-	-
4	Out of Band Conducted Emission	Α·Β	L, M, H
5.1	Number of Channel	A	L~H
5.2	Channel Seperation	A	M (note 2)
5.3	Dwell Time	A	M (note 2)
6.1	Radiated Emission (below 1GHz)	A	M (Worse Case)
6.2	Radiated Emission (above 1GHz)	A	L, M, H
6.3	Radiated Emission (BandEdge)	A, B	L, H

note:

- 1. 8-DPSK is the worse case determined as the modulation with highest output power.
- 2. Pretest result is no difference in three test modes by channl low, middle and high. Choose one for final testing and record the result.
- 3. The worse case is determined as the modulation with highest output power.
- 4. Pretest result is no difference in three test modes by channl low, middle and high. Choose mode A, channel middle for final testing and record the result.

Sheet 13 of 76 Sheets ETC Report No.: 13-04-MAS-068-02

4 RADIATED EMISSION MEASUREMENT

4.1 Applicable Standard

For unintentional radiator, the radiated emission shall comply with §15.109(a).

For intentional radiators, according to §15.247 (a), operation under this provision is limited to frequency hopping and digitally modulated, and the out band emission shall be comply with § 15.247 (c)

4.2 Measurement Procedure

- 1. Setup the configuration per figure 1 and 2 for frequencies measured below and above 1 GHz respectively. Turn on EUT and make sure that it is in continuous operating function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a semi-anechoic chamber to determine the accurate frequencies of higher emissions and then each selected frequency is precisely measured. As the same purpose, for emission measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission measured below and above 1 GHz, set the spectrum analyzer on a 120 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0 ° to 360 ° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading. A RF test receiver is also used to confirm emissions measured.

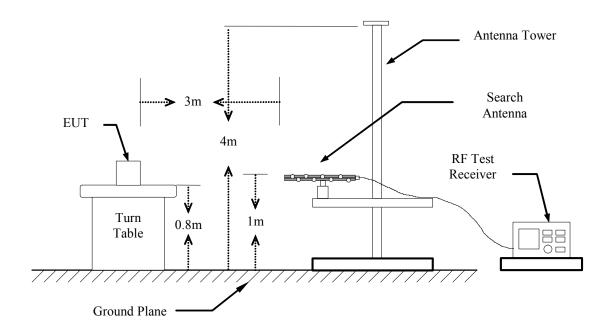
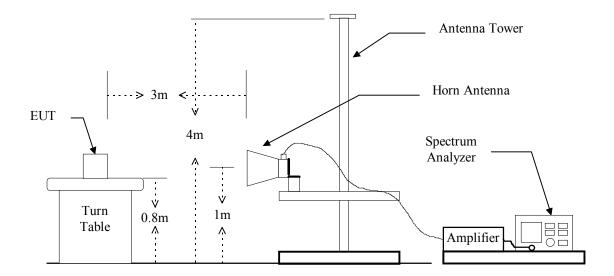



Figure 2: Frequencies measured above 1 GHz configuration

4.3 Measuring Instrument

The following instrument are used for radiated emissions measurement:

Equipment	Manufacturer	Model No.	Next Cal. Due
EMI Test Receiver	R&S	ESIB7	07/10/2013
Spectrum Analyzer	Rohde & Schwarz	FSU46	01/08/2014
Horn Antenna	EMCO	3115	07/17/2013
BiLog Antenna	ETC	MCTD2986	11/25/2013
Horn Antenna	EMCO	3116	07/17/2013
Preamplifier	Hewlett-Packard	8449A	11/20/2013

Measuring instrument setup in measured frequency band when specified detector function is used:

Frequency Band (MHz)	Instrument	Function	Resolution Bandwidth	Video Bandwidth
30 to 1000	RF Test Receiver	Quasi-Peak	120 kHz	300 kHz
30 to 1000	RF Test Receiver	Peak	120 kHz	300 kHz
41 1000	Spectrum Analyzer	Peak	1 MHz	1 MHz
Above 1000	Spectrum Analyzer	Average	1 MHz	10 Hz

FCC ID: BABFT0058A

Sheet 16 of 76 Sheets

ETC Report No. : 13-04-MAS-068-02

4.4 Radiated Emission Data

4.4.1 RF Portion

a) Channel 0

Operation Mode : Tx

Fundamental Frequency: 2402 MHz

Test Date: Apr. 19, 2013 Temperature: 20°C Humidity: 56%

Frequency		Reading ((dBuV/m)		Factor		: @3m	Limit @3m	
	Н		V	V		(dBu Peak	V/m) Ave	(dBu	V/m)
(MHz)	Peak	Ave	Peak	Ave	Corr.	(H/V Max.)		Peak	Ave.
4804.000					-2.53			74.0	54.0
7206.000					0.35			74.0	54.0
9608.000					2.26			74.0	54.0

b) Channel 39

Fundamental Frequency: 2441 MHz

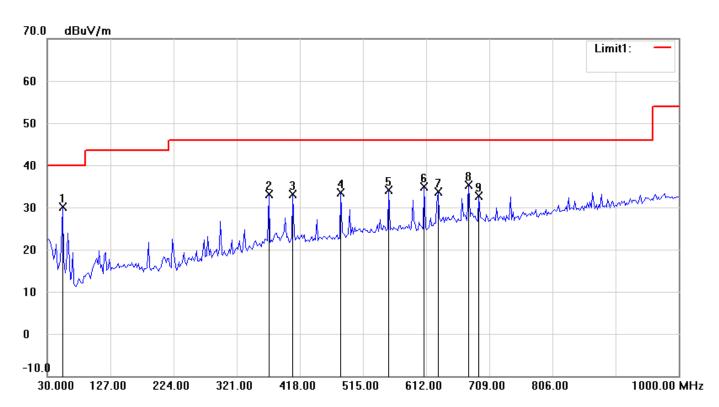
Frequency		Reading ((dBuV/m)		Factor		: @3m	Limit @3m	
	H V			(dB)	(dBuV/m) Peak Ave		(dBuV/m)		
(MHz)	Peak	Ave	Peak	Ave	Corr.	(H/V Max.)		Peak Ave.	
4882.000					-2.36			74.0	54.0
7323.000					0.61			74.0	54.0
9764.000					2.36			74.0	54.0

c) Channel 78

Fundamental Frequency: 2480 MHz

Frequency		Reading ((dBuV/m) V		Factor (dB)	Result @3m (dBuV/m) Peak Ave			@3m V/m)
(MHz)	Peak	Peak Ave		Ave	Corr.	(H/V Max.)		Peak Ave.	
4960.000					-2.19			74.0	54.0
7440.000					0.87			74.0	54.0
9920.000					2.45			74.0	54.0
14880.000					7.15			74.0	54.0
17360.000					9.45			74.0	54.0

Note:

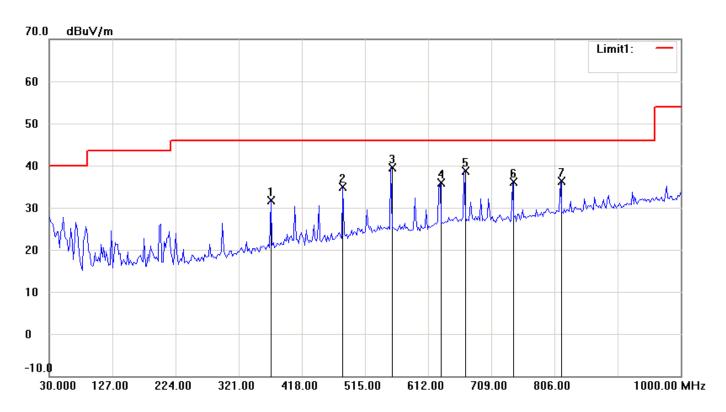

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that there is no emission to be measured.
- 3. Item "Margin" referred to Average limit while there is only peak result.
- 4. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

4.4.2 Other Emission

4.4.2.1 below 1GHz

File: FT0058A Data: #56 Date: 2013/4/19 Temperature: 20 °C

Time: AM 11:20:54 Humidity: 56 %



Condition: FCC Part15 RE-Class B Polarization: Horizontal

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)
1	53.3267	20.62	peak	9.47	30.09	40.00	-9.91
2	370.1804	13.30	peak	19.72	33.02	46.00	-12.98
3	407.1142	12.53	peak	20.62	33.15	46.00	-12.85
4	480.9820	11.60	peak	21.98	33.58	46.00	-12.42
5	554.8497	10.81	peak	23.30	34.11	46.00	-11.89
6	609.2786	11.11	peak	23.80	34.91	46.00	-11.09
7	630.6613	9.11	peak	24.60	33.71	46.00	-12.29
8	677.3146	9.88	peak	25.35	35.23	46.00	-10.77
9	692.8657	7.24	peak	25.37	32.61	46.00	-13.39

File: FT0058A Data: #55 Date: 2013/4/19 Temperature: $20 \, ^{\circ}$ C

Time: AM 11:16:23 Humidity: 56 %

Condition: FCC Part15 RE-Class B Polarization: Vertical

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)
1	370.1804	11.90	peak	19.72	31.62	46.00	-14.38
2	480.9820	12.94	peak	21.98	34.92	46.00	-11.08
3	554.8497	16.28	peak	23.30	39.58	46.00	-6.42
4	630.6613	11.22	peak	24.60	35.82	46.00	-10.18
5	667.5952	13.41	peak	25.35	38.76	46.00	-7.24
6	741.4630	10.31	peak	25.77	36.08	46.00	-9.92
7	815.3307	9.32	peak	27.06	36.38	46.00	-9.62

Sheet 19 of 76 Sheets ETC Report No. : 13-04-MAS-068-02

4.4.2.2 above 1GHz

4.4.2.2.1 Fundamental Frequency : 2402 MHz

Frequency	Ant	Reading (dBuV/m)	Correct	Result (d	lBuV/m)	Limit (d	BuV/m)
Trequency	Pol	@3	3m	Factor	<u>@</u> .	3m	<u>@</u> :	3m
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG
1006.7308	Н	52.2		-14.47	37.7		74	54
1006.7308	V	52.5		-14.47	38.0		74	54
1080.7691	Н	54.8		-14.09	40.7		74	54
1080.7691	V	53.8		-14.09	39.7		74	54
1087.5000	V	52.7		-14.05	38.7		74	54
1370.1922	Н	50.9		-12.64	38.3		74	54
1484.6153	Н	51.6		-12.08	39.5		74	54
1567.6282	Н	50.7		-11.64	39.1		74	54
1585.5770	Н	51.0		-11.55	39.5		74	54
1601.2820	V	51.3		-11.48	39.8		74	54
1877.2436	V	50.8		-10.04	40.8		74	54
1933.3333	V	51.6		-9.75	41.9		74	54
1973.7180	V	51.9		-9.54	42.4		74	54
2906.2251	V	50.9		-6.54	44.4		74	54
3130.0207	Н	53.7		-5.86	47.8		74	54
3130.0207	V	52.2		-5.86	46.3		74	54

Sheet 20 of 76 Sheets ETC Report No. : 13-04-MAS-068-02

4.4.2.2.2 Fundamental Frequency : 2441 MHz

Frequency	Ant	Reading (· ·	Correct	`	lBuV/m)	`	BuV/m)
	Pol	@3	3m	Factor	<u>(a)</u>	3m	(a).	3m
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG
1006.7308	Н	52.8		-14.47	38.3		74	54
1006.7308	V	52.0		-14.47	37.5		74	54
1051.6025	V	52.0		-14.25	37.8		74	54
1080.7691	Н	54.6		-14.09	40.5		74	54
1080.7691	V	53.6		-14.09	39.5		74	54
1087.5000	V	53.3		-14.05	39.3		74	54
1087.7691	Н	53.6		-14.05	39.6		74	54
1123.3974	Н	51.4		-13.88	37.5		74	54
1197.4358	Н	51.1		-13.51	37.6		74	54
1370.1922	Н	51.8		-12.64	39.2		74	54
1444.2308	Н	50.5		-12.28	38.2		74	54
1444.2308	V	50.3		-12.28	38.0		74	54
1484.6153	V	51.1		-12.08	39.0		74	54
1585.5770	Н	51.4		-11.55	39.9		74	54
1585.5770	V	51.8		-11.55	40.3		74	54
1872.7563	V	50.5		-10.06	40.4		74	54
3130.0207	Н	53.8		-5.86	47.9		74	54
3130.0207	V	51.9		-5.86	46.0		74	54

4.4.2.2.3 Fundamental Frequency: 2480 MHz

Frequency	Ant	Reading (ĺ	Correct	,	lBuV/m)	,	BuV/m)
1 1 1 1 1 1 1	Pol	@3	3m	Factor	@.	3m	@.	3m
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG
1006.7308	V	51.9		-14.47	37.4		74	54
1006.7309	Н	51.7		-14.47	37.2		74	54
1013.4615	V	51.8		-14.43	37.4		74	54
1051.6025	V	51.4		-14.25	37.2		74	54
1080.7691	Н	54.0		-14.09	39.9		74	54
1080.7691	V	53.2		-14.09	39.1		74	54
1087.5000	Н	53.9		-14.05	39.9		74	54
1087.5000	V	52.7		-14.05	38.7		74	54
1139.1025	V	51.2		-13.80	37.4		74	54
1271.4744	Н	50.9		-13.14	37.8		74	54
1367.9486	V	50.9		-12.66	38.2		74	54
1370.1922	Н	51.1		-12.64	38.5		74	54
1484.6153	V	50.7		-12.08	38.6		74	54
1585.5770	Н	51.2		-11.55	39.7		74	54
1823.3974	Н	51.1		-10.32	40.8		74	54
3130.0207	V	52.0		-5.86	46.1		74	54
3130.0807	Н	52.0		-5.86	46.1		74	54

- Note:
 1. Place of Measurement: Measuring site of the ETC.
 2. If the data table appeared symbol of "***" means the value was too low to be measured.
 3. The estimated measurement uncertainty of the result measurement is

 - ± 4.4 dB (300MHz $\leq f$ <1000MHz).
 - ± 4.1 dB (1GHz $\leq f \leq 18$ GHz).
 - ± 4.4 dB (18GHz< $f \le 40$ GHz).
 - 4 Remark "---" means that the emissions level is too low to be measured.

FCC ID: BABFT0058A Sheet 22 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

4.4.3 Radiated Measurement at Bandedge with Fundamental Frequencies

4.4.3.1 Operation Mode: NON-EDR

(A) Channel 0

Fundamental Frequency : 2402 MHz

Test Date: Apr. 19, 2013 Temperature: 20°C Humidity: 56%

Frequency		Reading (dBuV/m)		Factor		: @3m	Limit	\circ
	H V				(dB)	(dBu Peak	V/m) Ave	(dBuV/m) Peak Ave.	
(MHz)	Peak	Ave	Peak	Ave	Corr.		(H/V Max.)		Ave.
2390.000	28.0 14.1 2		27.9	14.1	29.8	57.8	43.9	74.0	54.0

Note: The result is the highest value of radiated emission from restrict band of 2310 ~2390 MHz.

Channel 78 (B)

> Operation Mode : Transmitting

Fundamental Frequency : 2480 MHz

Frequency		Reading (dBuV/m)		Factor	Result	\sim	Limit @3m		
	H V				(dB)	(dBu Peak	V/m) Ave	(dBuV/m)		
(MHz)	Peak	Ave	Peak	Ave	Corr.	(H/V Max.)		Peak	Ave.	
2483.500	28.4 14.8 28		28.3	14.6	29.8	58.2	44.6	74.0	54.0	

Note: The result is the highest value of radiated emission from restrict band of 2483.5 ~2500 MHz.

4.4.3.2 Operation Mode: EDR

(A) Channel 0

Fundamental Frequency : 2402 MHz

Test Date: Apr. 19, 2013 Temperature: 20°C Humidity: 56%

Frequency		Reading (dBuV/m)		Factor	Result @3m		Limit @3m	
	H V				(dB)	(dBu Peak	V/m) Ave	(dBuV/m)	
(MHz)	Peak	Ave	Peak	Ave	Corr.	(H/V Max.)		Peak	Ave.
2390.000	27.5 14.1		27.9	14.1	29.8	57.7	43.9	74.0	54.0

Note: The result is the highest value of radiated emission from restrict band of 2310 ~2390 MHz.

(B) Channel 78

Operation Mode : Transmitting

Fundamental Frequency : 2480 MHz

Frequency		Reading (dBuV/m)		Factor	Result @3m		Limit @3m	
	H V				(dB)	(dBu Peak	V/m) Ave	(dBuV/m)	
(MHz)	Peak	Ave	Peak	Ave	Corr.	(H/V Max.)		Peak	Ave.
2483.500	28.4 14.5 28.1 14.4		14.4	29.8	58.2	44.3	74.0	54.0	

Note: The result is the highest value of radiated emission from restrict band of 2483.5 ~2500 MHz.

4.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, High Pass Filter Loss(if used) and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

where

Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

FCC ID: BABFT0058A Sheet 24 of 76 Sheets ETC Report No.: 13-04-MAS-068-02

5 CONDUCTED EMISSION MEASUREMENT

This EUT is excused from investigation of conducted emission, for it is powered by battery only. According to §15.207 (d), measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines.

6 ANTENNA REQUIREMENT

6.1 Standard Applicable

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to §15.247 (c),(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. (ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

6.2 Antenna Construction and Directional Gain

The antennas is a Inverted-F antenna.

Antenna Type	Surface mounting antenna
Peak Antenna Gain	3.69 dBi

The directional gain of antenna doesn't greater than 6 dBi, the power won't be reduced.

7 20dB EMISSION BANDWIDTH MEASUREMENT

7.1 Standard Applicable

According to 15.247(a)(1), for frequency hopping systems, hopping channel carrier frequencies seperated by a minimum of 25kHz or the 20dB bandwidth of hopping channel, whichever is greater.

7.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. The setup of the EUT as shown in figure 3. Turn on the EUT and connect it to measurement instrument. Then set it to any convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Figure 3: Emission bandwidth measurement configuration.

7.3 Measurement Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due
Spectrum Analyzer	Agilent	E4446A	09/27/2013

FCC ID: BABFT0058A Sheet 27 of 76 Sheets ETC Report No.: 13-04-MAS-068-02

7.4 Measurement Data

7.4.1 Operation Mode: NON-EDR

Test Date: Apr. 16, 2013 Temperature: 20°C Humidity: 54%

Channel	20 dB Bandwidth (MHz)	Chart
L	0.925	Page 28
M	0.895	Page 29
Н	0.890	Page 30

Note: Please refer to page 27 to page 29 for chart.

Sheet 28 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #37 Date: 2013/4/16 Temperature: 20 °C

Time: PM 01:45:54 Humidity: 54 %

Condition: -25.11dBm RF Conducted

EUT: Sweep Time: 3.2ms Att.: 10dB

Model: RBW: 30 KHz VBW: 100 KHz

Test Mode:

Note: FCC-Bluetooth Channel 00-20dB EBW

No.	Frequency(MHz)	Level(dBm)
1	2401.54500	-25.14
2	2401.83000	-5.11
3	2402.47000	-25.41

No.		△Frequency(MHz)	\triangle Level(dB)
1	mk3-mk1	0.925	-0.27

File: FT0058A Data: #10 Date: 2013/4/16 Temperature: 20 °C

Time: AM 11:46:25 Humidity: 54 %

Condition: -22.29dBm RF Conducted

EUT: Sweep Time: 3.2ms Att.: 10dB

Model: RBW: 30 KHz VBW: 100 KHz

Test Mode:

Note: FCC-Bluetooth Channel 39-20dB EBW

No.	Frequency(MHz)	Level(dBm)
1	2440.53000	-22.73
2	2440.83000	-2.29
3	2441.42500	-22.60

No.		△Frequency(MHz)	\triangle Level(dB)
1	mk3-mk1	0.895	0.13

File: FT0058A Data: #38 Date: 2013/4/16 Temperature: $20 \,^{\circ}$ C

Time: PM 01:50:37 Humidity: 54 %

Condition: -22.17dBm RF Conducted

EUT: Sweep Time: 3.2ms Att.: 10dB

Model: RBW: 30 KHz VBW: 100 KHz

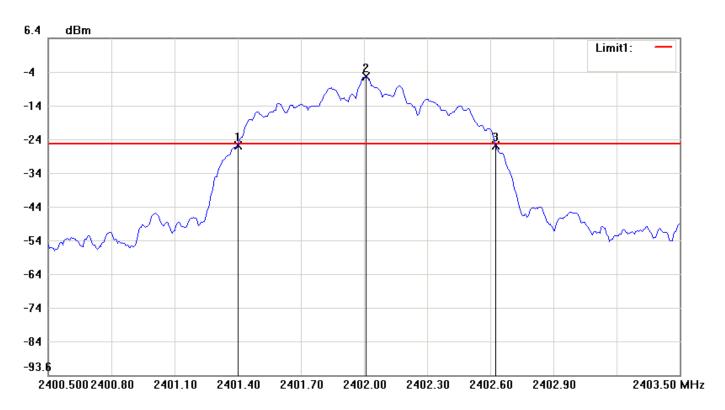
Test Mode:

Note: FCC-Bluetooth Channel 78-20dB EBW

No.	Frequency(MHz)	Level(dBm)
1	2479.53500	-22.34
2	2479.83000	-2.17
3	2480.42500	-22.47

No.		△Frequency(MHz)	△Level(dB)
1	mk3-mk1	0.89	-0.13

7.4.2 Operation Mode: EDR


Test Date: Apr. 16, 2013 Temperature : 20°C Humidity: 54%

Channel	20 dB Bandwidth (MHz)	Chart
L	1.225	Page 32
M	1.225	Page 33
Н	1.230	Page 34

Note: Please refer to page 32 to page 34 for chart.

File: FT0058A Data: #43 Date: 2013/4/19 Temperature: 20 ℃

Time: PM 01:32:59 Humidity: 54 %

Condition: -25.05dBm RF Conducted

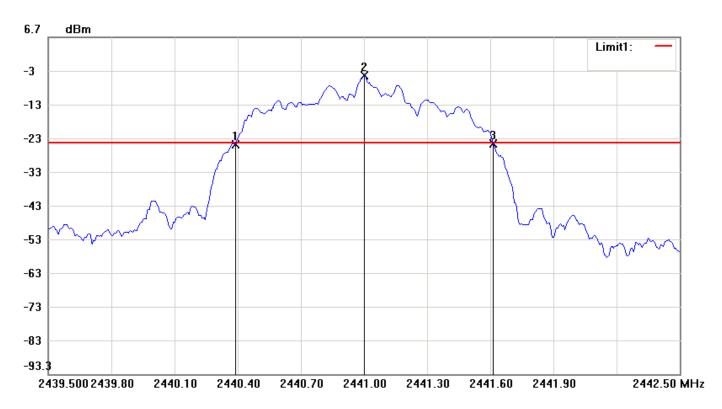
EUT: Sweep Time: 3.2ms Att.: 10dB

Model: RBW: 30 KHz VBW: 100 KHz

Test Mode:

Note: FCC-Bluetooth Channel 00-20dB EBW

No.	Frequency(MHz)	Level(dBm)
1	2401.40000	-25.44
2	2402.01000	-5.05
3	2402.62500	-25.60


No.		△Frequency(MHz)	\triangle Level(dB)
1	mk3-mk1	1.225	-0.16

Sheet 33 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #33 Date: 2013/4/16 Temperature: $20 \,^{\circ}$ C

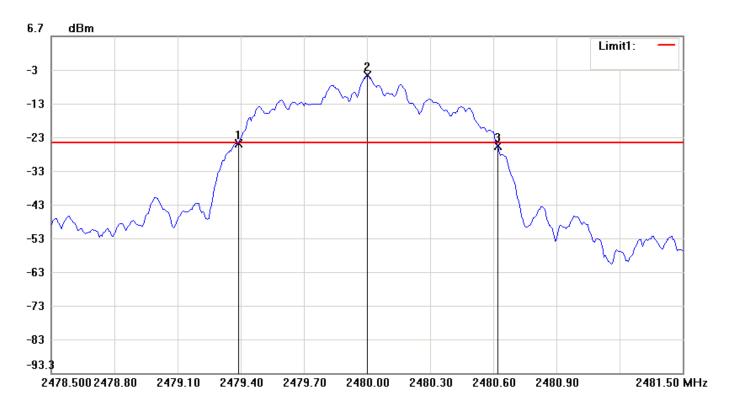
Time: PM 01:18:38 Humidity: 54 %

Condition: -24.77dBm RF Conducted

EUT: Sweep Time: 3.2ms Att.: 10dB

Model: RBW: 30 KHz VBW: 100 KHz

Test Mode:


Note: FCC-Bluetooth Channel 39-20dB EBW

No.	Frequency(MHz)	Level(dBm)
1	2440.39000	-25.15
2	2441.00000	-4.77
3	2441.61500	-24.96

No.		△Frequency(MHz)	△Level(dB)
1	mk3-mk1	1.225	0.19

File: FT0058A Data: #29 Date: 2013/4/16 Temperature: 20 °C

Time: PM 01:08:41 Humidity: 54 %

Condition: -24.89dBm RF Conducted

EUT: Sweep Time: 3.2ms Att.: 10dB

Model: RBW: 30 KHz VBW: 100 KHz

Test Mode:

Note: FCC-Bluetooth Channel 78-20dB EBW

No.	Frequency(MHz)	Level(dBm)
1	2479.39000	-25.18
2	2480.00000	-4.89
3	2480.62000	-26.00

No.		△Frequency(MHz)	\triangle Level(dB)
1	mk3-mk1	1.23	-0.82

Sheet 35 of 76 Sheets ETC Report No.: 13-04-MAS-068-02

8 OUTPUT POWER MEASUREMENT

8.1 Standard Applicable

For frequency hopping system, according to 15.247(b), the maximum peak output power of the transmitter shall not exceed 1 Watt. If Receiving antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

8.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. The setup of the EUT as shown in figure 3. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Add cable loss factor to measurement instrument to get maximum peak output power. Then set it to any measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 2 MHz and VBW to 2 MHz.
- 4. Measure the highest amplitude appearing on spectral display and record the level to calculate result data.
- 5. Repeat above procedures until all frequencies measured were complete.

8.3 Measurement Equipment

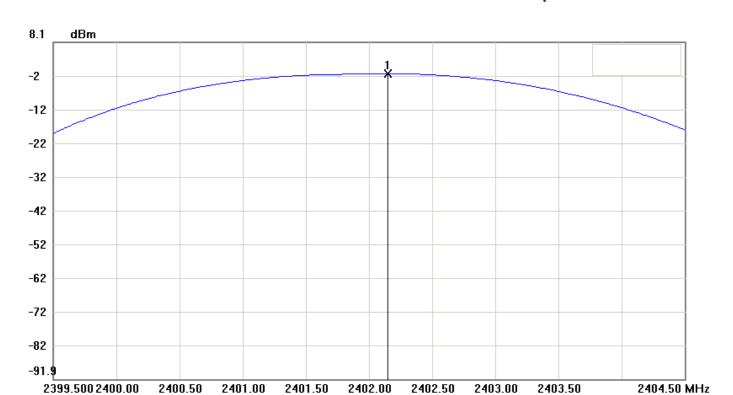
Equipment	Manufacturer	Model No.	Next Cal. Due
Spectrum Analyzer	Agilent	E4446A	09/27/2013

FCC ID: BABFT0058A Sheet 36 of 76 Sheets ETC Report No.: 13-04-MAS-068-02

8.4 Measurement Data

8.4.1 Operation Mode: NON-EDR

Test Date: Apr. 16, 2013 Temperature: 20°C Humidity: 54%


Channel	Maximum	Maximum	FCC Limit	Chart
	Peak Output Power	Peak Output Power		
	(dBm)	(mW)	(mW)	
L	-1.19	0.76	1000	Page 37
M	-0.67	0.86	1000	Page 38
Н	-0.47	0.90	1000	Page 39

Note: Please refer to page 37 to page 39 for chart.

Sheet 37 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

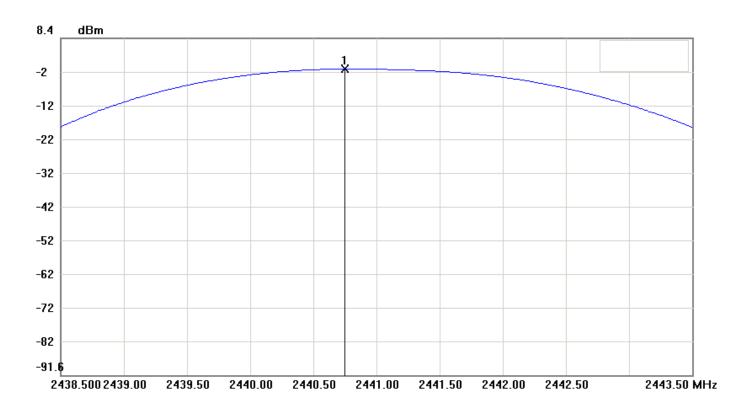
File: FT0058A Data: #41 Date: 2013/4/19 Temperature: 20 °C Time: PM 01:30:54 Humidity: 54 %

Condition: RF Conducted

EUT: Sweep Time: 1ms Att.: 10dB

Model: RBW: 2000 KHz VBW: 2000 KHz

Test Mode:


Note: FCC Bluetooth CH00 Output Power (NON-EDR)

No.	Frequency(MHz)	Level(dBm)
1	2402.15000	-1.19

Sheet 38 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #9 Date: 2013/4/16 Temperature: 20 °C Time: AM 11:45:56 Humidity: 54 %

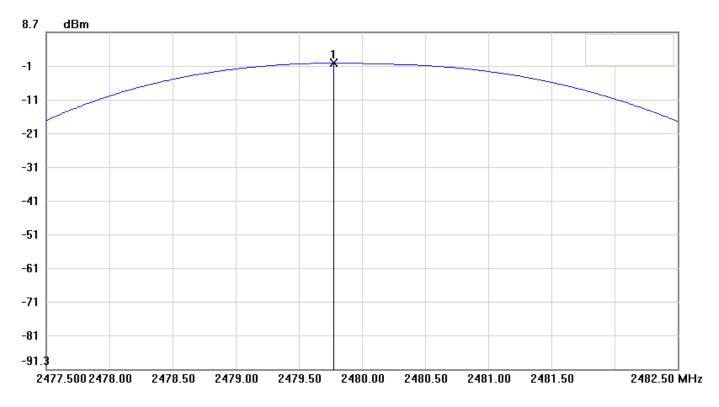
Condition: RF Conducted

EUT: Sweep Time: 1ms Att.: 10dB

Model: RBW: 2000 KHz VBW: 2000 KHz

Test Mode:

Note: FCC Bluetooth CH39 Output Power (NON-EDR)


No.	Frequency(MHz)	Level(dBm)
1	2440.74170	-0.67

Sheet 39 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #5 Date: 2013/4/16 Temperature: 20 °C

Time: AM 11:30:12 Humidity: 54 %

Condition: RF Conducted

EUT: Sweep Time: 1ms Att.: 10dB

Model: RBW: 2000 KHz VBW: 2000 KHz

Test Mode:

Note: FCC Bluetooth CH78 Output Power (NON-EDR)

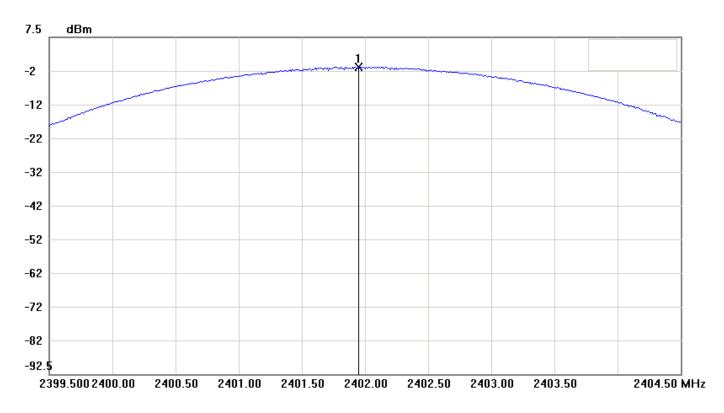
No.	Frequency(MHz)	Level(dBm)
1	2479.77500	-0.47

Sheet 40 of 76 Sheets ETC Report No. : 13-04-MAS-068-02

8.4.2 Operation Mode: <u>EDR</u>

Test Date: Apr. 16, 2013 Temperature: 20°C Humidity: 54%

Channel	Maximum	Maximum	FCC Limit	Chart
	Peak Output Power	Peak Output Power		
	(dBm)	(mW)	(mW)	
L	-1.33	0.74	1000	Page 41
M	-0.92	0.81	1000	Page 42
Н	-0.95	0.80	1000	Page 43


Note: Please refer to page 41 to page 43 for chart.

Sheet 41 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #42 Date: 2013/4/19 Temperature: 20 °C

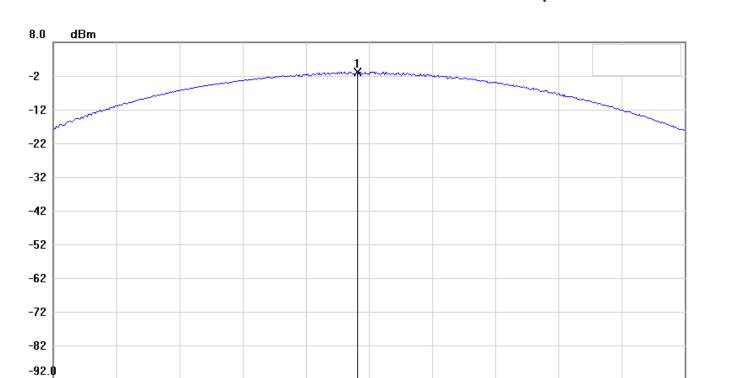
Time: PM 01:32:30 Humidity: 54 %

Condition: RF Conducted

EUT: Sweep Time: 1ms Att.: 10dB

Model: RBW: 2000 KHz VBW: 2000 KHz

Test Mode:


Note: FCC Bluetooth CH00 Output Power (EDR)

No.	Frequency(MHz)	Level(dBm)
1	2401.95000	-1.33

Sheet 42 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #32 Date: 2013/4/16 Temperature: 20 °C Time: PM 01:18:09 Humidity: 54 %

Condition: RF Conducted

2440.00

EUT: Sweep Time: 1ms Att.: 10dB

2440.50

Model: RBW: 2000 KHz VBW: 2000 KHz

2441.00

2441.50

2442.00

2442.50

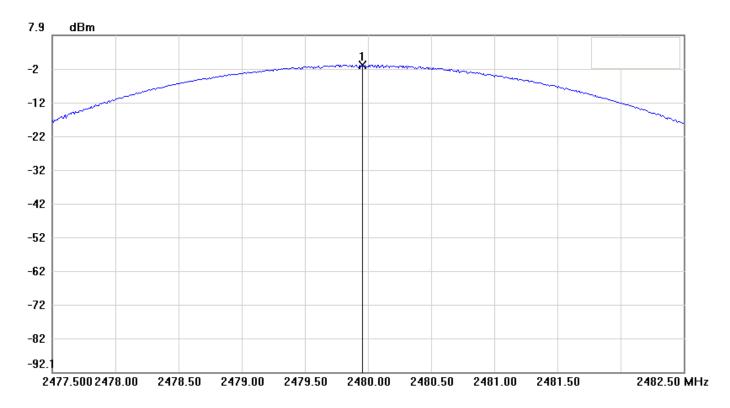
2443.50 MHz

Test Mode:

2438.500 2439.00

Note: FCC Bluetooth CH39 Output Power (EDR)

2439.50


No.	Frequency(MHz)	Level(dBm)
1	2440.90830	-0.92

Sheet 43 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #28 Date: 2013/4/16 Temperature: 20 °C

Time: PM 01:08:12 Humidity: 54 %

Condition: RF Conducted

EUT: Sweep Time: 1ms Att.: 10dB

Model: RBW: 2000 KHz VBW: 2000 KHz

Test Mode:

Note: FCC Bluetooth CH78 Output Power (EDR)

No.	Frequency(MHz)	Level(dBm)
1	2479.95830	-0.95

9 OUT-OF-BAND RF CONDUCTED SPURIOUS EMISSION MEASUREMENT

9.1 Standard Applicable

According to 15.247(c), if any 100 kHz bandwidth outside these frequency bands, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in §15.209(a), whichever results in the lesser attenuation.

9.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. The setup of the EUT as shown in figure 3. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

9.3 Measurement Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due
Spectrum Analyzer	Agilent	E4446A	09/27/2013

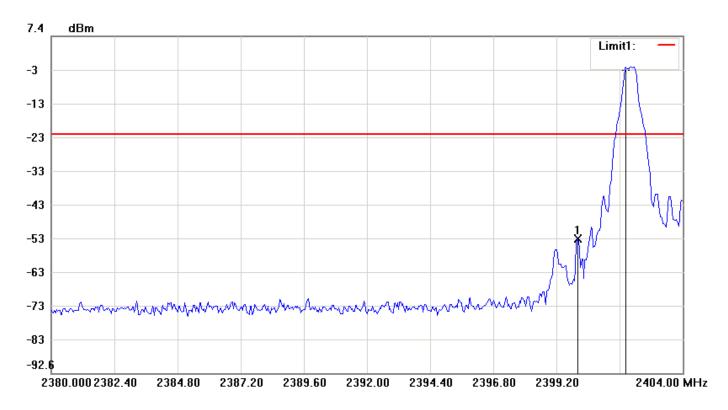
FCC ID: BABFT0058A Sheet 45 of 76 Sheets ETC Report No.: 13-04-MAS-068-02

9.4 Measurement Data

9.4.1 Operation Mode: NON-EDR

Test Date: Apr. 16, 2013 Temperature: 20°C Humidity: 54%

Channel	Test Frequency Range	Note	Chart
0	2350 MHz - 2450 MHz	Lower Band Edge	Page 46-47
78	2433.5 MHz - 2533.5 MHz	Upper Band Edge	Page 48-49
0	30 MHz - 25 GHz		Page 50
39	30 MHz - 25 GHz		Page 51
78	30 MHz - 25 GHz		Page 52


Note: Please refer to page 46 to page 52 for chart.

Sheet 46 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

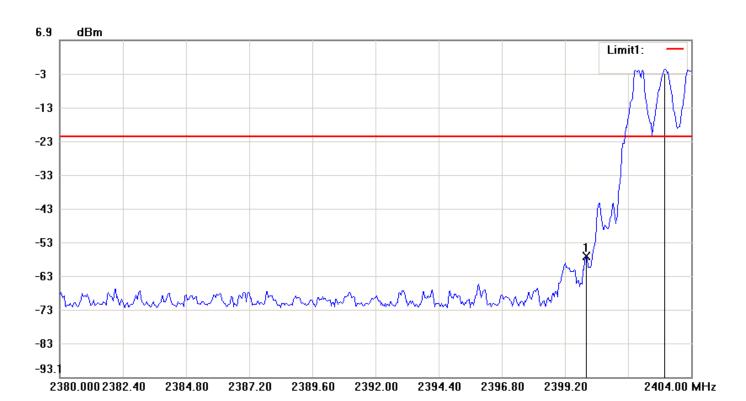
File: FT0058A Data: #4 Date: 2013/4/16 Temperature: 20 °C

Time: AM 11:14:32 Humidity: 54 %

Condition: -21.65dBm RF Conducted

EUT: Sweep Time: 2.32ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz


Test Mode:

Note: FCC-Bluetooth Channel 00-Bandedge (Fixed)

No.	Frequency(MHz)	Level(dBm)
1	2400.00000	-52.80
2	2401.84000	-1.65

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #12 Date: 2013/4/16 Temperature: 20 $^{\circ}$ C Time: PM 12:03:18 Humidity: 54 $^{\circ}$

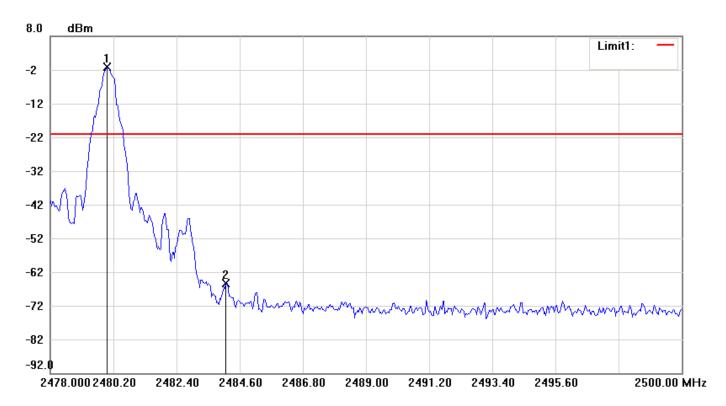
Condition: -21.59dBm RF Conducted

EUT: Sweep Time: 2.32ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:

Note: FCC-Bluetooth Channel 00-Bandedge (Hopping)


No.	Frequency(MHz)	Level(dBm)
1	2400.00000	-57.18
2	2403.00000	-1.59

Sheet 48 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #8 Date: 2013/4/16 Temperature: 20 °C

Time: AM 11:32:40 Humidity: 54 %

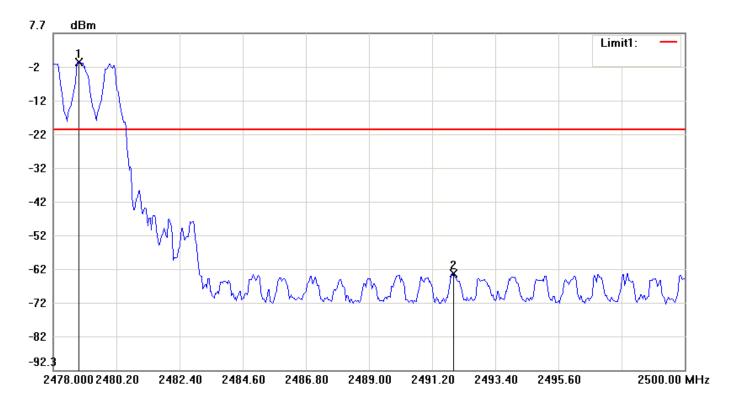
Condition: -21.01dBm RF Conducted

EUT: Sweep Time: 2.12ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:

Note: FCC-Bluetooth Channel 78-Bandedge (Fixed)


No.	Frequency(MHz)	Level(dBm)
1	2479.98000	-1.01
2	2484.12330	-65.32

Sheet 49 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #13 Date: 2013/4/16 Temperature: 20 °C

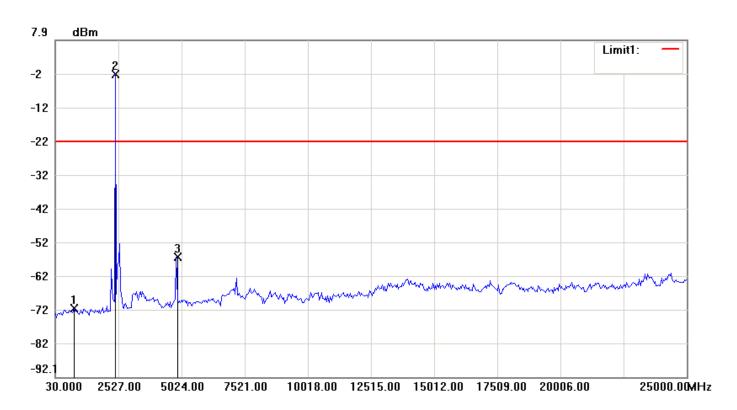
Time: PM 12:05:05 Humidity: 54 %

Condition: -20.98dBm RF Conducted

EUT: Sweep Time: 2.12ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:


Note: FCC-Bluetooth Channel 78-Bandedge (Hopping)

No.	Frequency(MHz)	Level(dBm)
1	2478.88000	-0.98
2	2491.89670	-63.59

Sheet 50 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #3 Date: 2013/4/16 Temperature: 20 °C Time: AM 11:14:03 Humidity: 54 %

Condition: -22.12dBm RF Conducted

EUT: Sweep Time: 2386.4ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:

Note: FCC-BT Channel 00-Conducted Spurious

No.	Frequency(MHz)	Level(dBm)
1	779.1000	-71.78
2	2402.15000	-2.12
3	4815.91670	-56.39

Sheet 51 of 76 Sheets

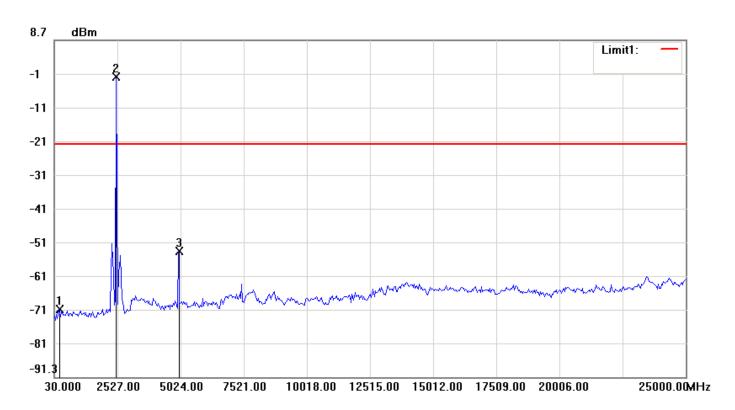
ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #11 Date: 2013/4/16 Temperature: 20 °C Time: AM 11:47:56 Humidity: 54 %

Condition: -21.52dBm RF Conducted

EUT: Sweep Time: 2386.4ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz


Test Mode:

Note: FCC-BT Channel 39-Conducted Spurious

No.	Frequency(MHz)	Level(dBm)
1	1611.43330	-70.99
2	2443.76670	-1.52
3	4899.15000	-53.38

Sheet 52 of 76 Sheets ETC Report No. : 13-04-MAS-068-02

File: FT0058A Data: #7 Date: 2013/4/16 Temperature: 20 °C Time: AM 11:32:11 Humidity: 54 %

Condition: -22.13dBm RF Conducted

EUT: Sweep Time: 2386.4ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:

Note: FCC-BT Channel 78-Conducted Spurious

No.	Frequency(MHz)	Level(dBm)
1	196.4667	-71.12
2	2485.38330	-2.13
3	4940.76670	-53.77

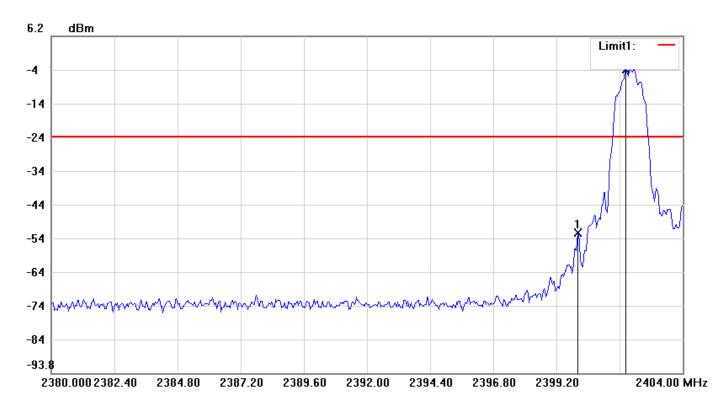
FCC ID: BABFT0058A

Sheet 53 of 76 Sheets
ETC Report No.: 13-04-MAS-068-02

9.4.2 Operation Mode: EDR

Test Date: Apr. 16, 2013 Temperature: 20°C Humidity: 54%

Channel	Test Frequency Range	Note	Chart
0	2350 MHz - 2450 MHz	Lower Band Edge	Page 54-55
78	2433.5 MHz - 2533.5 MHz	Upper Band Edge	Page 56-57
0	30 MHz - 25 GHz		Page 58
39	30 MHz - 25 GHz		Page 59
78	30 MHz - 25 GHz		Page 60


Note: Please refer to page 54 to page 60 for chart.

Sheet 54 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #27 Date: 2013/4/16 Temperature: 20 °C

Time: PM 01:00:02 Humidity: 54 %

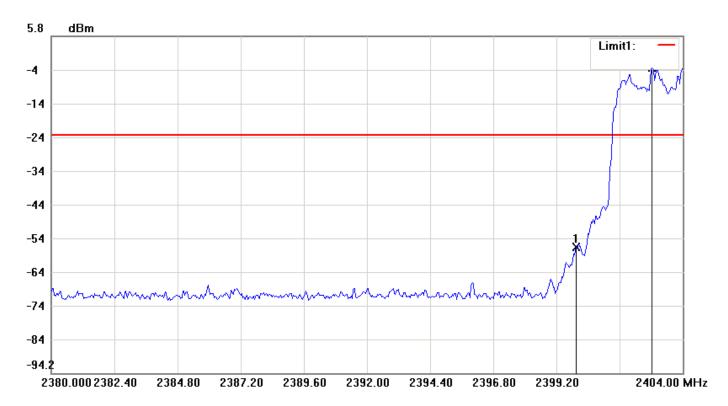
Condition: -23.62dBm RF Conducted

EUT: Sweep Time: 2.32ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:

Note: FCC-Bluetooth Channel 00-Bandedge (Fixed)


No.	Frequency(MHz)	Level(dBm)
1	2400.00000	-52.33
2	2401.84000	-3.62

Sheet 55 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #35 Date: 2013/4/16 Temperature: 20 °C

Time: PM 01:35:19 Humidity: 54 %

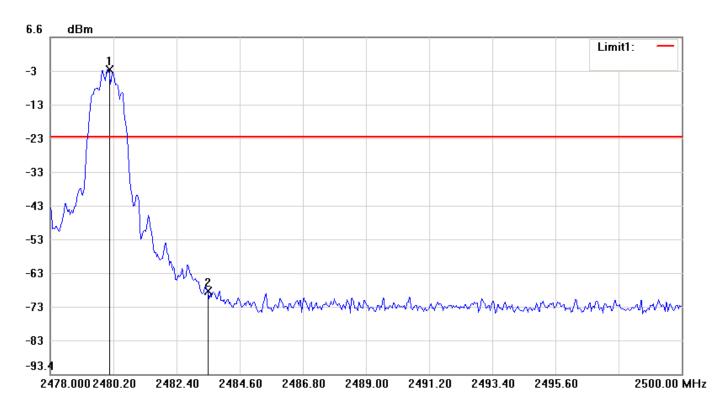
Condition: -23.58dBm RF Conducted

EUT: Sweep Time: 2.32ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:

Note: FCC-Bluetooth Channel 00-Bandedge (Hopping)


No.	Frequency(MHz)	Level(dBm)
1	2399.96000	-56.83
2	2402.84000	-3.58

Sheet 56 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #31 Date: 2013/4/16 Temperature: 20 °C

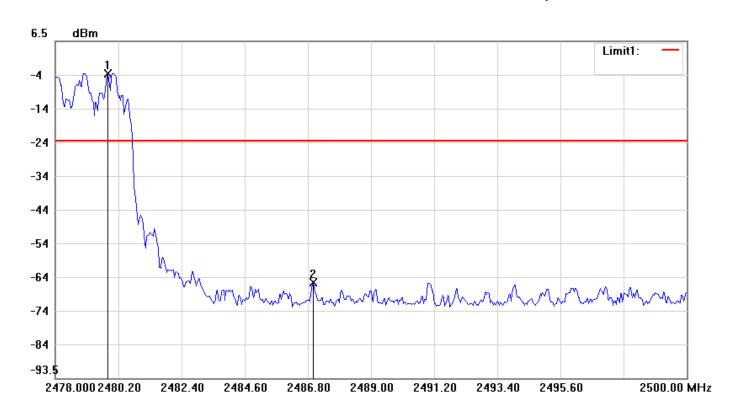
Time: PM 01:10:41 Humidity: 54 %

Condition: -23.12dBm RF Conducted

EUT: Sweep Time: 2.12ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:


Note: FCC-Bluetooth Channel 78-Bandedge (Fixed)

No.	Frequency(MHz)	Level(dBm)
1	2480.01670	-3.12
2	2483.50000	-68.69

Sheet 57 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

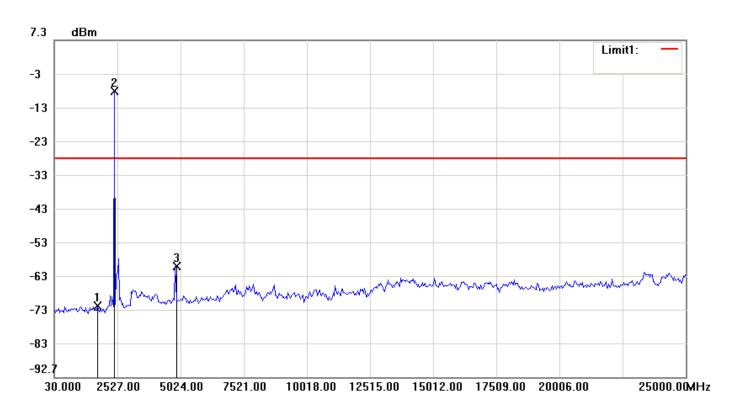
File: FT0058A Data: #36 Date: 2013/4/16 Temperature: 20 °C Time: PM 01:37:04 Humidity: 54 %

Condition: -23.23dBm RF Conducted

EUT: Sweep Time: 2.12ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:


Note: FCC-Bluetooth Channel 78-Bandedge (Hopping)

No.	Frequency(MHz)	Level(dBm)
1	2479.83330	-3.23
2	2486.98330	-65.27

Sheet 58 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #26 Date: 2013/4/16 Temperature: 20 °C Time: PM 12:59:34 Humidity: 54 %

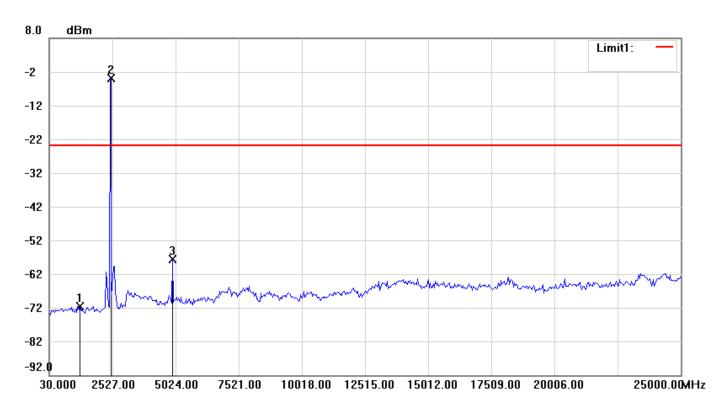
Condition: -27.89dBm RF Conducted

EUT: Sweep Time: 2386.4ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:

Note: FCC-BT Channel 00-Conducted Spurious


No.	Frequency(MHz)	Level(dBm)
1	1736.28330	-71.66
2	2402.15000	-7.89
3	4815.91670	-59.86

Sheet 59 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #34 Date: 2013/4/16 Temperature: 20 °C

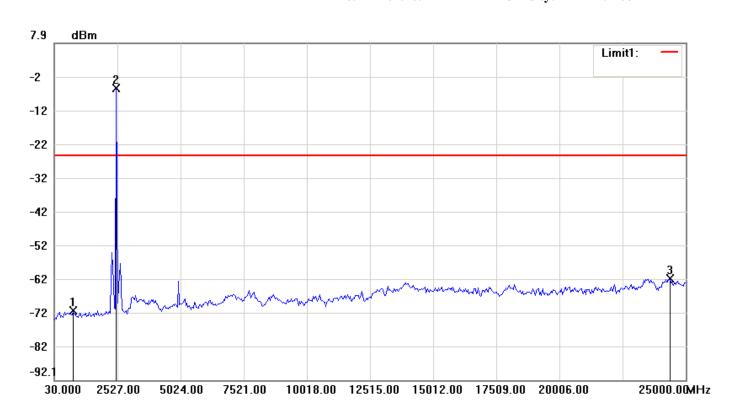
Time: PM 01:20:10 Humidity: 54 %

Condition: -23.72dBm RF Conducted

EUT: Sweep Time: 2386.4ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:


Note: FCC-BT Channel 39-Conducted Spurious

No.	Frequency(MHz)	Level(dBm)
1	1195.26670	-71.50
2	2443.76670	-3.72
3	4899.15000	-57.58

Sheet 60 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #30 Date: 2013/4/16 Temperature: $20 \,^{\circ}$ C Time: PM 01:10:12 Humidity: $54 \,^{\circ}$

Condition: -25.45dBm RF Conducted

EUT: Sweep Time: 2386.4ms Att.: 10dB

Model: RBW: 100 KHz VBW: 300 KHz

Test Mode:

Note: FCC-BT Channel 78-Conducted Spurious

No.	Frequency(MHz)	Level(dBm)
1	779.1000	-71.39
2	2485.38330	-5.45
3	24375.75000	-61.96

ETC Report No.: 13-04-MAS-068-02

10 NUMBER of HOPPING CHANNELS

10.1 Standard Applicable

According to 15.247(b)(1), for frequency hopping systems, operating in the 2400-2483.5MHz band employing at least 75 hopping channels

10.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. The setup of the EUT as shown in figure 3. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set EUT to hopping operating mode and set spectrum analyzer miximum to measure the number of hopping channels.

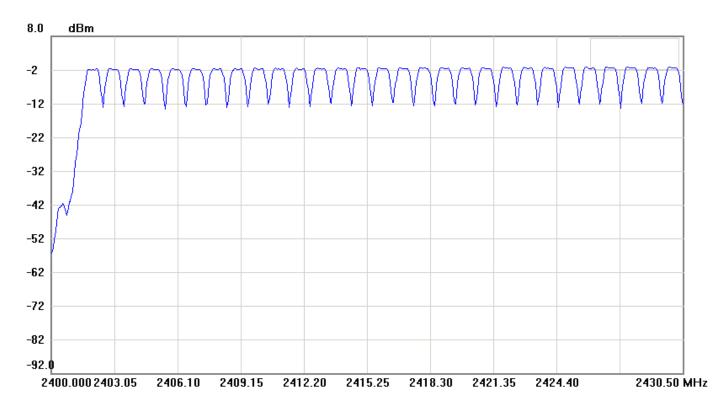
10.3 Measurement Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due
Spectrum Analyzer	Agilent	E4446A	09/27/2013

10.4 Measurement Data

Test Date: Apr. 16, 2013 Temperature: 20°C Humidity: 54%

Number of hopping channels = 79 channels


Note: Please refer to page 62 to page 64 for chart.

Sheet 62 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

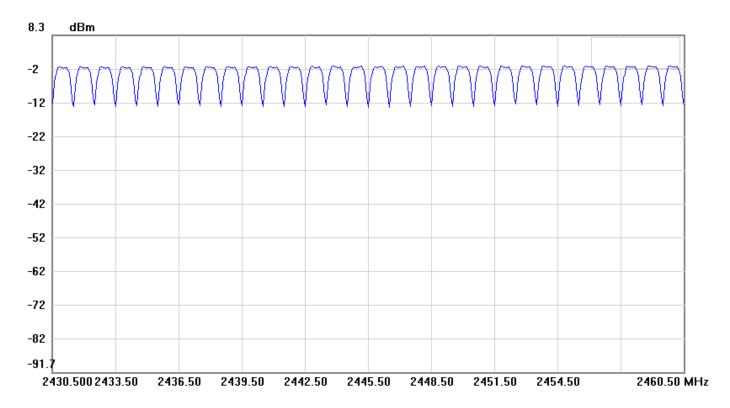
File: FT0058A Data: #21 Date: 2013/4/16 Temperature: 20 °C

Time: PM 12:29:27 Humidity: 54 %

Condition: RF Conducted

EUT: Sweep Time: 1ms Att.: 10dB

Model: RBW: 300 KHz VBW: 300 KHz


Test Mode:

Note: FCC-Bluetooth Number of Hopping Channels -Part1

Sheet 63 of 76 Sheets ETC Report No. : 13-04-MAS-068-02

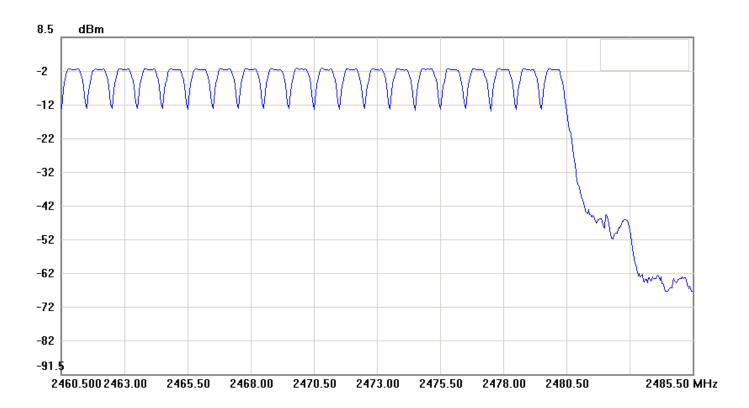
File: FT0058A Data: #22 Date: 2013/4/16 Temperature: 20 °C

Time: PM 12:31:15 Humidity: 54 %

Condition: RF Conducted

EUT: Sweep Time: 1ms Att.: 10dB

Model: RBW: 300 KHz VBW: 300 KHz


Test Mode:

Note: FCC-Bluetooth Number of Hopping Channels -Part2

Sheet 64 of 76 Sheets ETC Report No. : 13-04-MAS-068-02

•

File: FT0058A Data: #23 Date: 2013/4/16 Temperature: 20 °C Time: PM 12:33:05 Humidity: 54 %

Condition: RF Conducted

EUT: Sweep Time: 1ms Att.: 10dB

Model: RBW: 300 KHz VBW: 300 KHz

Test Mode:

Note: FCC-Bluetooth Number of Hopping Channels -Part3

Sheet 65 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

11 HOPPING CHANNEL CARRIER FREQUENCY SEPARATED

11.1 Standard Applicable

According to 15.247(a)(1), the frequency hopping system shall have hopping channel carrier frequencies seperated by minimum of 25kHz or the 20dB bandwidth of hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400 - 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

11.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. The setup of the EUT as shown in figure 3. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any measurement frequency within its operating ragne and make sure the instrument is operated in its linear range.
- 3. Set spectrum analyzer maximum hold to measure channel carrier frequency, then adjust channel carrier frequency to adjacent channel.
- 4. Repeat above procedure until all measured frequencies were complete.

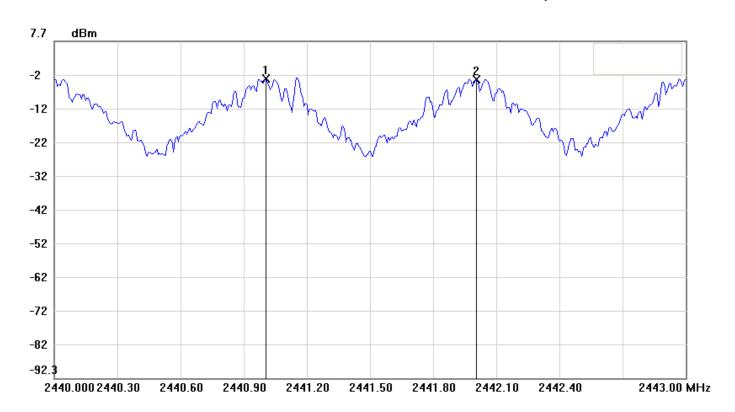
11.3 Measurement Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due
Spectrum Analyzer	Agilent	E4446A	09/27/2013

FCC ID: BABFT0058A Sheet 66 of 76 Sheets
ETC Report No.: 13-04-MAS-068-02

11.4 Measurement Data

Test Date: Apr. 16, 2013 Temperature: 20°C Humidity: 54%


Channel	Hopping Channel Carrier Frequency Separated (MHz)	Chart
M	1.000	Page 67

Note: 1. Please refer to page 67 for chart.

2. CH Low, CH Mid and CH High have the same test result. Only CH Mid test result showed in the test report.

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #20 Date: 2013/4/16 Temperature: 20 °C Time: PM 12:27:36 Humidity: 54 %

Condition: RF Conducted

EUT: Sweep Time: 3.2ms Att.: 10dB

Model: RBW: 30 KHz VBW: 100 KHz

Test Mode:

Note: FCC-Bluetooth Carrier Frequency Separation

No.	Frequency(MHz)	Level(dBm)
1	2441.00500	-3.53
2	2442.00500	-3.60

No.		△Frequency(MHz)	△Level(dB)
1	mk2-mk1	1	-0.07

Sheet 68 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

12 Dwell Time

12.1 Standard Applicable

According to 15.247(a)(1)(iii), frequency hopping system in the 2400-2483.5MHz band employing at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 second multiplied by the number of hopping channels employed.

12.2 Measurement Procedure

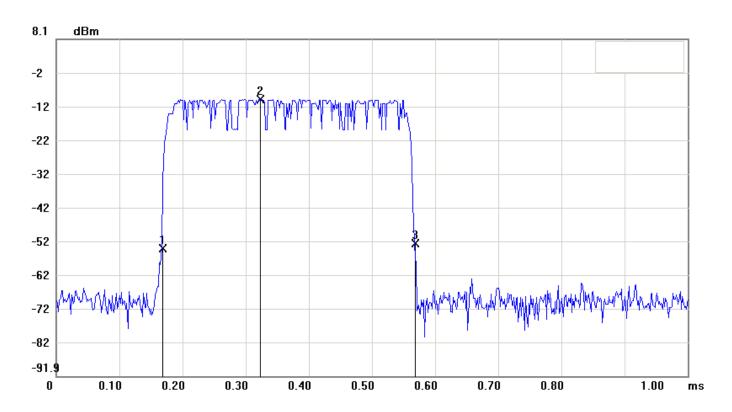
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. The setup of the EUT as shown in figure 3.

12.3 Measurement Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due
Spectrum Analyzer	Agilent	E4446A	09/27/2013

12.4 Measurement Data

Test Date: Apr. 16, 2013 Temperature: 20°C Humidity: 54%


12.4.1 3DH1

Test period=0.4(second/channel)×79 channel=31.6sec 2402MHz dwell time= $400 \text{ us} \times 340 = 136 \text{ ms}$

Note: Please refer to page 69 to page 70 for chart.

ETC Report No.: 13-04-MAS-068-02

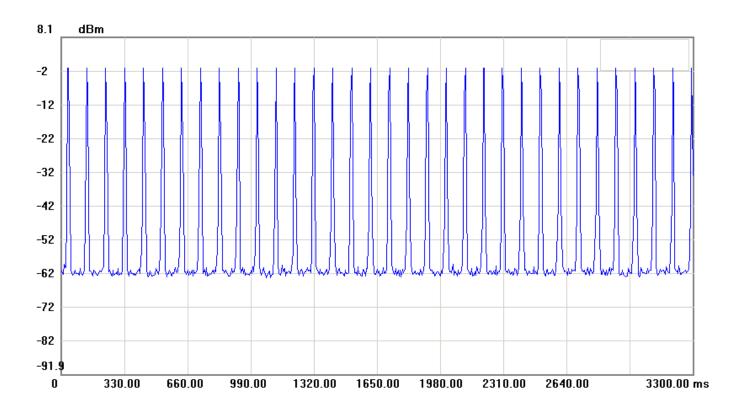
File: FT0058A Data: #15 Date: 2013/4/16 Temperature: 20 °C Time: PM 12:14:56 Humidity: 54 %

Condition: -44.82dBm RF Conducted

EUT: Sweep Time: 1ms Att.: 10dB

Model: RBW: 1000 KHz VBW: 1000 KHz

Test Mode:


Note: DH1 pulse width

No.	Sweep time(ms)	Level(dBm)
1	0.1667	-53.91
2	0.3217	-9.82
3	0.5667	-52.60

No.		△Time (ms)	△Level(dB)
1	mk3-mk1	0.4	1.31

FCC ID: BABFT0058A Sheet 70 of 76 Sheets ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #14 Date: 2013/4/16 Temperature: 20 °C Time: PM 12:14:41 Humidity: 54 %

Condition: RF Conducted

EUT: Sweep Time: 3300ms Att.: 10dB

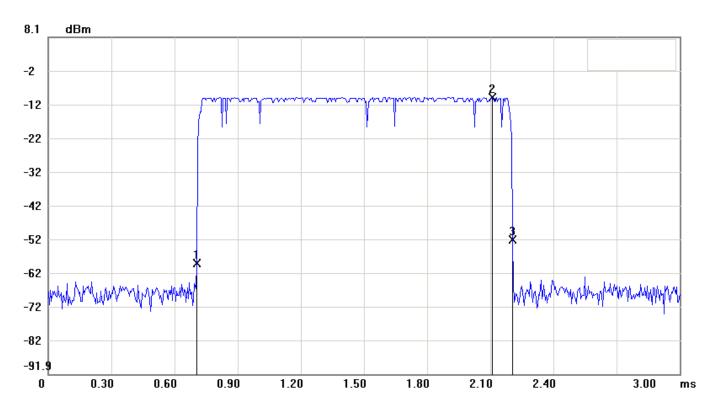
Model: RBW: 1000 KHz VBW: 1000 KHz

Test Mode:

Note: DH1 Hops per 3.16 seconds

FCC ID: BABFT0058A Sheet 71 of 76 Sheets
ETC Report No.: 13-04-MAS-068-02

12.4.2 3DH3


Test period=0.4(second/channel) \times 79 channel=31.6sec 2441MHz dwell time= $1.5 \text{ ms} \times 170 = 255 \text{ ms}$

Note: Please refer to page 72 to page 73 for chart.

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #17 Date: 2013/4/16 Temperature: 20 °C

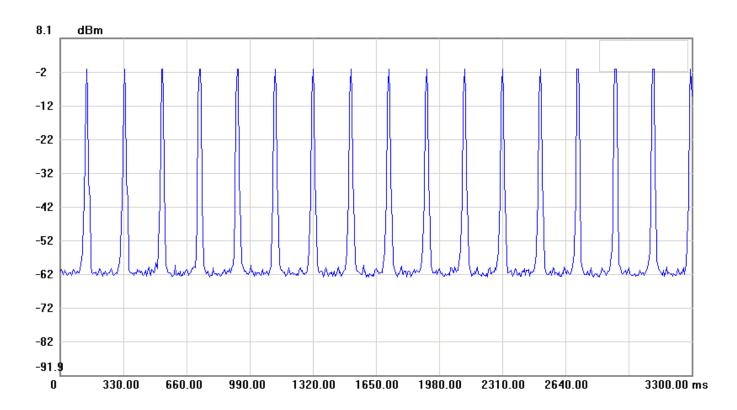
Time: PM 12:17:25 Humidity: 54 %

Condition: -44.75dBm RF Conducted

EUT: Sweep Time: 3ms Att.: 10dB

Model: RBW: 1000 KHz VBW: 1000 KHz

Test Mode:


Note: DH3 pusle width

No.	Sweep time(ms)	Level(dBm)
1	0.7050	-58.97
2	2.1100	-9.75
3	2.2050	-51.99

No.		△Time(ms)	△Level(dB)
1	mk3-mk1	1.5	6.98

FCC ID: BABFT0058A Sheet 73 of 76 Sheets ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #16 Date: 2013/4/16 Temperature: 20 °C Time: PM 12:17:12 Humidity: 54 %

Condition: RF Conducted

EUT: Sweep Time: 3300ms Att.: 10dB

Model: RBW: 1000 KHz VBW: 1000 KHz

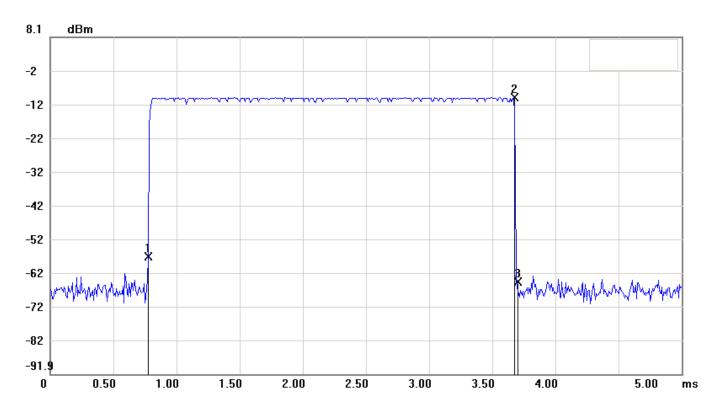
Test Mode:

Note: DH3 Hops per 3.16 seconds

Sheet 74 of 76 Sheets ETC Report No. : 13-04-MAS-068-02

12.4.3 3DH5

Test period=0.4(second/channel)×79 channel=31.6sec 2480MHz dwell time= 2.9167 ms×110 = 320.84 ms


Note: Please refer to page 75 to page 76 for chart.

Sheet 75 of 76 Sheets

ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #19 Date: 2013/4/16 Temperature: 20 °C

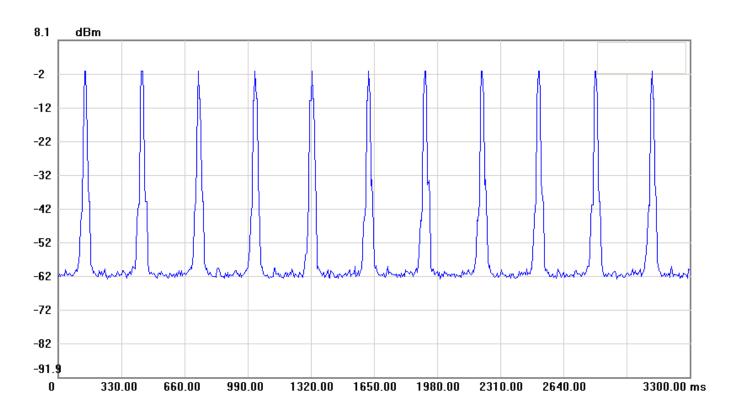
Time: PM 12:26:39 Humidity: 54 %

Condition: -44.81dBm RF Conducted

EUT: Sweep Time: 5ms Att.: 10dB

Model: RBW: 1000 KHz VBW: 1000 KHz

Test Mode:


Note: DH5 pulse width

No.	Sweep time(ms)	Level(dBm)
1	0.7750	-56.88
2	3.6667	-9.81
3	3.6917	-64.52

No.		△Time(ms)	△Level(dB)
1	mk3-mk1	2.9167	-7.64

FCC ID: BABFT0058A Sheet 76 of 76 Sheets
ETC Report No.: 13-04-MAS-068-02

File: FT0058A Data: #18 Date: 2013/4/16 Temperature: 20 °C Time: PM 12:26:22 Humidity: 54 %

Condition: RF Conducted

EUT: Sweep Time: 3300ms Att.: 10dB

Model: RBW: 1000 KHz VBW: 1000 KHz

Test Mode:

Note: DH5 Hops per 3.16 seconds