

Page : 1 of 21 Issued date : March 13, 2012 Revised date : March 15, 2012 FCC ID : BABFT0019A

# RADIO TEST REPORT

**Test Report No.: 32GE0069-HO-01-A-R1** 

Applicant : FUJITSU TEN LIMITED

Type of Equipment : Radio Detection and Ranging Device for Vehicle

Model No. : FT0019A

FCC ID : BABFT0019A

Test regulation : FCC Part 15 Subpart C: 2012

Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

2. The results in this report apply only to the sample tested.

3. This sample tested is in compliance with the above regulation.

4. The test results in this report are traceable to the national or international standards.

5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

6. This report is a revised version of 32GE0069-HO-01-A. 32GE0069-HO-01-A is replaced with this report.

Date of test:

February 23 to March 1, 2012

Representative test engineer:

Hironobu Ohnishi Engineer of WiSE Japan, UL Verification Service

Approved by:

Masanori Nishiyama Leader of WiSE Japan, UL Verification Service



NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. \*As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

UL Japan, Inc.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 2 of 21
Issued date : March 13, 2012
Revised date : March 15, 2012
FCC ID : BABFT0019A

| CONTENTS                                                        | PAGE |
|-----------------------------------------------------------------|------|
| SECTION 1: Customer information                                 | 3    |
| SECTION 2: Equipment under test (E.U.T.)                        | 3    |
| SECTION 3: Test specification, procedures & results             | 4    |
| SECTION 4: Operation of E.U.T. during testing                   |      |
| SECTION 5: Radiated Emission (Spurious Emission, Power Density) | 9    |
| SECTION 6: Frequency Stability                                  | 11   |
| APPENDIX 1: Data of EMI test                                    |      |
| 26dB and 99% Bandwidth                                          | 12   |
| Power Density                                                   | 13   |
| Spurious Emission                                               | 14   |
| Frequency Stability                                             | 16   |
| APPENDIX 2: Test instruments                                    | 17   |
| APPENDIX 3: Photographs of test setup                           |      |
| Spurious Emission                                               |      |
| Carrier Frequency Measurement                                   |      |
| Frequency Stability                                             | 21   |

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 21 Issued date : March 13, 2012 Revised date : March 15, 2012 FCC ID : BABFT0019A

## **SECTION 1: Customer information**

Company Name : FUJITSU TEN LIMITED

Address : 2-28, Gosho-dori 1-Chome, Hyogo-ku, Kobe 652-8510, Japan

Telephone Number : +81-78-682-2159 Facsimile Number : +81-78-671-7160 Contact Person : Shotatsu Yo

# **SECTION 2: Equipment under test (E.U.T.)**

#### 2.1 Identification of E.U.T.

Type of Equipment : Radio Detection and Ranging Device for Vehicle

Model No. : FT0019A

Serial No. : Refer to Section 4, Clause 4.2

Receipt Date of Sample : February 21, 2012

Country of Mass-production : Japan

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

## 2.2 Product Description

Model No: FT0019A (referred to as the EUT in this report) is the Radio Detection and Ranging Device for Vehicle.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 4 of 21 Issued date : March 13, 2012 Revised date : March 15, 2012 FCC ID : BABFT0019A

# **SECTION 3: Test specification, procedures & results**

#### 3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2012, final revised on February 1, 2012

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.253 Operation within the bands 46.7-46.9GHz and 76.0-77.0GHz.

#### 3.2 Procedures and results

| Item                | Test Procedure                                                                          | Specification                                                               | Worst margin                          | Results  | Remarks  |
|---------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|----------|----------|
| Conducted Emission  | FCC: ANSI C63.4:2003 7. AC power line Conducted Emission measurements IC: RSS-Gen 7.2.4 | FCC: Section 15.207 IC: RSS-Gen 7.2.4                                       | ·N/A                                  | N/A      | *1)      |
| 26dB Bandwidth      | FCC: "MILLIMETER WAVE TEST PROCEDURES"  IC: -                                           | FCC: Section 15.253(e) IC: RSS-210 A13.1.5                                  |                                       | Complied | Radiated |
| Power Density       | FCC: "MILLIMETER WAVE TEST PROCEDURES"  IC: -                                           |                                                                             | See data.                             | Complied | Radiated |
| Spurious Emissions  | FCC: ANSI C63.4:2003, "MILLIMETER WAVE TEST PROCEDURES" IC: RSS-Gen 4.9                 | FCC: Section 15.253(c), (d)  IC: RSS-210 A13.1.2(2), A13.1.4, RSS-Gen 7.2.3 | 2.2dB<br>9563.165MHz, AV,<br>Vertical | Complied | Radiated |
| Frequency Stability | FCC: "MILLIMETER WAVE TEST PROCEDURES" IC: RSS-Gen 4.7, 7.2.4                           | FCC: Section 15.253(e) IC: RSS-210 A13.1.5                                  | See data.                             | Complied | Radiated |

<sup>\*1)</sup> The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

Millimeter wave measurement was performed accordance with FCC KDB 200443 (MILLIMETER WAVE TEST PROCEDURES).

#### FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup> In case any questions arise about test procedure, ANSI C63.4: 2003 is also referred.

 Page
 : 5 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

#### 3.3 Addition to standard

| Item                   | Test Procedure    | Specification     | Worst margin | Results | Remarks  |
|------------------------|-------------------|-------------------|--------------|---------|----------|
| 99% Occupied Bandwidth | IC: RSS-Gen 4.6.1 | IC: RSS-Gen 4.6.1 | N/A          | -       | Radiated |

Other than above, no addition, exclusion nor deviation has been made from the standard.

## 3.4 Uncertainty

#### **EMI**

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

| Test room |        | Radiated emission   |        |        |        |                 |                                          |  |  |
|-----------|--------|---------------------|--------|--------|--------|-----------------|------------------------------------------|--|--|
| (semi-    |        | (3m*)( <u>+</u> dB) |        |        |        | )( <u>+</u> dB) | $(0.5\text{m*})(\underline{+}\text{dB})$ |  |  |
| anechoic  | 9kHz   | 30MHz               | 300MHz | 1GHz   | 10GHz  | 18GHz           | 26.5GHz                                  |  |  |
| chamber)  | -30MHz | -300MHz             | -1GHz  | -10GHz | -18GHz | -26.5GHz        | -40GHz                                   |  |  |
| No.1      | 4.2dB  | 5.0dB               | 5.1dB  | 4.7dB  | 5.7dB  | 4.4dB           | 4.3dB                                    |  |  |
| No.2      | 4.1dB  | 5.2dB               | 5.1dB  | 4.8dB  | 5.6dB  | 4.3dB           | 4.2dB                                    |  |  |
| No.3      | 4.5dB  | 5.0dB               | 5.2dB  | 4.8dB  | 5.6dB  | 4.5dB           | 4.2dB                                    |  |  |
| No.4      | 4.7dB  | 5.2dB               | 5.2dB  | 4.8dB  | 5.6dB  | 5.1dB           | 4.2dB                                    |  |  |

<sup>\*3</sup>m/1m/0.5m = Measurement distance

| Radiated emission ( <u>+</u> dB) |       |  |  |  |  |
|----------------------------------|-------|--|--|--|--|
| 40GHz-50GHz                      | 3.9dB |  |  |  |  |
| 50GHz-75GHz                      | 5.1dB |  |  |  |  |
| 75GHz-110GHz                     | 5.4dB |  |  |  |  |
| 110GHz-170GHz                    | 5.2dB |  |  |  |  |
| 170GHz-260GHz                    | 5.2dB |  |  |  |  |

### Radiated emission test(3m)

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

#### Power Density

The data listed in this test report has enough margin, more than the site margin.

**Head Office EMC Lab.** 

 $4383\text{-}326 \; Asama\text{-}cho, \, Ise\text{-}shi, \, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$ 

 Page
 : 6 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

#### 3.5 Test Location

UL Japan, Inc. Head Office EMC Lab. \*NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

|                            | FCC                    | IC Registration | Width x Depth x    | Size of                                                     | Other                       |
|----------------------------|------------------------|-----------------|--------------------|-------------------------------------------------------------|-----------------------------|
|                            | Registration<br>Number | Number          | Height (m)         | reference ground plane (m) /<br>horizontal conducting plane | rooms                       |
| No.1 semi-anechoic chamber | 313583                 | 2973C-1         | 19.2 x 11.2 x 7.7m | 7.0 x 6.0m                                                  | No.1 Power source room      |
| No.2 semi-anechoic chamber | 655103                 | 2973C-2         | 7.5 x 5.8 x 5.2m   | 4.0 x 4.0m                                                  | -                           |
| No.3 semi-anechoic chamber | 148738                 | 2973C-3         | 12.0 x 8.5 x 5.9m  | 6.8 x 5.75m                                                 | No.3<br>Preparation<br>room |
| No.3 shielded room         | -                      | -               | 4.0 x 6.0 x 2.7m   | N/A                                                         | -                           |
| No.4 semi-anechoic chamber | 134570                 | 2973C-4         | 12.0 x 8.5 x 5.9m  | 6.8 x 5.75m                                                 | No.4<br>Preparation<br>room |
| No.4 shielded room         | -                      | -               | 4.0 x 6.0 x 2.7m   | N/A                                                         | -                           |
| No.5 semi-anechoic chamber | -                      | -               | 6.0 x 6.0 x 3.9m   | 6.0 x 6.0m                                                  | -                           |
| No.6 shielded room         | -                      | -               | 4.0 x 4.5 x 2.7m   | 4.75 x 5.4 m                                                | -                           |
| No.6 measurement room      | -                      | -               | 4.75 x 5.4 x 3.0m  | 4.75 x 4.15 m                                               | -                           |
| No.7 shielded room         | -                      | -               | 4.7 x 7.5 x 2.7m   | 4.7 x 7.5m                                                  | -                           |
| No.8 measurement room      | -                      | -               | 3.1 x 5.0 x 2.7m   | N/A                                                         | -                           |
| No.9 measurement room      | -                      | -               | 8.0 x 4.5 x 2.8m   | 2.0 x 2.0m                                                  | -                           |
| No.10 measurement room     | -                      | -               | 2.6 x 2.8 x 2.5m   | 2.4 x 2.4m                                                  | -                           |
| No.11 measurement room     | -                      | -               | 3.1 x 3.4 x 3.0m   | 2.4 x 3.4m                                                  | -                           |

<sup>\*</sup> Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

## 3.6 Data of EMI, Test instruments, and Test set up

Refer to APPENDIX.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 7 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

# **SECTION 4: Operation of E.U.T. during testing**

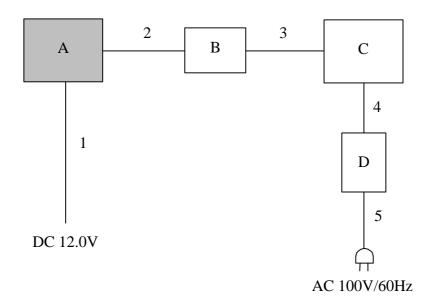
## **4.1** Operating Mode(s)

| Mode                                                                                                                                                 | Test Item           |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| Operating mode (In motion) *1)                                                                                                                       | 26dB Bandwidth      |  |  |  |
|                                                                                                                                                      | Power Density       |  |  |  |
|                                                                                                                                                      | Spurious Emission   |  |  |  |
|                                                                                                                                                      | Frequency Stability |  |  |  |
| End users cannot change the settings of the output pov                                                                                               | wer of the product. |  |  |  |
| *1) All test items were performed on "In motion" mode, since the EUT is controlled by vehicle's computer to radiate only when the vehicle is moving. |                     |  |  |  |

UL Japan, Inc.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


 Page
 : 8 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

## 4.2 Configuration and peripherals



<sup>\*</sup> Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

**Description of EUT** 

| No. | Item                        | Model number | Serial number | Manufacturer    | Remarks |
|-----|-----------------------------|--------------|---------------|-----------------|---------|
| A   | Radio Detection and Ranging | FT0019A      | 10102         | FUJITSU TEN     | EUT     |
|     | Device for Vehicle          |              |               | LIMITED         |         |
| В   | CANcab                      | 251          | -             | vector          | -       |
| C   | Laptop PC                   | FMVNAL3HCA   | R5306361      | FUJITSU LIMITED | -       |
| D   | AC Adaptor                  | FMV-AC312    | 052510895B    | FUJITSU LIMITED | -       |

List of cables used

| No. | Name         | Length (m) | Shield     |            | Remarks |
|-----|--------------|------------|------------|------------|---------|
|     |              |            | Cable      | Connector  |         |
| 1   | DC Cable     | 2.0        | Unshielded | Unshielded | -       |
| 2   | CAN Cable    | 2.3        | Unshielded | Unshielded | -       |
| 3   | Signal Cable | 0.3        | Unshielded | Unshielded | -       |
| 4   | DC Cable     | 1.8        | Unshielded | Unshielded | -       |
| 5   | AC Cable     | 1.9        | Unshielded | Unshielded | -       |

# UL Japan, Inc.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 9 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

## **SECTION 5: Radiated Emission (Spurious Emission, Power Density)**

# Test Procedure [Up to 40GHz]

EUT was placed on a urethane platform of nominal size, 0.5m by 1.0m(9kHz-10GHz), 0.5m by 0.5m(10GHz-40GHz), raised 0.8m(9kHz-10GHz), 1.0m(10GHz-40GHz) above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane. The height of the measuring antenna varied between 1 and 4m (frequency 9kHz-30MHz: loop antenna was fixed height at 1.0m) and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength. The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer. The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table. When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

#### Test Antennas are used as below;

| Frequency    | Below 30MHz | 30MHz to 300MHz | 300MHz to 1GHz | Above 1GHz |
|--------------|-------------|-----------------|----------------|------------|
| Antenna Type | Loop        | Biconical       | Logperiodic    | Horn       |

| Frequency       | 9kHz-150kHz   | 150kHz-30MHz  | 30MHz-1GHz    | 1GHz-231GHz            |                        |
|-----------------|---------------|---------------|---------------|------------------------|------------------------|
| Instrument used | Test Receiver | Test Receiver | Test Receiver | Spectrum Analy         | zer                    |
| Detector        | QP, AV        | QP, AV        | QP            | PK                     | AV                     |
| IF Bandwidth    | BW 200Hz      | BW 9kHz       | BW 120kHz     | RBW: 1MHz              | RBW: 1MHz              |
|                 |               |               |               | VBW: 3MHz              | VBW: 10Hz              |
|                 |               |               |               |                        | *1)                    |
| Test Distance   | 3m            | 3m            | 3m            | 3m (below 10GHz),      |                        |
|                 |               |               |               | 1m*2) (above 10GHz),   |                        |
|                 |               |               |               | 0.5m*3) (26.5 - 40GHz) |                        |
|                 |               |               |               |                        |                        |
|                 |               |               |               | Above 40GHz:           |                        |
|                 |               |               |               | For more details       | s, refer to next page. |

<sup>\*1)</sup> The test was performed with VBW 10Hz since the harmonics of oscillation (9.6GHz VCO) had continuously oscillated, except for carrier frequency.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*2)</sup> Distance Factor: 20 x log (3.0m/1.0m) = 9.5dB \*3) Distance Factor: 20 x log (3.0m/0.5m) = 15.6dB

 Page
 : 10 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

#### [Above 40GHz]

The test was performed based on "MILLIMETER WAVE TEST PROCEDURES".

The EUT was placed on a urethane platform, raised 1.0m above the conducting ground plane.

The measurements were performed on handheld method.

Set spectrum analyzer RBW, VBW, span, etc., to the proper values. Note these values. Enable two traces—one set to "clear write," and the other set to "max hold."

Begin hand-held measurements with the test antenna (horn) at a distance of 1 m from the EUT in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 m from the EUT.

Observation of the two active traces on the spectrum analyzer will allow refined horn

positioning at the point(s) of maximum field intensity. Repeat with the horn in a vertically polarized position. If the emission cannot be detected at 1 m, reduce the RBW to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.

Note the maximum level indicated on the spectrum analyzer. Adjust this level, if necessary, by the antenna gain, conversion loss of the external mixer and gain of LNA used, at the frequency under investigation. Calculate the field strength of the emission at the measurement distance from the Friis' transmission equation.

#### [About carrier measurement]

The carrier levels were confirmed at maximum direction of transmission. The maximum direction was searched under carefully since beam-widths are extremely narrow.

The carrier levels were measured in the far field. The distance of the far field was calculated from follow equation.

$$r = \frac{2D^2}{\lambda}$$

where

r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m Lambda is the wavelength of the emission under investigation [300/f (MHz)], in m

| Frequency | Lambda | Maxi        | Far Field |       |          |
|-----------|--------|-------------|-----------|-------|----------|
|           |        | H V Diagona |           |       | Boundary |
| [GHz]     | [mm]   | [mm]        | [mm]      | D [m] | r [m]    |
| 77.0      | 3.9    | 91.4        | 61.5      | 0.110 | 6.3      |

The test was made on EUT at the normal use position since the installation position was decided based on "Theory of operation".

For the carrier measurement, the measuring antenna was angularly-tilted, since the EUT has angularly-tilted linear polarized antenna.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9k-231GHz
Test data : APPENDIX
Test result : Pass

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 11 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

## **SECTION 6: Frequency Stability**

#### **Test Procedure**

The external mixer was placed in side of the temperature chamber drain hole.

The power supply set to 100 % nominal setting, raise EUT operating temperature to 50 deg. C.

Record the frequency excursion of the EUT emission mask.

Repeat measurements at each 10 deg. C increment down to -20 deg. C.

Varied EUT power supply between 85% and 115% of nominal and record the frequency excursion of the EUT emission mask when temperature is  $20\deg$ . C.

Emission mask was measured 26dB bandwidth.

Test data : APPENDIX

Test result : Pass

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 12 of 21

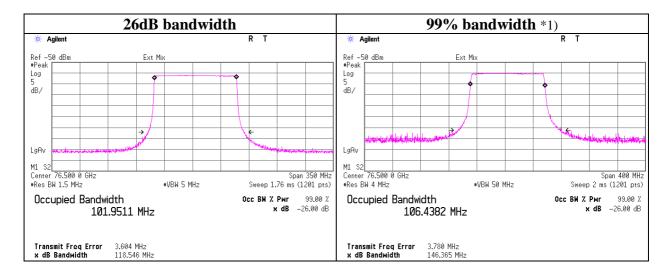
 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

## **APPENDIX 1: Data of EMI test**

## 26dB and 99% Bandwidth


Test place Head Office EMC Lab. No.3 Semi Anechoic Chamber

Report No. 32GE0069-HO-01 Date 02/28/2012

Temperature/ Humidity
Engineer
Hironobu Ohnishi
Mode

23 deg. C / 32% RH
Hironobu Ohnishi
Operating mode

| Frequency | 26dB      | 99% Occupied |
|-----------|-----------|--------------|
|           | Bandwidth | Bandwidth    |
| [GHz]     | [MHz]     | [MHz]        |
| 76.500    | 118.546   | 106.438      |



\*1) The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100%.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 13 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

## **Power Density**

Test place Head Office EMC Lab. No.3 Semi Anechoic Chamber

Report No. 32GE0069-HO-01 Date 02/28/2012

Temperature/ Humidity
Engineer
Hironobu Ohnishi
Mode

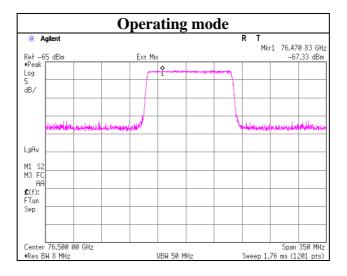
23 deg. C / 32% RH
Hironobu Ohnishi
Operating mode

| Mode           | Frequency | Measurement | Measured | Rx Antenna | System | LNA  | Free field  |
|----------------|-----------|-------------|----------|------------|--------|------|-------------|
|                |           | Distance    | Power    | Gain       | Loss   | Gain | Attenuation |
|                | [GHz]     | [m]         | [dBm]    | [dBi]      | [dB]   | [dB] | [dB]        |
| Operating mode | 76.47083  | 6.5         | -67.33   | 22.32      | 41.96  | 0.00 | 86.37       |

| Mode           | Peak EIRP S |        | Specification Power Den |          | Limit    | Margin |
|----------------|-------------|--------|-------------------------|----------|----------|--------|
|                |             |        | Distance                | Pk       | Pk       | Pk     |
|                | [dBm]       | [mW]   | [m]                     | [uW/cm2] | [uW/cm2] | [dB]   |
| Operating mode | 38.68       | 7376.6 | 3.0                     | 6.522    | 6000     | 29.64  |

| Mode           | Duty     | Average                 | EIRP   | Specification | Power Density | Limit    | Margin |
|----------------|----------|-------------------------|--------|---------------|---------------|----------|--------|
|                | Factor * | (Peak with Duty Factor) |        | Distance      | Av            | Av       | Av     |
|                | [dB]     | [dBm]                   | [mW]   | [m]           | [uW/cm2]      | [uW/cm2] | [dB]   |
| Operating mode | -3.01    | 35.67                   | 3688.3 | 3.0           | 3.261         | 60       | 12.65  |

<sup>\* 10</sup>log(0.5): Since duty is 50%, Refer to exhibit "Theory of operation"


#### Calculating formula:

Free Field Attenuation = 10 \* log((4 \* pi \* Measurement Distance / lambda) ^ 2)

Peak EIRP = Measured Power - Rx Antenna Gain + System Loss - LNA Gain + Free Field Attenuation

 $Average\ EIRP = Peak\ EIRP + Duty\ Factor$ 

Power Density = EIRP / (4 \* pi \* Specification Distance ^ 2)



<sup>\*</sup> The peak power density complies with both peak and average limits.

## UL Japan, Inc.

### **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup> As for the limit, 60uW/cm<sup>2</sup> of §15.253 (b) (2) was applied to the EUT based on "Theory of operation".

 Page
 : 14 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

## **Spurious Emission**

Report No. 32GE0069-HO-01 Test place Head Office EMC Lab.

 Semi Anechoic Chamber
 No.4
 No.3

 Date
 02/25/2012
 02/28/2012

Temperature/ Humidity

22 deg. C / 30% RH

Engineer

Hironobu Ohnishi

(9kHz-18GHz)

02/25/2012

02/25/2012

02/25/2012

02/25/2012

03/25/2012

03/25/2012

03/25/2012

03/25/2012

03/25/2012

03/25/2012

03/25/2012

03/25/2012

03/25/2012

03/25/2012

03/25/2012

03/25/2012

03/25/2012

Mode Operating mode

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss  | Gain | Result   | Limit    | Margin | Remark   |
|----------|-----------|----------|---------|----------|-------|------|----------|----------|--------|----------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB]  | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |          |
| Hori     | 89.599    | QP       | 26.4    | 8.2      | 7.9   | 32.2 | 10.3     | 43.5     | 33.2   |          |
| Hori     | 447.998   | QP       | 29.9    | 18.3     | 10.8  | 32.1 | 26.9     | 46.0     | 19.1   |          |
| Hori     | 9563.165  | PK       | 47.0    | 38.3     | 4.8   | 33.2 | 56.9     | 73.9     | 17.0   |          |
| Hori     | 19125.340 | PK       | 52.0    | 37.9     | -2.5  | 32.2 | 55.2     | 73.9     | 18.7   |          |
| Hori     | 28688.220 | PK       | 40.8    | 40.0     | -10.1 | 24.8 | 45.9     | 73.9     | 28.0   |          |
| Hori     | 38251.330 | PK       | 43.7    | 42.0     | -9.0  | 24.0 | 52.7     | 73.9     | 21.2   |          |
| Hori     | 9563.165  | AV       | 41.1    | 38.3     | 4.8   | 33.2 | 51.0     | 53.9     | 2.9    | VBW=10Hz |
| Hori     | 19125.340 | AV       | 48.0    | 37.9     | -2.5  | 32.2 | 51.2     | 53.9     | 2.7    | VBW=10Hz |
| Hori     | 28688.220 | AV       | 34.5    | 40.0     | -10.1 | 24.8 | 39.6     | 53.9     | 14.3   | VBW=10Hz |
| Hori     | 38251.330 | AV       | 33.3    | 42.0     | -9.0  | 24.0 | 42.3     | 53.9     | 11.6   | VBW=10Hz |
| Vert     | 89.599    | QP       | 32.5    | 8.2      | 7.9   | 32.2 | 16.4     | 43.5     | 27.1   |          |
| Vert     | 447.998   | QP       | 27.0    | 18.3     | 10.8  | 32.1 | 24.0     | 46.0     | 22.0   |          |
| Vert     | 9563.165  | PK       | 47.6    | 38.3     | 4.8   | 33.2 | 57.5     | 73.9     | 16.4   |          |
| Vert     | 19125.340 | PK       | 49.2    | 37.9     | -2.5  | 32.2 | 52.4     | 73.9     | 21.5   |          |
| Vert     | 28688.220 | PK       | 42.7    | 40.0     | -10.1 | 24.8 | 47.8     | 73.9     | 26.1   |          |
| Vert     | 38251.330 | PK       | 44.0    | 42.0     | -9.0  | 24.0 | 53.0     | 73.9     | 20.9   |          |
| Vert     | 9563.165  | AV       | 41.8    | 38.3     | 4.8   | 33.2 | 51.7     | 53.9     | 2.2    | VBW=10Hz |
| Vert     | 19125.340 | AV       | 46.0    | 37.9     | -2.5  | 32.2 | 49.2     | 53.9     | 4.7    | VBW=10Hz |
| Vert     | 28688.220 | AV       | 37.2    | 40.0     | -10.1 | 24.8 | 42.3     | 53.9     | 11.6   | VBW=10Hz |
| Vert     | 38251.330 | AV       | 34.6    | 42.0     | -9.0  | 24.0 | 43.6     | 53.9     | 10.3   | VBW=10Hz |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) \*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

 $\begin{array}{lll} \mbox{Distance factor:} & 10\mbox{GHz-26.5GHz} & 20\mbox{log}(3.0\mbox{m}/1.0\mbox{m}) = 9.5\mbox{dB} \\ 26.5\mbox{GHz-40\mbox{GHz}} & 20\mbox{log}(3.0\mbox{m}/0.5\mbox{m}) = 15.6\mbox{dB} \end{array}$ 

The average measurement was performed with VBW 10Hz since the harmonics of oscillation (9.6GHz VCO) had continuously oscillated.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 15 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

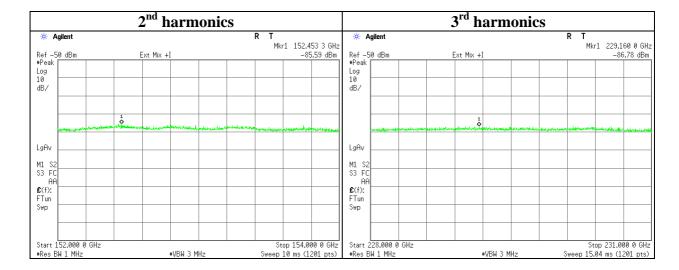
## **Spurious Emission (above 40GHz)**

Test place Head Office EMC Lab. No.4 Semi Anechoic Chamber

Report No. 32GE0069-HO-01

Date 02/28/2012 03/01/2012

Temperature/ Humidity 23 deg. C / 32% RH 22 deg. C / 30% RH Engineer Hironobu Ohnishi Hironobu Ohnishi


(40-50GHz) (50-231GHz)

Mode Operating mode

\* The peak density is less than the average limit.

There is no spurious emission from 40GHz to 231GHz except for operating band.

The following shows the measurement results of the harmonics.



**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 16 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

## **Frequency Stability**

Test place Head Office EMC Lab. No.6 Shielded room

Report No. 32GE0069-HO-01 Date 02/23/2012

Temperature/ Humidity
Engineer
Hironobu Ohnishi
Mode

23 deg. C / 35% RH
Hironobu Ohnishi
Operating mode

| Test Condition |              | Center    | Frequency | 26dB      | Lower     | Upper     |
|----------------|--------------|-----------|-----------|-----------|-----------|-----------|
| Temperature    | Power Supply | Frequency | Error     | Bandwitdh | Frequency | Frequency |
| [deg. C]       | [V]          | [GHz]     | [MHz]     | [MHz]     | [GHz]     | [GHz]     |
| 50             | 12.0         | 76.500    | -16.854   | 123.292   | 76.422    | 76.545    |
| 40             | 12.0         | 76.500    | -8.748    | 121.705   | 76.430    | 76.552    |
| 30             | 12.0         | 76.500    | 1.822     | 121.377   | 76.441    | 76.563    |
| 20             | 12.0         | 76.500    | 10.363    | 124.475   | 76.448    | 76.573    |
| 10             | 12.0         | 76.500    | 21.159    | 120.493   | 76.461    | 76.581    |
| 0              | 12.0         | 76.500    | 30.276    | 121.061   | 76.470    | 76.591    |
| -10            | 12.0         | 76.500    | 40.715    | 123.459   | 76.479    | 76.602    |
| -20            | 12.0         | 76.500    | 51.225    | 120.731   | 76.491    | 76.612    |
| 20             | 10.2         | 76.500    | 10.511    | 122.037   | 76.449    | 76.572    |
| 20             | 13.8         | 76.500    | 10.717    | 121.152   | 76.450    | 76.571    |
| 20             | 9.0          | 76.500    | 9.760     | 123.439   | 76.448    | 76.571    |
| 20             | 16.0         | 76.500    | 10.249    | 121.814   | 76.449    | 76.571    |

#### Calculating formula:

 $Lower\ Frequency = Center\ Frequency + Frequency\ Error - 26dB\ Bandwidth\ /\ 2$   $Upper\ Frequency = Center\ Frequency + Frequency\ Error + 26dB\ Bandwidth\ /\ 2$ 

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 17 of 21 : March 13, 2012 : March 15, 2012 Issued date Revised date FCC ID : BABFT0019A

# **APPENDIX 2: Test instruments**

| Control No. | Instrument                          | Manufacturer           | Model No                                                                                | Serial No                    | Test Item | Calibration Date * Interval(month) |
|-------------|-------------------------------------|------------------------|-----------------------------------------------------------------------------------------|------------------------------|-----------|------------------------------------|
| MOS-14      | Thermo-Hygrometer                   | Custom                 | CTH-201                                                                                 | -                            | RE        | 2012/02/06 * 12                    |
| MCH-04      | Temperature and<br>Humidity Chamber | Tabai Espec            | PL-2KP                                                                                  | 14015723                     | RE        | 2011/08/22 * 12                    |
| MHA-11      | Horn Antenna                        | WiseWave               | ARH1023-02                                                                              | 10766-01                     | RE        | 2011/10/31 * 12                    |
| MPA-18      | Pre Amplifier                       | AmTechs<br>Corporation | LNA-7511025                                                                             | 9601                         | RE        | 2011/08/27 * 12                    |
| MMX-01      | Preselected Millimeter<br>Mixer     | Agilent                | 11974V-E01                                                                              | 3001A00412                   | RE        | 2011/06/13 * 12                    |
| MCC-66      | Microwave Cable 1G-<br>40GHz        | Suhner                 | SUCOFLEX102                                                                             | 28636/2                      | RE        | 2011/04/22 * 12                    |
| MCC-67      | Microwave Cable 1G-<br>40GHz        | Suhner                 | SUCOFLEX102                                                                             | 28635/2                      | RE        | 2011/04/22 * 12                    |
| MSA-04      | Spectrum Analyzer                   | Agilent                | E4448A                                                                                  | US44300523                   | RE        | 2011/04/08 * 12                    |
| MAEC-04     | Semi Anechoic<br>Chamber(NSA)       | TDK                    | Semi Anechoic<br>Chamber 3m                                                             | DA-10005                     | RE        | 2011/03/01 * 12                    |
| MOS-15      | Thermo-Hygrometer                   | Custom                 | CTH-180                                                                                 | -                            | RE        | 2012/02/06 * 12                    |
| MJM-07      | Measure                             | PROMART                | SEN1955                                                                                 | -                            | RE        | -                                  |
| COTS-MEMI   | EMI measurement program             | TSJ                    | TEPTO-DV                                                                                | -                            | RE        | -                                  |
| MSA-03      | Spectrum Analyzer                   | Agilent                | E4448A                                                                                  | MY44020357                   | RE        | 2011/11/23 * 12                    |
| MTR-07      | Test Receiver                       | Rohde & Schwarz        | ESCI                                                                                    | 100635                       | RE        | 2011/10/19 * 12                    |
| MLPA-01     | Loop Antenna                        | Rohde & Schwarz        | HFH2-Z2                                                                                 | 100017                       | RE        | 2011/10/19 * 12                    |
| MCC-113     | Coaxial cable                       | Fujikura/Suhner/TSJ    | 5D-2W(10m)/<br>SFM141(5m)/<br>421-010(1m)/<br>sucoform141-PE(1m)/<br>RFM-E121(Switcher) | -/04178                      | RE        | 2011/07/04 * 12                    |
| MCC-31      | Coaxial cable                       | UL Japan               | -                                                                                       | -                            | RE        | 2011/07/28 * 12                    |
| MPA-14      | Pre Amplifier                       | SONOMA<br>INSTRUMENT   | 310                                                                                     | 260833                       | RE        | 2011/03/04 * 12                    |
| MAT-09      | Attenuator(6dB)                     | Weinschel Corp         | 2                                                                                       | BK7973                       | RE        | 2011/11/02 * 12                    |
| MBA-05      | Biconical Antenna                   | Schwarzbeck            | BBA9106                                                                                 | 1302                         | RE        | 2011/11/16 * 12                    |
| MLA-08      | Logperiodic Antenna                 | Schwarzbeck            | UKLP9140-A                                                                              | N/A                          | RE        | 2011/11/16 * 12                    |
| MCC-50      | Coaxial Cable                       | UL Japan               | -                                                                                       | -                            | RE        | 2011/03/25 * 12                    |
| MHA-21      | Horn Antenna 1-18GHz                | Schwarzbeck            | BBHA9120D                                                                               | 9120D-557                    | RE        | 2011/08/11 * 12                    |
| MCC-133     | Microwave Cable                     | HUBER+SUHNER           | SUCOFLEX104                                                                             | 336164/4(1m) /<br>340640(5m) | RE        | 2011/09/07 * 12                    |
| MPA-12      | MicroWave System<br>Amplifier       | Agilent                | 83017A                                                                                  | MY39500780                   | RE        | 2011/03/10 * 12                    |
| MAEC-03     | Semi Anechoic<br>Chamber(NSA)       | TDK                    | Semi Anechoic<br>Chamber 3m                                                             | DA-10005                     | RE        | 2011/02/22 * 12                    |
| MOS-13      | Thermo-Hygrometer                   | Custom                 | CTH-180                                                                                 | -                            | RE        | 2012/02/06 * 12                    |
| MJM-06      | Measure                             | PROMART                | SEN1955                                                                                 | -                            | RE        | -                                  |
| MHA-16      | Horn Antenna 15-40GHz               | Schwarzbeck            | BBHA9170                                                                                | BBHA9170306                  | RE        | 2011/05/23 * 12                    |
| MPA-11      | MicroWave System<br>Amplifier       | Agilent                | 83017A                                                                                  | MY39500779                   | RE        | 2011/03/10 * 12                    |
| MCC-140     | Microwave Cable                     | Junkosha               | J12J101596-00                                                                           | JAN-31-12-001                | RE        | 2012/02/24 * 12                    |

# UL Japan, Inc.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 18 of 21

 Issued date
 : March 13, 2012

 Revised date
 : March 15, 2012

 FCC ID
 : BABFT0019A

EMI test equipment (2/2)

| Control No. | Instrument                          | Manufacturer          | Model No        | Serial No    | Test Item | Calibration Date * Interval(month) |
|-------------|-------------------------------------|-----------------------|-----------------|--------------|-----------|------------------------------------|
| MPA-03      | Microwave System<br>Power Amplifier | Agilent               | 83050A          | 3950M00205   | RE        | 2011/06/15 * 12                    |
| MHA-07      | Horn Antenna                        | Custom                | HO22R           | 10766-01     | RE        | 2011/10/31 * 12                    |
| MMX-02      | Harmonic Mixer                      | Agilent               | 11970W          | 2521 A01909  | RE        | 2011/06/14 * 12                    |
| MHA-09      | Horn Antenna                        | WiseWave              | ARH1523-02      | 10766-01     | RE        | 2011/10/31 * 12                    |
| MPA-08      | Pre Amplifier                       | WiseWave              | ALN-61226028-51 | 11576-01-071 | RE        | 2011/08/27 * 12                    |
| MHA-24      | Horn Antenna                        | Custom Microwave Inc. | HO6R            | -            | RE        | 2011/09/19 * 12                    |
| MMX-03      | Harmonic Mixer                      | OML Inc.              | M06HWD          | D100709-1    | RE        | 2011/09/30 * 12                    |
| MHA-27      | Horn Antenna                        | Custom Microwave Inc. | HO4R            | -            | RE        | 2011/09/19 * 12                    |
| MMX-04      | Harmonic Mixer                      | OML Inc.              | M04HWD          | Y100709-1    | RE        | 2011/09/30 * 12                    |
| MDPLX-01    | Diplexer                            | OML Inc.              | DPL26           | -            | RE        | 2011/09/19 * 12                    |
| MCC-135     | Microwave Cable                     | HUBER+SUHNER          | SUCOFLEX102     | 37511/2      | RE        | 2011/08/31 * 12                    |

The expiration date of the calibration is the end of the expired month.

#### [Below 40GHz]

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

#### [Above 40GHz]

Acceptance criteria for untraceable equipment was formulated according to ISO/IEC 17025 5.6.2.2.2, and the regular inspection was performed based on it annually.

For 40-110GHz, power sensor is calibrated by manufacturer, and the measured calibration data is used as inhouse reference. The calibration data by manufacturer is checked for acceptance by a calorie meter except for some frequency bands.

For above 110GHz, output level of millimeter wave source module is used as the reference, and inspection by the calorie meter is performed.

Electric power is checked with the calorie meter by measuring resistance and voltage of reference resistor.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

#### **Test Item:**

**RE: Radiated Emission** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN