

Radio Satellite Communication

Untertürkheimer Straße 6–10, D-66117 Saarbrücken, Telephone +49 (0) 681 598 - 0, Fax +49 (0) 681 598 - 9075

Test report No.: 2-4310-01-02/06

This test report consists of 49 pages

Page 1 of 49

Test report No.:	2-4310-01-02/06
Applicant :	FUJITSU TEN LIMITED
Type :	MILIMETER-WAVE RADAR
Test standards :	FCC Part 15 (06/2005) / RSS210 Issue 6
FCC ID :	BAB271000395
IC ID :	2024B-271395

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 2 of 49

Table of contents

1 General information		3
1.1 Notes		3
1.2 Testing laboratory		4
1.3 Details of applicant _		4
1.4 Application details		4
1.5 Test item (EUT)		5
1.6.1 Operation condition	ns	5
1.7 Test standards		7
	ts	
2.2 Test environment		8
	set-up	
2.4.1Test set-up for the2.4.2Test set-up for the	ed and test set-up	9 10
2.5.1Test results overvie2.5.2Remarks on metho2.5.3Test results in deta	ewds of measurements lis de	12 12 12 16
3 Plots, graphs and data s	heets	25
4 Photographs		39
4.1 Photographs of the tes	st set-up	39
	UT	

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 3 of 49

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item .

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Tester :

Date	Name	Signature
2006-06-02	Manfred Paschwitz	M. antit

Technical responsibility for area of testing:

Date	Name	Signature
2006-06-02	Harro Ames	H. Juns

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 4 of 49

1.2 Testing laboratory

CETECOM ICT Services Gn Untertürkheimerstraße 6–10 D-66117 Saarbrücken Germany	P.O. Box 65 01 55	D-66140 Saarbrücken	
Telephone Fax e-mail Internet	+ 49 (0) 681 598–0 + 49 (0) 681 598–9075 <u>info@ict.cetecom.de</u> <u>http://www.cetecom-ict.de</u>		
Accredited testing laboratory Accredited by	Regulierungsbehörde für Tel	ekommunikation und Post	

Accredited by	:
Listed by	:

Regulierungsbehörde für Telekommunikation und Post (RegTP) Federal Communications Commission (FCC) Industry Canada (IC)

Authority	Identification/Registration No.
RegTP	DAT-P-176/94-D1
FCC	90462
IC	3463

Testing location, if different from CETECOM ICT Services GmbH: (Not applicable)

1.3 Details of applicant

Name	:	FUJITSU TEN LIMITED
Street	:	2-28 Gosho-Dori 1-chome, Hyogo-ku
Town	:	Kobe 652-8510
Country	:	Japan
Telephone	:	+ 81 (0) 78 682 2159
Fax	:	+ 81 (0) 78 671 7160
Contact		
Contact Name	:	Mr. Naoto NISHIMURA
	:	Mr. Naoto NISHIMURA + 81 (0) 78 682 2159
Name	: : :	
Name Telephone	•	+ 81 (0) 78 682 2159

1.4 Application details

Date of test : 2006-05-31 to 2006-06-01

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 5 of 49

1.5 Test item (EUT)

: 76 GHz millimeter-wave radar sensor
: MILIMETER-WAVE RADAR
: 6292
: FUJITSU TEN LIMITED
2-28 Gosho-Dori 1-chome, Hyogo-ku
Kobe 652-8510
Japan

1.6 Technical data

TX frequency range Centre frequency Channel Modulation EIRP (eirp) (measured) Antenna Extreme power supply U DC	:	76.000 – 77.000 GHz 76.593 300 GHz 1 FMCW 5.157 W (37.12 dBm) Tri-plate antenna +/-9deg (H), +/-2deg(V) 10.8 – 15.6 V
Extreme power supply U DC Nominal power supply U DC	:	1 8 8 9

1.6.1 Operation conditions

The sample was set in operating and in "not-in-motion"-mode via CAN-bus and a notebook with special software to simulate a moving or standing car.

The system uses pulsed FMCW-modulation with two different modulated time slots. You have a transmission time of 11.7 ms per 100ms. (see plot) So the correction factor from peak to mean power is -9.3 dB.

There is a third operation mode, un-modulated CW for adjusting the antenna in the cars. The peak output power of the un-modulated CW-signal is the same as the FMCW-signal in normal operation mode.

So we can do the RF-exposure measurement in normal operation mode.

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 6 of 49

1.6.2 Test Report Cover Sheet / Performance Test Data

Equipment Model Number:	MILIMETER-WAVE RADAR
Certification Number:	2024B-271395
Manufacturer:	FUJITSU TEN LIMITED
	2-28 Gosho-Dori 1-chome, Hyogo-ku
	Kobe 652-8510
	Japan
Tested to Radio Standards Specification (RSS) No.:	RSS210 Issue 6
Open Area Test Site Industry Canada Number:	3463
Frequency Range (or fixed frequency):	76.000 – 77.000 GHz
Power Density:	6,9 µW/cm ² (Peak) @ 3m
Occupied Bandwidth (99% BW):	107.8 MHz
Type of Modulation:	FM CW
Emission Designator (TRC-43):	108MQXN and 108MPON
Transmitter Spurious (worst case):	< 500µV/m @ 3m
Receiver Spurious (worst case):	Not applicable
Antenna Type:	Tri-plate antenna +/2.7deg (H), +/3.9deg(V)

ATTESTATION:

DECLARATION OF COMPLIANCE: I declare that the testing was performed or supervised by me; that the test

measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Signature:

H. Jus

Date: 2006-06-02

Test engineer: Harro Ames

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 7 of 49

1.7 Test standards

	Code of Federal Regulations (CFR 47) Federal Communications Commission (FCC)
FCC Part 15	Radio Frequency Devices (06/2005) Section 15.253 Operation within the band 76.0 to 77.0 GHz.
	Section 15.209 Radiation emission limits, general requirements
	Section 15.205 Restricted bands of operation.
	Industry Canada Radio Standards Specification
RSS - 210	Low Power Licence-Exempt Radio communication Devices for Cat I equipment Annex 13 Vehicle -Mounted Field Disturbance Sensors RSS210 Issue 6

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 8 of 49

2 Technical test

2.1 Summary of test results

X No deviations from the technical specification (s) were ascertained in the course of the performed tests.

The deviations as specified in 2.5 were ascertained in the course of the performed tests.

This test report :

X describes the first test

describes an additional test

is a verification of documents

is only valid with the test report no.

2.2 Test environment

The environmental conditions are documented especially for each test.

2.3 Measurement and test set-up

The measurement and test set-up is defined in the technical specification .

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 9 of 49

- 2.4 Test equipment utilized and test set-up
- **2.4.1** Test set-up for the measurement in the frequency range 12 GHz to 27 GHz Spurious radiation (EIRP; PEP)

Power supply EUT a(f) SGH a(k) SA d = 0,5 m

Frequency	Measurement	a(sys) [dB]	a(f) [dB]	a(k) [dB]	g [dBi]
f (GHz)	distance (m)				
12.4 18.0	0.5	34.8	51.6	1.7	18.4
18.0 27.0	0.5	38.2	54.4	2.2	18.4

Test equipment	Manufacturer	Туре	S/No. – Cetecom No.
Spectrum Analyser	HP	HP 8565E	3738A00773
SGH 12.4 18.0 GHz	narda	638	01005
SGH 18 27 GHz	narda	638	01005
Power supply	HP	HP 6032A	2848A07227
Climatic chamber	Vötsch	VUK 04/500	522/32678
RF-cable	HP	5061-5359	P36303

Measurement uncertainty

Test parameter	Measurement uncertainty
Input power (DC)	±0.1 V
Temperature	±0.2 °C
Frequency	±0.01 ppm
eirp	±1.0 dB

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 10 of 49

2.4.2 Test set-up for the measurement in the frequency range 27 GHz to 231 GHz Spurious radiation (EIRP; PEP) and radiated power density (EIRP; PEP)

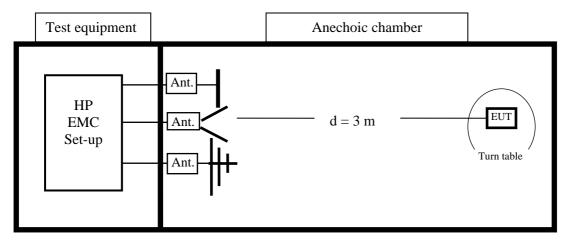
ower ipply		<u> </u>	CUT Climatic chamber		u(f) g xx m	Mixer	SA
	equ (Gl	ency Hz)		urement ce xx(m)	a(sys) [dB]	a(f) [dB]at lowest freq.	g [dBi]
		40.0		0.5	30.0	55.0	25.0

27.0 40.0	0.5	30.0	55.0	25.0
40.0 60.0	0.5	33.0	58.5	25.5
60.0 90.0	0.5	38.0	62.0	24.0
76.5	3.0	53.8	79.6	25.8
90.0 140.0	0.5	42.0	65.6	23.6
140.0 170.0	0.5	49.4	69.4	20.0
170.0 250.0	0.5	52.4	71.1	18.7

Calculation of system attenuation

on = free space attenuation – antenna gain a(sys) = a(f) - g

Test equipment	Manufacturer	Туре	S/No. – Cetecom No.
Spectrum Analyser	HP	8565E	3738A00773
Spectrum Analyser	R&S	FSU	1166.1660.50
SGH 27 40 GHz	Flann	2224	300001976
Mixer 27 40 GHz	Tektronix	WM490A	300000493c
SGH 40 60 GHz	Flann	2424	300001200g
Mixer 40 60 GHz	Tektronix	WM490U	300000298b
SGH 50 75 GHz	HP	2524	300001983
Mixer 50 75 GHz	HP	11970V	30000081h
SGH 60 90 GHz	Thomson	COR 60.90	300000814
Mixer 60 90 GHz	Tektronix	WM 780 W	B010127
SGH 90 140 GHz	Thomson	COR 90-140	300000181
Mixer 90 140 GHz	Tektronix	WM 780 F	B010129
SGH 140 170 GHz	Thomson	2924	300001999
Mixer 140 170 GHz	Tektronix	WM780 D	B010186
SGH 170 250 GHz	Thomson	3024	300002001
Mixer 170 250 GHz	Tektronix	WM780 J	B010241
Power supply	HP	HP 6032A	2848A07227
Climatic chamber	Vötsch	VUK 04/500	522/32678
RF-cable	HP	5061-5359	P36303


Measurement uncertainty

Test parameter	Measurement uncertainty
Input power (DC)	±0.1 V
Temperature	±0.2 °C
Frequency	±0.01 ppm
eirp up to 110 GHz	±1.5 dB
eirp up to 350 GHz	±2.5 dB

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 11 of 49

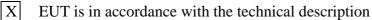
2.4.3 Test set-up for the measurement in the frequency range up to 12 GHz Spurious radiation

Test equipment	Manufacturer	Туре	S/No. – Cetecom No.
Spectrum analyser	HP	HP 85660B	2478A05306
Analyser display	HP	HP 85662A	2816A16541
Quasi peak adapter	HP	HP 85650A	2811A01131
RF-preselector	HP	HP 85685A	2833A00768
Biconical antenna	Emco	3104	3758
Logperantenna	Emco	3146	2304
Double ridge horn	Emco	3115	3007
Relay switch	R&S	RSU	375 339/002
High pass filter	FSY Microwave	HM 985955	001
Amplifier	Tron-Tech	P42-GA29	B2302
Power supply	HP	HP 6038A	2848A07027
RF-cable	HP	5061-5359	P36303

Measurement uncertainties

Test parameter	Uncertainty
Input power (DC)	±0.1 V
Temperature	±0.2 °C
Frequency	±0.01 ppm
RF-power	±1.5 dB

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 12 of 49


2.5 Test results

2.5.1 Test results overview

This test was performed :

in addition to the test report no.

Verification of EUT :

EUT is not in accordance with the technical description

- Х
 - The equipment is compliant to FCC requirement

2.5.2 Remarks on methods of measurements

The Radar head is positioned in a non-conductive fixture and can be rotated and tilted in all angles.

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 325 GHz in a semi-anechoic chamber, a fully-anechoic chamber and in our lab. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform with specifications ANSI C63.2-1996 clause 15 and ANSI C63.4-2003 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test set–ups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received.

The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths (RBW) over various frequency ranges are set according to requirement ANSI C63-4-2003 clause 4.2.

1. Measurements of the EIRP and power density (PD) at fundamental frequency

The measurements are carried out according to FCC guideline "Millimetre Wave Test Procedure" with a spectrum analyser (SA), harmonic mixer with appropriate frequency range and a rectangular standard gain horn antenna (SGH) with matching wave guide dimensions. The conversion loss of the external mixer is taken into account in the SA power level reading automatically.

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 13 of 49

The radiated power measurements are performed with resolution bandwidth filter (RBW) of 1.0 MHz and a video filter of 1 MHz. This filter setting is sufficiently broad enough to receive the peak envelope power (PEP) of the EUT. Tests are also performed with RBW 10.0 and Video bandwidth filter (VBW) 7.0 MHz. The received EIRP does not change when RBW and VBW are set to higher values.

The distance for fundamental power measurement generally is 3.0 m. The SA level scale shows the dimension dBm. With a SGH and a measured antenna aperture area the power density can be calculated from the equation:

Power density	· =	EIRP	/	Antenna aperture area	$[mW/cm^2]$
pd	=	eirp	_	a $[dB(mW/cm^2)]$	

2. Measurements of frequency stability

In order to measure the frequency stability of the EUT under normal and extreme test conditions, it is necessary to use a smaller RBW filter (here 100 kHz or 300 kHz) so that the spectral lines of the modulated signal are displayed correctly in frequency domain. This setting allows to read the occupied bandwidth and the peak frequency deviation value directly.

Frequency measurements are performed under normal test conditions (normal power supply voltage and normal temperature).

Then the test is repeated with extreme test conditions. For extreme test conditions the EUT is placed in a climatic chamber where the front door is made of stable polystyrene. The EUT can radiate through the front door without any additional path losses. The climatic chamber together with the EUT is cooled down to -20 °C for 1 hour. Then frequency and power density measurements are carried out with power supply set to minimum and maximum values.

The climatic chamber together with the EUT is warmed up at a rate of $+ 1^{\circ}$ C/minute. During warming-up time the frequency stability and the EIRP is monitored constantly. After 2 hours the temperature stability at 55 °C is reached. Then frequency and power density measurements are carried out with minimum and maximum power supply.

3. Measurements of field strength and power density at spurious frequencies

Spurious frequencies are produced by transmitter and receiver when the EUT is active (vehicle is moving). When the EUT is in Not-in-motion-mode, the emissions of the TX has to be reduced more than 25 dB. According to FCC requirements 15.209 and 15.253, spurious emissions have to be investigated as maximum field strength values in the frequency range from 9 kHz to 40 GHz, and as maximum power density in the frequency range > 40 GHz up to 231 GHz. Where possible, the measurement distance shall be 3 m.

In the low frequency range (9 kHz to 30 MHz), the receiving antenna is an active loop antenna which is positioned at 3 m distance in a shielded, anechoic chamber (see page 8). In case of required measuring distances > 3 m, a distance correction factor is used to calculate the received field strength.

Spurious field strength measurements in the frequency range 30 MHz to 12 GHz are carried out in a shielded semi-anechoic test chamber. The measurement distance is 3 m.

In the frequency range 12 GHz to 40 GHz, spurious field strength measurements are performed in a shielded fully anechoic chamber with rectangular SGH's. The measurement distances are indicated underneath each plot, and a calculation for field strength is added, where all relevant factors like cable losses, antenna factors, etc are taken into account.

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 14 of 49

In the frequency range 40 GHz to 231 GHz, spurious frequencies are measured as power densities. For further remarks see section 1.). The RBW and VBW are set to such a value that spurious power levels are clearly readable above the fundamental noise level of spectrum analyzer.

4. Measurements of maximum safe level for radiated power density

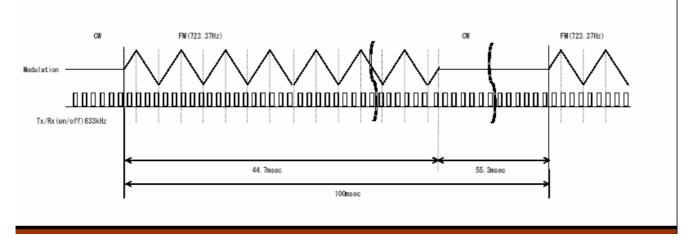
According to FCC § 1.1307, 1.1310, 2.1091, and 2.1093 and also according to ETSI/EN 301 091 measurements are carried out in order to evaluate the impact of human exposure to RF radiation. For this test the EUT is in normal operation mode.

The measurements are applicable only for far field conditions. The near field area extends to a distance of R (meters) and can be calculated from the following equation:

$$R < 2 * L^2 / \lambda$$

with R = distance in meters, L = largest dimension of either receiving or transmitting horn antenna (L = 0.02 m), and λ = wavelength in meters. In case of 76 GHz (λ = 0.0039 m), the far field starts at R > 0.205 m.

The peak power density is measured in 3 m distance as 6.9 μ W/cm² (-21.6 dBmW/cm²).


Peak Power (EIRP)	EIRP = PD * 4π * R ²
	EIRP = 7.76 W (38.9 dBm)

As the sample works with switched CWFM-modulation there is a difference between peak and average value of the output power.

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 15 of 49

1. Normal Mode(FM/CW)

As the output is switched on/off with 50% duty cycle, we have a correction factor of -3 dB.

So the average result is 35.9 dBm = 3.89 Watt

Limit of maximum ERP for frequencies above 1.5 GHz is 3 W. See FCC § 2.1091 (EIRP = 4.91 Watt)

RF Exposure for mobile conditions at $\underline{\mathbf{R} = 20 \text{ cm}}$ distance from EUT

PD = EIRP /
$$(4\pi * R^2)$$

PD = 0.977 mW/cm²

Limit of maximum permissible exposure (MPE) for uncontrolled environment: 1.0 mW/cm². See FCC § 1.1310.

Page 16 of 49 Test report No.: 2-4310-01-02/06 Date : 2006-06-02

2.5.3 Test results in details

Equipment under test (EUT) :	MILIMETER-WAVE RADAR
Ambient temperature :	23 °C
Relative humidity :	35 %

TRANSMITTER PARAMETERS

SECTION 15.253

Section 15.253 b (2)

FUNDAMENTAL FREQUENCY

76.000 GHz to 77.000 GHz

Operation :	Vehicle in motion
Antenna assembly:	Tri-plate antenna

TEST CONDITIONS T = $23.0 \circ C$	TRANSMITTER POWER DENSITY		
EUT operating: TX on and RX on	Frequency f [GHz]	Power Density PD [µW/cm ²]	See plot on page
U DC = 10.0 V	76.610 000	6.85	
U DC = 11.0 V	76.610 000	6.9	
U DC = 12.0 V	76.610 000	6.9	25
U DC = 13.0 V	76.610 000	6.9	
U DC = 14.0 V	76.610 000	6.9	
U DC = 15.0 V	76.610 000	6.9	
U DC = 16.0 V	76.610 000	6.95	

REFERENCE OF TEST EQUIPMENT USED : see test set-up on page 10

LIMITS:

Frequency range [GHz]	Measurement	Power density	Power Density
vehicle in motion	distance [m]	pd [dBmW/cm ²]	PD [µW/cm ²]
76.0 to 77.0	3.0	-12.2	60

Verdict :	Power Density limit is kept
-----------	-----------------------------

Page 17 of 49 Test report No.: 2-4310-01-02/06 Date : 2006-06-02

Equipment under test (EUT) :	MILIMETER-WAVE RADAR
Ambient temperature :	23 °C
Relative humidity :	35 %

TRANSMITTER PARAMETERS

FUNDAMENTAL FREQUENCY

76.000 GHz to 77.000 GHz

Operation :	Vehicle in motion
Antenna assembly:	Tri-plate antenna

TEST CONDITIONS T = $-20.0 \circ C$	TRANSMITTER POWER DENSITY		
EUT operating: TX on and RX on	Frequency f [GHz]	Power Density PD [µW/cm ²]	
U DC = 10.0 V	76.609 000	6.95	
U DC = 11.0 V	76.609 000	6.95	
U DC = 12.0 V	76.609 000	6.95	
U DC = 13.0 V	76.610 000	6.95	
U DC = 14.0 V	76.610 000	6.95	
U DC = 15.0 V	76.611 000	6.95	
U DC = 16.0 V	76.611 000	6.98	

REFERENCE OF TEST EQUIPMENT USED : see test set-up on page 10

LIMITS:

Section 15.253 b (2)

Frequency range [GHz]	Measurement	Power density	Power Density
vehicle in motion	distance [m]	pd [dBmW/cm ²]	PD [µW/cm ²]
76.0 to 77.0	3.0	-12.2	60

SECTION 15.253

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 18 of 49

Equipment under test (EUT) :	MILIMETER-WAVE RADAR
Ambient temperature :	23 °C
Relative humidity :	35 %

TRANSMITTER PARAMETERS

FUNDAMENTAL FREQUENCY

U DC = 12.0 V

U DC = 13.0 V

U DC = 14.0 V

U DC = 15.0 V

U DC = 16.0 V

76.000 GHz to 77.000 GHz

Operation :Vehicle in motionAntenna assembly:Tri-plate antenna				
TEST CONDITIONS T = $+55.0 \circ C$	TRANSM	ITTER POWER DEN	NSITY	
EUT operating: TX on and RX on	Frequency f [GHz]	Power Density PD [µW/cm ²]		
U DC = 10.0 V	76.601 000	6.8		
U DC = 11.0 V	76.602 000	6.8		

76.602 000

76.602 000

76.601 000

76.602 000

76.601 000

REFERENCE OF TEST EQUIPM	MENT LISED ·	see
REFERENCE OF TEST EQUIN	ILITI ODLD.	300

see test set-up on page 10

6.8

6.8

6.8

6.8

6.8

LIMITS:

Section 15.253 b (2)

Frequency range [GHz]	Measurement	Power density	Power Density
vehicle in motion	distance [m]	pd [dBmW/cm ²]	PD [µW/cm ²]
76.0 to 77.0	3.0	-12.2	60

SECTION 15.253

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 19 of 49

Equipment under test (EUT) :	MILIMETER-WAVE RADAR
Ambient temperature :	23 °C
Relative humidity :	35 %

TRANSMITTER PARAMETERS

FUNDAMENTAL FREQUENCY

Frequency over temperature

Occupied frequency range:

$TEST CONDITIONS$ $T = -20^{\circ} TO +55^{\circ}C$ $12V DC$	TRANSMITTER POWER DENSITY AND FREQUENCY		
EUT operating:	Frequency f [GHz]	Power Density PD [µW/cm ²]	
$T = -20^{\circ}$	76.609 000	6.95	
$T = -10^{\circ}$	76.609 000	6.95	
$T = 0^{\circ}$	76 607 000	6.95	
$T = +10^{\circ}$	76 608 000	6.9	
$T = +20^{\circ}$	76.610 000	6.9	37 / 38
$T = +30^{\circ}$	76 605 000	6.9	
$T = +40^{\circ}$	76 604 000	6.85	
$T = +50^{\circ}$	76 603 000	6.85	
$T = +55^{\circ}$	76 602 000	6.85	

SECTION 15.253

Test report No.: 2-4310-01-02/06 Page 20 of 49 Date : 2006-06-02

EUT :	MILIMETER-WAVE RADAR
Ambient temperature :	23 °C
Relative humidity :	35 %

TRANSMITTER PARAMETERS

SECTION 15.253

SPURIOUS EMISSIONS In the frequency range 9 kHz to 12 GHz

Operation : Vehicle in motion Tri-plate antenna Antenna assembly:

TEST CONDITIONS	TRANSMITTER SPURIOUS FIELD STRENGTH			
Frequency range [MHz]	Spurious frequencies [MHz]	S A e [dBµV/m]	Ε [μV/m]	See plot on page
0.009 – 30.000 (h + v) horizontal and vertical plane	Noise	< limit	< limit	26
30.000 – 4.0 GHz (h + v)	Noise	< limit	< limit	27
4.0 - 12.0 GHz (h + v)	Noise	< limit	< limit	28

REFERENCE OF TEST EQUIPMENT USED : see test set-up on pages 9, 10 and 11

LIMITS:

SECTION 15.253 / 15.205 / 15.209

Frequency range (MHz)	Measurement distance [m]	Field strength e [dBµV/m] @ 3 m	Field strength E [µV/m]
0.009 - 0.490	300	88.5 53.8	2400/F(kHz)
0.490 - 1.705	30	53.8 43.0	24000/F(kHz)
1.705 - 30.0	30	49.5	30
30.0 - 88.0	3	40.0	100
88.0 - 216.0	3	43.5	150
216.0 - 960.0	3	46.0	200
960.0 MHz – 40.0 GHz	3	54.0	500

Section 15.209)

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 21 of 49

EUT :	MILIMETER-WAVE RADAR
Ambient temperature :	23 °C
Relative humidity :	35 %

TRANSMITTER PARAMETERS

SECTION 15.253

SPURIOUS EMISSIONS In the frequency range 12 GHz to 40 GHz

Operation: Vehicle in motion Antenna assembly: Tri-plate antenna

TEST CONDI	ITIONS	TRANSMITTER SPURIOUS FIELD STRENGTH			
Frequency r [GHz]	-	Spurious frequencies [GHz]	S A e [dBµV/m]	Ε [μV/m]	See plot on page
12.0 - 18.0	(h + v)	Noise	< limit	< limit	29
18.0 - 27.0	(h + v)	Noise	< limit	< limit	30
27.0 - 40.0	(h + v)	Noise	< limit	< limit	31

REFERENCE OF TEST EQUIPMENT USED : see test set-up on page 9, 10 and 11

LIMITS:

SECTION 15.253 / 15.205 / 15.209

Frequency range (MHz)	Measurement distance [m]	Field strength e [dBµV/m] @ 3 m	Field strength E [µV/m]
0.009 - 0.490	300	88.5 53.8	2400/F(kHz)
0.490 - 1.705	30	53.8 43.0	24000/F(kHz)
1.705 - 30.0	30	49.5	30
30.0 - 88.0	3	40.0	100
88.0 - 216.0	3	43.5	150
216.0 - 960.0	3	46.0	200
960.0 MHz - 40.0 GHz	3	54.0	500

Section 15.209

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 22 of 49

EUT :	MILIMETER-WAVE RADAR
Ambient temperature :	23 °C
Relative humidity :	35 %

TRANSMITTER PARAMETERS

SECTION 15.253

SPURIOUS EMISSIONS In the frequency range 40 GHz to 325 GHz

Operation : Vehicle in motion Antenna assembly: Tri-plate antenna

TEST CONDITI	ONS	TRANSMITTER SPURIOUS POWER DENSITY			
Frequency range [GHz]		Spurious frequencies [GHz]	S A pd [dBm/cm ²]	PD [pW/cm ²]	See plot on page
40.0 - 50.0 (1	h + v)	Noise	< limit	< limit	32
50.0 - 75.0 (1	h + v)	Noise	< limit	< limit	33
75.0 - 110.0 ()	h + v)	Noise	< limit	< limit	34
110.0 - 170.0 ()	h + v)	Noise	< limit	< limit	35
170.0 - 210.0 (h + v)	Noise	< limit	< limit	36

REFERENCE OF TEST EQUIPMENT USED : see test set-up on page 9, 10 and 11

LIMITS:

SECTION 15.253 / 15.205 / 15.209

Frequency range (MHz)	Measurement distance [m]	pd [dBmW/cm ²]	Power density PD [pW/cm ²]
40.0 GHz - 200 GHz	3.0	-62.2	600
200 GHz - 231 GHz	3.0	-60.0	1000

Section 15.253 c (2) + (3)

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 23 of 49

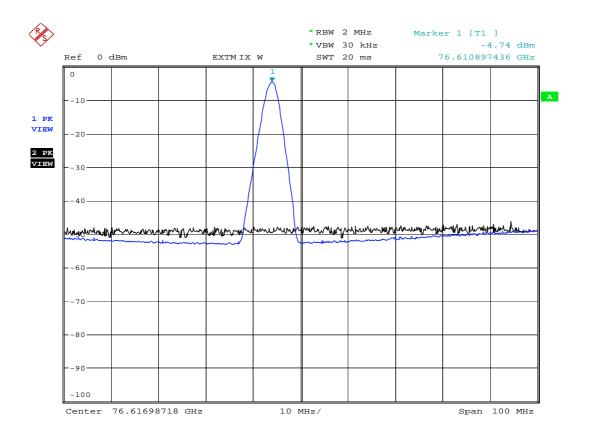
EUT :	MILIMETER-WAVE RADAR
Ambient temperature :	23 °C
Relative humidity :	38 %

2.5.4 Not-In-motion Mode

Section 15.253 (b) (1)

To show compliance with the requirements of Part 15.253 (b) (1) – Not-In-Motion mode, we tested with a canbus interface on a laptop with special software to simulate moving or not-moving of the car.

Description of the test:


We placed the antenna 25 cm in front of the radar equipment with vertical polarisation to obtain max. power. We started the simulation on the PC. (we used cw-mode for easier testing)

First we set the normal mode , set the analyzer on ch.1 max hold (blue curve) and switched to the second channel.(black curve)

Here we switched the simulation to TX/RX Off mode (not in motion simulation).

The difference is > 25 dB. So the product fulfils the requirements.

Plot 1: Transmitted Power / Antenna Vertical

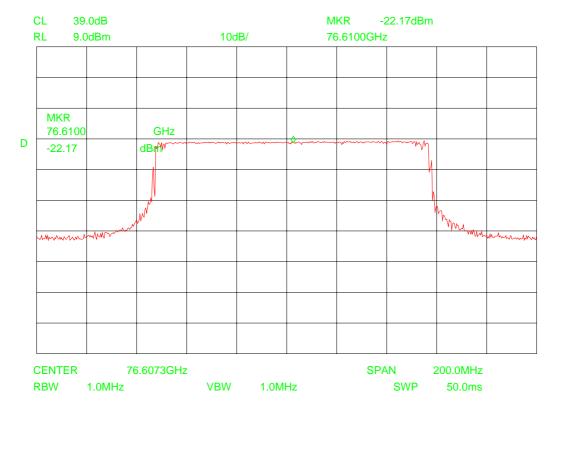
Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 24 of 49

The measured difference between in-motion and not-in-motion is ~ 45 dB.

Power in-motion is -21.6 dBm/cm^2 , power not-in motion is maximum $-21.6 - 45.0 = -66.6 \text{ dBm/cm}^2$ So the sample fulfils the requirements.

LIMITS:

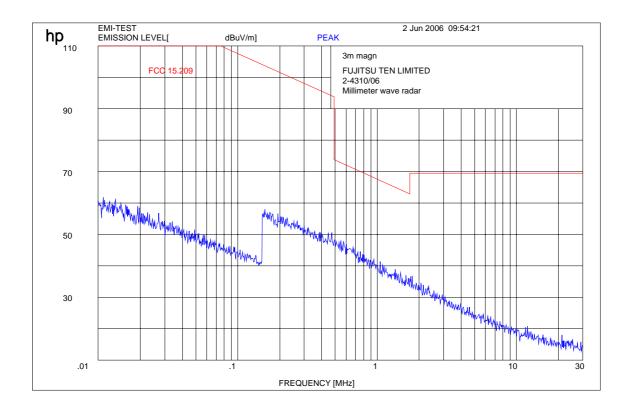
SECTION 15.253 (B) (1)


Frequency range	Measurement	In-motion	Not-in-motion	Delta
[GHz]	distance [m]	[dBm/cm ²]	[dBm/cm ²]	[dB]
76.0 - 77.0	3.0	-12	-37	25

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 25 of 49

3 Plots, graphs and data sheets

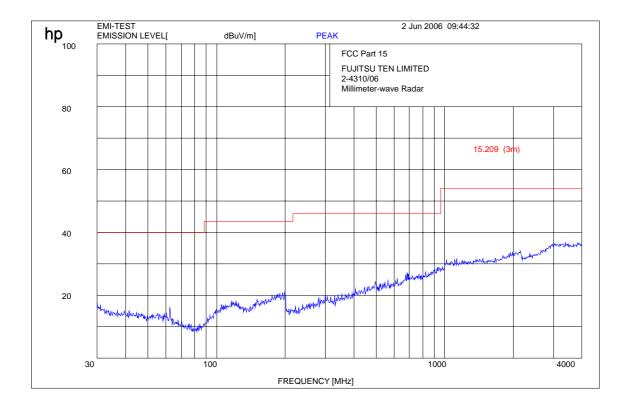
Plot 1 (23 C)


Measurement distance d	= 3.0 m
Calculation : Power density	= EIRP (mW) / 4*Pi*300cm*300cm
Distance correction 3.0m => 0.5m	= 15.5 dB
Calculation of system attenuation	= free space attenuation $-$ antenna gain $+$ distance corr.
a(sys)	= 64.1 dB - 18.5 dB + 15.5 dB
	= 61.1 dB
Output power	= -22.2 dBm + 61.1 dB = 38.9 dBm = 7762 mW
	$= 7762 \text{mW} (38.9 \text{ dBm}) / 1130973.4 \text{ cm}^2$
Power density Limit =	= $6.9 \mu W/cm^2$ $60 \mu W/cm^2$ at 3.0 m

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 26 of 49

Plot 2

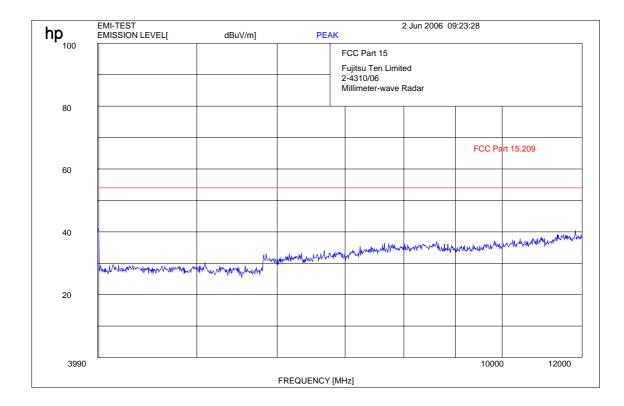
Radiated emissions 9 kHz to 30 MHz


RBW/VBW : 200 Hz up to 150 kHz, 9 kHz up to 30 MHz, 120 kHz up to 1 GHz

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 27 of 49

Plot 3

Radiated emissions 30 MHz to 4 GHz


RBW/VBW : 200 Hz up to 150 kHz, 9 kHz up to 30 MHz, 120 kHz up to 1 GHz , 1 MHz above 1 GHz

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 28 of 49

Plot 4

Radiated emissions 4 GHz to 12 GHz

RBW/VBW : 200 Hz up to 150 kHz, 9 kHz up to 30 MHz, 120 kHz up to 1 GHz , 1 MHz above 1 GHz

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 29 of 49

Plot 5

Radiated emissions 12 GHz to 18 GHz

*AT	TEN	0dB		VAVG	100	М	KR 2	4.33dB		V
F	RL 97	7.0dB	V	100	IB/	14	4.690GHz			
	MKR 14.690		GHz							
D	24.50	dE	8 V							
	mmm	mmm	nthen mit	Manuf	man	mann	nnmpn	www.	hund	Month
5	LESTART	12.00	u 00GHz	<u> </u>	<u> </u>	STO	P 1	8.000GHz		<u> </u>
F	RBW	1.0MHz		VBW	1.0MI	Ηz		SWP	120ms	

Measurement distance d = 0.5 m

Calculation :

Distance correction $3.0m \Rightarrow 0.5m = 15.5 dB$

Limit at 0.5m = $54.0 \text{ dB}\mu\text{V/m} + 15.5 \text{ dB} = 69.5 \text{ dB}\mu\text{V/m}$

Field strength = $24.5 \text{ dB}\mu\text{V/m}$ at 0.5m

Verdict :	pass
,	pass
	Verdict :

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 30 of 49

Plot 6

Radiated emissions 18 GHz to 27 GHz

*AT	TEN	0dB	VAVG	5 100	М	KR 2	28.50dB		V
F	RL 97.	0dB	V	10dB/	25	5.740GHz			
	MKR								
D	25.740	GH							
	28.33	dB	V						
								\$.	monthe
	m	mannan	mount	www.www	howman	munnum	Murmun	man the second s	www.
, ,	START	18.000GI			STO	P 2	' 27.000GHz		
		1.0MHz		W 1.0N		' 2		180ms	

Measurement distance d = 0.5 m

Calculation :

Distance correction $3.0m \Rightarrow 0.5m = 15.5 dB$

Limit at 0.5m = $54.0 \text{ dB}\mu\text{V/m} + 15.5 \text{ dB} = 69.5 \text{ dB}\mu\text{V/m}$

Field strength = $28.3 \text{ dB}\mu\text{V/m}$ at 0.5m

Verdict :	pass	
	P ·····	

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 31 of 49

Plot 7

Radiated emissions 27 GHz to 40 GHz

*AT	TEN	0dB		VAVG	100	М	KR 2	29.50dB		V
F	RL 97	.0dB	V	100	B/	37	27GHz			
	MKR									
D	37.27 29.33	G dE								
								myn	mmmmm	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.www.	month	howwwww	mm	mmm	Murmha	~~~~~		
5	START	27.00	)GHz			STO	P 4	40.00GHz		
F	RBW	1.0MHz		VBW	1.0M	Hz		SWP	260ms	

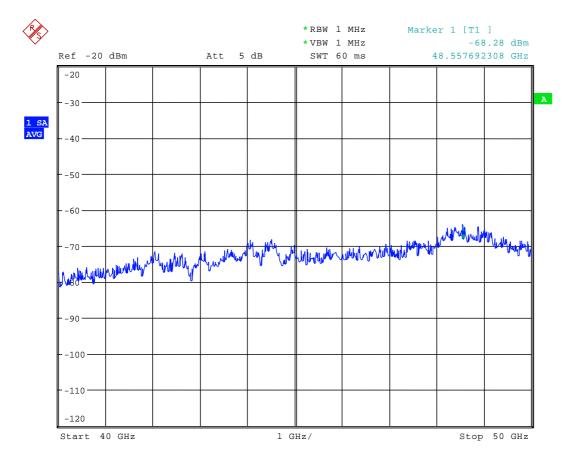
Measurement distance d =0.5 m

Calculation :

Distance correction  $3.0m \Rightarrow 0.5m = 15.5 dB$ 

Limit at 0.5m =  $54.0 \text{ dB}\mu\text{V/m} + 15.5 \text{ dB} = 69.5 \text{ dB}\mu\text{V/m}$ 

Field strength =  $29.3 \text{ dB}\mu\text{V/m}$  at 0.5m


Verdict :	pass	
-----------	------	--



Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 32 of 49

#### Plot 8

#### Radiated emissions 40 GHz to 50 GHz



Measurement distance d = 0.5 mDistance correction  $3.0\text{m} \Rightarrow 0.5\text{m} = 15.5 \text{ dB}$ 

Maximum spurious	$= -49.7 \text{ dBm} => 9.5 \text{ pW/cm}^2$
Limit at 3m	$= 600 \text{ pW/cm}^2$

Verdict :	pass
-----------	------



Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 33 of 49

#### Plot 9

Radiated emissions 50 GHz to 75 GHz

		.0dB 0dBm		VAVG 10d	44 IB/		KR -( 3.75GHz	65.00dBm		
	MKR 53.75	G	Hz							
D	-65.17		dBm							
х										
	Mmmm	mmmmmm	mmmmm	MMMMM	mmmm	hundhanna	www.www.	mmmm	Marin	mm
	START	50.00	0GHz			STO	P 7	5.00GHz		
	RBW	1.0MHz		VBW	1.0M	Hz		SWP	170ms	


Measurement distance d = 0.5 mDistance correction  $3.0\text{m} \Rightarrow 0.5\text{m} = 15.5 \text{ dB}$ 

Maximum spurious  $= -65.1 \text{ dBm} => 0.27 \text{pW/ cm}^2$ Limit at 3m  $= 600 \text{pW/cm}^2$ 

Verdict	:	pass
veraict	:	pass

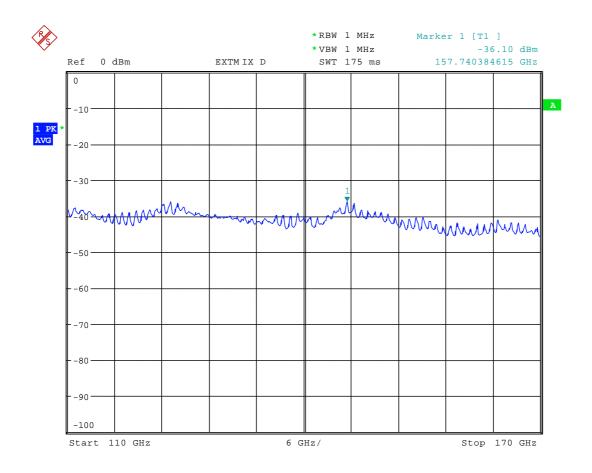


Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 34 of 49



### Plot 10 (including 15.5 dB correction factor)

Measurement distance d = 0.5 mDistance correction  $3.0m \Rightarrow 0.5m = 15.5 dB$ 


Maximum spurious  $= -49.7 \text{ dBm} => 9.5 \text{ pW/ cm}^2$ Limit at 3m  $= 600 \text{ pW/cm}^2$ 

Verdict :	pass
-----------	------

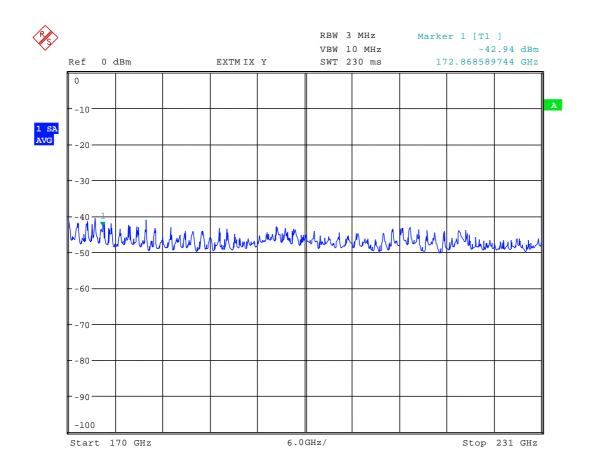


Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 35 of 49

#### Plot 11



Measurement distance d = 0.5 mDistance correction  $3.0\text{m} \Rightarrow 0.5\text{m} = 15.5 \text{ dB}$ 


Maximum spurious  $= -36.1 \text{ dBm} => 200 \text{pW/ cm}^2$ Limit at 3m  $= 600 \text{pW/cm}^2$ 

Verdict :	pass
-----------	------



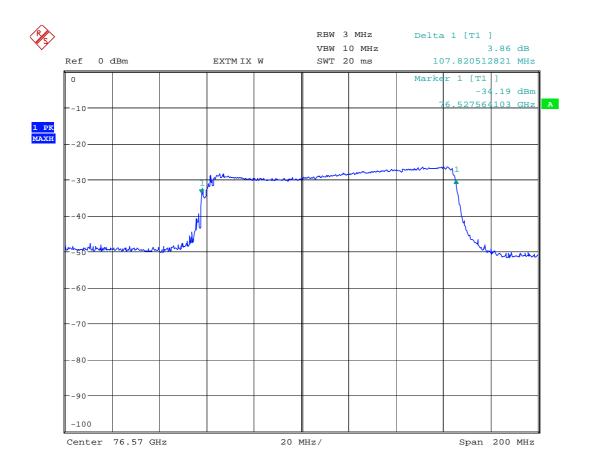
Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 36 of 49

### Plot 12



Measurement distance d = 0.5 mDistance correction  $3.0m \Rightarrow 0.5m = 15.5 dB$ 

Maximum spurious $= -42.9 \text{ dBm} \Rightarrow 45.3 \text{ pW/ cm}^2$ Limit at 3m up to 200 GHz $= 600 \text{pW/cm}^2$ Limit at 3m above 200 GHz $= 1000 \text{pW/cm}^2$ 


Verdict :	pass
-----------	------

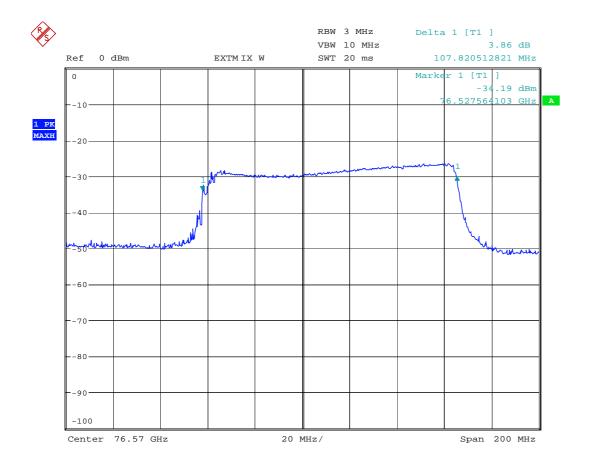


Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 37 of 49

Occupied frequency range:

#### Plot No.: 13




Date: 31.MAY.2006 13:08:16

Occupied frequency range: 107.820 MHz



Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 38 of 49

#### Plot No.: 14



Date: 31.MAY.2006 13:08:16

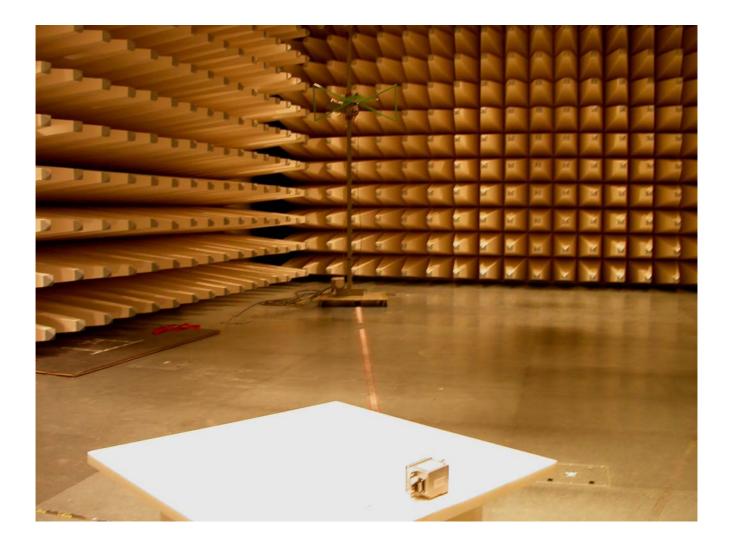
The occupied frequency range is between 76.516 G HZ and 76.623 GHz.



Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 39 of 49

#### 4 Photographs

4.1 Photographs of the test set-up


Radiated Emission





Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 40 of 49

#### **Radiated Emission**





Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 41 of 49

#### Test set-up

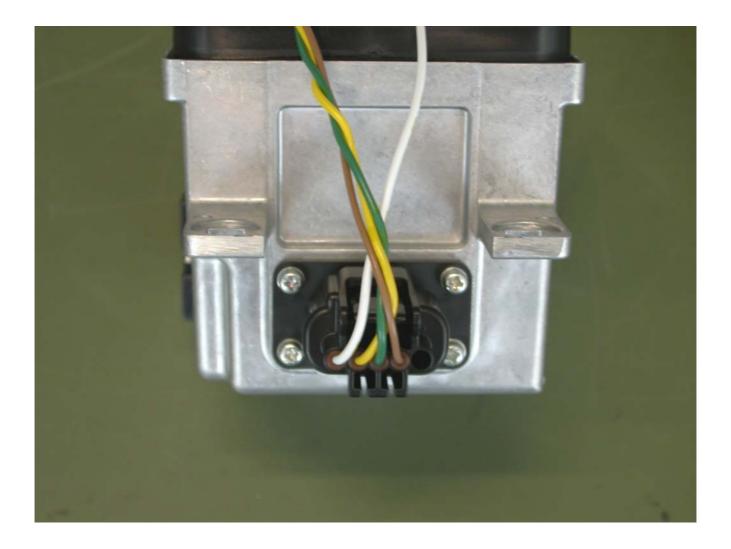




Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 42 of 49

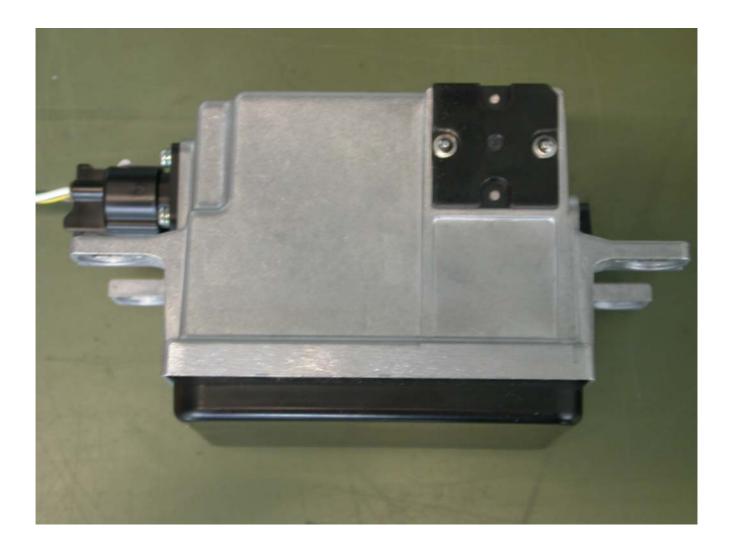
#### 4.2 Photographs of the EUT





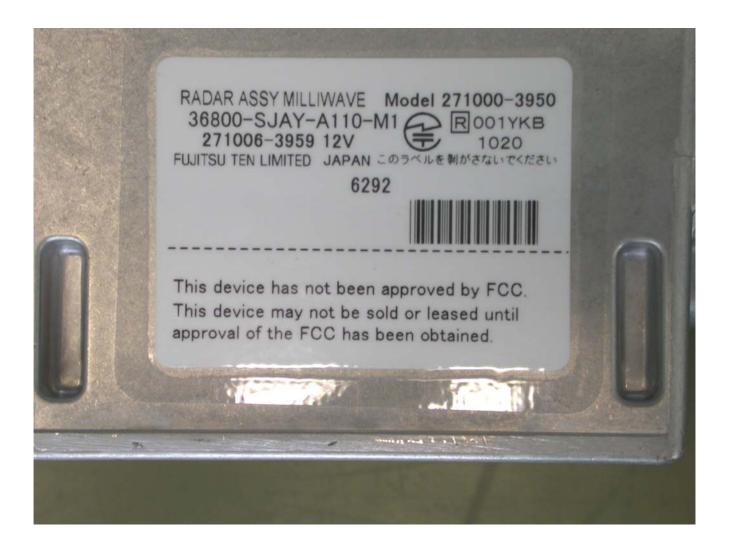

Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 43 of 49






Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 44 of 49






Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 45 of 49

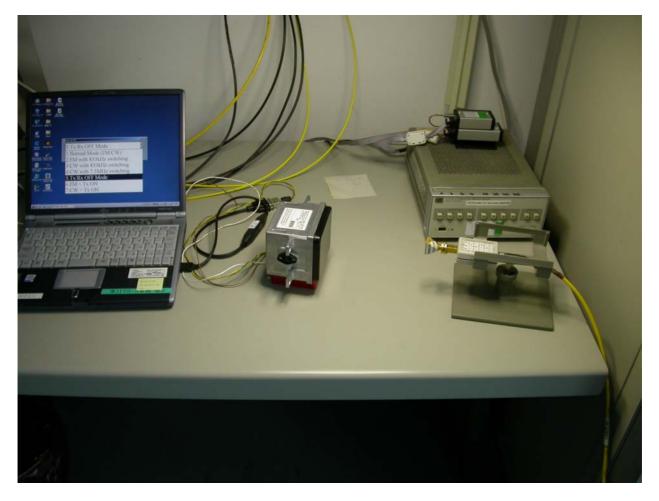




Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 46 of 49

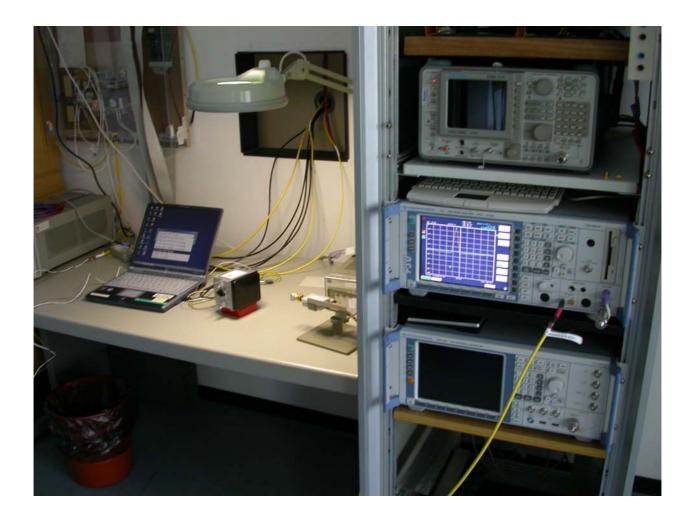





Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 47 of 49






Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 48 of 49

#### Test setup "Not in motion mode"





Test report No.: 2-4310-01-02/06 Date : 2006-06-02 Page 49 of 49

