The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500

Measured Radio Frequency Emissions From

Fujitsu Ten 76 GHz Adaptive Cruse Control Radar Model: 271000-2970

Report No. 415031-219 July 28, 2004

Copyright © 2004

For:

TUV America Inc. 19333 Wild Mountain Road Taylor Falls, MN 55084-0298

Contact:

Joel Schneider jschneider@tuvam.com Tel: 651-638-0297

Fax: 651-638-02978 PO: CE16852

Measurements made by:

Tests supervised by: Report approved by:

Valdis V. Liepa Joseph D. Brunett Valdis V. Liepa Research Scientist

Summary

Tests for compliance with FCC Regulations, according to Part 15.253, and with Industry Canada Regulations, RSS-210, were performed on Fujitsu Ten 76 GHz Adaptive Cruse Control Radar. In testing performed during July 16 through 27, 2004, the device tested met the emissions at fundamental by 22.2 dB, at harmonics by 50.7 dB, and at spurious by 2.8 dB.

As for RF Health Hazard levels, maximum level measured was 0.063 mW/cm² at the surface of the radome. The 1 mW/cm² density distance, computed based on EIRP method, is 0.12 meters.

1. Introduction

Fujitsu 76 GHz Adaptive Cruse Control Radar was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989, and with Industry Canada RSS-210, Issue 5, dated November 10, 2001. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" and the new FCC Section 15.253, "Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057).

2. Test Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests.

Table 2.1. Test Equipment.

Test Instrument	Eqpt Used	Manufacturer/Model
Spectrum Analyzer (0.1-1500 MHz)		Hewlett-Packard, 182T/8558B
Spectrum Analyzer (9kHz-22GHz)		Hewlett-Packard 8592L, SN: 3710A00856
Spectrum Analyzer (9kHz-26GHz)	X	Hewlett-Packard 8593E, SN: 3412A01131
Spectrum Analyzer (9kHz-26GHz)	X	Hewlett-Packard 8563E, SN: 3310A01174
Spectrum Analyzer (9kHz-40GHz)	X	Hewlett-Packard 8564E, SN: 3745A01031
Power Meter		Hewlett-Packard, 432A
Power Meter		Anritsu, ML4803A/MP
Harmonic Mixer (40-60 GHz)	X	Hewlett-Packard 11970U, SN: 2332A00500
Harmonic Mixer (75-110 GHz)	X	Hewlett-Packard 11970W, SN: 2521A00179
Harmonic Mixer (140-220 GHz)	X	Pacific Millimeter Prod., GMA, SN: 26
X-band horn (8.2- 12.4 GHz)		Narda 640
X-band horn (8.2- 12.4 GHz)	X	Scientific Atlanta, 12-8.2, SN: 730
K-band horn (18-26.5 GHz)	X	FXR, Inc., K638KF
Ka-band horn (26.5-40 GHz)	X	FXR, Inc., U638A
U-band horn (40-60 GHz)	X	Custom Microwave, HO19
W-band horn(75-110 GHz)	X	Custom Microwave, HO10
G-band horn (140-220 GHz)	X	Custom Microwave, HO5R
Bicone Antenna (30-250 MHz)	X	University of Michigan, RLBC-1
Bicone Antenna (200-1000 MHz)	X	University of Michigan, RLBC-2
Dipole Antenna Set (30-1000 MHz)		University of Michigan, RLDP-1,-2,-3
Dipole Antenna Set (30-1000 MHz)		EMCO 2131C, SN: 992
Active Rod Antenna (30 Hz-50 MHz))	EMCO 3301B, SN: 3223
Active Loop Antenna (30 Hz-50 MH	z)	EMCO 6502, SN:2855
Ridge-horn Antenna (300-5000 MHz	z) X	University of Michigan
Amplifier (5-1000 MHz)		Avantek, A11-1, A25-1S
Amplifier (5-4500 MHz)	X	Avantek
Amplifier (4.5-13 GHz)	X -	Avantek, AFT-12665
Amplifier (6-16 GHz)	X	Trek
LISN (50 μH)		University of Michigan
Signal Generator (0.1-2060 MHz)	*7	Hewlett-Packard, 8657B
Signal Generator (0.01-20 GHz)	X	Hewlett-Packard, 8550B / 83592A

3. Configuration and Identification of Device Under Test

The Device Under Test (DUT) is a 76 GHz Short Range Radar. It is a Tx/Rx 833 kHz (or 7.5 MHz) switched FM and CW device. The triangular frequency chirp at 723.38 Hz provides range information. Mechanical antenna scanning at 5 Hz is used to obtain target angular resolution. The RF power source is 5 dBm (typ.) based on a 9.6 GHz reference. The DUT is a basic radar unit; additional signal processing and controlling are done by other processors on the vehicle. When installed on a vehicle, the device will operate (transmit) only when the vehicle is in motion, i.e., typ. 20 MPH and above. The size of the DUT is 11(W) x 9(H) x 9(D) cm with a single connector on one side. For testing, a laptop was used to control the format of modulation. This included: (a) normal mode (CW, FM, and switching), (b) CW with 833 kHz switching, (c) CW only, plus others that were not used in these tests. Nominal operating voltage is 13.8 VDC; for testing this was supplied by a laboratory style power supply.

The DUT was manufactured by Fujitsu Ten Limited; 2-28, Gosho-dori 1-chome; Hyogo-Ku,

Kobe 652-8510; Japan. It is identified as:

Fujitsu 76 GHz Adaptive Cruse Control Radar

Model: 271000-2970

S/N: FCC SAMPLE 2 (standard unit) S/N: FCC SAMPLE 1 (fixed antenna unit)

FCC ID: BAB271000297 IC: 2024B-271297

Two devices were provided: one in a standard model, and the other with antenna scanning mechanically disabled. Both units were used in testing, depending on what data (information) was needed.

3.1 Changes made to the DUT None.

rione.

4. Microwave Emission Limits

4.1 Radiated Emission Limits

The DUT tested falls under the category of an Intentional Radiator, subject to Section 15.253 and all other sections referred to therein. The applicable critical testing frequencies with corresponding emission limits are given in Tables 4.1. As a digital device, it is exempt.

Table 4.1. Radiated Emission Limits (Ref: FCC: 15.253; IC: RSS-210, 6.6) -- Transmitter.

Frequency (GHz)	Fundamental and Spurious*
0.030 - 40000	see 15.209
76.0 - 77.0	60 μW/cm ²
77.0 - 200.0	600 pW/cm ²
200.0 - 231.0	1000 pW/cm ²
up to	Restricted
38.6 only	Bands

4.2 Conductive Emission Limit

Conductive emissions limits do not apply, as this is a vehicular 12 VDC device.

4.3 (Digital) Radiated Emission Limits

Table 4.2. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 7.3) -- Digital.

Freq. (MHz)	Class A, E _{lim} dB(μV/m)	Class B, E _{lim} dB(μV/m)
30-88	49.5	40.0
88-216	54.0	43.5
216-960	56.9	46.0
960-2000	60.0	54.0

Note: Average readings apply above 1000 MHz (1 MHz BW)

Quasi-Peak readings apply to 1000 MHz (120 kHz BW)

5. Radiated Emission Tests and Results

5.1 Test Procedure

Prior to any measurements, all active components of the test setup were allowed a warm-up for a period of approximately one hour, or as recommended by their manufacturers.

For the tests, the unit was hand-held at a 3 or 1 (or even 0.25m) meter distance, depending on the available signal strength, and rotated through 360 degrees to determine the most intense radiation lobe. Care is taken such that there is no interference from the hand nor the body. Due to the rigid connection of the receive antenna to the spectrum analyzer, the DUT is also rotated around its antenna axes to match the polarizations of the emission for maximum readings.

5.2 Measurements

Because this is not a commonly tested device, some of the data that were taken and reported are for understanding of the operation of the device. Also many tests were repeated to verify the procedure and the measurement integrity. We started with measurements at the fundamental (76.5 GHz) and recorded number of plots. The following plots are presented:

- Figure 5.1. Fundamental spectrum. RBW=1 MHz, VBW=3 MHz; 3 meters, peak hold. Here we observe the frequency chirp is from 76.448 GHz to 76.558 GHz, 109.2 MHz BW.
- Figure 5.2. Time response at set frequency due to chirp, single scan. RBW=1 MHz, VBW=3 MHz, zero span. The pulses occur as the frequency sweeps through the receiver fixed at 76.475 GHz. Since the measurement is near the low side of the spectrum, the first peak represents the frequency going down followed by the peak representing frequency going up. Note the period of the chirp is 1.5 ms or 667 Hz.
- Figure 5.3. Time response at set frequency due to the antenna scan. RBW=1 MHz, VBW=3 MHz, zero span. Here the pulses occur as the antenna scans past the receiving antenna. These pulses contain pulses shown in Figure 5.2. Since the scan is back-and-forth, the scan rate is 200 ms or 5 Hz.

Figure 5.4. Peak power measurement for CW scanning emission. RBW=1 MHz, VBW=3 MHz; 3 meters. For this measurement the DUT was set in CW scanning mode. Here, we measured -24.43

Figure 5.5. Tx/Rx switching. RBW=3 MHz, VBW=1 MHz; 3 meters. To minimize direct (unwanted) signal entering the receiver, the Tx/Rx function is diplexed at 833 kHz. This plot shows that the -20dB ON/OFF ratio is 2/3 or 0.667. LO = 12.681

Figure 5.6. FM/ CW ratio. RBW=1 MHz, VBW=3 MHz, zero span; 3 meters. In normal operation, the device transmits FM for 45.83 ms, followed by CW for 54.17 ms. Both, the FM and CW are switched by the 833 kHz Tx/Rx diplexing.

Figure 5.7. CW -26 dBc emission bandwidth (EBW). RBW = 10 kHz, VBW = 10 kHz. For the CW mode, the -26 dBc emission bandwidth of the DUT is measured at 538 kHz.

5.3 Computations and Results

When the measurement is made at a distance other than 3m, the reading is extrapolated to the 3 m. This is done using the 20 dB/decade field behavior relation when translating in the far field, and 40 dB/decade relation when translating in the near field. The near-field/far-field criterion, N/F, is based on

$$N/F = 2 D^2/wavelength$$

where D is the maximum dimension of the transmitter or receiver antenna, and the wavelength is that of the measurement frequency. Suppose N/F = 2 m and the measurement is made at 1 m. Here the 40 dB/ decade relation is applied from 1 to 2 m, and 20 dB/decade relation is applied from 2 to 3 m. In dB, this gives a 15.6 dB adjustment.

To convert the dBm measured and extrapolated to 3 m, the E₃(dBµV/m) is computed from

$$E_3(dB\mu V/m) = 107 + Pr + K_a - Kg + K_e$$

where

= power recorded on spectrum analyzer, dBm (or extrapolated to 3 m distance)

= antenna factor, dB/m

 K_g = pre-amp gain, dB K_e = pulse operation correction factor, dB (see 6.1)

For conversion to power densities specified in 15.253, we used

$$dB(mW/cm^2) = -155.76 + E(dB\mu V/m)$$

and we note that

 $60 \mu \text{W/cm}^2 = -12.2 \text{ dBm/cm}^2$ $1000 \text{ pW/cm}^2 = -60.0 \text{ dBm/cm}^2$ $600 \text{ pW/cm}^2 = -62.2 \text{ dBm/cm}^2$

For microwave measurements, either the receive antenna is connected directly to the spectrum analyzer, or it is connected to an external mixer followed by an insignificant length of cable. Hence, no cable loss term is used. The mixer conversion losses are programmed in the spectrum analyzer and are included in the dB values. However, for 125 GHz and up, an external mixer with an external LO and pre-amplifier was used. The mixer conversion loss, IF amp gain and cable losses are included in mixer conversion factor.

The results are given in Tables 5.1 and 5.2. There we see that the DUT met the limits at fundamental by 22.2 dB, at harmonics by 50.7 dB, and at spurious by 2.8 dB.

6. Other Measurements and Computations

6.1 Peak-to-(Power)Average Ratio

The DUT is designed to operate with 833 kHz (or 7.5 MHz) Tx/Rx switching, 723.38 Hz FM (chirp) and 5 Hz antenna scan. Observing (measuring) the signal at a stationary point with the receiver, the signal is pulsed due to the 833 kHz Tx/Rx switching rate superimposed (multiplied) with the 5 Hz antenna scanning frequency.

From Figure 5.5 we deduce that the -20 dB ON/OFF time is 2/1, corresponding to -3.6 dB. The fractional presence of signal due to the narrow antenna beam scan is addressed in Figure 5.3. In a 200 ms period, with the observation point near the edge of the scan width, two scan-byes of 17 ms long occur in a 100 ms window. However, a more accurate assessment of illumination time, by taking the antenna beamwidth (2.7 deg.) and dividing it by the scan angle (16 deg.), is used in this formulation. Thus, the applicable Peak-to (Power) Average Ratio is

$$2/3 \times 2(2.7/16) = 0.225 \text{ or } -6.5 \text{ dB}$$

6.2 Correction for Pulse Operation

Apply -6.5 dB above 40 GHz on signal only when measured in peak mode.

6.3 Effect of Supply Voltage Variation

The DUT is designed to operate on 13.8 VDC, originating from a vehicular 12-volt system. The relative radiated emissions and frequency were recorded at the "fundamental" (76.5 GHz) as the supply voltage was varied from 7 to 18 VDC. Figure 6.2 shows the emission power variation. Current at 13.6 VDC was 560 mA (with antenna scanning).

6.4 Effect of Temperature Variation on Fundamental Frequency

The DUT was cooled to -20deg C and its temperature was slowly increased to 50deg C, during which time the fundamental emission was monitored. Measurements of band-edge frequencies were taken every 10deg C. Figure 6.3 shows the emission center frequency as a function of temperature.

6.5 Conducted Emission Measurements

Not applicable.

6.6 Potential Health Hazard EM Radiation Level

We use two methods to determine health hazard levels and these are obtained (1) by probing the near field and (2) by computing EIRP from measured emission data.

(1) The maximum radiation level from the unit is determined using a W-band Standard Gain horn fed directly into the spectrum analyzer. The analyzer is set to RBW=1 MHz, VBW=3 MHz for peak power detection. If the 1 mW/cm² limit were exceeded, the maximum distance from the DUT would be determined by measurement at a greater distance (where the field density is 1 mW/cm²). The physical aperture of the horn antenna is 1.869 x 2.461cm (A = 4.60 cm²). Its effective aperture at 76.5 GHz is 2.23 cm², based on a Gain of 22.6 dB.

For the subject DUT, the near-field region was probed, rotating the probe on all axis and polarizations. Maximum received power was detected at the center of the radome, co-polarized with the transmit signal. The reading was -8.5 dBm or 0.141 mW. For other axis and polarizations, the power was negligible. Power from spurious and harmonic emissions are also negligible.

Hence the maximum emitted power density of the device is measured to be

$$p(mW/cm^2) = P/Aeff = 0.141 \text{ mW}/ 2.23 \text{ cm}^2 = 0.063 \text{ mW/cm}^2$$

and, hence, meets the 1.1307, 1.1310, 2.1091, and 2.0193 requirements. Note, this is a peak value; the average would be lower.

(2) The minimum separation distance calculated following FCC OET Bulletin 65 is calculated as follows, where S is power density,

Smeas
$$(3m) = -27.9 \text{ dBm/cm}^2$$
 (pk; from Table 5.2, ave + duty factor)
= 0.00162 wW/cm^2
= 12.1 dBm/m^2

EIRP = Smeas (3m) x
$$4\pi R^2$$
 = 12.1 + 20.5 = 32.6 dBm
= 1820 mW = 1.82 W

The operating distance is

$$R = SQRT(EIRP(mW)/4\pi S(mW/cm^2)) = 12.0 \text{ cm} = 0.12 \text{ m}.$$
 (Used $S = 1mW/cm^2$)

NOTE:

- (1) Under no circumstances is the ERP of this device greater than 3W, as required by 2.1091 and the FCC mm-wave accepted test procedures,
- (2) The DUT is only operating when the vehicle is in motion

6.7 Sample Field Computations

FUNDAMENTAL

Refer to:

- (a) Table 5.2 (f \geq 40 GHz); line 2; p. 15.
- (b) Section 5.2; Figure 5.4, peak power measurement; p. 11.
- (c) Table 4.1; limit; p. 3; $(60 \mu \text{W/cm}^2 = -12.2 \text{ dBm/cm}^2)$
- (d) Section 6.1; peak-to-(power)average ratio, p. 6; (6.5 dB)

The approach is to follow standard equations for computing field strength, i.e. $dB(\mu V/m)$, and then convert to power density. See equations and conversion factors in Section 5.3, p. 5 of the report.

To compute the field strength we use:

E₃ dB(
$$\mu$$
V/m) = 107 + Pr + Ka - Kg + Ke
= 107 - 24.4 + 45.3 + 0 - 6.5
= 121.4 dB(μ V/m)
= -34.36 dBm/cm²

The limit is $60 \mu \text{W/cm}^2 = -12.2 \text{ dBm/cm}^2$

SPURIOUS

Here we present computation for the reference signal emission at 9.57 GHz.

Refer to:

- (a) Table 5.1 (f < 40 GHz); line 6; p. 14.
- (c) Table 4.1; limit; p. 3; $(54 \text{ dB}(\mu\text{V/m}))$

Using the same wave equation as above:

E3 dB(
$$\mu$$
V/m) = 107 + Pr + Ka - Kg + Ke
= 107 - 48.3 + 29.5 - 37 + 0
= 51.2 dB(μ V/m)

The limit is $54.0 \text{ dB}(\mu\text{V/m})$.

Table 5.1 Highest Emissions Measured (f<40 GHz)

	RF/Microwave Radiated Emissions Fujitsu 2970 Sens												
	Freq.	Ant.	Ant.	Meas.	Pr	N/F	Pr(3m)	Ka	Kg	E3	E3lim	Pass	
#	GHz	Used	D,cm	dist, m	dBm	m	dBm	dB/m	dB	dBµV/m	dΒμV/m	dB	Comments (Notes)
1	.03 - 1	Bic		3.00	-78.0		-78.0	20.0	28.1	20.9	40.0	19.1	Noise, worst case
2	1 to 2	Horn	10.0	1.00	-63.5	0.14	-73.0	21.5	28.1	27.4	54.0	26.6	Noise, Pk (1,3,4,5,7)
3	2 to 4.5	Horn	5.0	1.00	-67.2	0.22	-76.7	26.0	25.0	31.3	54.0	22.7	Noise, Pk (1,3,4,5,7)
4	4.5 to 6	C-horn	21.6	1.00	-59.7	1.63	-73.5	24.7	37.5	20.7	54.0	33.3	Noise, Pk (1,3,4,5)
5	6 to 8.6	XN-hrn	28.9	1.00	-53.9	2.46	-71.3	25.3	37.0	24.0	54.0	30.0	Noise, Pk (1,3,4,5)
6	8.6to13	X-horn	19.4	3.00	-53.1	2.70	-53.1	28.5	37.0	45.4	54.0	8.6	Noise, Pk (1,3,4,5)
7	9.564	X-horn	19.4	3.00	-48.3	2.40	-48.3	29.5	37.0	51.2	54.0	2.8	Signal, Pk (5)
8	13to18	Ku-hrn	15.2	0.25	-50.7	2.39	-91.9	29.3	17.0	27.4	54.0	26.6	Noise, Pk (1,3,4,5)
9	18to26	K-horn	10.2	0.25	-55.6	1.53	-92.9	33.2	32.0	15.2	54.0	38.8	Noise, Ave (1,3,4,5)
10	19.13	K-horn	10.2	0.25	-53.9	1.33	-90.0	33.2	32.0	18.2	54.0	35.9	Signal, Ave (1,3,4,5)
11	26to40	Ka-hrn	6.9	0.25	-60.8	2.17	-101	36.0	0.0	41.9	54.0	12.2	Signal, Pk (1,2,3,4,5)
12	38.31	Ka-hrn	6.9	0.25	-59.0	2.56	-101	36.0	0.0	42.2	54.0	11.8	Noise, Ave (1,2,3,4,5)
	NOTES	5:											
	~~~	(1) Whe	n mea	sured at	0.25 cm	n from	the DU	T, no s	ignal v	was detect	ted anywh	ere, ev	en at the radome
		(2) Mix	er con	version l	oss is p	rogram	med in	the spe	ectrum	analyzer	and autor	natical	ly adjusts the readings
		(3) Whe	n extr	apolating	g to 3 m	, use N	Vear (40	dB/de	e) and	Far Fld (	20 dB/dec	) behar	vior
		(4) For .	Ave. n	neasurem	nent a 1	Hz VI	3W was	used,	someti	mes high	er; RBW	was alv	vays 1 MHz
				antenna									
ļ		(6) Exte	rmal n	nixer, LO	), and 3	6.5 dB	IF amp	were	used				and the second s
		(7) For 1	ridge-l	orn (Ho	rn) use	apertu	re dime	nsion o	f one l	half wave	length		
					D: :/	1.0	1. 4 1	<b>D</b> •	<u> </u>			~~~~	
	-			ъ.		ai Ka	aiatea			, Class			
	Freq.	Ant.	Ant.	Pr	Det.			Ka	Kg	E3	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used			dB/m			dBμV/m		Comments
1	49.3	Bic	V	-71.7	Pk			11.6	23.7	23.2	49.5	26.3	
2	231.1	Dip	H	-57.2	QP			16.1	21.4	44.5	56.9	12.4	
3	231.1		V	-58.7	Pk			16.1	21.4	43.0	56.9	13.9	
4	421.1	Sbic	Н	-69.3	Pk			21.5	19.2	40.0	56.9	16.9	
5	421.1	Sbic	V	-70.6	Pk			21.5	19.2	38.7	56.9	18.2	
6													
7													:
8													
Conducted Emissions, Class A													
	Freq.	Line	Det.	Vtest	Vlim		1						
#													
1		L											
2		Not app	ıcable										
4		L			L		L						

Meas. 7/16-23/04; U of Mich.

Table 5.2 Highest Emissions Measured (f>=40 GHz)

Microwave Radiated Emissions Fujitsu 2970 Sensor														
	Freq.	Ant.	Ant.	Meas.	Pr	N/F	Pr(3m)	Ka	Kg	P	P3lim	Pass		
#	GHz	Used	D,cm	dist, m	dBm	m	dBm	dB/m	dB	dBm/cm2	dBm/cm2	dB	Comments (Notes)	
1	40-76	U-horn	4.6	0.25	-86.5	3.84	-130	41.0	0.0	-137.4	-62.2	75.2	Noise, ave. meas. (1-5)	
2	76.4	W-horn	2.5	3.00	-24.4	5.10	-24.4	45.3	0.0	-34.4	-12.2	22.2	From Pk meas. (2-6)	
3	77-125	W-horn	2.5	0.25	-52.0	6.66	-95	46.4	0.0	-97.5	-62.2	35.3	Noise, pk. meas.(1-5)	
4	152.8	G-horn	1.3	0.25	-65.8	10.15	-109	51.3	0.0	-112.9	-62.2	50.7	Sig, pk. meas. (2-6)	
5	229.2	G-horn	1.3	0.25	-68.0	15.26	-111	54.0	0.0	-116.5	-60.0	56.5	Noise, pk. meas. (1-5,7)	
6	to 231	G-horn	1.3	0.25	-78.2	15.38	-121	54.0	0.0	-126.7	-60.0	66.7	Noise, pk. meas. (1-5,7)	
7			:											
8						V and Profession	***************************************							
9														
10														
11					,									
12														
	NOTES	S:												
	(1) When measured at 0.25 cm from the DUT, no signal was detected anywhere, even at the radome													
L		(2) Mix	er con	version l	oss is p	rogram	med in	the spe	ctrum	analyzer	and auton	natical	ly adjusts the readings	
		(3) Whe	n extr	apolating	g to 3 m	, use N	lear (40	dB/dec	) and	Far Fld (2	20 dB/dec	) beha	vior	
		(4) For	Ave. n	neasuren	nent a 1	Hz VI	3W was	used, s	ometi	mes high	er; RBW	was alv	vays 1 MHz	
		(5) DU	Γ max.	antenna	size, D	= 10.0	cm							
		(6) 6.5 (	lB pea	k-to-(po	wer)ave	erage c	orrectio	n factor	inclu	ded in P	<del>,</del>			
		(7) Exte	rmal r	nixer, LO	), and I	F amp	were us	ed.						
					Digit	al Ra	diated	Emis	sions	<u> </u>	ų ————————————————————————————————————			
	Freq.	Ant.	Ant.	Pr	Det.			Ka	Kg		E3lim	Pass		
#	MHz	Used	Pol.	dBm	Used			dB/m	dB		dBμV/m	Pass	Comments	
1_	è													
2		Not app	licable	-										
3														
4														
12	<u> </u>								Ļ	<u> </u>	<u> </u>			
Conducted Emissions, Class B														
	Freq.	Line	Det.	Vtest	Vlim	Pass	s							
#	MHz	Side	Used	dΒμV	dΒμV	dB	Comments							
1			<u> </u>											
2		Not app	licable	;										
4					<u> </u>							···		

Meas. 7/16-23/04; U of Mich.



Figure 6.1. Relative emission at fundamental vs. supply voltage.



Figure 6.2. Center frequency vs. temperature.





