

FCC RADIO TEST REPORT

FCC ID	: B94TNQ296PC
Equipment	: Notebook PC
Brand Name	: HP
Model Name	: TPN-Q296
Applicant	:HP Inc. 1501 Page Mill Road, Palo Alto CA, 94304, USA
Standard	:FCC 47 CFR Part 2, Part 27(D)

The product was received on Aug. 25, 2023 and testing was performed from Sep. 05, 2023 to Sep. 18, 2023. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	story c	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Site	6
	1.4	Applied Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Test Mode	7
	2.2	Connection Diagram of Test System	7
	2.3	Support Unit used in test configuration and system	8
	2.4	Frequency List of Low/Middle/High Channels	8
3	Conc	ducted Test Items	9
	3.1	Measuring Instruments	9
	3.2	Conducted Output Power Measurement	10
	3.3	Effective Isotropic Radiated Power	11
4	Radia	ated Test Items	12
	4.1	Measuring Instruments	12
	4.2	Radiated Spurious Emission Measurement	14
5	List o	of Measuring Equipment	15
6	Meas	surement Uncertainty	16
Ар	pendi	x A. Test Results of Conducted Test	
		x B. Test Results of Radiated Test	
Ар	pendi	x C. Test Setup Photographs	

History of this test report

Report No.	Version	Description	Issue Date
FG382109-04C	01	Initial issue of report	Oct. 02, 2023
FG382109-04C	02	Revise cover page and Product Feature of Equipment Under Test This report is an updated version, replacing the report issued on Oct. 02, 2023.	Oct. 06, 2023

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.2	§2.1046	Conducted Output Power	Reporting only	-
-	-	Peak-to-Average Ratio	-	See Note
3.3	§27.50 (a)(3)	Effective Isotropic Radiated Power	Pass	-
-	§2.1049	Occupied Bandwidth	-	See Note
-	§2.1051 §27.53 (a)(4)	Conducted Band Edge Measurement	-	See Note
-	§2.1051 §27.53 (a)(4)	Conducted Spurious Emission	-	See Note
-	§2.1055 §27.54	Frequency Stability Temperature & Voltage	-	See Note
4.2	§2.1053 §27.53 (a)(4)	Radiated Spurious Emission	Pass	6.24 dB under the limit at 13832.00 MHz

Summary of Test Result

Note:

- For host device, Equivalent Isotropic Radiated Power and Radiated Spurious Emission are verified and complies with limit in this test report.
- 2. For host device, the Conducted Output Power is no difference after compared to module (Model: FM101-GL)

Conformity Assessment Condition:

- 1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sheng Kuo Report Producer: Ming Chen

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Feature					
General Specs	WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n /ax, Wi-Fi 5GHz 802.11a/n/ac/ax, and Wi-Fi 6GHz 802.11ax					
Sample 1	Host with Vendor 1					
Sample 2 Host with Vendor 2						
Integrated WLAN Module	Brand Name: Intel® Wi-Fi 6E AX211 Model Name: AX211NGW FCC ID: PD9AX211NG					
Integrated WLAN Module	Brand Name: MediaTek Model Name: MT7921 FCC ID: B94-MT7921S					
Antenna Type	WWAN: PIFA Antenna WLAN: <ant. 1="">: PIFA Antenna <ant. 2="">: PIFA Antenna Bluetooth: PIFA Antenna</ant.></ant.>					

WWAN Antenna Information for Host								
	Manufacturer	Vendor 1	Peak gain (dBi)	LTE Band 30: 1.3				
Main Antenna	Part number	DQ6E1LTE100 (MDA-LTE1LTE1-01-001)	Туре	PIFA				
	Manufacturer	Vendor 2	Peak gain (dBi)	LTE Band 30 :1.28				
	Part number	DQ6915G0200 (81ELA915.G02)	Туре	PIFA				

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Site

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory						
Test Site LocationNo.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978							
Test Site No.	Sporton Site No.						
	TH03-HY						
Test Engineer	Cotty Hsu						
Temperature (°C)	22.2~23.1						
Relative Humidity (%)	51~56						
Test Site	Sporton International Inc. Wensan Laboratory						
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855						
	Sporton Site No.						
Test Site No.	03CH16-HY (TAF Code: 3786)						
Test Engineer	Jack tasi, Gary Guo and Steven Wu						
Temperature (°C)	20~25						
Relative Humidity (%)	50~65						
Remark	The Radiated Spurious Emission test item subcontracted to Sporton International Inc. Wensan Laboratory.						

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW3786

1.4 Applied Standards

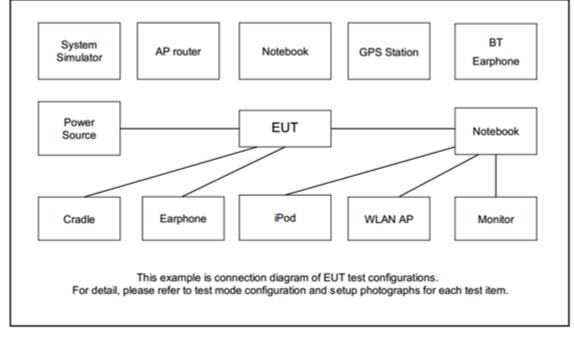
According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- + ANSI C63.26-2015
- FCC 47 CFR Part 2, Part 27(D)
- ANSI / TIA-603-E
- FCC KDB 971168 Power Meas License Digital Systems D01 v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- FCC KDB 414788 D01 Radiated Test Site v01r01

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

Test Configuration of Equipment Under Test 2


2.1 **Test Mode**

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in in Tablet Type (three orthogonal axis (X: flat, Y: portrait, Z: landscape)) and Notebook Type, and adjusting the measurement antenna orientation, following C63.26 exploratory test procedures and only the worst case emissions were reported in this report.

	- ·		Ва	andwic	vidth (MHz)				Modulation		RB #		Test Channel			
Test Items	Band	1.4	3	5	10	15	20	QPSK	16QAM	64QAM	1	Half	Full	L	м	н
Max. Output Power	30	-	-	v	v	-	-	v	v		v			v	v	v
E.I.R.P	30	30 v v v v		Max. Power												
Radiated Spurious Emission	30	-	-	v	v	-	-	v			v			v	v	v
Remark	 The mark "v " means that this configuration is chosen for testing The mark "-" means that this bandwidth is not supported. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under 						er									

2.2 Connection Diagram of Test System

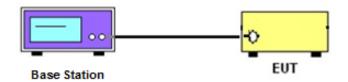
: Oct. 06, 2023

2.3 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m
2.	Earphone	Lenovo	TS300-01MS21-8S	N/A	Unshielded, 1.2 m	N/A

2.4 Frequency List of Low/Middle/High Channels

LTE Band 30 Channel and Frequency List								
BW [MHz]	Channel/Frequency(MHz) Lowest Middle High							
10	Channel	-	27710	-				
	Frequency	-	2310	-				
5	Channel	27685	27710	27735				
	Frequency	2307.5	2310	2312.5				


3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.

3.1.1 Test Setup

3.1.2 Conducted Output Power

3.1.3 Test Result of Conducted Test

Please refer to Appendix A.

3.2 Conducted Output Power Measurement

3.2.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

3.3 Effective Isotropic Radiated Power

3.3.1 Description of Effective Isotropic Radiated Power

For mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, *except that* for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth. For mobile and portable stations using time division duplexing (TDD) technology, the duty cycle must not exceed 38 percent in the 2305-2315 MHz and 2350-2360 MHz bands. Mobile and portable stations using FDD technology are restricted to transmitting in the 2305-2315 MHz band. Power averaging shall not include intervals in which the transmitter is off.

Remark: EIRP use worst case measure the total power to cover per 5MHz Power.

According to KDB 412172 D01 Power Approach,

EIRP = P_T + G_T – L_C , ERP = EIRP -2.15, where

 P_T = transmitter output power in dBm

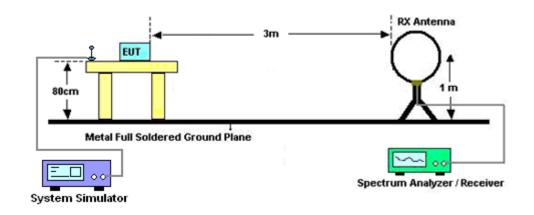
G⊤ = gain of the transmitting antenna in dBi

 L_C = signal attenuation in the connecting cable between the transmitter and antenna in dB

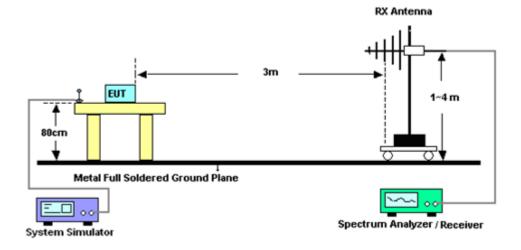
3.3.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.4.5

1. Determine the EIRP by adding the effective antenna gain to the adjusted power level.

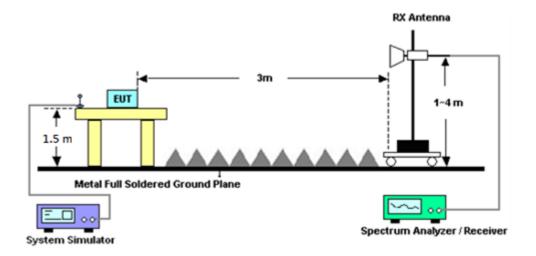

4 Radiated Test Items

4.1 Measuring Instruments

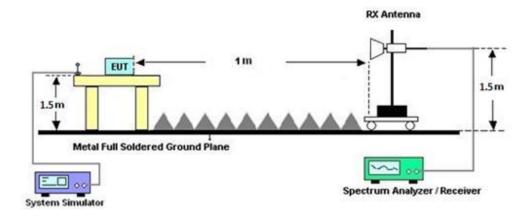

See list of measuring instruments of this test report.

4.1.1 Test Setup

For radiated test below 30MHz



For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

4.1.2 Test Result of Radiated Test

Please refer to Appendix B.

Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

4.2 Radiated Spurious Emission Measurement

4.2.1 Description of Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 70 + 10 log (P) dB.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.2.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 7. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.

EIRP (dBm) = S.G. Power - Tx Cable Loss + Tx Antenna Gain ERP (dBm) = EIRP - 2.15

9. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from 70 + 10log(P)dB below the transmitter power P(Watts)

= P(W) - [70 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [70 + 10log(P)] (dB)

= -40dBm.

5 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 20, 2022	Sep. 05, 2023~ Sep. 15, 2023	Sep. 19, 2023	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz-40GHz	Nov. 24, 2022	Sep. 05, 2023~ Sep. 15, 2023	Nov. 23, 2023	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00994	18GHz-40GHz	Nov. 04, 2022	Sep. 05, 2023~ Sep. 15, 2023	Nov. 03, 2023	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY57290111	3Hz~26.5GHz	Dec. 15, 2022	Sep. 05, 2023~ Sep. 15, 2023	Dec. 14, 2023	Radiation (03CH16-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 27, 2023	Sep. 05, 2023~ Sep. 15, 2023	Jun. 26, 2024	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804011/2,804 012/2	18-40GHz	Jan. 03, 2023	Sep. 05, 2023~ Sep. 15, 2023	Jan. 02, 2024	Radiation (03CH16-HY)
Signal Generator	Anritsu	MG3694C	163401	8MHz~40GHz	Feb. 08, 2023	Sep. 05, 2023~ Sep. 15, 2023	Feb. 07, 2024	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N- 06	40103 & 07	30MHz to 1GHz	Apr. 23, 2023	Sep. 05, 2023~ Sep. 15, 2023	Apr. 22, 2024	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N- 06	47020 & 06	30MHz to 1GHz	Oct. 08, 2022	Sep. 05, 2023~ Sep. 15, 2023	Oct. 07, 2023	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02114	1G~18GHz	Jul. 31, 2023	Sep. 05, 2023~ Sep. 15, 2023	Jul. 30, 2024	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1G~18GHz	Mar. 23, 2023	Sep. 05, 2023~ Sep. 15, 2023	Mar. 22, 2024	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1GHz	Jul. 03, 2023	Sep. 05, 2023~ Sep. 15, 2023	Jul. 02, 2024	Radiation (03CH16-HY)
Preamplifier	EMEC	EM1G18G	060812	1GHz~18GHz	Dec. 26, 2022	Sep. 05, 2023~ Sep. 15, 2023	Dec. 25, 2023	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102/SUCOFLE X 104	EC-A5-300-5 757,805935/4 ,802434/4	N/A	Aug. 08, 2023	Sep. 05, 2023~ Sep. 15, 2023	Aug. 07, 2024	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Sep. 05, 2023~ Sep. 15, 2023	N/A	Radiation (03CH16-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Sep. 05, 2023~ Sep. 15, 2023	N/A	Radiation (03CH16-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Sep. 05, 2023~ Sep. 15, 2023	N/A	Radiation (03CH16-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Sep. 05, 2023~ Sep. 15, 2023	N/A	Radiation (03CH16-HY)
Radio Communication Analyzer	Anritsu	MT8821C	6262025353	LTE FDD/TDD LTE-2CC DLCA/ULCA	Oct. 13, 2022	Sep. 18, 2023	Oct. 12, 2023	Conducted (TH03-HY)
Coupler	Warison	20dB 25W SMA Directional Coupler	#B	1-18GHz	Jan. 06, 2023	Sep. 18, 2023	Jan. 05, 2024	Conducted (TH03-HY)

6 Measurement Uncertainty

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.09 dB
Confidence of 95% (U = 2Uc(y))	3.09 UB

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	3.55 dB
Confidence of 95% (U = 2Uc(y))	0.00 dB

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	4.02 dB
Confidence of 95% (U = 2Uc(y))	4.02 UB

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power & EIRP)

	LTE Band 30 Maximum Average Power [dBm] (GT - LC = 1.3 dB)										
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)			
10	1	0			20.15						
10	1	25			20.10						
10	1	49			20.07						
10	25	0	QPSK		19.11		21.45	0.1396			
10	25	12			19.14						
10	25	25			19.15						
10	50	0			19.11						
10	1	0		-	19.37	-					
10	1	25			19.27						
10	1	49			19.26						
10	25	0	16-QAM		18.09		20.67	0.1167			
10	25	12			18.12						
10	25	25			18.14						
10	50	0			18.11						
Limit	EIRP	< 250mW/5	5MHz		Result		Pa	ass			

Total EIRP power is less than partial EIRP limit 250 mW/5MHz.

LTE Band 30 Maximum Average Power [dBm] (GT - LC = 1.3 dB)										
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)		
5	1	0		20.08	20.07	20.06				
5	1	12		20.03	20.03	20.01				
5	1	24		20.04	20.02	20.01				
5	12	0	QPSK	19.13	19.07	19.09	21.38	0.1374		
5	12	7		19.12	19.11	19.14				
5	12	13		19.06	19.14	19.01				
5	25	0		19.06	19.10	19.14				
5	1	0		19.32	19.30	19.24		0.1159		
5	1	12		19.25	19.34	19.21				
5	1	24		19.26	19.20	19.24				
5	12	0	16-QAM	18.17	18.08	18.11	20.64			
5	12	7		18.11	18.13	18.18				
5	12	13		18.09	18.13	18.04				
5	25	0		18.06	18.11	18.09				
Limit	EIRP	< 250mW/5	5MHz	Result Pass			ISS			

Total EIRP power is less than partial EIRP limit 250 mW/5MHz.

Appendix B. Test Results of Radiated Test

LTE Band 30 / 5MHz / QPSK										
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)	
	4611	-61.48	-40	-21.48	-49.82	-67.4	6.74	12.66	Н	
	6916	-59.40	-40	-19.40	-55.99	-62.88	8.49	11.97	н	
	9221	-55.33	-40	-15.33	-56.74	-56.43	9.71	10.82	н	
									Н	
									Н	
									Н	
Lowest									Н	
Lowesi	4611	-59.90	-40	-19.90	-47.89	-65.82	6.74	12.66	V	
	6916	-55.93	-40	-15.93	-52.52	-59.41	8.49	11.97	V	
	9221	-54.97	-40	-14.97	-55.36	-56.07	9.71	10.82	V	
	13832	-46.24	-40	-6.24	-55.97	-47.48	11.99	13.24	V	
									V	
									V	
									V	
	4616	-61.84	-40	-21.84	-50.21	-67.73	6.75	12.64	н	
	6924	-59.58	-40	-19.58	-56.22	-63.04	8.50	11.95	н	
	9231	-55.55	-40	-15.55	-56.96	-56.61	9.72	10.78	Н	
									Н	
									Н	
									Н	
Middle									Н	
Midule	4616	-60.47	-40	-20.47	-48.5	-66.36	6.75	12.64	V	
	6924	-56.39	-40	-16.39	-53.06	-59.85	8.50	11.95	V	
	9231	-56.13	-40	-16.13	-56.51	-57.19	9.72	10.78	V	
									V	
									V	
									V	
									V	

LTE Band 30

	4621	-61.52	-40	-21.52	-49.92	-67.38	6.75	12.62	Н
	6931	-59.55	-40	-19.55	-56.23	-62.99	8.50	11.94	н
	9241	-55.33	-40	-15.33	-56.75	-56.35	9.72	10.74	н
									Н
									Н
									Н
									Н
Highest	4621	-60.67	-40	-20.67	-48.74	-66.53	6.75	12.62	V
	6931	-56.70	-40	-16.70	-53.42	-60.14	8.50	11.94	V
	9241	-56.04	-40	-16.04	-56.39	-57.06	9.72	10.74	V
									V
									V
									V
									V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

	LTE Band 30 / 10MHz / QPSK										
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)		
	4611	-62.85	-40	-22.85	-51.19	-68.77	6.74	12.66	Н		
	6917	-59.61	-40	-19.61	-56.21	-63.08	8.49	11.97	Н		
	9222	-55.14	-40	-15.14	-56.55	-56.24	9.71	10.81	Н		
									Н		
									Н		
									Н		
Middle									Н		
Middle	4611	-60.68	-40	-20.68	-48.67	-66.6	6.74	12.66	V		
	6917	-56.51	-40	-16.51	-53.11	-59.98	8.49	11.97	V		
	9222	-55.90	-40	-15.90	-56.28	-57	9.71	10.81	V		
									V		
									V		
									V		
									V		

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.