

TEST REPORT

EUT Description	WLAN and BT, 1x1 PCle M.2 2230 adapter card
Brand Name	Intel® Wireless-AC 9461
Model Name	9461NGW
FCC ID ISED ID	PD99461NG 1000M-9461NG
Date of Test Start/End	2017-07-31 / 2017-08-03
Features	802.11 a/b/g/n/ac Wireless LAN + Bluetooth 5 (see section 5)
Applicant	Intel Mobile Communications
Address	100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA
Contact Person	Steven Hackett
Telephone/Fax/ Email	steven.c.hackett@intel.com
Reference Standards	FCC CFR Title 47 Part 15 C RSS-247 issue 2, RSS-Gen issue 4 (see section 1)
Test Report identification	170727-01.TR05
Revision Control	Rev. 00 This test report revision replaces any previous test report revision (see section 8)
The test results relate only to the sa The test report shall not be reproduc Issued by	amples tested. ced in full, without written approval of the laboratory. Reviewed by

Walid EL HAJJ (RF Test Lead) Olivier FARGANT (Technical Manager)

Intel Mobile Communications France S.A.S – WRF Lab 425 rue de Goa – Le Cargo B6 - 06600, Antibes, France Tel. +33493001400 / Fax +33493001401

Table of Contents

1. St	tandards, reference documents and applicable test methods	3
2. G	eneral conditions, competences and guarantees	3
3. Er	nvironmental Conditions	3
4. Te	est samples	4
	UT Features	
6. Re	emarks and comments	4
	est Verdicts summary	
7.1.	•	
8. Do	ocument Revision History	5
Annex	A. Test & System Description	6
A.1	MEASUREMENT SYSTEM	6
A.2	TEST EQUIPMENT LIST	9
A.3	MEASUREMENT UNCERTAINTY EVALUATION	11
Annex	k B. Test Results	12
B.1	20DB BANDWIDTH AND CARRIER FREQUENCY SEPARATION	12
B.2	NUMBER OF HOPPING CHANNELS	16
B.3	TIME OF OCCUPANCY (DWELL TIME)	20
B.4	MAXIMUM PEAK OUTPUT POWER ANTENNA GAIN	27
B.5	OUT-OF-BAND EMISSION (CONDUCTED)	31
B.6	RADIATED SPURIOUS EMISSION	57
B.7	AC POWER-LINE CONDUCTED EMISSION	69
Annex	c C. Photographs	73
C.1	TEST SETUP	73
C.2	TEST SAMPLE	76

1. Standards, reference documents and applicable test methods

- 1. FCC 47 CFR part 15 Subpart C §15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.
- 2. FCC 47 CFR part 15 Subpart C §15.207 Conducted emission limits.
- 3. FCC 47 CFR part 15 Subpart C §15.209 Radiated emission limits; general requirements.
- 4. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- 5. RSS-247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
- 6. RSS-Gen Issue 4 General Requirements for Compliance of Radio Apparatus.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

2. General conditions, competences and guarantees

- ✓ Intel Mobile Communications France SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2005 testing laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Mobile Communications France SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011.
- ✓ Intel Mobile Communications France SAS Wireless RF Lab (Intel WRF Lab) is a Registered Test Site listed by ISED, with ISED Assigned Code 1000Y.
- ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- This report is only referred to the item that has undergone the test.
- This report does not imply an approval of the product by the Certification Bodies or competent Authorities.

3. Environmental Conditions

✓ At the site where the measurements were performed the following limits were not exceeded during the tests:

Temperature	23°C ± 1°C
Humidity	55% ± 15%

4. Test samples

Sample	Control #	Description	Model	Serial #	Date of receipt	Note
	170727-01.S01	Module	9461NGW	WFM 3413E86AD85D	2017-07-28	
#01	170524-02.S15	Extender Board	PCB00609_01	6092416-442	2017-05-30	Used for conducted tests
	170000-01.S04	Laptop	Latitude E5470	21HTPF2	2017-04-25	
	170727-01.S06	Module	9461NGW	WFM 3413E86AD7B3	2017-07-28	
#02	170220-02.S03	Extender Board	PCB00609_01	6092416-446	2017-02-20	Used for radiated tests
	170000-01.S13	Laptop	Latitude E5470	FT6LMC2	2017-04-25	
	170727-01.S04	Module	9461NGW	WFM 3413E86AD7BD	2017-07-28	Used for AC power-
#03	170524-02.S13	Extender Board	PCB00609_01	6092416-418	2017-02-20	line conducted emission
	170000-01.S02 Laptop	Laptop	Latitude E5470	21HTPF2	2017-04-25	measurements

5. EUT Features

Brand Name	Intel® Wireless-AC 9461			
Model Name	9461NGW			
FCC	PD99461NG			
ISED ID	1000M-9461NG			
Software Version	10.1730.0-05594			
Driver Version	99.0.28.6			
Prototype / Production	Production			
	802.11b/g/n	2.4GHz (2400.0 – 2483.5 MHz)		
	802.11a/n/ac	5.2GHz (5150.0 – 5350.0 MHz)		
Supported Radios		5.6GHz (5470.0 – 5725.0 MHz) 5.8GHz (5725.0 – 5850.0 MHz)		
	· · · · · · · · · · · · · · · · · · ·			
	Bluetooth 5 2.4GHz (2400.0 – 2483.5 MHz)			
Antenna Information	WLAN: Slot antenna. WiFi 2.4	GHz & 5GHz BT (DRTU CHAIN A)		

6. Remarks and comments

N/A

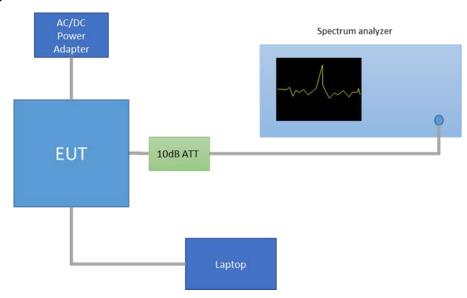
7. Test Verdicts summary

7.1. BT Basic Data Rate / Enhanced Data Rate

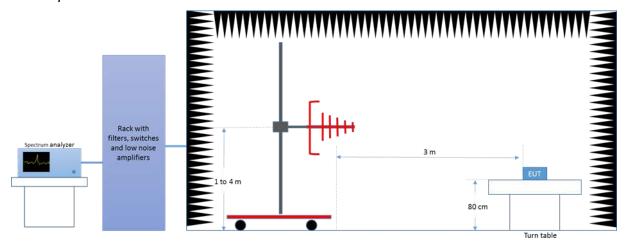
FCC part	RSS part	Test name	Verdict
15.247 (a) (1)	RSS-247 Clause 5.1 (a) and (b)	20dB Bandwidth and Carrier frequency separation	Р
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	Number of hopping channels	Р
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	Р
15.247 (b) (1)	RSS-247 Clause 5.4 (b)	Maximum Peak Output Power and antenna gain	Р
15.247 (d)	RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Out-of-band Emissions (conducted)	Р
15.209(a)	RSS-GEN Clause 8.9	Out-of-band Emissions (radiated)	Р
15.407 (6) 15.207	RSS-GEN Clause 8.8	AC power-line conducted emission	Р

8. Document Revision History

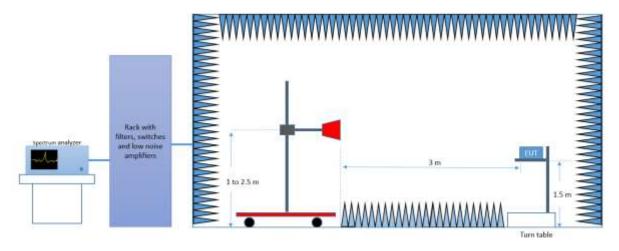
Revision #	Date	Modified by	Revision Details
Rev. 00	2017-09-12	BLavenant	First Issue

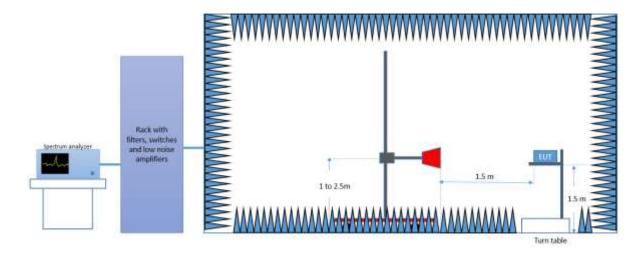

Annex A. Test & System Description

A.1 Measurement System

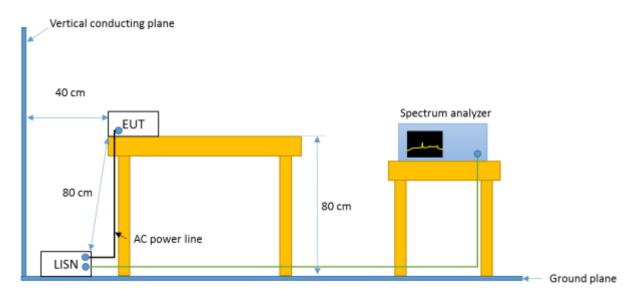

Measurements were performed using the following setups.

The DUT was installed in a test fixture and this test fixture is connected to a laptop computer and AC/DC power adapter. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes.


Conducted Setup


Radiated Setup < 1GHz

Radiated Setup 1 GHz - 18 GHz


Radiated Setup 18 GHz - 25 GHz

AC power-line conducted emission Setup 150 kHz - 30 MHz

A.2 Test Equipment List

Conducted Setup

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0316	Spectrum analyzer	FSV30	103309	Rohde & Schwarz	2017-01-30	2019-01-30

Radiated Setup-1

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0133	Spectrum analyzer	FSV40	101358	Rohde & Schwarz	2016-04-15	2018-04-15
0137	Log antenna 30 MHz – 1 GHz	3142E	00156946	ETS Lindgren	2015-12-11	2017-12-11
0139	Horn Antenna 18 GHz - 26.5 GHz	114514	00167100	ETS Lindgren	2016-03-16	2018-03-16
0135	Semi Anechoic chamber	FACT 3	5720	ETS Lindgren	2016-04-28	2018-04-28
0530	Measurement Software	EMC32	100623	Rohde & Schwarz	N/A	N/A
0296	Power Supply	6673A	MY41000318	Agilent	N/A	N/A
0346	Multimeter	34401A	US36054685	HP	2016-02-04	2018-02-04

N/A: Not Applicable

Radiated Setup-2

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0420	Spectrum analyzer	FSV40	101556	Rohde & Schwarz	2016-04-15	2018-04-15
0138	Horn antenna 1 GHz – 6.4 GHz	3117	00152266	ETS Lindgren	2016-03-14	2018-03-14
0141	Double Ridge Horn Antenna 1 GHz – 18 GHz	3117	00157736	ETS Lindgren	2016-04-13	2018-04-13
0409	PreAmplifier	3117-PA	00157993	ETS Lindgren	N/A	N/A
0337	Full Anechoic chamber	RFD_FA_100	5996	ETS Lindgren	2016-04-28	2018-04-28
0329	Measurement Software	EMC32	100401	Rohde & Schwarz	N/A	N/A

N/A: Not Applicable

Radiated Setup - shared equipments

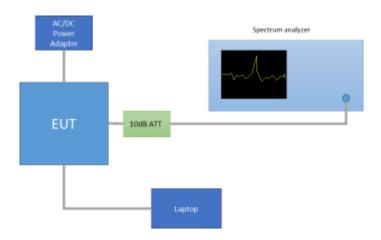
ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0014	Power Sensor	NRP-Z57	101280	Rohde & Schwarz	2017-04-25	2019-04-25

AC power-line conducted emission Setup

ID#	Device	Type/Model	Serial Number	Manufacturer	Cal. Date	Cal. Due Date
0027	Measurement software	EMC32	1300.7010.02	Rohde & Schwarz	NA	NA
0317	Spectrum Analyzer	FSV30	103308	Rohde & Schwarz	2017-08-05	2019-08-05
0532	LISN	ENV216	101321	Rohde & Schwarz	2016-09-13	2018-09-13
0607	LISN	ENV216	101342	Rohde & Schwarz	2017-09-06	2018-09-06
0538	Transformer	Monophase	TIMM3.15	Montelem	NA	NA
095	Millivoltmeter	2000	4009301	KEITHLEY	2015-10-26	2017-10-26
0624	AC power source	61604	SM135546	CHROMA	NA	NA
0346	Multimeter	34401A	US36054685	HP	2016-02-04	2018-02-04

A.3 Measurement Uncertainty Evaluation

The system uncertainty evaluation is shown in the below table:

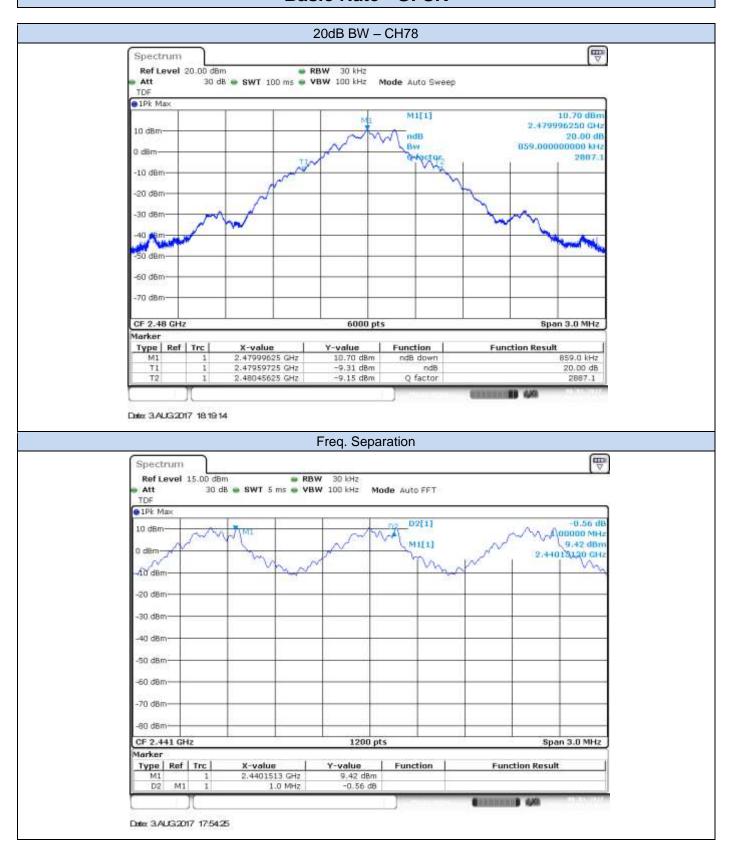

Measurement type	Uncertainty [±dB]	
Conducted Power	±1.0	
Conducted Spurious Emission	±2.9	
Radiated tests <1GHz	±3.8	
Radiated tests 1GHz - 40 GHz	±4.7	
AC power-line conducted emission	±1.45	

Annex B. Test Results

B.1 20dB Bandwidth and carrier frequency separation

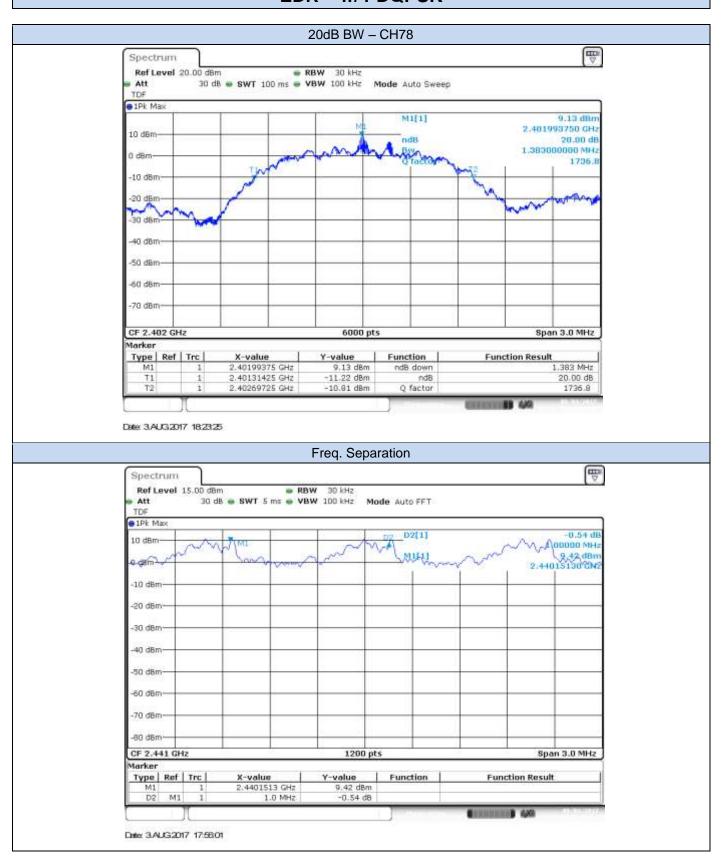
Test limits

FCC part	RSS part	Limits
15.247 (a) (1)	RSS-247 Clause 5.1 (a) and (b)	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.



Results tables:

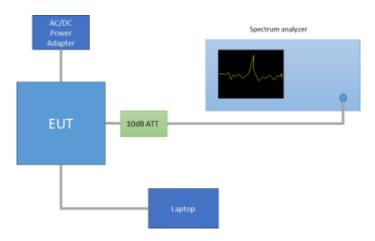
Mode	Channel Number	Frequency [MHz]	20dB BW [MHz]	Freq. Separation [kHz]
D : D :	0	2402	0.818	
Basic Rate GFSK	39	2441	0.815	1000
GI SIX	78	2480	0.859	
EDD	0	2402	1.383	
EDR π/4-DQPSK	39	2441	1.394	1000
	78	2480	1.394	
EDR 8-DPSK	0	2402	1.377	
	39	2441	1.396	1000
	78	2480	1.430	


Results screenshot

Basic Rate - GFSK

EDR $-\pi/4$ -DQPSK

EDR - 8-DPSK


B.2 Number of hopping channels

Test limits

FCC part	RSS part	Limits
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

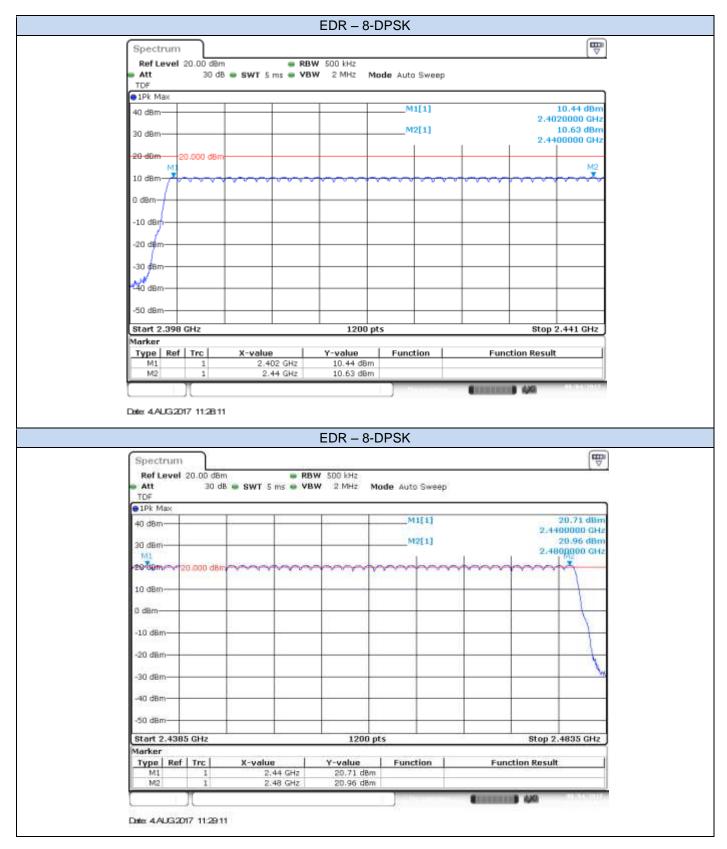
Test procedure

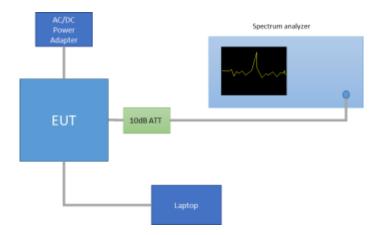
The setup below was used to measure the number of hopping channels. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.



Results tables

Mode	Number of hopping channels
Basic Rate GFSK	79
EDR π/4-DQPSK	79
EDR 8-DPSK	79


Number of hopping channels



B.3 Time of Occupancy (Dwell Time)

FCC part	RSS part	Limits
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	The average time of occupancy (Dwell Time) on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test procedure

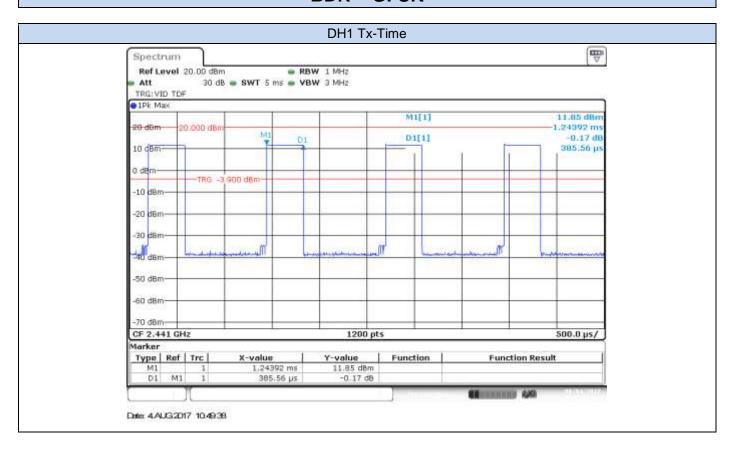
The setup below was used to measure the dwell time. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

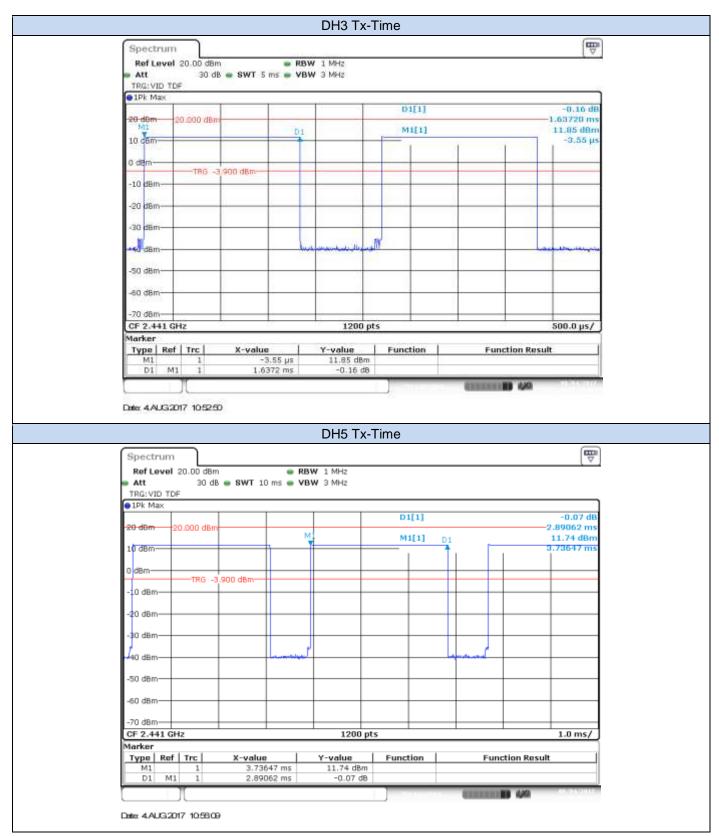
In the worst case, the system makes 1600 hops per second with 79 channels, providing a 1 timeslot length of 625μs.

A DH1 packet, with independence of the modulation, needs 1 time slot for transmitting and 1 time slot for receiving. Then, the system makes in the worst case 1600/2 = 800 hops per second with 79 channels. So each channel appears 800/79 = 10.13 times per second and, for a period of $0.4 \times 79 = 31.6$ seconds, each channel appears $10.13 \times 31.6 =$ 320.11 times.

A DH3 packet, with independence of the modulation, needs 3 time slots for transmitting and 1 time slot for receiving. Then, the system makes in the worst case 1600/4 = 400 hops per second with 79 channels. So each channel appears 400/79 = 5.1 times per second and, for a period of $0.4 \times 79 = 31.6$ seconds, each channel appears $5.1 \times 31.6 = 161.16$ times.

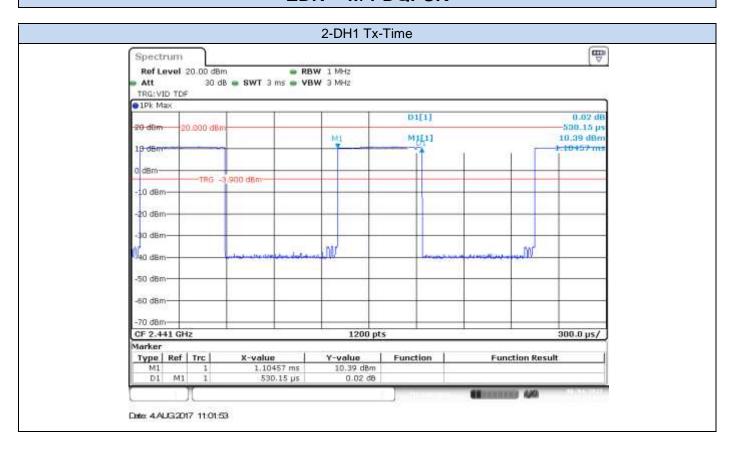
A DH5 packet, with independence of the modulation, needs 5 time slots for transmitting and 1 time slot for receiving. Then, the system makes in the worst case 1600/6 = 266.67 hops per second with 79 channels. So each channel appears 166.67/79 = 3.37 times per second and, for a period of $0.4 \times 79 = 31.6$ seconds, each channel appears $3.37 \times 31.6 =$ 106.49 times.

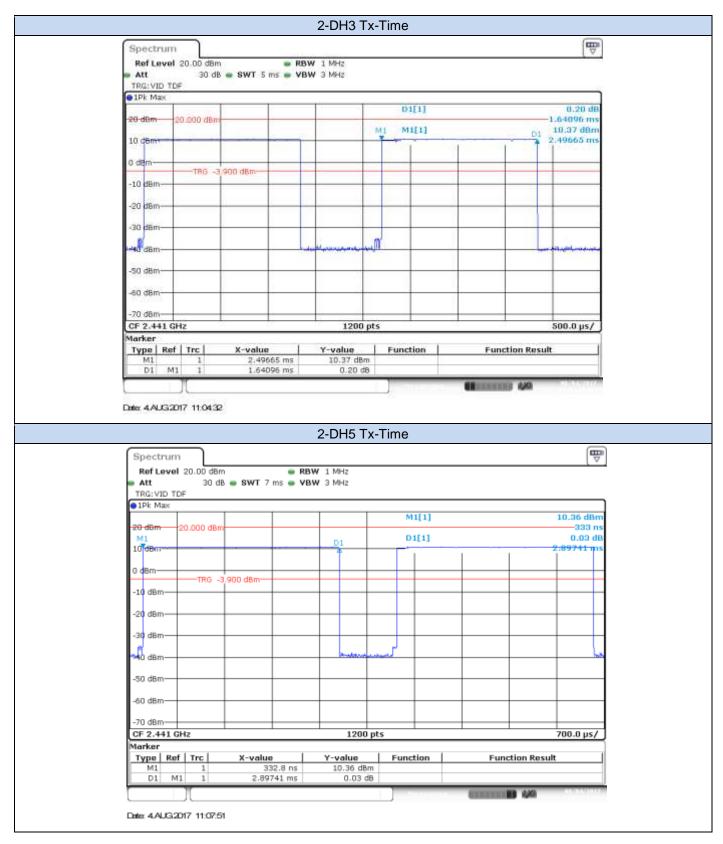

Thus, the total time of occupancy is obtained by multiplying the calculated maximum number of appearances per packet type and the measured Tx-time, as shown in the results screenshots.


Results tables

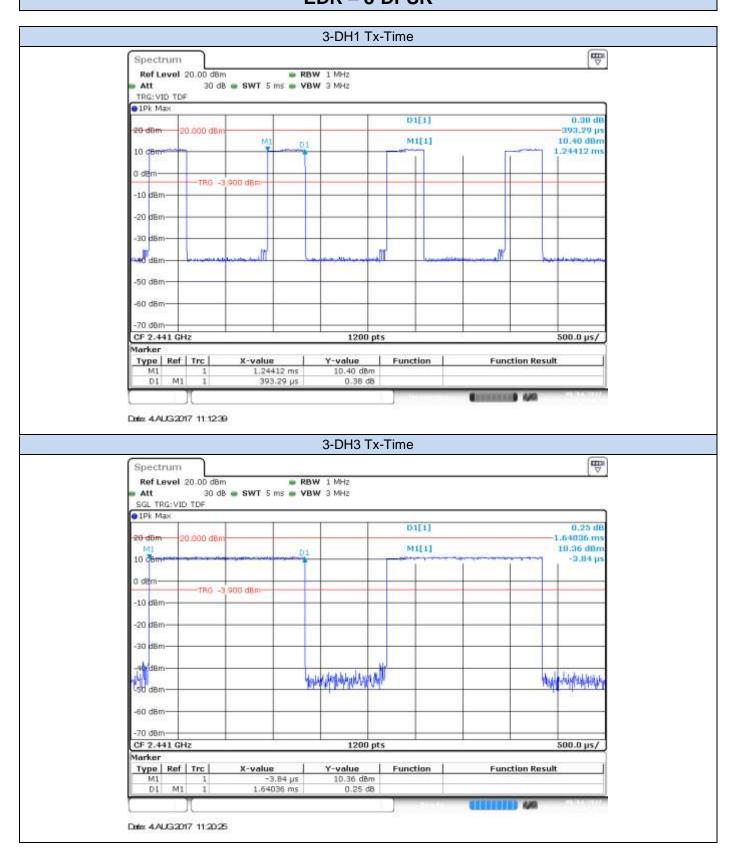
Mode	Packet Type	Times of appearance	Tx-time [ms]	Dwell Time [ms]
Basic Rate	DH1	320.11	0.386	123.242
GFSK	DH3	161.16	1.637	263.819
Gran	DH5	106.49	2.890	307.756
EDR π/4-DQPSK	2-DH1	320.11	0.530	169.658
	2-DH3	161.16	1.640	264.302
	2-DH5	106.49	2.897	308.502
EDR 8-DPSK	3-DH1	320.11	0.393	524.340
	3-DH3	161.16	1.640	264.302
	3-DH5	106.49	2.887	307.437

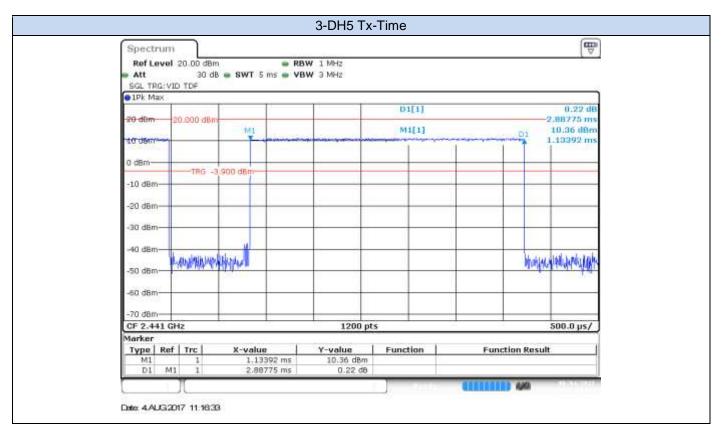
Results Screenshot:


BDR - GFSK

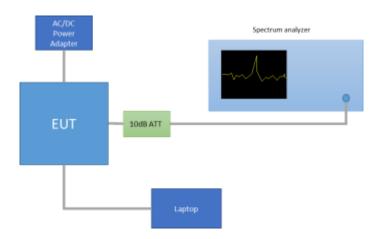


EDR $-\pi/4$ -DQPSK





EDR - 8-DPSK

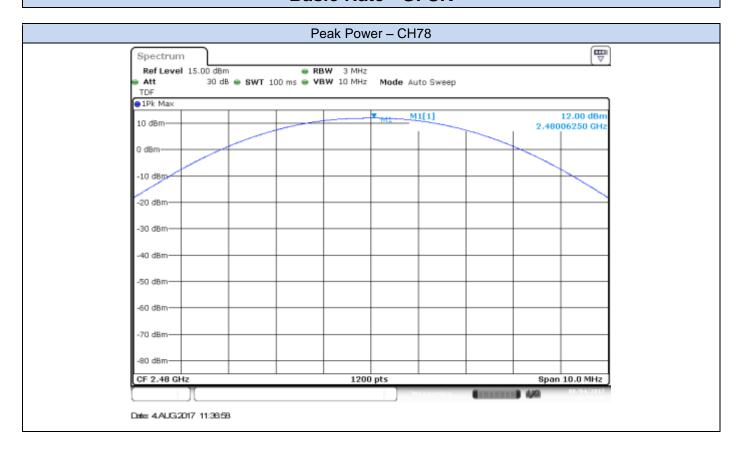

B.4 Maximum Peak Output Power antenna gain

Test Limits

FCC part	RSS part	Limits
15.247 (b) (1)	RSS-247 Clause 5.4 (b)	 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.
		()(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test procedure

The setup below was used to measure the maximum peak output power. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

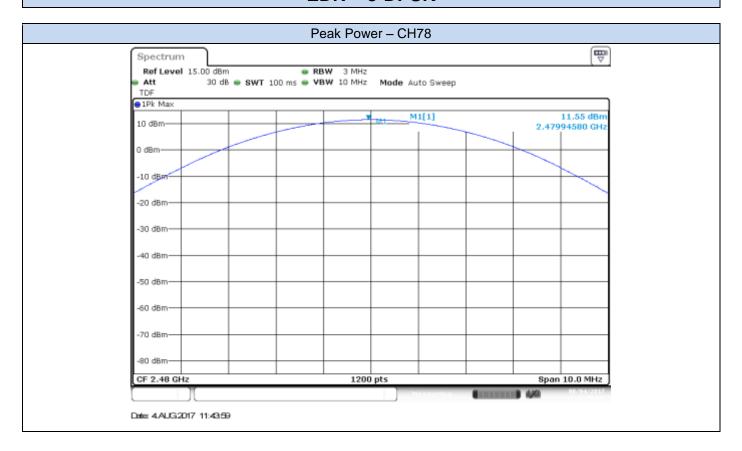

The declared maximum antenna gain is 3.24dBi.

Results tables

Mode	Channel Number	Frequency [MHz]	Peak Power [dBm]	Peak Power [mW]	Peak Power EIRP [dBm]	Peak Power EIRP [mW]
	0	2402	11.70	14.79	14.94	31.19
Basic Rate GFSK	39	2441	11.85	15.31	15.09	32.28
GFSK	78	2480	12.00	15.85	15.24	33.42
EDD	0	2402	11.23	13.27	14.47	27.99
EDR π/4-DQPSK	39	2441	11.34	13.61	14.58	28.71
	78	2480	11.47	14.03	14.71	29.58
EDR 8-DPSK	0	2402	11.29	13.46	14.53	28.38
	39	2441	11.41	13.84	14.65	29.17
	78	2480	11.55	14.29	14.79	30.13

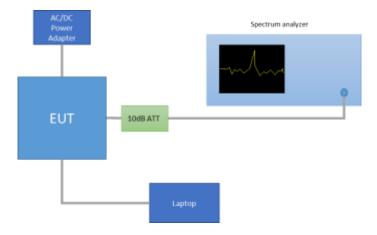

Results Screenshot

Basic Rate - GFSK



EDR $-\pi/4$ -DQPSK

EDR - 8-DPSK


B.5 Out-of-band emission (conducted)

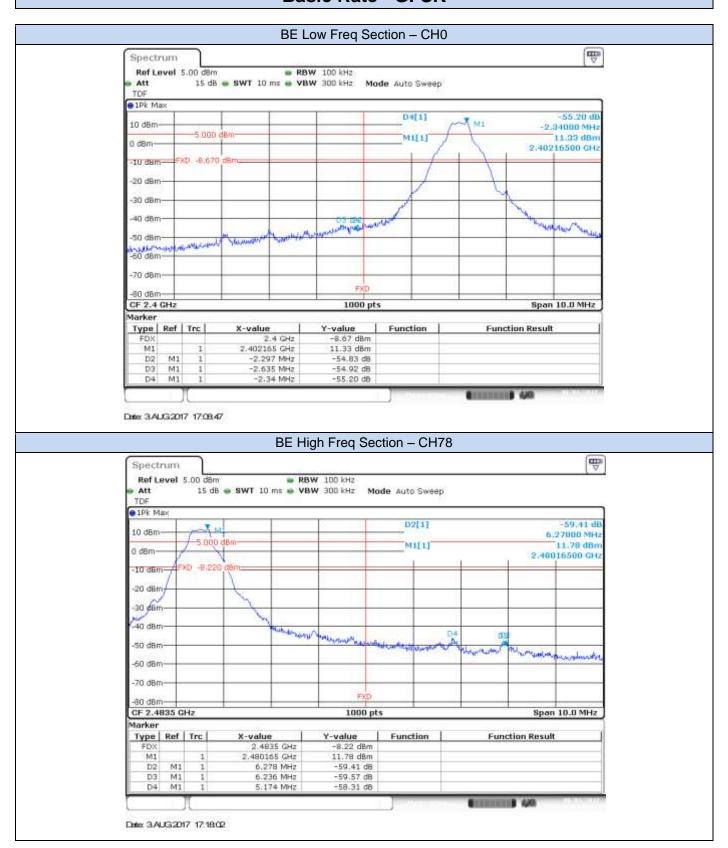
Test limits

FCC part	RSS part	Limits
15.247 (d)	RSS-247 Clause 5.5	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

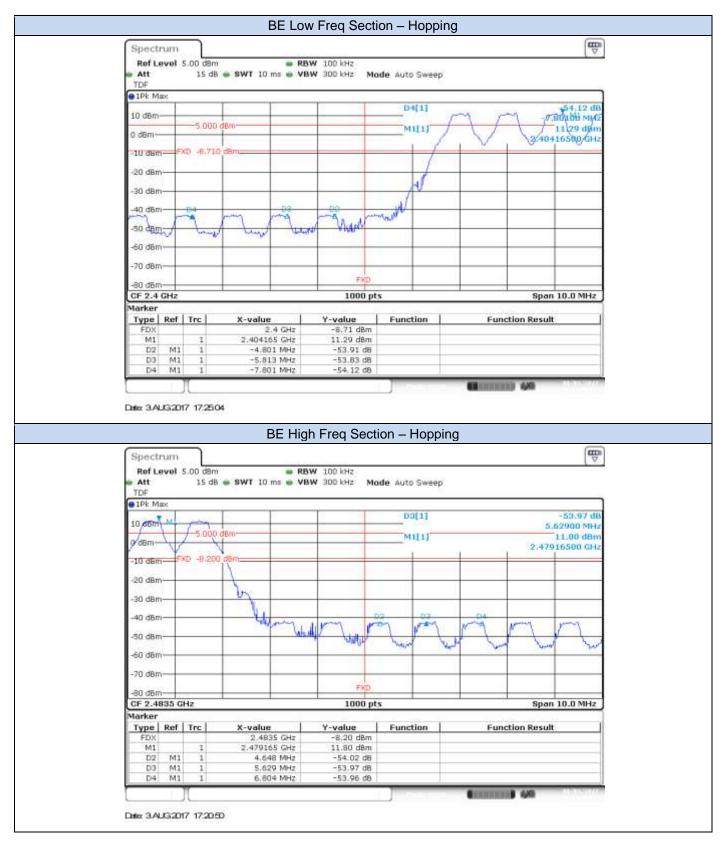
Test procedure

The setup below was used to measure the out-of-band emissions (conducted). The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

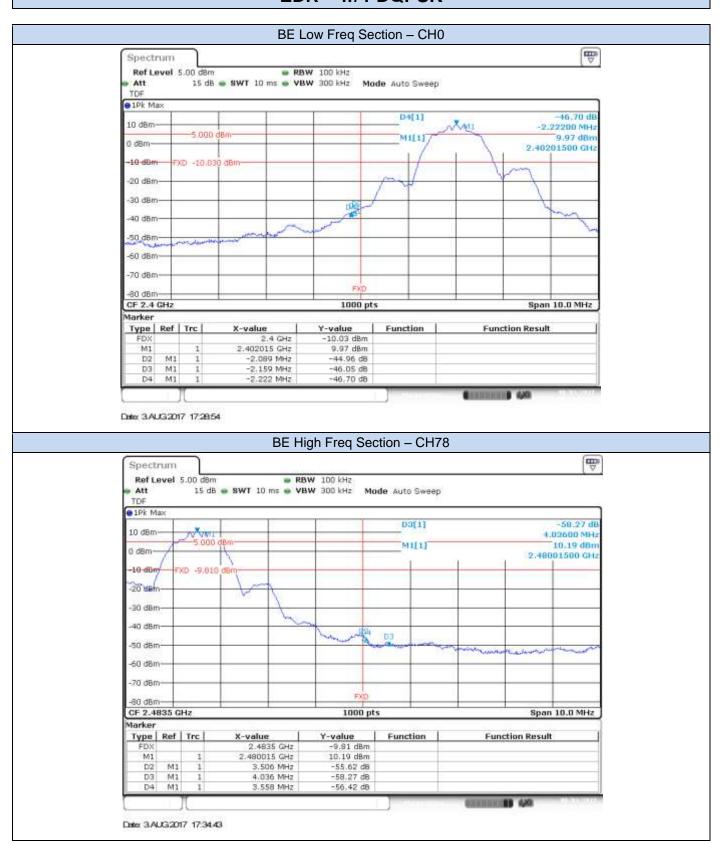
Test Report N° 170727-01.TR05

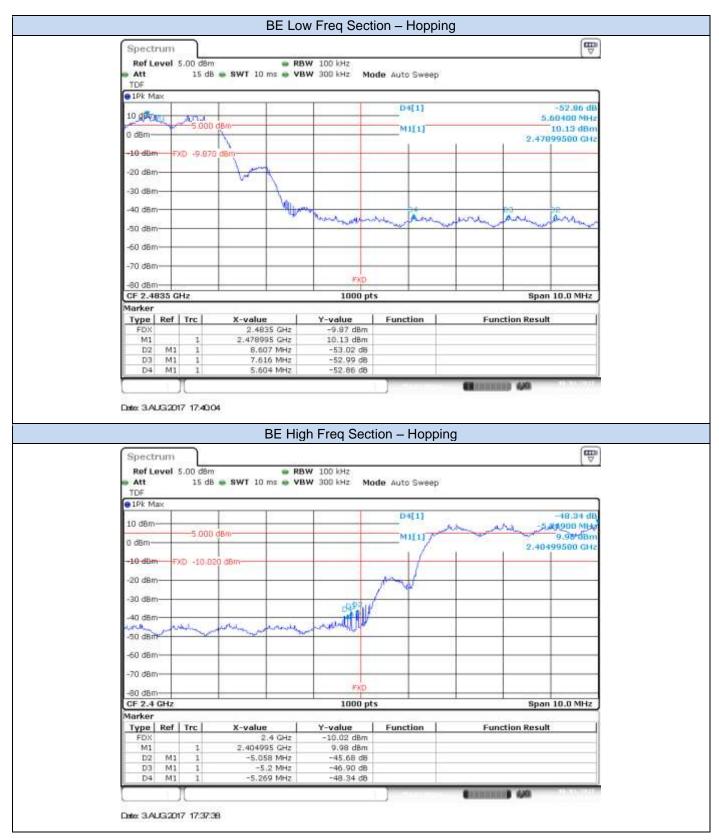

Note: these PSD_{Peak} values are shown just as a reference for the compliance of the Out-of-band Measurements. Thus the RBW used for these measurements was 100 kHz.

Mode	СН	Frequency [MHz]	PSD Peak [dBm]
	0	2402	11.33
Basic Rate - GFSK	39	2441	11.58
	78	2480	11.78
	0	2402	9.97
EDR – π/4- DQPSK	39	2441	10.19
DQI OIK	78	2480	10.19
EDR – 8-DPSK	0	2402	10.07
	39	2441	10.23
	78	2480	10.33

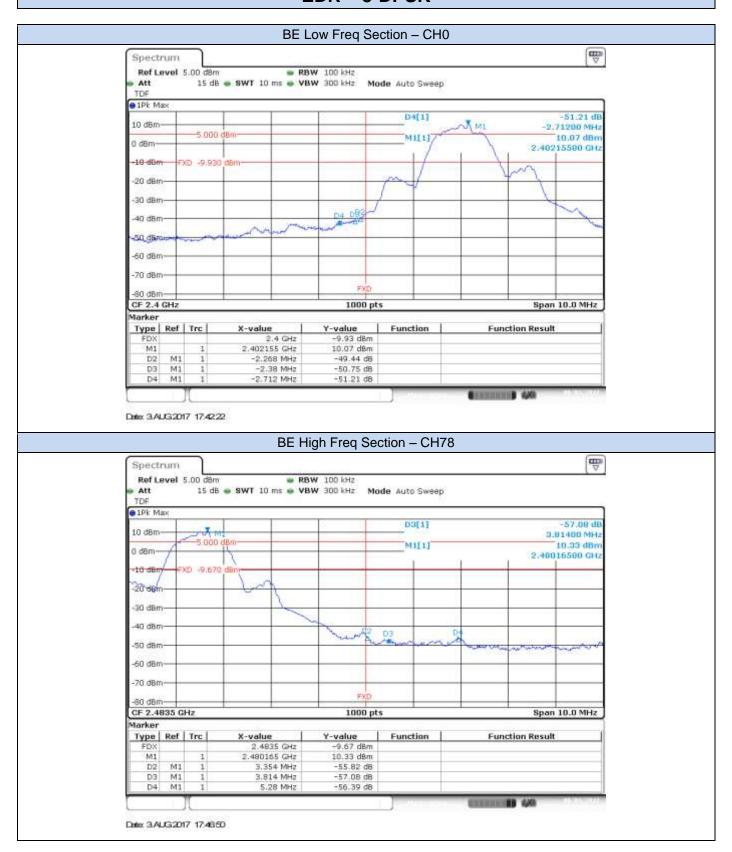


Basic Rate - GFSK

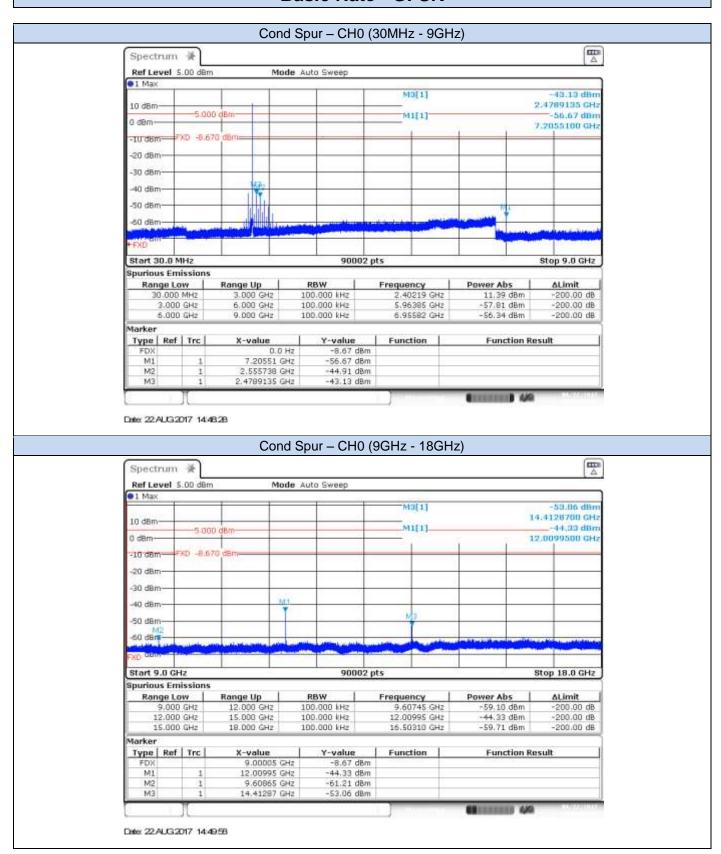


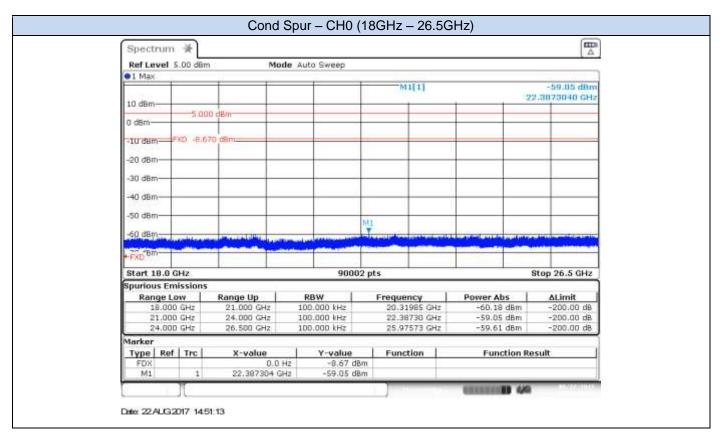


EDR $-\pi/4$ -DQPSK

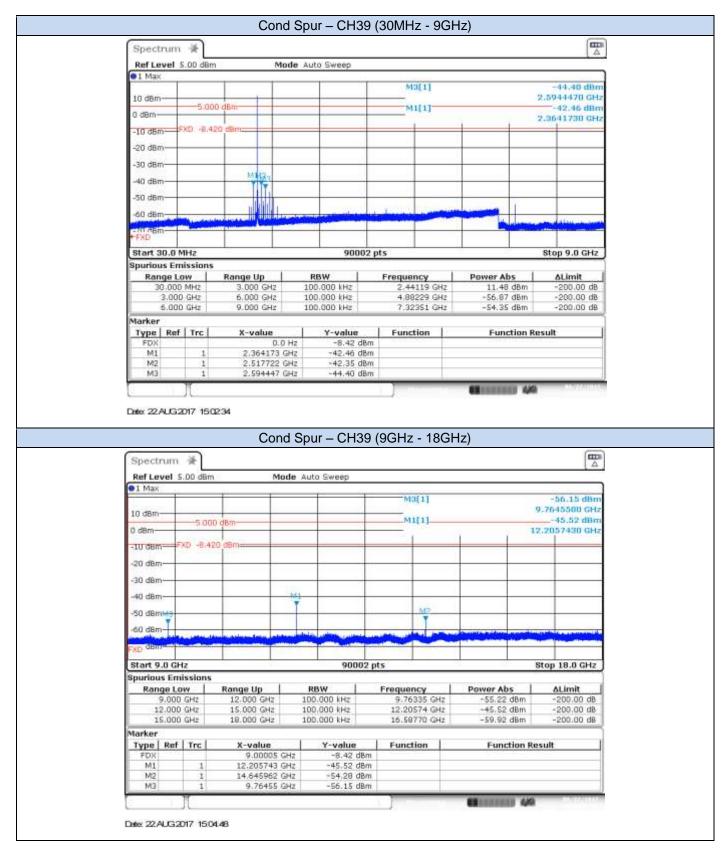


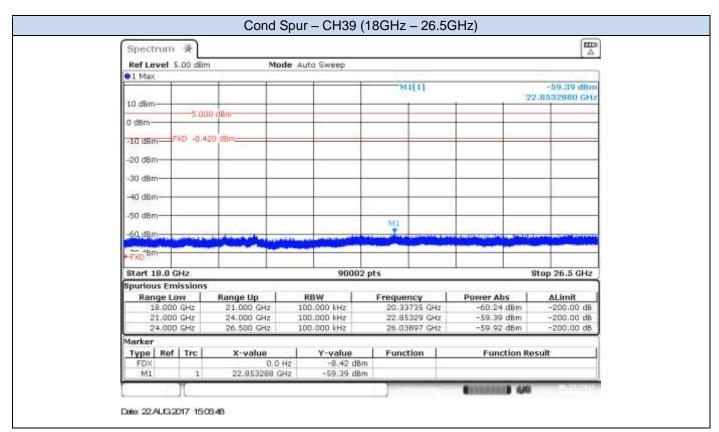
EDR - 8-DPSK



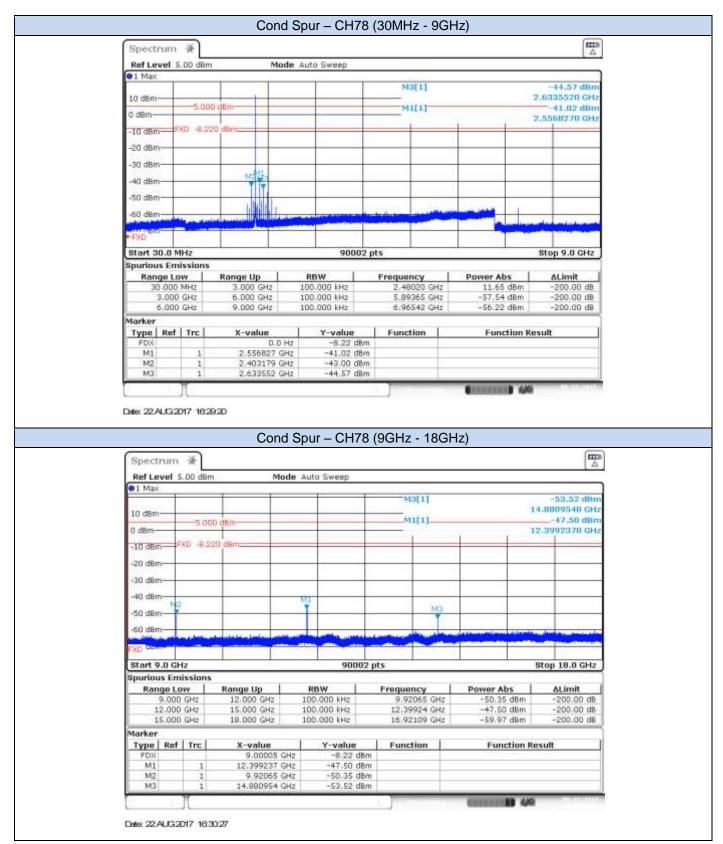


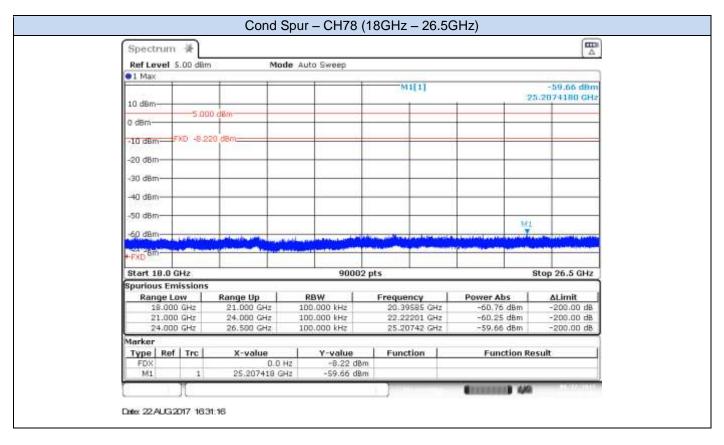
Conducted Spurious results Screenshot

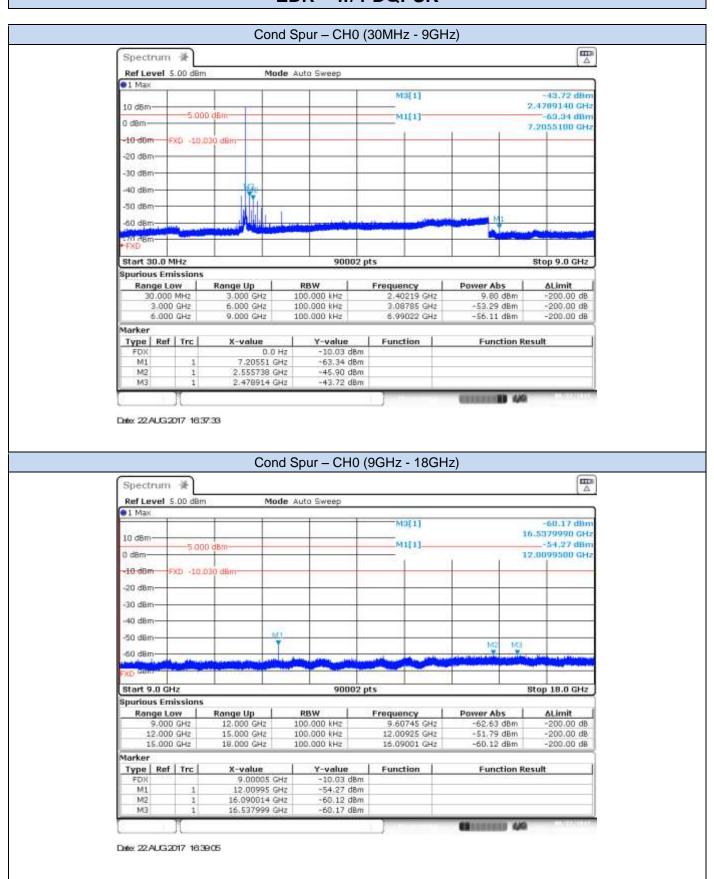

Basic Rate - GFSK

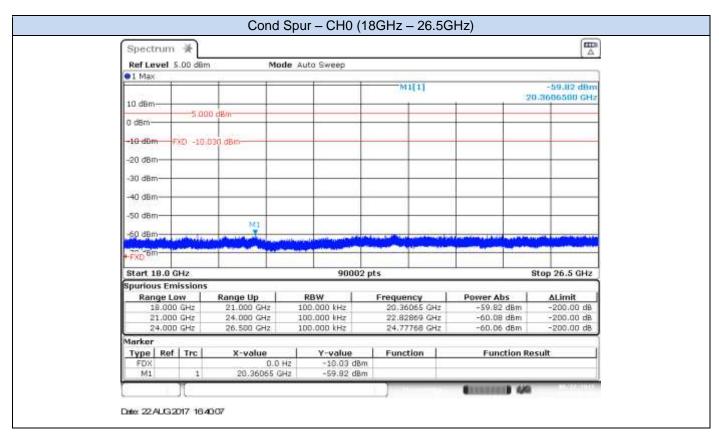


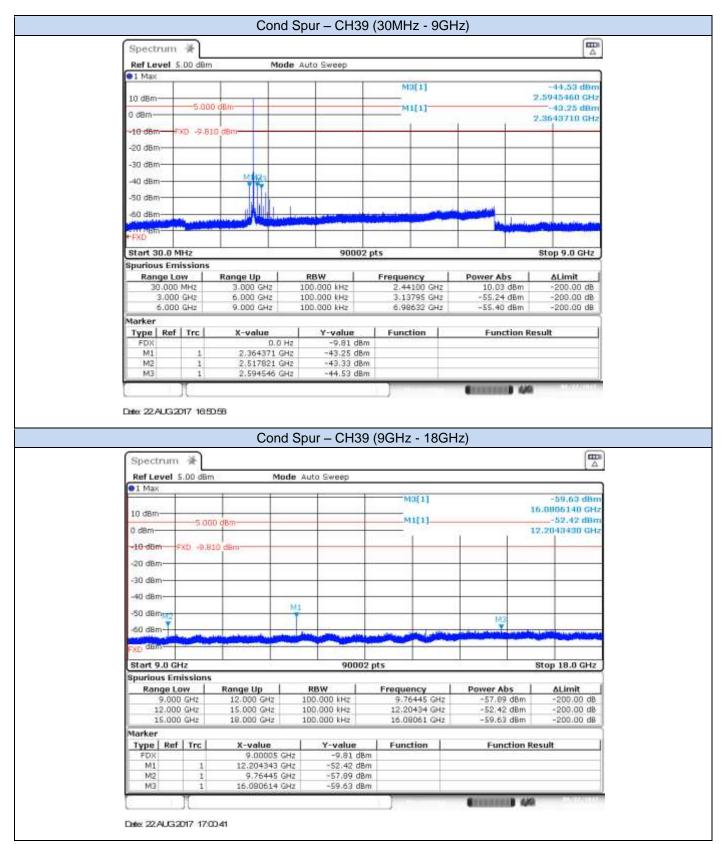
Rev 00

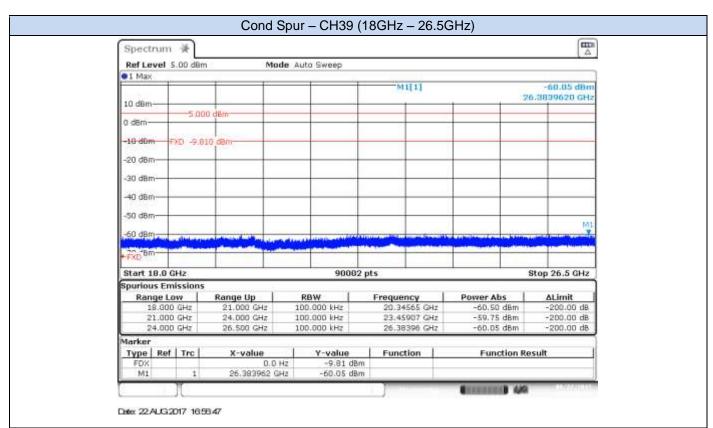


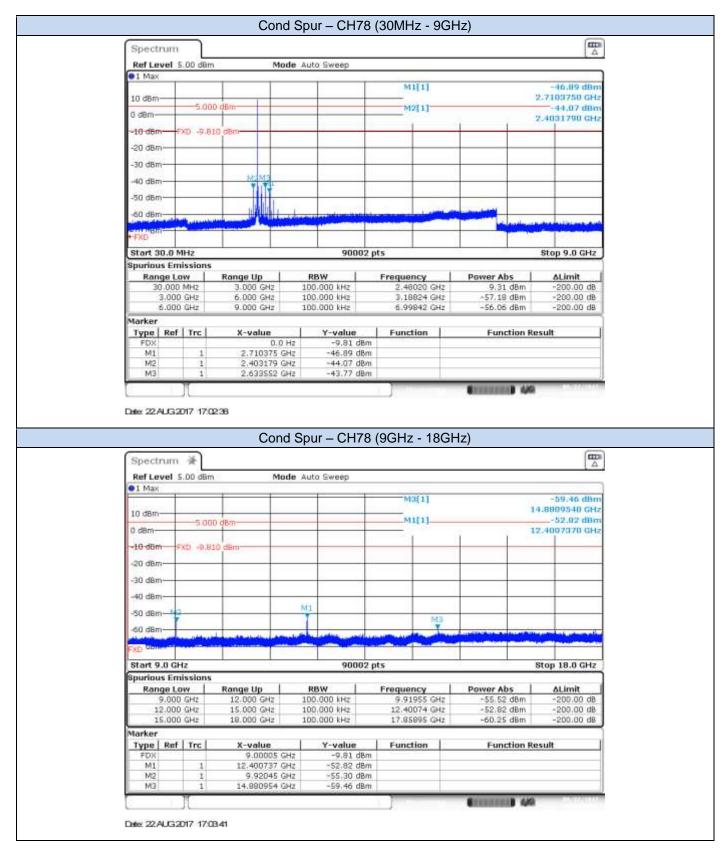


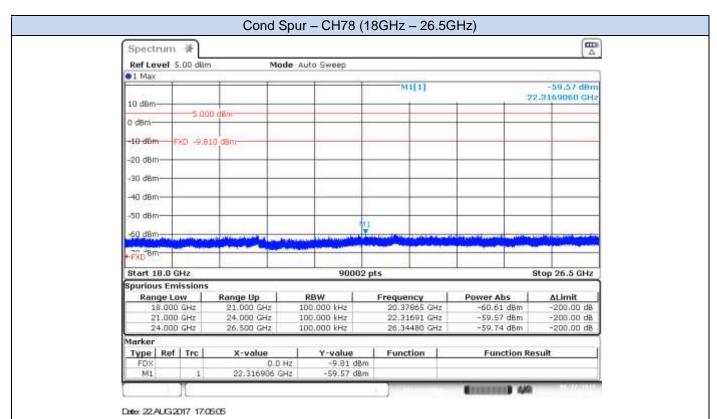


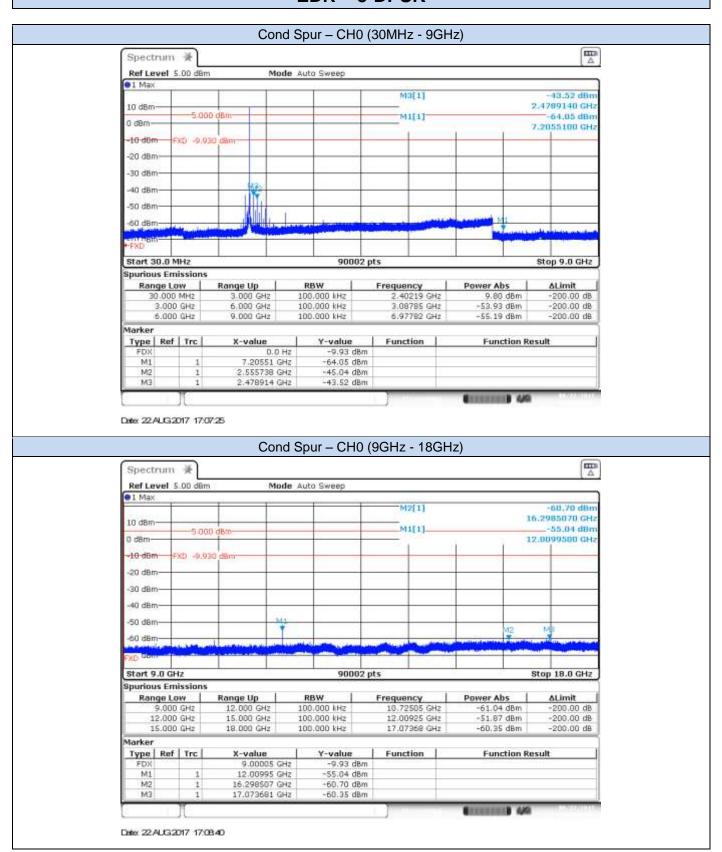


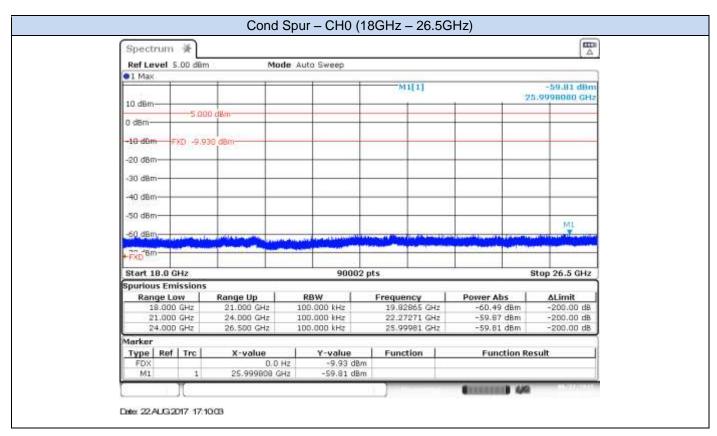


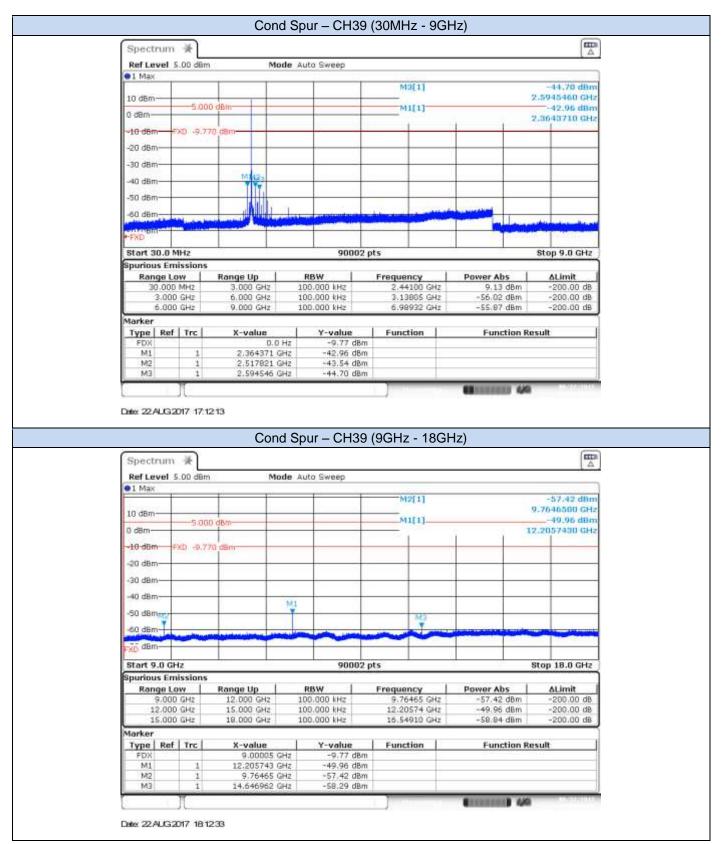

EDR $-\pi/4$ -DQPSK



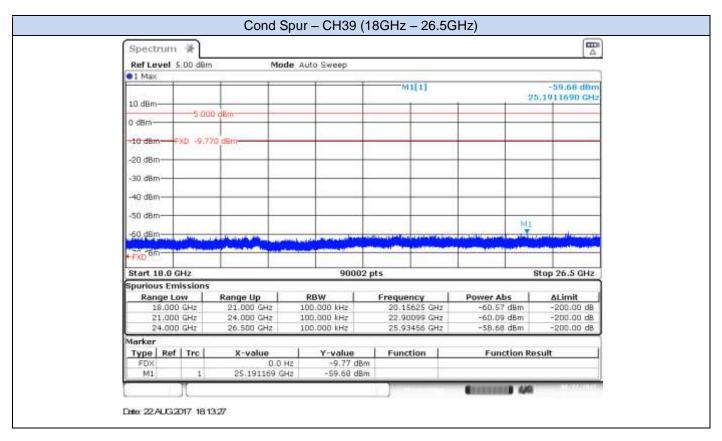


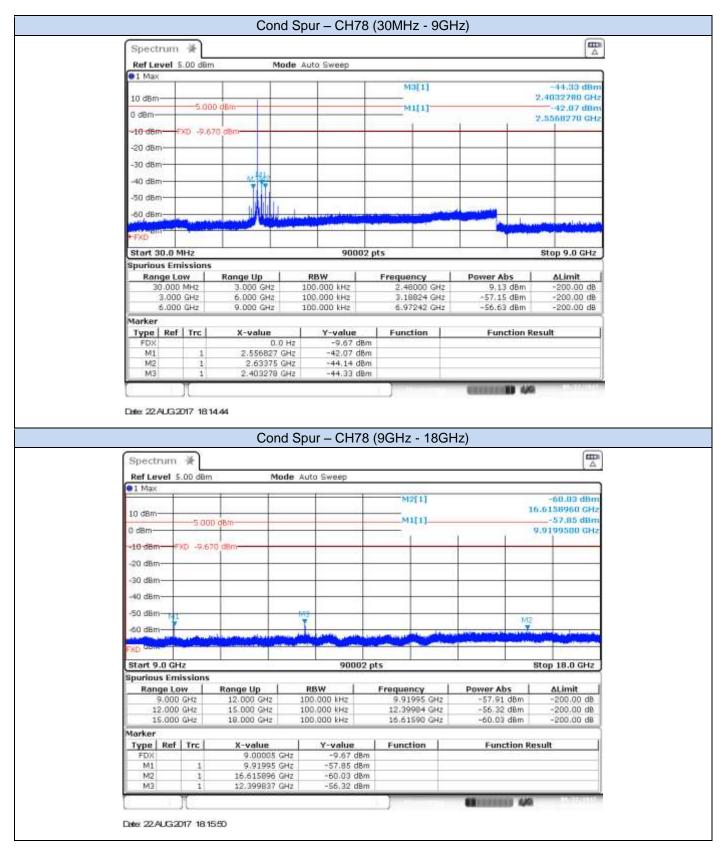


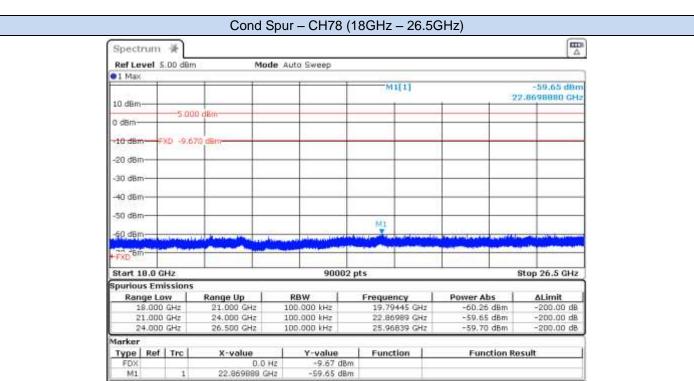




EDR - 8-DPSK







M1

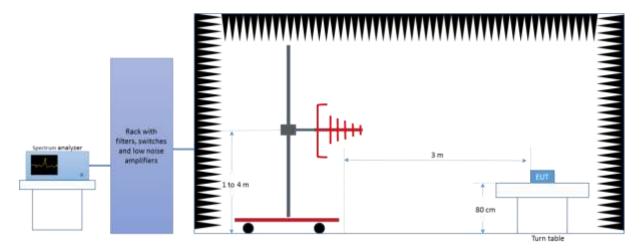
Date: 22.AUG:2017 18:16:51

B.6 Radiated spurious emission

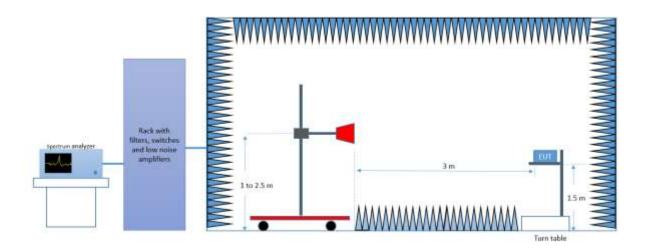
Standards references

FCC part	RSS part		Limits				
			Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):				
			Freq Range (MHz)	Field Stregth (μV/m)	Field Stregth (dBμV/m)	Meas. Distance (m)	
			30-88	100	40	3	
			88-216	150	43.5	3	
			216-960	200	46	3	
15.247 (d)	RSS-247 Clause 5.5		Above 960	500	54	3	
	Clause 3.3	The emission limits shown in the above table are based on measuremen employing CISPR quasi-peak detector except for the frequency bands 9-9 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in thes three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is als a limit specified when measuring with peak detector function, corresponding to 20 dB above the indicated values in the table.					s 9-90 these or. s also

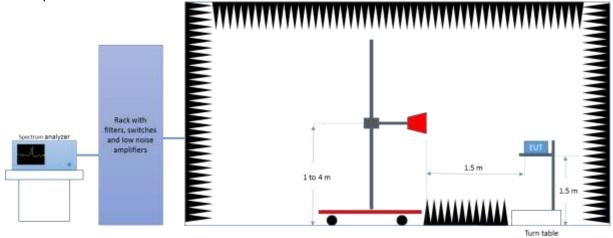
Test procedure:


The setups below were used to measure the radiated spurious emissions.

Depending of the frequency range and bands being tested, different antennas and filters were used.


The final measurement is done by varying the antenna height as indicated in the setups below for each band, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

The radiated spurious emission was measured on the worst case configuration found.


Radiated Setup < 1GHz

Radiated Setup 1 GHz - 18 GHz

Radiated Setup > 18 GHz

Sample Calculation

The field strength is deduced from the radiated measurement using the following equation:

$$E = 126.8 - 20\log(\lambda) + P - G$$

where

E is the field strength of the emission at the measurement distance, in dBµV/m

P is the power measured at the output of the test antenna, in dBm

 λ is the wavelength of the emission under investigation [300/f_{MHz}], in m

G is the gain of the test antenna, in dBi

NOTE – The measured power P includes all applicable instrument correction factors up to the connection to the test

Antenna e.g. cable losses, amplifier gains.

For field strength measurements made at other than the distance at which the applicable limit is specified, the field strength of the emission at the distance specified by the limit is deduced as follows:

$$E_{SpecLimit} = E_{Meas} + 20log(D_{Meas}/D_{SpecLimit})$$

where

EspecLimit is the field strength of the emission at the distance specified by the limit, in dBµV/m

E_{Meas} is the field strength of the emission at the measurement distance, in dBμV/m

D_{Meas} is the measurement distance, in m

DspecLimit is the distance specified by the limit, in m

Test Results

30 MHz - 25 GHz, BR - GFSK

Radiated Spurious - CH0 DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBµV/m	dBµV/m	dBµV/m	dB
62.5	30.7		40.0	9.3
2478.8	57.2		74.0	16.8
2478.8		49.6	54.0	4.4
3493.1		46.5	54.0	7.5
3493.1	59.1		74.0	14.9
9607.4	47.5		74.0	26.5
9607.9		40.3	54.0	13.7
19214.6		37.6	54.0	16.4
19214.6	45.1		74.0	28.9
21999.7		40.1	54.0	14.0
22000.2	44.2		74.0	29.8

Radiated Spurious - CH39 DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBμV/m	dBµV/m	dBµV/m	dB
62.5	30.9		40.0	9.1
2364.4		49.1	54.0	4.9
2364.7	56.9		74.0	17.1
2517.8	56.5		74.0	17.5
2518.1		48.0	54.0	6.0
3497.2	59.3		74.0	14.7
3497.2		46.4	54.0	7.6
9764.0		41.6	54.0	12.4
9764.5	49.5		74.0	24.5
19526.2	46.1		74.0	27.9
19529.1		38.8	54.0	15.2
21999.7	44.7		74.0	29.4
22000.2		39.7	54.0	14.3

Radiated Spurious - CH78 DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBµV/m	dBμV/m	dBµV/m	dB
62.5		28.2	40.0	11.8
62.5	30.5		40.0	9.5
2402.5	56.3		74.0	17.7
2403.1		49.5	54.0	4.5
2556.9	57.0		74.0	17.0
2556.9		49.0	54.0	5.0
3498.4	59.6		74.0	14.4
3499.1		46.5	54.0	7.5
9920.1		45.0	54.0	9.0
9920.6	51.5		74.0	22.5
19841.2		36.6	54.0	17.4
19841.2	44.8		74.0	29.3
21999.7	45.0		74.0	29.0
22000.2		40.8	54.0	13.2

30 MHz – 25 GHz, EDR – $\pi/4$ -DQPSK

Radiated Spurious - CH0 2DH5

Frequency	MaxPeak	Avg	Limit	Margin
62.5	30.4		40.0	9.7
2325.3		48.2	54.0	5.8
2325.3	56.6		74.0	17.5
2478.1	56.5		74.0	17.5
2479.1		48.1	54.0	5.9
3498.4	58.9		74.0	15.1
3498.8		46.5	54.0	7.5
9606.9	45.8		74.0	28.3
9607.4		37.1	54.0	16.9
22000.2		40.3	54.0	13.7
22000.2	44.9		74.0	29.1

Radiated Spurious - CH39 2DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBμV/m	dBµV/m	dBµV/m	dB
62.5	32.4		40.0	7.6
2364.4		48.2	54.0	5.8
2364.7	57.3		74.0	16.7
2470.9	60.0		74.0	14.0
2471.3		52.0	54.0	2.0
3499.7	58.5		74.0	15.5
3499.7		46.3	54.0	7.7
9764.5	46.9		74.0	27.1
9764.5		37.2	54.0	16.8
21999.7	45.9		74.0	28.1
22000.2		42.1	54.0	11.9

Radiated Spurious - CH78 2DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBµV/m	dBµV/m	dBμV/m	dB
62.4	31.9		40.0	8.1
2403.1	57.1		74.0	16.9
2403.4		48.8	54.0	5.2
2556.9		48.7	54.0	5.3
2556.9	57.2		74.0	16.8
3492.2	59.3		74.0	14.7
3495.6		46.4	54.0	7.6
9763.0	46.9		74.0	27.1
9763.5		38.6	54.0	15.4
22000.2	44.3		74.0	29.7
22000.2		39.8	54.0	14.2

30 MHz - 25 GHz, EDR - 8-DPSK

Radiated Spurious - CH0 3DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBµV/m	dBµV/m	dBμV/m	dB
62.5	31.7		40.0	8.3
2325.3		48.2	54.0	5.8
2325.3	56.5		74.0	17.5
2478.8		47.9	54.0	6.1
2478.8	56.6		74.0	17.4
3489.4		46.4	54.0	7.7
3490.0	59.2		74.0	14.8
9607.4	46.6		74.0	27.4
9607.9		37.2	54.0	16.8
22000.2		40.1	54.0	13.9
22000.2	45.2		74.0	28.8

Radiated Spurious - CH39 3DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBμV/m	dBµV/m	dBμV/m	dB
62.5	36.6		40.0	3.4
2364.1		48.5	54.0	5.5
2365.0	56.2		74.0	17.8
2594.7		48.0	54.0	6.0
2595.3	56.9		74.0	17.1
3497.2	58.8		74.0	15.2
3498.1		46.4	54.0	7.6
9764.0	46.3		74.0	27.7
9764.0		37.3	54.0	16.7
21999.7	45.8		74.0	28.2
22000.2		41.7	54.0	12.3

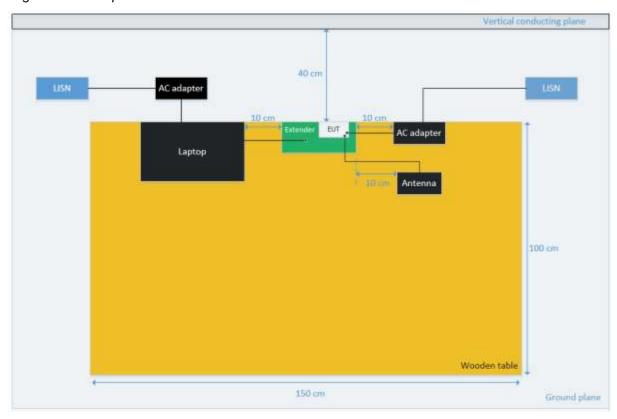
Radiated Spurious - CH78 3DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBµV/m	dBµV/m	dBµV/m	dB
99.5	37.6		43.6	6.0
2403.1		48.8	54.0	5.2
2403.1	58.1		74.0	16.0
2556.9	57.1		74.0	17.0
2557.2		48.1	54.0	5.9
2633.8		47.9	54.0	6.1
2634.1	56.7		74.0	17.3
3476.6		46.3	54.0	7.7
3476.6	59.1		74.0	14.9
9919.6	49.4		74.0	24.7
9920.1		41.5	54.0	12.5
21999.7	44.6		74.0	29.4
22000.2		39.4	54.0	14.6

B.7 AC power-line conducted emission

Standard references:

FCC part	RSS part	Limits				
15.207 15.407 (6)	RSS-GEN, Clause 8.8	Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.				
		Frequency of emission (MHz)	Quasi-peak	Average		
		0.15-0.5	66 to 56*	56 to 46*		
		0.5-5	56	46		
		5-30 60 50				
		*Decreases with the logarithm of the frequen	су.			


Test procedure:

The EUT and peripherals are placed on a wooden table with a nominal size of 1.0 m by 1.5 m, raised 80 cm above the reference ground plane. The EUT is connected to AC-Power line through a Line Impedance Stabilization Network (LISN) to accommodate a 50 Ω /50 μ H coupling impedance for the measurement system. The EUT control PC is considered as a peripheric and therefore is connected to a second LISN which has the measurement port connected to a 50 ohms impedance.

Each measurement is done for each current-carrying conductor (Line and Neutral) at the end plug of the EUT power cord. The EUT is tested for several transmission modes (frequency channel, modulation, etc.) and the result providing the maximum measured emission is reported.

The exploratory measurement is done over the frequency range from 150 kHz to 30 MHz, while the measurement receiver is recording the Peak and Average signal at 10 kHz steps in Max Hold mode. The cables manipulation is performed within the range of likely configurations to determine the maximum emission. Once the EUT cable configuration, arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit is found the six highest AC power-line conducted emissions relative to 20 dB of the limit are reported as the final measurement. If fewer than six emission frequencies are within 20 dB of the limit, the noise level is reported. For the final measurement, the measurement receiver records the Quasi Peak values with 9 kHz resolution bandwidth and the average values with 10 kHz resolution bandwidth.

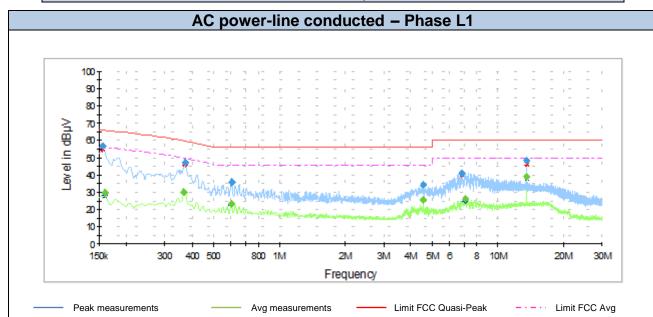
EUT arrangement for AC power-line conducted emission tests

Sample Calculation:

The measured level at the spectrum analyzer in $dB\mu V$ is corrected by a transducer factor taking into account the losses of the RF cable and the LISN as follows:

Conducted Emission level (dBµV) = SALevel + RFCableLosses + LISNLosses

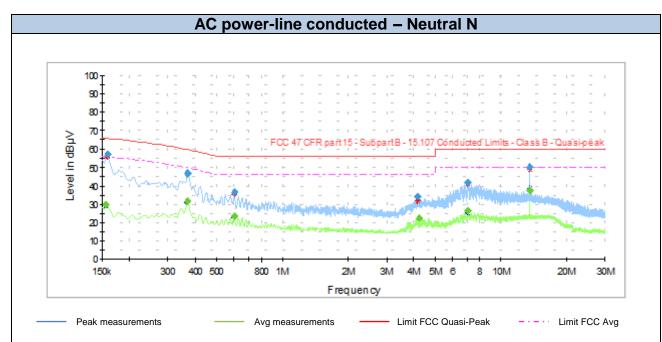
Where:


 SA_{Level} is the voltage level displayed on the measurement receiver, in $dB\mu V$.

RFCable_{Losses} is the value of the cable losses between the LISN and the measurement receiver, in dB.

LISN_{Losses} is the value of the insertion losses of the LISN, in dB.

Test Results:


150kHz - 30MHz, all mode

Frequency	Max Peak	Avg	Limit	Margin
MHz	dΒμV	dΒμV	dΒμV	dB
0.1589	57.10		65.83	8.73
0.1589		29.79	55.83	26.04
0.3679	47.32		59.77	12.45
0.3679		29.89	49.77	19.88
0.5768	35.90		56.00	20.10
0.5768		23.32	46.00	22.68
4.030	34.23		60.00	25.77
4.030		25.57	50.00	24.43
7.033	41.12		60.00	18.88
7.033		25.93	50.00	24.07
13.549	48.41		60.00	11.59
13.549		39.01	50.00	10.99

Note: The emissions found do not change with the modulation and/or frequency.

Frequency	Max Peak	Avg	Limit	Margin
MHz	dΒμV	dΒμV	dΒμV	dB
0.1559	57.03		65.83	8.8
0.1559		29.96	55.83	25.87
0.3679	46.88		59.77	12.89
0.3679		31.36	49.77	18.41
0.6037	36.39		56.00	19.61
0.6037		23.34	46.00	22.66
4.215	34.29		60.00	25.71
4.215		22.07	50.00	27.93
7.039	41.75		60.00	18.25
7.039		26.25	50.00	23.75
13.546	50.14		60.00	9.86
13.546		37.46	50.00	12.54

Note: The emissions found do not change with the modulation and/or frequency.