

FCC CFR47 PART 15 SUBPART C CERTIFICATION

TEST REPORT

FOR

802.11G AP CARD 170WL

MODEL NUMBER: J8432A

FCC ID: B94J8432A

REPORT NUMBER: 04U2606-1

ISSUE DATE: MARCH 25, 2004

Prepared for

HEWLETT-PACKARD COMPANY 8000 FOOTHILLS BLVD., ROSEVILLE, CA 95746 USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA

TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1. Tl	EST RESULT CERTIFICATION	3
2. EU	UT DESCRIPTION	4
3. Tl	EST METHODOLOGY	5
4. F A	ACILITIES AND ACCREDITATION	5
5. C	ALIBRATION AND UNCERTAINTY	6
5.1.	MEASURING INSTRUMENT CALIBRATION	6
5.2.	MEASUREMENT UNCERTAINTY	6
5.3.	TEST AND MEASUREMENT EQUIPMENT	6
6. SI	ETUP OF EQUIPMENT UNDER TEST	7
7. A	PPLICABLE LIMITS AND TEST RESULTS	9
7.1.	99% BANDWIDTH	9
7.2.	PEAK OUTPUT POWER	
7.3.	MAXIMUM PERMISSIBLE EXPOSURE	24
7.4.	AVERAGE POWER	27
g ÇI	ΕΤΙΙ Ρ ΡΗ ΛΤΛ S	28

1. TEST RESULT CERTIFICATION

COMPANY NAME: Hewlett-Packard Company

8000 Foothills Blvd.,

Roseville, CA 95746, USA

EUT DESCRIPTION: 802.11g AP Card 170wl

MODEL: J8432A

DATE TESTED: MARCH 18, 2004

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 15 SUBPART C NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered α revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

Tested By:

MICHAEL HECKROTTE EMC MANAGER

MH

COMPLIANCE CERTIFICATION SERVICES

FRANK IBRAHIM EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

DATE: MARCH 25,2004

2. EUT DESCRIPTION

The EUT is an 802.11b/g transceiver module in a Cardbus form factor.

The transmitter has a maximum peak conducted output power as follows:

Frequency Band (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2412 - 2462	802.11b	17.74	59.43
2412 - 2462	802.11g	20.35	108.39

DATE: MARCH 25,2004

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/2001, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

DATE: MARCH 25,2004

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description Manufacturer Model Serial Number Cal Due							
Peak Power Meter	Agilent	E4416A	GB41291160	11/7/04			
Peak / Average Power							
Sensor	Agilent	E9327A	US40440755	11/7/04			
Spectrum Analyzer							
3Hz ~ 44GHz	Agilent	E4440A	US41421507	5/8/04			

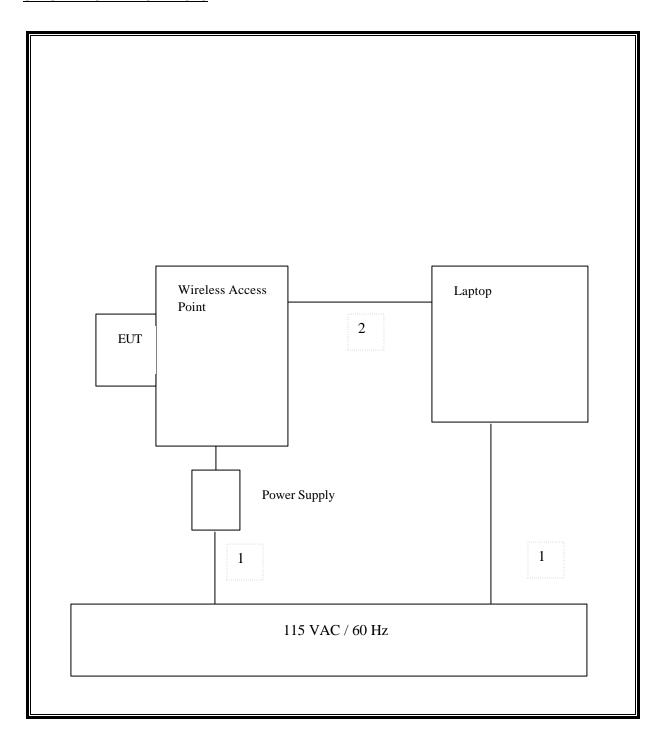
DATE: MARCH 25,2004

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC ID							
Laptop	HP	nx9010	CNF3440WFK	DoC			
Wireless Access Point	HP	520wl	PG34JL9C8034	DoC			
Power Supply	DVE	DSA-0301-05	1103	DoC			

I/O CABLES


	I/O CABLE LIST							
Cable	Port	Remarks						
No.		Identical	Type	Type	Length			
		Ports						
1	Power	2	115 VAC power	Unshielded	1.5 m	N/A		
2	Ethernet	1	RJ45	Unshielded	9 m	N/A		

TEST SETUP

The EUT is attached to a host access point, which is connected to a laptop via an RJ45 cable. ART software in the laptop was used to control the radio card (EUT).

DATE: MARCH 25,2004

SETUP DIAGRAM FOR TESTS

Page 8 of 28

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. 99% BANDWIDTH

LIMIT

Note; for reporting purposes only.

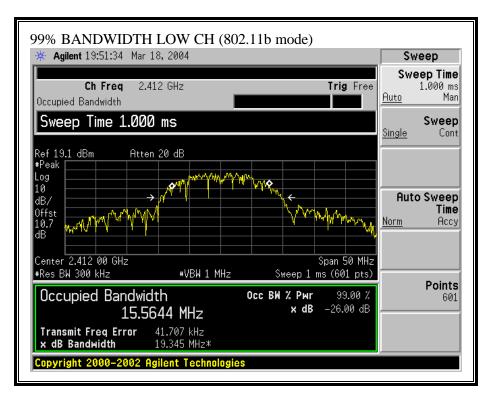
TEST PROCEDURE

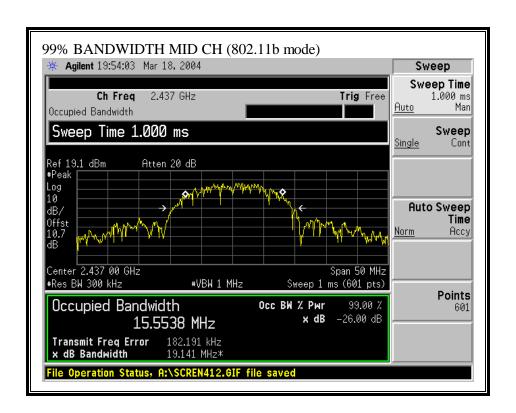
The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

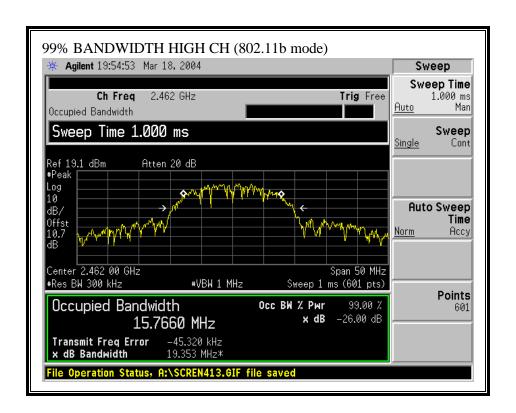
RESULTS

No non-compliance noted:

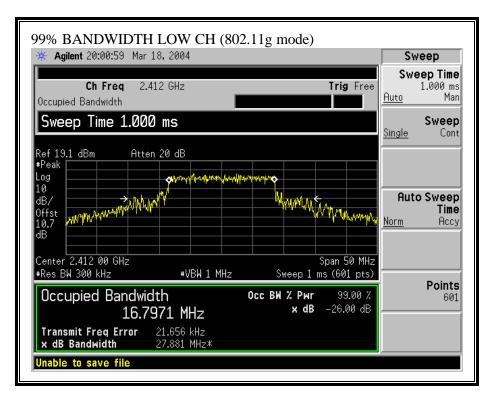
802.11b Mode

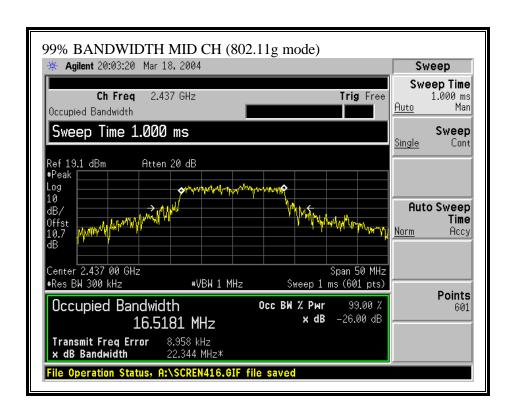

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	15.5644
Middle	2437	15.5538
High	2462	15.766

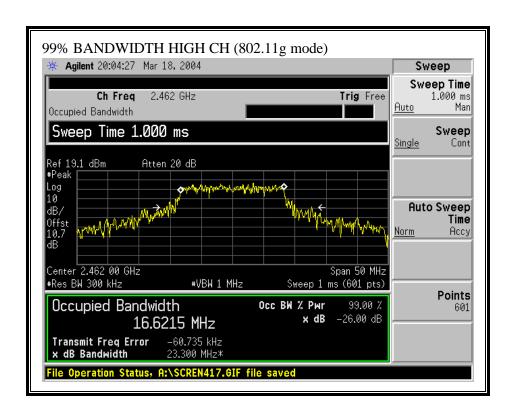

802.11g Mode


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.7971
Middle	2437	16.5181
High	2462	16.6215

DATE: MARCH 25,2004


99% BANDWIDTH (802.11b MODE)





99% BANDWIDTH (802.11g MODE)

7.2. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

\$15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna assembly gain is 3.4 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

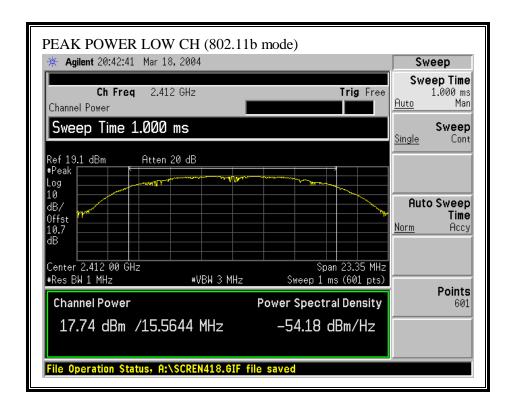
The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

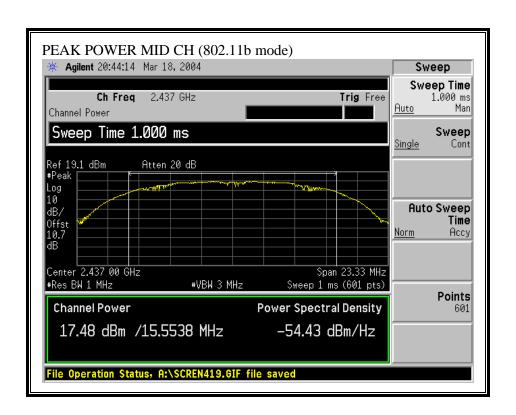
DATE: MARCH 25,2004

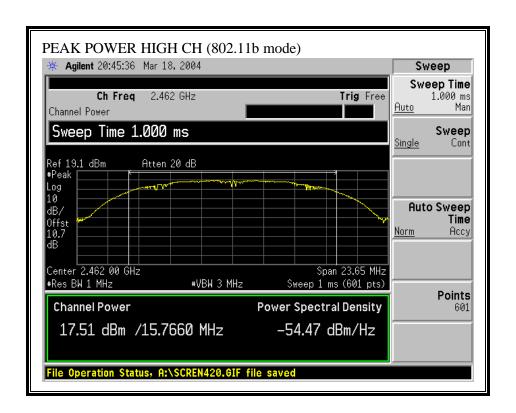
RESULTS

No non-compliance noted:

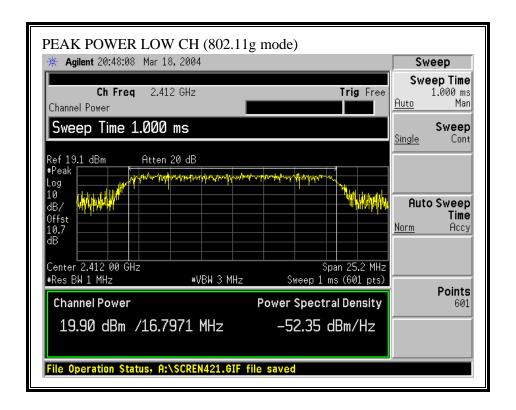
802.11b Mode

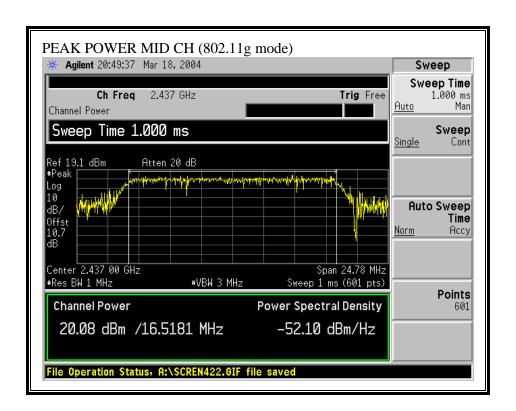

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	17.74	30	-12.26
Middle	2437	17.48	30	-12.52
High	2462	17.51	30	-12.49

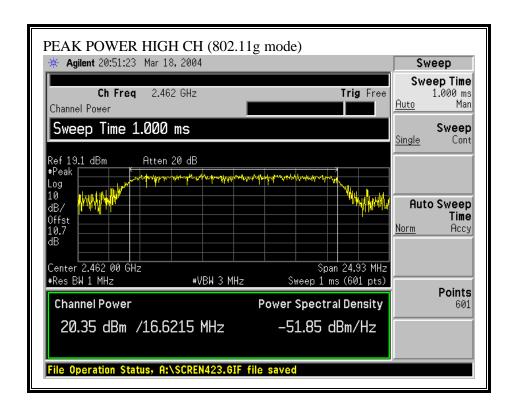

802.11g Mode


Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	19.90	30	-10.10
Middle	2437	20.08	30	-9.92
High	2462	20.35	30	-9.65

DATE: MARCH 25,2004


OUTPUT POWER (802.11b MODE)





OUTPUT POWER (802.11g MODE)

7.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Limi	ts for Occupational	/Controlled Exposur	es	
0.3–3.0	614	1.63	*(100)	1
3.0–30	1842/f	4.89/f	*(900/f2)	
30-300	61.4	0.163	1.0	
300-1500			f/300	,
1500–100,000			5	
(B) Limits for	or General Populati	on/Uncontrolled Exp	osure	
0.3–1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f²)	3

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500–100,000			1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

DATE: MARCH 25,2004

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G) / d}$$

and

$$S = E ^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d (cm) = 100 * d (m)$$

yields

$$d = 100 * \sqrt{(30 * (P / 1000) * G) / (3770 * S)}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

$$P(mW) = 10 ^ (P(dBm) / 10)$$
 and

$$G (numeric) = 10 ^ (G (dBi) / 10)$$

yields

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

Equation (1)

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

DATE: MARCH 25,2004

LIMITS

From $\S1.1310$ Table 1 (B), S = 1.0 mW/cm²

RESULTS

No non-compliance noted:

Mode	Power Density Limit (mW/cm^2)	Output Power (dBm)	Antenna Gain (dBi)	MPE Distance (cm)
802.11b	1.0	17.74	3.40	3.22
802.11g	1.0	20.35	3.40	4.34

NOTES:

- 1. For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.
- 2. The maximum antenna assembly gain = 3.4 dBi. This consists of maximum antenna gain = 5 dBi, cable loss = 1.2 dB and lightning protector loss = 0.4 dBi.

DATE: MARCH 25,2004

7.4. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

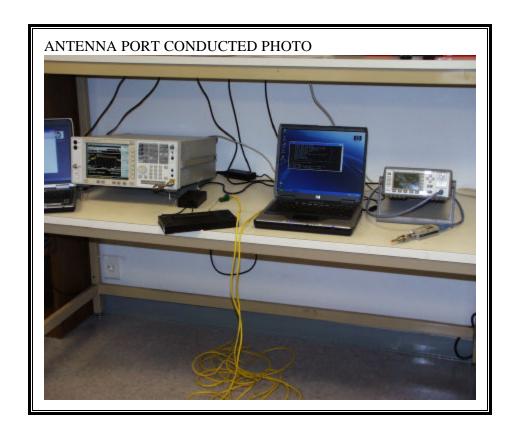
RESULTS

No non-compliance noted:

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 0.7 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2412	15.10	
Middle	2437	15.00	
High	2462	14.70	


802.11g Mode

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2412	15.70	
Middle	2437	15.40	
High	2462	15.50	

DATE: MARCH 25,2004

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

END OF REPORT