

HEWLETT PACKARD COMPANY TEST REPORT

FOR THE

HP BT1300 BLUETOOTH WIRELESS PRINT ADAPTER, J6072A

FCC PART 15 SUBPART B SECTIONS 15.107 AND 15.109 CLASS B AND SUBPART C SECTIONS 15.207, 15.209 AND 15.247

COMPLIANCE

DATE OF ISSUE: DECEMBER 11, 2003

PREPARED FOR:

Hewlett Packard Company 3000 Hanover Street Palo Alto, CA 94304

PREPARED BY:

Mary Ellen Clayton CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

W.O. No.: 81119

Date of test: August 27 - September 15, 2003

Report No.: FC03-079

This report contains a total of 68 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 68 Report No: FC03-079

TABLE OF CONTENTS

Administrative Information	4
Summary of Results	5
Conditions for Compliance	5
Approvals	5
Equipment Under Test (EUT) Description	6
FCC 15.31(e) Voltage Variation	6
FCC 15.31(m) Number Of Channels	6
FCC 15.33(a) Frequency Ranges Tested	6
FCC 15.203 Antenna Requirements	6
FCC 15.205 Restricted Bands	6
Eut Operating Frequency	6
Equipment Under Test	7
Peripheral Devices	7
Measurement Uncertainty	7
Report of Measurements	8
Table 1: FCC 15.107 Six Highest Conducted Emission Levels	8
Table 2: FCC 15.109 Six Highest Radiated Emission Levels	9
Table 3: FCC 15.109 Six Highest Radiated Emission Levels: > 1 GHz	10
Table 4: FCC 15.207 Six Highest Conducted Emission Levels	11
FCC 15.247(a)(1) Number Of Hopping Frequencies	12
FCC 15.247(a)(1) 20 dB Bandwidth Plots	13
FCC 15.247(a)(1) Carrier Frequency Separation	16
FCC 15.247(a)(1)(iii) Dwell Time Plots	17
Table 5: FCC 15.247(b)(1) Peak Output Power	21
FCC 15.247(b)(5) MPE Calculations	22
Table 6: FCC 15.247(c)/15.209 Highest Radiated Emission Levels: 9 kHz - 30 MHz	23
Table 7: 15.247(c)/15.209 Six Highest Radiated Emission Levels: 30 Hz - 1 GHz	24
Table 8: FCC 15.247(c)/15.209 Six Highest Radiated Emission Levels: 1-18 GHz	25
Table 9: FCC 15.247(c)/15.209 Highest Radiated Emission Levels: 18-26 GHz	26
FCC 15.247(c) Bandedge Plots	27
Temperature And Humidity During Testing	34
EUT Setup	34
Correction Factors	34
Table A: Sample Calculations	34
Test Instrumentation and Analyzer Settings	35
Spectrum Analyzer Detector Functions	35
Peak	35
Quasi-Peak	35
Average	35
EUT Testing	36
Mains Conducted Emissions	36
Radiated Emissions	36

Appendix A: Test Setup Photographs	37
Photograph Showing Mains Conducted Emissions	38
Photograph Showing Mains Conducted Emissions	39
Photograph Showing Radiated Emissions	40
Photograph Showing Radiated Emissions	41
Appendix B: Test Equipment List	42
Appendix C: Measurement Data Sheets	43

ADMINISTRATIVE INFORMATION

DATE OF TEST:	August 27 - September 15, 2003
DATE OF RECEIPT:	August 27, 2003
PURPOSE OF TEST:	To demonstrate the compliance of the hp bt1300 Bluetooth Wireless Print Adapter, J6072A, with the requirements for FCC Part 15 Subpart B Sections 15.107 and 15.109 and Subpart C Sections 15.207, 15.209 and 15.247 devices.
TEST METHOD:	ANSI C63.4 (1992)
MANUFACTURER:	Hewlett Packard Company 3000 Hanover Street Palo Alto, CA 94304
REPRESENTATIVE:	Corporate Product Regulations Manager
TEST LOCATION:	CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92621

SUMMARY OF RESULTS

As received, the Hewlett Packard Company hp bt1300 Bluetooth Wireless Print Adapter, J6072A was found to be fully compliant with the following standards and specifications:

United States

- FCC Part 15 Subpart B Sections 15.107 and 15.109 Class B
- FCC Part 15 Subpart C Sections 15.207, 15.209 and 15.247
- > ANSI C63.4 (1992) method
- FCC Site No. 100638

<u>Canada</u>

RSS-210 using:

- FCC Part 15 Subpart B Sections 15.107 and 15.109 Class B
- FCC Part 15 Subpart C Sections 15.207, 15.209 and 15.247
- ANSI C63.4 (1992) method Industry of Canada File No. IC 3172-D

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Joyce Walker, Quality Assurance Administrative Manager

TEST PERSONNEL:

Henika Brandle

Monika Brandle, EMC Test Engineer

CORS

Eddie Wong, EMC Engineer

Stuart Yamamoto, EMC Engineer

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested by CKC Laboratories was representative of a production unit.

FCC 15.31(e) Voltage Variations

For intentional radiators, measurements of radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. No significant variation in the signal level was observed.

FCC 15.31(m) Number Of Channels

This device was tested on three channels.

FCC 15.33(a) Frequency Ranges Tested

15.107 Conducted Emissions: 150 kHz – 30 MHz 15.109 Radiated Emissions: 9 kHz – 1000 MHz 15.207 Conducted: 150 kHz – 30 MHz 15.247/15.209 Radiated: 9 kHz – 26 GHz

FCC 15.203 Antenna Requirements

The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

FCC 15.205 Restricted Bands

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

Eut Operating Frequency

The EUT was operating at 2402MHz-2480MHz.

The EUT is a frequency hopping device operating in the 2400 – 2483.5 MHz.

The following model was tested by CKC Laboratories: **HP bt1300**

Since the time of testing the manufacturer has clarified that **hp bt1300 Bluetooth Wireless Print Server** is the model name and the model number is **J6072A**. Any differences between the name and number does not affect their EMC characteristics and therefore complies to the level of testing equivalent to the tested model name shown on the data sheets.

EQUIPMENT UNDER TEST

Power Sup	ply	<u>hp bt1300</u>	Bluetooth Wireless Print Server
Manuf:	Potrans	Manuf:	Hewlett Packard Company
Model:	WR410500500	Model:	J6072A
Serial:	0212	Serial:	US38T000D5 (Unit #1)
FCC ID:	NA	FCC ID:	B94J6072

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

HP 5550 Printer

Manuf:	HP
Model:	C6487C
Serial:	MY2BE1N3B3
FCC ID:	DoC

MEASUREMENT UNCERTAINTY

TEST	HIGHEST UNCERTAINTY
Radiated Emissions	+/- 2.94 dB
Conducted Emissions	+/- 1.56 dB

Note: Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Statements of compliance are based on the nominal values only.

REPORT OF MEASUREMENTS

The following tables report the six highest worst case levels recorded during the tests performed on the EUT. All readings taken are peak readings unless otherwise noted. The data sheets from which these tables were compiled are contained in Appendix C.

Table 1: FCC 15.107 Six Highest Conducted Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Lisn dB	dB	ON FACT Cable dB	CORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
0.510280	41.1	0.0		0.1		41.2	48.0	-6.8	BA
0.533777	40.7	0.0		0.1		40.8	48.0	-7.2	WA
0.711060	40.8	0.0		0.1		40.9	48.0	-7.1	W
0.726174	39.4	0.0		0.1		39.5	48.0	-8.5	W
0.733044	39.7	0.0		0.1		39.8	48.0	-8.2	В
0.738540	39.3	0.0		0.1		39.4	48.0	-8.6	W

Test Method: Spec Limit: ANSI C63.4 (1992) FCC Part 15 Subpart B Section 15.107 Class B NOTES:

A = Average Reading B = Black Lead W = White Lead

COMMENTS: EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured in receive mode. Frequency Range Investigated: 150kHz-30MHz.

Table 2: FCC 15.109 Six Highest Radiated Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	CORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
264.050	47.2	12.9	-26.8	4.0		37.3	46.0	-8.7	Н
288.086	46.6	13.2	-26.7	4.2		37.3	46.0	-8.7	V
312.145	46.9	13.8	-26.7	4.2		38.2	46.0	-7.8	Н
330.000	45.5	14.4	-26.8	4.3		37.4	46.0	-8.6	Н
384.043	45.1	15.9	-26.9	4.5		38.6	46.0	-7.4	V
480.077	41.5	17.9	-27.0	5.5		37.9	46.0	-8.1	V

Test Method: Spec Limit: Test Distance: ANSI C63.4 (1992) FCC Part 15 Subpart B Section 15.109 Class B 3 Meters

NOTES:

H = Horizontal Polarization V = Vertical Polarization

COMMENTS: EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured in receive mode. Frequency Range Investigated: 30-1000MHz. Test performed on low, mid, and high channel. Worst case emissions reported.

Table 3: FCC 15.109 Six Highest Radiated Emission Levels: > 1 GHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	CORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
2404.600	48.1	27.9	-39.4	9.3		45.9	54.0	-8.1	V
2406.260	46.5	27.9	-39.4	9.3		44.3	54.0	-9.7	Н
2435.320	47.0	27.9	-39.4	9.5		45.0	54.0	-9.0	Н
2439.794	49.5	28.0	-39.4	9.5		47.6	54.0	-6.4	V
2479.979	46.9	28.1	-39.4	9.6		45.2	54.0	-8.8	V
4802.620	42.1	33.0	-39.1	12.7		48.7	54.0	-5.3	Н

Test Method: Spec Limit: Test Distance:

Γ

ANSI C63.4 (1992) FCC Part 15 Subpart B Section 15.109 Class B 3 Meters H = Horizontal Polarization V = Vertical Polarization

NOTES:

COMMENTS: EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured in receive mode. Frequency Range Investigated: 1-26GHz. Test performed on low, mid, and high channel. Worst case emissions reported.

Table 4: FCC 15.207 Six Highest Conducted Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Lisn dB	dB	<u>ON FACT</u> Cable dB	CORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
0.509980	40.3	0.0		0.1		40.4	48.0	-7.6	BA
0.511006	39.1	0.0		0.1		39.2	48.0	-8.8	WA
0.540340	42.1	0.0		0.1		42.2	48.0	-5.8	WA
0.680832	38.9	0.0		0.1		39.0	48.0	-9.0	W
0.719304	38.7	0.0		0.1		38.8	48.0	-9.2	W
0.737166	39.2	0.0		0.1		39.3	48.0	-8.7	W

Test Method: Spec Limit: ANSI C63.4 (1992) FCC Part 15 Subpart C Section 15.207 NOTES:

A = Average Reading B = Black Lead W = White Lead

COMMENTS: EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. Frequency Range Investigated: 150kHz-30MHz.

FCC 15.247(a)(1) NUMBER OF HOPPING FREQUENCIES

Test Conditions: EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, with hopping function enabled, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping.

FCC 15.247(a)(1) 20 dB BANDWIDTH PLOT LOW

FCC 15.247(a)(1) 20 dB BANDWIDTH PLOT MIDDLE

FCC 15.247(a)(1) 20 dB BANDWIDTH PLOT HIGH

FCC 15.247(a)(1) CARRIER FREQUENCY SEPARATION

Test Conditions: EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, with hopping function enabled, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping.

FCC 15.247(a)(1)(iii) DWELL TIME PLOT 1

Test Conditions: EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, with hopping function enabled, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping.

Averaging Time of Channel Occupancy:

Pulse timing calculations are as follows:

The pulse timing requirements of FCC 15.247(a)(1)(iii) require no more than 0.4 seconds of transmission time on a channel in a period defined by the number of hopping channels (in this case, 79) multiplied by 0.4; 79*0.4 = 31.6 seconds.

In 31.6 seconds, there are 2, 6.32 second transmit blocks and 3, 2.465 second transmit blocks. Within the transmit block, the EUT is transmitting approximately 100uSec per 20mSec period. There are 10 100uSec pulses in any 100mSec period. Therefore, there are 878.5 pulses per any 31.6 second period such that;

10/0.1 = X/20.035 (20.035 = (2*6.32)=(3*2.465))

X= 2003.5µS;

2003.5*100uSec = 2003.5 µSec in any 31.6 second period or rather; .20035 seconds per any 31.6 second period which passes the criteria set forth in 15.247(a)(1)(iii)

FCC 15.247(a)(1)(iii) DWELL TIME PLOT 2

FCC 15.247(a)(1)(iii) DWELL TIME PLOT 3

Table 5: FCC 15.247(b)(1) Peak Output Power									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	CORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
2401.770	95.0	28.2	-37.7	9.3		94.8	137.0	-42.2	V
2402.020	91.4	28.2	-37.7	9.3		91.2	137.0	-45.8	V
2402.200	99.3	28.2	-37.7	9.3		99.1	137.0	-37.9	Н
2440.890	99.0	28.3	-37.7	9.5		99.1	137.0	-37.9	Н
2479.940	89.5	28.3	-37.8	9.6		89.6	137.0	-47.4	V
2480.050	91.3	28.3	-37.8	9.6		91.4	137.0	-45.6	Н

Test Method: Spec Limit: Test Distance: ANSI C63.4 (1992) FCC Part 15 Subpart C Section 15.247(b)(1) 3 Meters

NOTES:

H = Horizontal Polarization V = Vertical Polarization

COMMENTS: The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. RBW/VBW = 3MHz. Highest reading obtained from low channel = 99.1dBuV. Antenna Gain from manufacturer is 2dBi or 1.58 numerical. ERP= $(Ed)^{2/30G} = [(0.090157114)(3)]^{2/[(30)(1.58)]} = 1.5mW$ Limit = .125W in accordance with 15.247(b)(1) in accordance with 15.31(e). For intentional radiators, measurements of radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. No significant variation in the signal level was observed.

FCC 15.247(b)(5)

Maximum Permissible Exposure Calculations

Date of Report: September 16, 2003

Calculations prepared for:

Calculations prepared by:

	Monika Brandle
Hewlett Packard Company	CKC Laboratories, Inc.
3000 Hanover Street	5473A Clouds Rest Road
Palo Alto, CA 94304	Mariposa, CA 95338

Model Number: HP BT 1300

Fundamental Operating Frequency:

2402MHz-2480MHz

Typical Rated Output Power:.0011W (ERP)Measured Output Power:.0015W (ERP)Antenna Gain: EUT has an integral antenna – Antenna Gain from
manufacturer is 2dBi = 1.5 numerical

MPE Limit in accordance with 1.1310(b): Limits for general population/uncontrolled exposure

MPE Limit = 1

EIRP (mW)	Distance (Centi-Meters)	Power Density (mW/cm ²)	Result
1.5	0.345	1	Pass
Note: Worse case p	ower reported.		

 $PowerDensity(mW/cm^{2}) = \frac{EIRP}{4\pi d^{2}}$

Given: **EIRP** in *mW* and **d** in *cm*

Under normal operating conditions, the antenna is designed to maintain a separation distance of at least 20cm from all persons. As can be seen from the MPE results, this device passes the limits specified in 1.1310 at a distance of less than 20cm and at a output power of .0015W(ERP).

7	Fable 6: FCC	15.247(c	2)/15.209	Highest	Radiate	d Emission Level	s: 9 kHz - 3	0 MHz	
	METER	COR	RECTIO	ON FACT	ORS	CORRECTED	SPEC		
FREQUENCY	READING	Ant	Amp	Cable	Dist	READING	LIMIT	MARGIN	NOTES
MHz	dBµV	dB	dB	dB	dB	dBµV/m	$dB\mu V/m$	dB	
*									

NOTES:

Test Method:ANSI C63.4 (1992)Spec Limit:FCC Part 15 Subpart C Section 15.247(c)/15.209Test Distance:3 Meters

COMMENTS: EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. Frequency Range Investigated: 9kHz-30MHz. Test performed on low, mid, and high channel. Worst case emissions reported.

*All spurious emissions were found to be 20dB or more below the specification.

	Table 7: 15.247(c)/15.209 Six Highest Radiated Emission Levels: 30 Hz - 1 GHz								
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	CORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
273.950	47.5	13.1	-26.8	4.0		37.8	46.0	-8.2	Н
302.000	47.6	13.5	-26.7	4.2		38.6	46.0	-7.4	Н
321.685	48.2	14.1	-26.7	4.2		39.8	46.0	-6.2	V
336.078	47.8	14.5	-26.8	4.3		39.8	46.0	-6.2	Н
384.070	46.2	15.9	-26.9	4.5		39.7	46.0	-6.3	V
528.094	41.1	18.7	-27.1	5.7		38.4	46.0	-7.6	Н

Test Method: Spec Limit: Test Distance: ANSI C63.4 (1992) FCC Part 15 Subpart C Section 15.247(c)/15.209 3 Meters

NOTES:

H = Horizontal Polarization V = Vertical Polarization

COMMENTS: EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. Frequency Range Investigated: 30-1000MHz. Test performed on low, mid, and high channel. Worst case emissions reported.

	Table 8: FCC	C 15.247	(c)/15.20	9 Six Hiş	ghest Ra	diated Emission I	Levels: 1-18	GHz	
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	CORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
2483.570	50.2	28.3	-37.8	9.7		50.4	54.0	-3.6	HA
7206.000	35.1	35.4	-39.1	16.3		47.7	54.0	-6.3	HA
7206.000	35.0	35.4	-39.1	16.3		47.6	54.0	-6.4	VA
7321.744	34.6	35.7	-39.0	16.1		47.4	54.0	-6.6	VA
7440.000	36.2	36.0	-39.0	16.0		49.2	54.0	-4.8	HA
7440.000	36.0	36.0	-39.0	16.0		49.0	54.0	-5.0	VA

Test Method: Spec Limit: Test Distance: ANSI C63.4 (1992) FCC Part 15 Subpart C Section 15.247(c)/15.209 3 Meters H = Horizontal Polarization V = Vertical Polarization A = Average Reading

NOTES:

COMMENTS: EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. Frequency Range Investigated: 1000MHz-18GHz. Test performed on low, mid, and high channel. Worst case emissions reported.

	Table 9: FC	°C 15.24	7(c)/15.2	09 Highe	est Radia	nted Emission Lev	vels: 18-26 (GHz	
	METER	COR	RECTIO	ON FACT	ORS	CORRECTED	SPEC		
FREQUENCY	READING	Ant	Amp	Cable	Dist	READING	LIMIT	MARGIN	NOTES
MHz	dBµV	dB	dB	dB	dB	$dB\mu V/m$	$dB\mu V/m$	dB	
*									

NOTES:

Test Method:ANSI C63.4 (1992)Spec Limit:FCC Part 15 Subpart C Section 15.247(c)/15.209Test Distance:3 Meters

COMMENTS: EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. Frequency Range Investigated: 18-26GHz. Test performed on low, mid, and high channel. Worst case emissions reported.

*No emissions found within 20dB of limit.

FCC 15.247(c) BANDEDGE LOW STEP 1A

FCC 15.247(c) BANDEDGE LOW STEP 1B

FCC 15.247(c) BANDEDGE LOW STEP 2

FCC 15.247(c) BANDEDGE LOW STEP 3

FCC 15.247(c) BANDEDGE HIGH STEP 1A

FCC 15.247(c) BANDEDGE HIGH STEP 1B

FCC 15.247(c) BANDEDGE HIGH STEP 2

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TA	TABLE A: SAMPLE CALCULATIONS					
	Meter reading	$(dB\mu V)$				
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	$(dB\mu V/m)$				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the EUT. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For frequencies from 30 to 1000 MHz, the biconilog antenna was used. The horn antenna was used for frequencies above 1000 MHz. All antennas were located at a distance of 3 meters from the edge of the EUT. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data. **Peak**

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

<u>Quasi-Peak</u>

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

<u>Average</u>

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

EUT TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

The LISNs used were 50 μ H-/+50 ohms. Above 150 kHz, a 0.15 μ F series capacitor was added in-line prior to connecting the analyzer to restore the proper impedance for the range. A 30 to 50 second sweep time was used for automated measurements in the frequency bands of 150 kHz to 500 kHz, and 500 kHz to 30 MHz. All readings within 20 dB of the limit were recorded, and those within 6 dB of the limit were examined with additional measurements using a slower sweep time.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. For frequencies exceeding 1000 MHz, the horn antenna was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable as needed. The test engineer maximized the readings with respect to the table rotation and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

APPENDIX A

TEST SETUP PHOTOGRAPHS

Page 37 of 68 Report No: FC03-079

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Front View

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Side View

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

Page 40 of 68 Report No: FC03-079

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

Page 41 of 68 Report No: FC03-079

APPENDIX B

TEST EQUIPMENT LIST

-15.247(a)(1), 15.247(a)(1)(iii), 15.247(b)(1), 15.247(c)

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	00489	HP	8566BA	2403A08241	022603	022604
Display						
Spectrum Analyzer	00490	HP	8566B	2209A01404	022603	022604
QP Adapter	00478	HP	85650A	2811A01267	022603	022604
Pre-amp (30-	02320	HP	8447D	2443A03665	010403	010404
1000MHz)						
Bilog Antenna	00851	Schaffner-	CBL6111C	2629	062603	062604
30-1000MHz		Chase EMC				
Magnetic Loop	00314	Emco	6502	2014	072302	072304
Antenna						
9kHz-30MHz						
Horn Antenna	01646	EMCO	3115	9603-4683	042503	042505
(1-18GHz)						
Spectrum Analyzer	02467	A gilent	E7405A	US40240225	033103	033104
(18-26GHz)		Agnein				
Microwave Pre-amp	00787	HP	83017A	3123A00282	042303	042305
(1-26GHz)						
Horn Antenna	02112	HP	RA42-K-F-	961178-006	070103	070105
(18-26.5 GHz)			4B-C			

-15.207

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	00489	HP	8566BA	2403A08241	022603	022604
Display						
Spectrum Analyzer	00490	HP	8566B	2209A01404	022603	022604
QP Adapter	00478	HP	85650A	2811A01267	022603	022604
LISN	00848	EMCO	3816/2	1102	010403	010404

APPENDIX C MEASUREMENT DATA SHEETS

> Page 43 of 68 Report No: FC03-079

Test Location: CKC Laboratories Inc	. •180 N Olinda Place •	Brea CA, 92823 •	• 714-993-6112
-------------------------------------	-------------------------	------------------	----------------

Customer: Specification:	Hewlett Packard Company FCC 15.107 Class B		
Work Order #:	81119	Date:	09/15/2003
Test Type:	Conducted Emissions	Time:	08:40:59
Equipment:	Blue Tooth Wireless Print Server	Sequence#:	11
Manufacturer:	Hewlett Packard Company	Tested By:	Monika Brandle
Model:	HP BT1300		120V 60Hz
S/N:	US38T000D5 (Unit #1)		

Equipment Under Test (* = EUT):

1 1	- /-		
Function	Manufacturer	Model #	S/N
Power Supply	Potrans	WR410500500	0212
Blue Tooth Wireless Print	Hewlett Packard Company	HP BT1300	US38T000D5 (Unit #1)
Server*			

Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	C6487C	MY2BE1N3B3

Test Conditions / Notes:

EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured in receive mode. Frequency Range Investigated: 150kHz-30MHz.

Transducer Legend:

T1=Cable #8 072804

Measu	rement Data:	R	eading lis	ted by r	nargin.	n. Test Lead: Black					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	510.280k	41.1	+0.1				+0.0	41.2	48.0	-6.8	Black
	Ave										
۸	509.082k	52.1	+0.1				+0.0	52.2	48.0	+4.2	Black
3	733.044k	39.7	+0.1				+0.0	39.8	48.0	-8.2	Black
4	1.193M	37.3	+0.1				+0.0	37.4	48.0	-10.6	Black
5	4.288M	35.1	+0.1				+0.0	35.2	48.0	-12.8	Black
6	3.485M	35.0	+0.1				+0.0	35.1	48.0	-12.9	Black
7	1.028M	34.4	+0.1				+0.0	34.5	48.0	-13.5	Black
8	3.558M	34.4	+0.1				+0.0	34.5	48.0	-13.5	Black
9	1.116M	34.2	+0.1				+0.0	34.3	48.0	-13.7	Black
10	4.015M	34.0	+0.1				+0.0	34.1	48.0	-13.9	Black

11	4.934M	33.7	+0.1	+0.0	33.8	48.0	-14.2	Black
12	17.578M	33.3	+0.4	+0.0	33.7	48.0	-14.3	Black
13	3.011M	33.3	+0.1	+0.0	33.4	48.0	-14.6	Black
14	5.090M	33.3	+0.1	+0.0	33.4	48.0	-14.6	Black
15	2.660M	33.2	+0.1	+0.0	33.3	48.0	-14.7	Black
16	5.720M	33.2	+0.1	+0.0	33.3	48.0	-14.7	Black
17	3.652M	33.0	+0.1	+0.0	33.1	48.0	-14.9	Black
18	4.912M	33.0	+0.1	+0.0	33.1	48.0	-14.9	Black
19	5.141M	33.0	+0.1	+0.0	33.1	48.0	-14.9	Black
20	4.867M	32.9	+0.1	+0.0	33.0	48.0	-15.0	Black
21	1.217M	32.7	+0.1	+0.0	32.8	48.0	-15.2	Black
22	3.089M	32.7	+0.1	+0.0	32.8	48.0	-15.2	Black
23	1.046M	32.5	+0.1	+0.0	32.6	48.0	-15.4	Black
24	1.874M	32.4	+0.1	+0.0	32.5	48.0	-15.5	Black
25	6.423M	32.3	+0.1	+0.0	32.4	48.0	-15.6	Black
26	15.452M	31.9	+0.3	+0.0	32.2	48.0	-15.8	Black
27	5.520M	32.0	+0.1	+0.0	32.1	48.0	-15.9	Black
28	5.297M	31.7	+0.1	+0.0	31.8	48.0	-16.2	Black
29	2.532M	31.5	+0.1	+0.0	31.6	48.0	-16.4	Black
30	5.921M	31.3	+0.1	+0.0	31.4	48.0	-16.6	Black
31	7.303M	31.1	+0.2	+0.0	31.3	48.0	-16.7	Black
32	19.641M	30.7	+0.4	+0.0	31.1	48.0	-16.9	Black
33	567.209k Ave	30.8	+0.1	+0.0	30.9	48.0	-17.1	Black
^	567.000k	44.4	+0.1	 +0.0	44.5	48.0	-3.5	Black

35	6.657M	30.8	+0.1	+0.0	30.9	48.0	-17.1	Black
36	22.993M	30.5	+0.4	+0.0	30.9	48.0	-17.1	Black
37	26.453M	30.4	+0.4	+0.0	30.8	48.0	-17.2	Black

CKC Laboratories Inc. Date: 09/15/2003 Time: 08:40:59 WO#: 81119 FCC 15.107 Class B Test Lead: Black 120V 60Hz Sequence#: 11 Parallel/Univ-110

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer: Specification:	Hewlett Packard Company FCC 15.107 Class B		
Work Order #:	81119	Date:	09/15/2003
Test Type:	Conducted Emissions	Time:	08:45:18
Equipment:	Blue Tooth Wireless Print Server	Sequence#:	12
Manufacturer:	Hewlett Packard Company	Tested By:	Monika Brandle
Model:	HP BT1300		120V 60Hz
S/N:	US38T000D5 (Unit #1)		

Equipment Under Test (* = EUT):

11			
Function	Manufacturer	Model #	S/N
Power Supply	Potrans	WR410500500	0212
Blue Tooth Wireless Print	Hewlett Packard Company	HP BT1300	US38T000D5 (Unit #1)
Server*			

Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	C6487C	MY2BE1N3B3

Test Conditions / Notes:

EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured in receive mode. Frequency Range Investigated: 150kHz-30MHz.

Transducer Legend:

T1=Cable #8 072804

Measu	rement Data:	R	eading lis	ted by r	nargin.	gin. Test Lead: White					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	711.060k	40.8	+0.1				+0.0	40.9	48.0	-7.1	White
2	533.777k Ave	40.7	+0.1				+0.0	40.8	48.0	-7.2	White
^	537.936k	49.2	+0.1				+0.0	49.3	48.0	+1.3	White
4	726.174k	39.4	+0.1				+0.0	39.5	48.0	-8.5	White
5	738.540k	39.3	+0.1				+0.0	39.4	48.0	-8.6	White
6	690.450k	38.8	+0.1				+0.0	38.9	48.0	-9.1	White
7	761.898k	36.4	+0.1				+0.0	36.5	48.0	-11.5	White
8	3.452M	34.7	+0.1				+0.0	34.8	48.0	-13.2	White
9	1.192M	34.4	+0.1				+0.0	34.5	48.0	-13.5	White
10	4.204M	34.4	+0.1				+0.0	34.5	48.0	-13.5	White

11	4.154M	34.3	+0.1	+0.0	34.4	48.0	-13.6	White
12	884.184k	34.2	+0.1	+0.0	34.3	48.0	-13.7	White
13	4.115M	34.2	+0.1	+0.0	34.3	48.0	-13.7	White
14	4.293M	34.2	+0.1	+0.0	34.3	48.0	-13.7	White
15	3.279M	34.1	+0.1	+0.0	34.2	48.0	-13.8	White
16	4.990M	34.1	+0.1	+0.0	34.2	48.0	-13.8	White
17	4.037M	34.0	+0.1	+0.0	34.1	48.0	-13.9	White
18	3.552M	33.8	+0.1	+0.0	33.9	48.0	-14.1	White
19	4.895M	33.6	+0.1	+0.0	33.7	48.0	-14.3	White
20	3.184M	33.5	+0.1	+0.0	33.6	48.0	-14.4	White
21	2.749M	33.2	+0.1	+0.0	33.3	48.0	-14.7	White
22	5.141M	33.1	+0.1	+0.0	33.2	48.0	-14.8	White
23	5.743M	33.1	+0.1	+0.0	33.2	48.0	-14.8	White
24	940.518k	32.9	+0.1	+0.0	33.0	48.0	-15.0	White
25	3.006M	32.9	+0.1	+0.0	33.0	48.0	-15.0	White
26	5.614M	32.7	+0.1	+0.0	32.8	48.0	-15.2	White
27	952.884k	32.6	+0.1	+0.0	32.7	48.0	-15.3	White
28	1.142M	32.6	+0.1	+0.0	32.7	48.0	-15.3	White
29	3.089M	32.6	+0.1	+0.0	32.7	48.0	-15.3	White
30	2.627M	32.5	+0.1	+0.0	32.6	48.0	-15.4	White
31	1.112M	32.4	+0.1	+0.0	32.5	48.0	-15.5	White
32	5.648M	32.4	+0.1	+0.0	32.5	48.0	-15.5	White
33	5.770M	32.4	+0.1	+0.0	32.5	48.0	-15.5	White
34	2.827M	32.3	+0.1	+0.0	32.4	48.0	-15.6	White
35	17.299M	32.1	+0.3	+0.0	32.4	48.0	-15.6	White

36	922.656k	32.2	+0.1	+0.0	32.3	48.0	-15.7	White
37	2.772M	32.1	+0.1	+0.0	32.2	48.0	-15.8	White
38	2.917M	31.7	+0.1	+0.0	31.8	48.0	-16.2	White
39	16.155M	31.5	+0.3	+0.0	31.8	48.0	-16.2	White
40	26.104M	30.6	+0.4	+0.0	31.0	48.0	-17.0	White
41	559.000k	27.5	+0.1	+0.0	27.6	48.0	-20.4	White
	Ave							
^	559.920k	44.3	+0.1	+0.0	44.4	48.0	-3.6	White

CKC Laboratories Inc. Date: 09/15/2003 Time: 08:45:18 WO#: 81119 FCC 15.107 Class B Test Lead: White 120V 60Hz Sequence#: 12 Parallel/Univ-110

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer:	Hewlett Packard Company		
Specification:	FCC 15.109 Class B		
Work Order #:	81119	Date:	09/12/2003
Test Type:	Maximized Emissions	Time:	16:47:04
Equipment:	Blue Tooth Wireless Print Server	Sequence#:	8
Manufacturer:	Hewlett Packard Company	Tested By:	Monika Brandle
Model:	HP BT1300		
S/N:	US38T000D5 (Unit #1)		

Equipment Under Test (* = EUT):

-1			
Function	Manufacturer	Model #	S/N
Power Supply	Potrans	WR410500500	0212
Blue Tooth Wireless Print	Hewlett Packard Company	HP BT1300	US38T000D5 (Unit #1)
Server*			

Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	C6487C	MY2BE1N3B3

Test Conditions / Notes:

EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured in receive mode. Frequency Range Investigated: 30-1000MHz. Test performed on low, mid, and high channel. Worst case emissions reported.

T1=Cable Heliax #17 84ft(10 meter)	T2=Cable#22 BNC (preamp to SA)
T3=Cable #6 (Ant to Bulkhead) 051204	T4=Bilog SN2629 062604
T5=Preamp 8447D 02320 (site D) 010404	

Measu	rement Data:	R	eading lis	ted by ma	argin.		Т	est Distance	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	384.043M	45.1	+1.9	+0.5	+2.1	+15.9	+0.0	38.6	46.0	-7.4	Vert
			-26.9								
2	312.145M	46.9	+1.9	+0.4	+1.9	+13.8	+0.0	38.2	46.0	-7.8	Horiz
			-26.7								
3	480.077M	41.5	+2.5	+0.6	+2.4	+17.9	+0.0	37.9	46.0	-8.1	Vert
			-27.0								
4	330.000M	45.5	+1.9	+0.4	+2.0	+14.4	+0.0	37.4	46.0	-8.6	Horiz
			-26.8								
5	288.086M	46.6	+1.9	+0.4	+1.9	+13.2	+0.0	37.3	46.0	-8.7	Vert
			-26.7								
6	264.050M	47.2	+1.8	+0.4	+1.8	+12.9	+0.0	37.3	46.0	-8.7	Horiz
			-26.8								
7	324.139M	45.2	+1.9	+0.4	+2.0	+14.2	+0.0	36.9	46.0	-9.1	Horiz
	QP		-26.8								
^	324.145M	49.0	+1.9	+0.4	+2.0	+14.2	+0.0	40.7	46.0	-5.3	Horiz
			-26.8								

CKC -M-Tosting the Future

9	288.080M	46.0	+1.9	+0.4	+1.9	+13.2	+0.0	36.7	46.0	-9.3	Horiz
	<u>QP</u>	50.5	-20.7	+0.4	+1.0	12.0		41.0	16.0	4.0	Haria
~	288.015M	50.5	+1.9	+0.4	+1.9	+13.2	+0.0	41.2	40.0	-4.8	Horiz
^	288 020M	49.1	-20.7	+0.4	+1.0	12.2		28.8	46.0	7.2	Uoriz
	200.029101	40.1	+1.9	+0.4	+1.9	+13.2	± 0.0	30.0	40.0	-1.2	HOHZ
12	200.069M	15.2	-20.7	+0.4	+1.0	12 /		26.2	16.0	0.8	Horiz
12	299.900M	45.5	+1.9	+0.4	+1.9	+13.4	+0.0	50.2	40.0	-9.0	HOLIZ
12	726 000M	22.0	-20.7	10.8	+2.1	121.2		25.0	46.0	10.1	Horiz
15	720.000W	55.9	+5.0	+0.8	+5.1	+21.2	+0.0	55.9	40.0	-10.1	HOLIZ
14	276 133M	15.5	-20.1	+0.4	1 2	+12.1		25.8	46.0	10.2	Uoriz
14	270.1551	45.5	+1.0	+0.4	± 1.0	+13.1	± 0.0	55.8	40.0	-10.2	HOHZ
15	132 000M	15.6	-20.8 ±1.2	±0.2	⊥1 3	⊥11 7	+0.0	33.0	13.5	10.5	Horiz
15	152.000101	45.0	$^{+1.2}$	+0.2	+1.5	T11./	± 0.0	55.0	45.5	-10.5	TIOTIZ
16	396.000M	41.2	<u>-27.0</u> ±1.0	+0.5	±2.2	+16.2	+0.0	35.0	46.0	11.0	Horiz
10	390.000WI	41.2	+1.9	± 0.5	+2.2	+10.2	± 0.0	55.0	40.0	-11.0	HOHZ
17	102 071M	17.2	-27.0 ±1.5	+0.3	±1.4	±0.0	+0.0	32.4	13.5	11.1	Vort
1/	192.071101	47.2	+1.3	± 0.5	+1.4	+9.0	± 0.0	52.4	43.5	-11.1	Vert
18	288 028M	44.0	-27.0	+0.4	+1.0	12.2	+0.0	347	46.0	11.2	Vort
10	200.020M	44.0	+1.9	+0.4	+1.9	+15.2	+0.0	54.7	40.0	-11.5	ven
10	420.042M	40.4	-20.7	0.5	12.2	167		347	46.0	11.2	Uoriz
19	420.042M	40.4	+1.9	+0.3	+2.2	+10.7	+0.0	54.7	40.0	-11.5	HOLIZ
20	66 055M	47.0	-27.0	+0.1	+1.0	16.4		28.4	40.0	11.6	Vort
20	00.055101	47.0	+0.9	+0.1	+1.0	+0.4	+0.0	20.4	40.0	-11.0	ven
21	200.020M	12.2	-27.0	+0.4	+1.0	12.4		24.2	16.0	11.0	Vort
21	299.920IVI	45.5	+1.9	+0.4	+1.9	+15.4	+0.0	54.2	40.0	-11.0	ven
22	105 200M	16.2	-20.7	+0.2	+1.4			21.7	12 5	11.0	Vort
22	195.299M	40.5	+1.0	+0.5	+1.4	+9.0	+0.0	51.7	43.5	-11.0	ven
22	504.000M	25.2	-20.9	0.6	128	+ 10.8		34.2	46.0	11.0	Uoriz
23	J94.0001v1	55.2	+2.0	± 0.0	+2.0	+19.0	± 0.0	54.2	40.0	-11.0	HOHZ
24	306 042M	40.3	-20.8	0.5	12.2	16.2		3/1	46.0	11.0	Uoriz
24	390.042IVI	40.5	+1.9	± 0.5	+2.2	+10.2	± 0.0	54.1	40.0	-11.9	HOHZ
25	528 067M	36.0	-27.0	0.6	12.5	187	+0.0	22.2	46.0	12.7	Vort
23	J28.007101	50.0	-27.1	± 0.0	± 2.3	+10.7	± 0.0	55.5	40.0	-12.7	Vert
26	240.057M	113	-27.1	+0.4	+17	120		22.2	46.0	12.8	Uoriz
20	240.037101	44.5	+1.7	+0.4	± 1.7	± 12.0	± 0.0	55.2	40.0	-12.0	HOHZ
27	264 000M	12.7	-20.9 ±1.8	+0.4	⊥1 8	±12.0	+0.0	32.8	46.0	13.2	Horiz
21	204.000101	42.7	+1.0	+0.4	± 1.0	+12.9	± 0.0	52.8	40.0	-13.2	HOHZ
28	160 600M	44.4	-20.8	+0.3	+1.2	+0.0		30.2	13.5	12.2	Vort
20	109.000101	44.4	+1.4	± 0.5	± 1.5	+9.9	± 0.0	50.2	43.5	-15.5	Ven
20	144.066M	12.5	-27.1	10.3	+1.4	116		30.0	13.5	13.5	Vort
29	144.000101	42.5	$^{+1.3}$	± 0.5	T1.4	+11.0	± 0.0	50.0	45.5	-15.5	ven
20	122 066M	12.5	-27.1	0.2	+1.2	117		20.0	12 5	12.6	Vort
- 50	152.000101	42.5	+1.2	+0.2	± 1.5	+11.7	± 0.0	29.9	43.5	-13.0	Vert
31	228 000M	11.6	-27.0	10.3	16	+11.2		37.3	46.0	137	Vort
51	228.009101	44.0	+1.0	± 0.5	± 1.0	+11.2	± 0.0	52.5	40.0	-13.7	Vert
32	144 0281	<i>A</i> 1 7	-27.0	±0.3	±1 <i>1</i>	±11.6	±0.0	20.2	12 5	1/2	Horiz
32	144.028WI	41./	+1.3 27.1	+0.3	+1.4	+11.0	± 0.0	29.2	43.3	-14.3	TIONZ
22	126 071M	/1 Q	-2/.1 ±1.2	±0.2	±1.2	+117	+0.0	20.1	12 5	14.4	Vort
- 33	120.071101	41.0	+1.2 27.0	+0.2	±1.2	+11./	± 0.0	27.1	43.3	-14.4	ven
			-27.0								

34	132.028M	41.7	+1.2 -27.0	+0.2	+1.3	+11.7	+0.0	29.1	43.5	-14.4	Horiz
35	168.066M	42.5	+1.4 -27.1	+0.3	+1.3	+10.0	+0.0	28.4	43.5	-15.1	Vert
36	450.238M	35.7	+2.1 -27.1	+0.5	+2.3	+17.3	+0.0	30.8	46.0	-15.2	Vert
37	528.000M	33.5	+2.6 -27.1	+0.6	+2.5	+18.7	+0.0	30.8	46.0	-15.2	Horiz
38	462.000M	35.2	+2.3 -27.1	+0.5	+2.3	+17.5	+0.0	30.7	46.0	-15.3	Horiz
39	448.028M	34.6	+2.1 -27.1	+0.5	+2.3	+17.3	+0.0	29.7	46.0	-16.3	Vert
40	432.085M	34.2	+2.0 -27.1	+0.5	+2.3	+17.0	+0.0	28.9	46.0	-17.1	Vert
41	198.000M	40.9	+1.6 -26.9	+0.3	+1.4	+9.0	+0.0	26.3	43.5	-17.2	Horiz
42	239.919M	39.7	+1.7 -26.9	+0.4	+1.7	+12.0	+0.0	28.6	46.0	-17.4	Horiz
43	443.042M	33.5	+2.0 -27.1	+0.5	+2.3	+17.2	+0.0	28.4	46.0	-17.6	Vert

Test Location: C	CKC Laboratories Inc.	•180 N Olinda Place •	Brea CA, 92823	• 714-993-6112
------------------	-----------------------	-----------------------	----------------	----------------

Customer:	Hewlett Packard Company		
Specification:	FCC 15.109 Class B		
Work Order #:	81119	Date:	09/15/2003
Test Type:	Maximized Emissions	Time:	09:40:12
Equipment:	Blue Tooth Wireless Print Server	Sequence#:	9
Manufacturer:	Hewlett Packard Company	Tested By:	Monika Brandle
Model:	HP BT1300		
S/N:	US38T000D5 (Unit #1)		

Equipment Under Test (* = EUT):

1 1	- /-		
Function	Manufacturer	Model #	S/N
Power Supply	Potrans	WR410500500	0212
Blue Tooth Wireless Print	Hewlett Packard Company	HP BT1300	US38T000D5 (Unit #1)
Server*			

Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	C6487C	MY2BE1N3B3

Test Conditions / Notes:

EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured in receive mode. Frequency Range Investigated: 1-26GHz. Test performed on low, mid, and high channel. Worst case emissions reported.

T1=Cable Heliax #17 84ft(10 meter)	T2=Cable #19 54ft Heliax 091103
T3=Horn AN 01646 1-18 GHz (Brea)	T4=HF Preamp Cal. HP-83017A,S/N- 3123A00282

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Т	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	4802.620M	42.1	+8.0	+4.7	+33.0	-39.1	+0.0	48.7	54.0	-5.3	Horiz
2	2439.794M	49.5	+5.8	+3.7	+28.0	-39.4	+0.0	47.6	54.0	-6.4	Vert
3	2404.600M	48.1	+5.7	+3.6	+27.9	-39.4	+0.0	45.9	54.0	-8.1	Vert
4	2479.979M	46.9	+5.9	+3.7	+28.1	-39.4	+0.0	45.2	54.0	-8.8	Vert
5	2435.320M	47.0	+5.8	+3.7	+27.9	-39.4	+0.0	45.0	54.0	-9.0	Horiz
6	2406.260M	46.5	+5.7	+3.6	+27.9	-39.4	+0.0	44.3	54.0	-9.7	Horiz
7	1826.140M	47.3	+4.8	+3.2	+26.2	-39.4	+0.0	42.1	54.0	-11.9	Vert
8	1826.080M	44.1	+4.8	+3.2	+26.2	-39.4	+0.0	38.9	54.0	-15.1	Horiz

Test Location: CKC Laboratories Inc	•180 N Olinda Place •	• Brea CA, 92823	• 714-993-6112
-------------------------------------	-----------------------	------------------	----------------

Customer: Specification:	Hewlett Packard Company FCC 15.207		
Work Order #:	81119	Date:	09/15/2003
Test Type:	Conducted Emissions	Time:	08:33:47
Equipment:	Blue Tooth Wireless Print Server	Sequence#:	10
Manufacturer:	Hewlett Packard Company	Tested By:	Monika Brandle
Model:	HP BT1300		120V 60Hz
S/N:	US38T000D5 (Unit #1)		

Equipment Under Test (* = EUT):

1 1	- /-		
Function	Manufacturer	Model #	S/N
Power Supply	Potrans	WR410500500	0212
Blue Tooth Wireless Print	Hewlett Packard Company	HP BT1300	US38T000D5 (Unit #1)
Server*			

Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	C6487C	MY2BE1N3B3

Test Conditions / Notes:

EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. Frequency Range Investigated: 150kHz-30MHz.

Transducer Legend: T1=Cable #8 072804

Measu	rement Data:	Re	eading lis	ted by r	nargin.			Test Lead	d: Black		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	509.980k	40.3	+0.1				+0.0	40.4	48.0	-7.6	Black
	Ave										
^	509.082k	51.7	+0.1				+0.0	51.8	48.0	+3.8	Black
3	761.898k	38.5	+0.1				+0.0	38.6	48.0	-9.4	Black
4	1.195M	37.1	+0.1				+0.0	37.2	48.0	-10.8	Black
5	3.446M	35.4	+0.1				+0.0	35.5	48.0	-12.5	Black
6	1.026M	35.3	+0.1				+0.0	35.4	48.0	-12.6	Black
7	4.232M	35.3	+0.1				+0.0	35.4	48.0	-12.6	Black
8	3.379M	34.8	+0.1				+0.0	34.9	48.0	-13.1	Black
9	4.310M	34.3	+0.1				+0.0	34.4	48.0	-13.6	Black
10	5.648M	33.6	+0.1				+0.0	33.7	48.0	-14.3	Black

11	5.743M	33.6	+0.1	+0.0	33.7	48.0	-14.3	Black
12	4.990M	33.4	+0.1	+0.0	33.5	48.0	-14.5	Black
13	5.809M	33.3	+0.1	+0.0	33.4	48.0	-14.6	Black
14	17.596M	32.8	+0.4	+0.0	33.2	48.0	-14.8	Black
15	1.114M	32.6	+0.1	+0.0	32.7	48.0	-15.3	Black
16	3.981M	32.6	+0.1	+0.0	32.7	48.0	-15.3	Black
17	4.382M	32.5	+0.1	+0.0	32.6	48.0	-15.4	Black
18	1.163M	32.4	+0.1	+0.0	32.5	48.0	-15.5	Black
19	7.381M	32.3	+0.2	+0.0	32.5	48.0	-15.5	Black
20	1.136M	32.3	+0.1	+0.0	32.4	48.0	-15.6	Black
21	15.362M	32.0	+0.3	+0.0	32.3	48.0	-15.7	Black
22	2.019M	32.0	+0.1	+0.0	32.1	48.0	-15.9	Black
23	16.290M	31.6	+0.3	+0.0	31.9	48.0	-16.1	Black
24	5.536M	31.5	+0.1	+0.0	31.6	48.0	-16.4	Black
25	2.147M	31.0	+0.1	+0.0	31.1	48.0	-16.9	Black
26	21.912M	30.7	+0.4	+0.0	31.1	48.0	-16.9	Black
27	26.558M	30.4	+0.4	+0.0	30.8	48.0	-17.2	Black
28	715.842k Ave	29.8	+0.1	+0.0	29.9	48.0	-18.1	Black
^	715.000k	42.3	+0.1	+0.0	42.4	48.0	-5.6	Black
30	554.500k Ave	28.9	+0.1	+0.0	29.0	48.0	-19.0	Black
^	550.302k	45.7	+0.1	+0.0	45.8	48.0	-2.2	Black
32	578.660k Ave	25.2	+0.1	+0.0	25.3	48.0	-22.7	Black
^	581.904k	46.4	+0.1	+0.0	46.5	48.0	-1.5	Black

CKC Laboratories Inc. Date: 09/15/2003 Time: 08:33:47 WO#: 81119 FCC 15:207 Test Lead: Black 120V 60Hz Sequence#: 10 Parallel/Univ-110

Test Location: CKC Laboratories Inc	•180 N Olinda Place •	• Brea CA, 92823	• 714-993-6112
-------------------------------------	-----------------------	------------------	----------------

Customer: Specification:	Hewlett Packard Company FCC 15.207		
Work Order #:	81119	Date:	09/15/2003
Test Type:	Conducted Emissions	Time:	08:28:24
Equipment:	Blue Tooth Wireless Print Server	Sequence#:	10
Manufacturer:	Hewlett Packard Company	Tested By:	Monika Brandle
Model:	HP BT1300		120V 60Hz
S/N:	US38T000D5 (Unit #1)		

Equipment Under Test (* = EUT):

	/		
Function	Manufacturer	Model #	S/N
Power Supply	Potrans	WR410500500	0212
Blue Tooth Wireless Print	Hewlett Packard Company	HP BT1300	US38T000D5 (Unit #1)
Server*			

Support Devices:

Function	Aanufacturer	Model #	S/N
Printer H	IP	C6487C	MY2BE1N3B3

Test Conditions / Notes:

EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. Frequency Range Investigated: 150kHz-30MHz.

Transducer Legend: T1=Cable #8 072804

Measu	rement Data:	R	eading lis	ted by r	nargin.			Test Lea	d: White		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	540.340k	42.1	+0.1				+0.0	42.2	48.0	-5.8	White
	Ave										
^	536.562k	50.0	+0.1				+0.0	50.1	48.0	+2.1	White
3	737.166k	39.2	+0.1				+0.0	39.3	48.0	-8.7	White
4	511.006k	39.1	+0.1				+0.0	39.2	48.0	-8.8	White
	Ave										
^	507.708k	48.3	+0.1				+0.0	48.4	48.0	+0.4	White
6	680.832k	38.9	+0.1				+0.0	39.0	48.0	-9.0	White
7	719.304k	38.7	+0.1				+0.0	38.8	48.0	-9.2	White
8	786.630k	35.8	+0.1				+0.0	35.9	48.0	-12.1	White
9	1.193M	35.8	+0.1				+0.0	35.9	48.0	-12.1	White
10	16.155M	35.3	+0.3				+0.0	35.6	48.0	-12.4	White

11	4.132M	34.6	+0.1	+0.0	34.7	48.0	-13.3	White
12	3.474M	34.4	+0.1	+0.0	34.5	48.0	-13.5	White
13	4.304M	34.1	+0.1	+0.0	34.2	48.0	-13.8	White
14	3.563M	34.0	+0.1	+0.0	34.1	48.0	-13.9	White
15	4.934M	33.8	+0.1	+0.0	33.9	48.0	-14.1	White
16	4.282M	33.7	+0.1	+0.0	33.8	48.0	-14.2	White
17	836.094k	33.6	+0.1	+0.0	33.7	48.0	-14.3	White
18	962.502k	33.2	+0.1	+0.0	33.3	48.0	-14.7	White
19	5.698M	33.2	+0.1	+0.0	33.3	48.0	-14.7	White
20	1.022M	33.1	+0.1	+0.0	33.2	48.0	-14.8	White
21	873.192k	33.0	+0.1	+0.0	33.1	48.0	-14.9	White
22	907.542k	32.9	+0.1	+0.0	33.0	48.0	-15.0	White
23	16.848M	32.6	+0.3	+0.0	32.9	48.0	-15.1	White
24	4.382M	32.7	+0.1	+0.0	32.8	48.0	-15.2	White
25	4.416M	32.7	+0.1	+0.0	32.8	48.0	-15.2	White
26	5.525M	32.7	+0.1	+0.0	32.8	48.0	-15.2	White
27	3.000M	32.6	+0.1	+0.0	32.7	48.0	-15.3	White
28	1.114M	32.5	+0.1	+0.0	32.6	48.0	-15.4	White
29	1.074M	32.3	+0.1	+0.0	32.4	48.0	-15.6	White
30	2.627M	32.2	+0.1	+0.0	32.3	48.0	-15.7	White
31	5.163M	32.1	+0.1	+0.0	32.2	48.0	-15.8	White
32	985.860k	32.0	+0.1	+0.0	32.1	48.0	-15.9	White
33	1.997M	32.0	+0.1	+0.0	32.1	48.0	-15.9	White
34	6.333M	32.0	+0.1	+0.0	32.1	48.0	-15.9	White
35	2.928M	31.8	+0.1	+0.0	31.9	48.0	-16.1	White

36	6.445M	31.8	+0.1	+0.0	31.9	48.0	-16.1	White
37	3.095M	31.7	+0.1	+0.0	31.8	48.0	-16.2	White
38	6.489M	31.5	+0.1	+0.0	31.6	48.0	-16.4	White
39	7.376M	30.9	+0.2	+0.0	31.1	48.0	-16.9	White
40	6.601M	30.8	+0.1	+0.0	30.9	48.0	-17.1	White
41	29.545M	30.0	+0.4	+0.0	30.4	48.0	-17.6	White
42	608.793k Ave	28.4	+0.1	+0.0	28.5	48.0	-19.5	White
^	612.132k	42.5	+0.1	+0.0	42.6	48.0	-5.4	White
44	522.663k Ave	25.5	+0.1	+0.0	25.6	48.0	-22.4	White
^	522.000k	46.7	+0.1	+0.0	46.8	48.0	-1.2	White

CKC Laboratories Inc. Date: 09/15/2003 Time: 08:28:24 WO#: 81119 FCC 15.207 Test Lead: White 120V 60Hz Sequence#: 10 Parallel/Univ-110

6

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer:	Hewlett Packard Company		
Specification:	15.247(b)(1)		
Work Order #:	81119	Date:	09/12/2003
Test Type:	Maximized Emissions	Time:	09:12:18
Equipment:	Blue Tooth Wireless Print Server	Sequence#:	1
Manufacturer:	Hewlett Packard Company	Tested By:	Monika Brandle
Model:	HP BT1300		
S/N:	US38T000D5 (Unit #1)		

Equipment Under Test (* = EUT):

11			
Function	Manufacturer	Model #	S/N
Power Supply	Potrans	WR410500500	0212
Blue Tooth Wireless Print	Hewlett Packard Company	HP BT1300	US38T000D5 (Unit #1)
Server*			

Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	C6487C	MY2BE1N3B3

Test Conditions / Notes:

The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. RBW/VBW = 3MHz. Highest reading obtained from low channel = 99.1dBuV Antenna Gain from manufacturer is 2dBi or 1.58 numerical ERP= $(Ed)^{2/30G} = [(0.090157114)(3)]^{2/[(30)(1.58)]} = 1.5mW$ Limit = .125W in accordance with 15.247(b)(1) in accordance with 15.31(e). For intentional radiators, measurements of radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. No significant variation in the signal level was observed.

T1=Cable #19 54ft Heliax 091103	T2=Cable Heliax #17 84ft(10 meter)
T3=HP83017A Preamp 091103	T4=Horn 6246_091003

Measu	rement Data:	Reading listed by margin.			Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	2402.200M	99.3	+3.6	+5.7	-37.7	+28.2	+0.0	99.1	137.0	-37.9	Horiz
2	2440.890M	99.0	+3.7	+5.8	-37.7	+28.3	+0.0	99.1	137.0	-37.9	Horiz
3	2401.770M	95.0	+3.6	+5.7	-37.7	+28.2	+0.0	94.8	137.0	-42.2	Vert
4	2480.050M	91.3	+3.7	+5.9	-37.8	+28.3	+0.0	91.4	137.0	-45.6	Horiz
5	2402.020M	91.4	+3.6	+5.7	-37.7	+28.2	+0.0	91.2	137.0	-45.8	Vert
6	2479.940M	89.5	+3.7	+5.9	-37.8	+28.3	+0.0	89.6	137.0	-47.4	Vert
7	2440.780M	89.3	+3.7	+5.8	-37.7	+28.3	+0.0	89.4	137.0	-47.6	Vert

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer: Specification:	Hewlett Packard Company FCC 15.247 (FCC 15.209)		
Work Order #:	81119	Date:	09/12/2003
Test Type:	Maximized Emissions	Time:	15:10:23
Equipment:	Blue Tooth Wireless Print Server	Sequence#:	7
Manufacturer:	Hewlett Packard Company	Tested By:	Monika Brandle
Model:	HP BT1300		
S/N:	US38T000D5 (Unit #1)		

Equipment Under Test (* = EUT):

1.1	- / ·		
Function	Manufacturer	Model #	S/N
Power Supply	Potrans	WR410500500	0212
Blue Tooth Wireless Print	Hewlett Packard Company	HP BT1300	US38T000D5 (Unit #1)
Server*			

Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	C6487C	MY2BE1N3B3

Test Conditions / Notes:

EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. Frequency Range Investigated: 9kHz-30MHz. Test performed on low, mid, and high channel. Worst case emissions reported. All spurious emissions were found to be 20dB or more below the specification.

Measur	rement Data:	ŀ	Reading li	sted by n	nargin.		Те	est Distance	e: 10 Meter	rs	
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant

Test Location: (CKC Laboratories Inc.	•180 N Olinda Place •	Brea CA, 92823	• 714-993-6112
------------------	-----------------------	-----------------------	----------------	----------------

Customer:	Hewlett Packard Company	-	
Specification:	FCC 15.247 (c) (FCC 15.209) 30 - 1000 MH	lz	
Work Order #:	81119	Date:	09/12/2003
Test Type:	Maximized Emissions	Time:	14:10:05
Equipment:	Blue Tooth Wireless Print Server	Sequence#:	5
Manufacturer:	Hewlett Packard Company	Tested By:	Monika Brandle
Model:	HP BT1300		
S/N:	US38T000D5 (Unit #1)		

Equipment Under Test (* = EUT):

	- /-		
Function	Manufacturer	Model #	S/N
Power Supply	Potrans	WR410500500	0212
Blue Tooth Wireless Print	Hewlett Packard Company	HP BT1300	US38T000D5 (Unit #1)
Server*			

Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	C6487C	MY2BE1N3B3

Test Conditions / Notes:

EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. Frequency Range Investigated: 30-1000MHz. Test performed on low, mid, and high channel. Worst case emissions reported.

T1=Cable Heliax #17 84ft(10 meter)	T2=Bilog SN2629 062604
T3=Cable#22 BNC (preamp to SA)	T4=Cable #6 (Ant to Bulkhead) 051204
T5=Preamp 8447D 02320 (site D) 010404	

Measu	rement Data:	eading lis	ted by ma	Test Distance: 3 Meters							
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	321.685M	48.2	+1.9	+14.1	+0.4	+1.9	+0.0	39.8	46.0	-6.2	Vert
			-26.7								
2	336.078M	47.8	+1.9	+14.5	+0.4	+2.0	+0.0	39.8	46.0	-6.2	Horiz
			-26.8								
3	384.070M	46.2	+1.9	+15.9	+0.5	+2.1	+0.0	39.7	46.0	-6.3	Vert
			-26.9								
4	302.000M	47.6	+1.9	+13.5	+0.4	+1.9	+0.0	38.6	46.0	-7.4	Horiz
			-26.7								
5	528.094M	41.1	+2.6	+18.7	+0.6	+2.5	+0.0	38.4	46.0	-7.6	Horiz
			-27.1								
6	273.950M	47.5	+1.8	+13.1	+0.4	+1.8	+0.0	37.8	46.0	-8.2	Horiz
			-26.8								
7	528.036M	40.4	+2.6	+18.7	+0.6	+2.5	+0.0	37.7	46.0	-8.3	Vert
			-27.1								
8	419.997M	43.1	+1.9	+16.7	+0.5	+2.2	+0.0	37.4	46.0	-8.6	Horiz
			-27.0								

CKC MTosting the Future

9	272.720M	46.8	+1.8 -26.8	+13.0	+0.4	+1.8	+0.0	37.0	46.0	-9.0	Horiz
10	192.093M	49.1	+1.5 -27.0	+9.0	+0.3	+1.4	+0.0	34.3	43.5	-9.2	Horiz
11	219.945M	49.6	+1.6 -27.0	+10.6	+0.3	+1.6	+0.0	36.7	46.0	-9.3	Horiz
12	264.044M	46.5	+1.8 -26.8	+12.9	+0.4	+1.8	+0.0	36.6	46.0	-9.4	Horiz
13	594.066M	37.4	+2.6 -26.8	+19.8	+0.6	+2.8	+0.0	36.4	46.0	-9.6	Vert
14	288.076M QP	45.1	+1.9 -26.7	+13.2	+0.4	+1.9	+0.0	35.8	46.0	-10.2	Horiz
^	288.029M	51.6	+1.9 -26.7	+13.2	+0.4	+1.9	+0.0	42.3	46.0	-3.7	Horiz
^	288.000M	49.0	+1.9 -26.7	+13.2	+0.4	+1.9	+0.0	39.7	46.0	-6.3	Horiz
17	280.486M	45.4	+1.8 -26.8	+13.1	+0.4	+1.8	+0.0	35.7	46.0	-10.3	Vert
18	319.761M QP	44.0	+1.9 -26.7	+14.0	+0.4	+1.9	+0.0	35.5	46.0	-10.5	Horiz
^	319.850M	49.3	+1.9 -26.7	+14.0	+0.4	+1.9	+0.0	40.8	46.0	-5.2	Horiz
20	432.081M	40.7	+2.0 -27.1	+17.0	+0.5	+2.3	+0.0	35.4	46.0	-10.6	Horiz
21	445.944M QP	40.2	+2.1 -27.1	+17.2	+0.5	+2.3	+0.0	35.2	46.0	-10.8	Horiz
^	445.942M	44.9	+2.1 -27.1	+17.2	+0.5	+2.3	+0.0	39.9	46.0	-6.1	Horiz
23	384.074M QP	41.6	+1.9 -26.9	+15.9	+0.5	+2.1	+0.0	35.1	46.0	-10.9	Horiz
^	384.025M	45.0	+1.9 -26.9	+15.9	+0.5	+2.1	+0.0	38.5	46.0	-7.5	Horiz
25	210.033M	46.3	+1.6 -26.9	+9.8	+0.3	+1.5	+0.0	32.6	43.5	-10.9	Vert
26	396.069M	40.6	+1.9 -27.0	+16.2	+0.5	+2.2	+0.0	34.4	46.0	-11.6	Horiz
27	325.764M	42.7	+1.9 -26.8	+14.2	+0.4	+2.0	+0.0	34.4	46.0	-11.6	Vert
28	319.464M QP	42.8	+1.9 -26.7	+14.0	+0.4	+1.9	+0.0	34.3	46.0	-11.7	Horiz
^	319.450M	47.9	+1.9 -26.7	+14.0	+0.4	+1.9	+0.0	39.4	46.0	-6.6	Horiz
30	314.181M	42.7	+1.9 -26.7	+13.9	+0.4	+1.9	+0.0	34.1	46.0	-11.9	Vert
31	312.052M QP	42.7	+1.9 -26.7	+13.8	+0.4	+1.9	+0.0	34.0	46.0	-12.0	Horiz
^	312.087M	50.3	+1.9 -26.7	+13.8	+0.4	+1.9	+0.0	41.6	46.0	-4.4	Horiz
		-			-	-		-	-	-	

CKC M Testing the Future

33	66.327M	46.4	+0.9	+6.4	+0.1	+1.0	+0.0	27.8	40.0	-12.2	Vert
	QP		-27.0								
^	66.352M	50.9	+0.9	+6.4	+0.1	+1.0	+0.0	32.3	40.0	-7.7	Vert
			-27.0								
35	287.304M	42.8	+1.9	+13.2	+0.4	+1.9	+0.0	33.5	46.0	-12.5	Horiz
	QP		-26.7								
^	287.260M	47.6	+1.9	+13.2	+0.4	+1.9	+0.0	38.3	46.0	-7.7	Horiz
			-26.7								
37	231.260M	45.5	+1.6	+11.4	+0.3	+1.6	+0.0	33.4	46.0	-12.6	Horiz
			-27.0								
38	321.785M	41.1	+1.9	+14.1	+0.4	+1.9	+0.0	32.7	46.0	-13.3	Vert
20	QP		-26.7		0.4			264	10.0	10.6	* *
39	60.042M	45.6	+0.9	+6.0	+0.1	+0.9	+0.0	26.4	40.0	-13.6	Vert
- 10		10.0	-27.1				0.0	•••	10.5	10.5	
40	144.011M	42.3	+1.3	+11.6	+0.3	+1.4	+0.0	29.8	43.5	-13.7	Horiz
4.1	214 27 () (40.0	-27.1	12.0	.0.4	. 1.0	. 0. 0	22.2	16.0	12.0	X 7 /
41	314.276M	40.8	+1.9	+13.9	+0.4	+1.9	+0.0	32.2	46.0	-13.8	Vert
10	144.00034	41.0	-26.7	11.6	.0.2	. 1 . 4	. 0. 0	20.4	12.5	1 4 1	X 7 4
42	144.000M	41.9	+1.3	+11.6	+0.3	+1.4	+0.0	29.4	43.5	-14.1	Vert
42	220.07()	20.0	-27.1	.14.4	.0.4	.2.0	.0.0	21.7	16.0	14.2	II?
43	330.070M	39.8	+1.9	+14.4	+0.4	+2.0	+0.0	31.7	46.0	-14.5	HOLIZ
	220.091M	47.1	-20.8	+14.4	+0.4	12.0		20.0	16.0	7.0	Homin
~	550.081M	4/.1	+1.9	+14.4	+0.4	+2.0	+0.0	39.0	40.0	-7.0	HOLIZ
45	108 01/M	137	-20.0	+0.0	+0.3	+1.4		20.1	13.5	14.4	Vort
43	196.014141	43.7	-26.9	+9.0	+0.5	+1.4	± 0.0	29.1	43.3	-14.4	ven
46	305 688M	40.2	-20.9 ±1.9	⊥ 13.6	±0.4	±1 9	+0.0	31.3	46.0	-14.7	Horiz
40	OP	40.2	-26.7	115.0	10.4	11.7	10.0	51.5	+0.0	-14./	HOHZ
^	305 650M	47.5	+1.9	+13.6	+0.4	+1.9	+0.0	38.6	46.0	-74	Horiz
	505.05014	17.5	-26.7	115.0	10.1	11.7	10.0	50.0	10.0	7.1	HOLL
48	48.056M	40.6	+0.8	+10.1	+0.1	+0.8	+0.0	25.2	40.0	-14.8	Vert
	10100 0111		-27.2		1011	1010		2012		1 110	
49	153.345M	40.6	+1.3	+11.2	+0.3	+1.4	+0.0	27.7	43.5	-15.8	Horiz
.,			-27.1								
50	330.328M	38.3	+1.9	+14.4	+0.4	+2.0	+0.0	30.2	46.0	-15.8	Vert
			-26.8								
51	146.829M	39.8	+1.3	+11.5	+0.3	+1.4	+0.0	27.2	43.5	-16.3	Horiz
			-27.1								
52	66.074M	39.7	+0.9	+6.4	+0.1	+1.0	+0.0	21.1	40.0	-18.9	Horiz
			-27.0								
53	120.077M	37.4	+1.2	+11.5	+0.2	+1.2	+0.0	24.5	43.5	-19.0	Vert
			-27.0								
54	66.078M	37.7	+0.9	+6.4	+0.1	+1.0	+0.0	19.1	40.0	-20.9	Horiz
			-27.0								

Test Location:	CKC Laboratories Inc.	•180 N Olinda Place •	Brea CA, 92823	• 714-993-6112
----------------	-----------------------	-----------------------	----------------	----------------

Customer: Specification:	Hewlett Packard Company FCC 15.247 (c) (FCC 15.209) 30 - 2500 MH	Z	
Work Order #:	81119	Date:	09/12/2003
Test Type:	Maximized Emissions	Time:	09:43:25
Equipment:	Blue Tooth Wireless Print Server	Sequence#:	4
Manufacturer:	Hewlett Packard Company	Tested By:	Monika Brandle
Model:	HP BT1300		
S/N:	US38T000D5 (Unit #1)		

Equipment Under Test (* = EUT):

<u> </u>			
Function	Manufacturer	Model #	S/N
Power Supply	Potrans	WR410500500	0212
Blue Tooth Wireless Print	Hewlett Packard Company	HP BT1300	US38T000D5 (Unit #1)
Server*			

Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	C6487C	MY2BE1N3B3

Test Conditions / Notes:

EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. Frequency Range Investigated: 1000MHz-18GHz. Test performed on low, mid, and high channel. Worst case emissions reported.

Transducer	Legend:	

T1=Cable #19 54ft Heliax 091103	T2=Cable Heliax #17 84ft(10 meter)
T3=HP83017A Preamp 091103	T4=Horn 6246_091003

Measu	irement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	\$	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2483.570M	50.2	+3.7	+6.0	-37.8	+28.3	+0.0	50.4	54.0	-3.6	Horiz
	Ave										
^	2483.570M	66.6	+3.7	+6.0	-37.8	+28.3	+0.0	66.8	54.0	+12.8	Horiz
3	7440.000M	36.2	+5.7	+10.3	-39.0	+36.0	+0.0	49.2	54.0	-4.8	Horiz
	Ave										
^	7440.000M	47.6	+5.7	+10.3	-39.0	+36.0	+0.0	60.6	54.0	+6.6	Horiz
5	7440.000M	36.0	+5.7	+10.3	-39.0	+36.0	+0.0	49.0	54.0	-5.0	Vert
	Ave										
^	7440.000M	47.5	+5.7	+10.3	-39.0	+36.0	+0.0	60.5	54.0	+6.5	Vert
7	7206.000M	35.1	+5.8	+10.5	-39.1	+35.4	+0.0	47.7	54.0	-6.3	Horiz
	Ave										
^	7206.000M	45.9	+5.8	+10.5	-39.1	+35.4	+0.0	58.5	54.0	+4.5	Horiz

9 7206.000M Ave	35.0	+5.8	+10.5	-39.1	+35.4	+0.0	47.6	54.0	-6.4	Vert
^ 7206.000M	44.4	+5.8	+10.5	-39.1	+35.4	+0.0	57.0	54.0	+3.0	Vert
11 7321.744M Ave	34.6	+5.7	+10.4	-39.0	+35.7	+0.0	47.4	54.0	-6.6	Vert
^ 7321.744M	44.9	+5.7	+10.4	-39.0	+35.7	+0.0	57.7	54.0	+3.7	Vert
13 7320.000M Ave	34.5	+5.7	+10.4	-39.0	+35.7	+0.0	47.3	54.0	-6.7	Vert
^ 7320.000M	44.5	+5.7	+10.4	-39.0	+35.7	+0.0	57.3	54.0	+3.3	Vert
15 4880.000M	38.8	+4.8	+8.1	-38.5	+33.4	+0.0	46.6	54.0	-7.4	Vert
16 1470.800M	51.8	+2.9	+4.3	-38.5	+25.1	+0.0	45.6	54.0	-8.4	Horiz
17 4960.000M Ave	34.6	+4.9	+8.2	-38.2	+33.4	+0.0	42.9	54.0	-11.1	Horiz
^ 4960.000M	44.6	+4.9	+8.2	-38.2	+33.4	+0.0	52.9	54.0	-1.1	Horiz
19 1230.400M	49.2	+2.6	+3.9	-39.5	+25.3	+0.0	41.5	54.0	-12.5	Vert
20 1214.400M	48.6	+2.6	+3.9	-39.5	+25.4	+0.0	41.0	54.0	-13.0	Horiz
21 4960.000M Ave	30.3	+4.9	+8.2	-38.2	+33.4	+0.0	38.6	54.0	-15.4	Vert
^ 4960.000M	41.9	+4.9	+8.2	-38.2	+33.4	+0.0	50.2	54.0	-3.8	Vert
23 2483.860M Ave	38.0	+3.7	+6.0	-37.8	+28.3	+0.0	38.2	54.0	-15.8	Vert
^ 2483.860M	57.7	+3.7	+6.0	-37.8	+28.3	+0.0	57.9	54.0	+3.9	Vert
25 4881.750M Ave	30.0	+4.8	+8.1	-38.5	+33.4	+0.0	37.8	54.0	-16.2	Vert
^ 4881.750M	41.6	+4.8	+8.1	-38.5	+33.4	+0.0	49.4	54.0	-4.6	Vert
27 4804.000M Ave	30.3	+4.7	+8.0	-38.7	+33.3	+0.0	37.6	54.0	-16.4	Horiz
^ 4804.000M	41.9	+4.7	+8.0	-38.7	+33.3	+0.0	49.2	54.0	-4.8	Horiz
29 4804.052M Ave	30.2	+4.7	+8.0	-38.7	+33.3	+0.0	37.5	54.0	-16.5	Vert
^ 4804.052M	41.2	+4.7	+8.0	-38.7	+33.3	+0.0	48.5	54.0	-5.5	Vert
31 2485.680M Ave	34.5	+3.7	+6.0	-37.8	+28.3	+0.0	34.7	54.0	-19.3	Horiz
^ 2485.680M	60.8	+3.7	+6.0	-37.8	+28.3	+0.0	61.0	54.0	+7.0	Horiz

33 2490.065M Ave	30.3	+3.7	+6.0	-37.8	+28.3	+0.0	30.5	54.0	-23.5	Vert
^ 2490.065M	49.5	+3.7	+6.0	-37.8	+28.3	+0.0	49.7	54.0	-4.3	Vert
35 2359.360M Ave	30.7	+3.6	+5.6	-37.8	+28.2	+0.0	30.3	54.0	-23.7	Horiz
^ 2359.360M	53.2	+3.6	+5.6	-37.8	+28.2	+0.0	52.8	54.0	-1.2	Horiz
37 2485.880M Ave	29.7	+3.7	+6.0	-37.8	+28.3	+0.0	29.9	54.0	-24.1	Vert
^ 2485.880M	52.9	+3.7	+6.0	-37.8	+28.3	+0.0	53.1	54.0	-0.9	Vert
39 2496.110M Ave	29.4	+3.7	+6.0	-37.8	+28.3	+0.0	29.6	54.0	-24.4	Horiz
^ 2496.110M	50.9	+3.7	+6.0	-37.8	+28.3	+0.0	51.1	54.0	-2.9	Horiz
41 2493.860M Ave	28.8	+3.7	+6.0	-37.8	+28.3	+0.0	29.0	54.0	-25.0	Horiz
^ 2493.860M	52.7	+3.7	+6.0	-37.8	+28.3	+0.0	52.9	54.0	-1.1	Horiz
43 2381.520M Ave	28.3	+3.6	+5.6	-37.8	+28.2	+0.0	27.9	54.0	-26.1	Horiz
^ 2381.520M	52.3	+3.6	+5.6	-37.8	+28.2	+0.0	51.9	54.0	-2.1	Horiz
45 2488.500M Ave	24.4	+3.7	+6.0	-37.8	+28.3	+0.0	24.6	54.0	-29.4	Horiz
^ 2488.500M	57.4	+3.7	+6.0	-37.8	+28.3	+0.0	57.6	54.0	+3.6	Horiz
47 2389.840M Ave	22.5	+3.6	+5.7	-37.7	+28.2	+0.0	22.3	54.0	-31.7	Horiz
^ 2389.840M	57.4	+3.6	+5.7	-37.7	+28.2	+0.0	57.2	54.0	+3.2	Horiz

Test Location: CKC Laboratories Inc.	•180 N Olinda Place	• Brea CA, 92823	• 714-993-6112
--------------------------------------	---------------------	------------------	----------------

Customer:	Hewlett Packard Company							
Specification:	FCC 15.247 (c) (FCC 15.209) 30 - 2500 MHz							
Work Order #:	81119	Date:	09/16/2003					
Test Type:	Maximized Emissions	Time:	08:49:30					
Equipment:	Blue Tooth Wireless Print Server	Sequence#:	5					
Manufacturer:	Hewlett Packard Company	Tested By:	Monika Brandle					
Model:	HP BT1300							
S/N:	US38T000D5 (Unit #1)							

Equipment Under Test (* = EUT):

1.1	- / -		
Function	Manufacturer	Model #	S/N
Power Supply	Potrans	WR410500500	0212
Blue Tooth Wireless Print	Hewlett Packard Company	HP BT1300	US38T000D5 (Unit #1)
Server*			

Support Devices:

Printer HP	C6487C	MY2BE1N3B3

Test Conditions / Notes:

EUT is placed on the edge of the table. All ports are filled, the USB port is terminated via a USB cable to the printer and the parallel port is terminated via a cable to the printer. The EUT is configured to transmit at full power, no hopping, maximum duty cycle, typical modulation. This equipment does not employ digital modulation techniques. It is strictly frequency hopping. Frequency Range Investigated: 18-26GHz. Test performed on low, mid, and high channel. Worst case emissions reported. No emissions found within 20dB of limit.

Measur	rement Data:	tent Data: Reading listed by margin.				Test Distance: .2					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant