

FCC Test Report

Equipment : Notebook PC

Brand Name : hp

Model No. : HSTNN-W91C FCC ID : B94HNW91C

Standard : 47 CFR FCC Part 15.225

Operating Band : 13.553 – 13.567 MHz (channel freq. 13.56 MHz)

Equipment Class: DXX

Applicant : Hewlett-Packard Company

3000 Hanover Street, Palo Alto,

California 94304, USA

Manufacturer : Wistron Corporation

21F., No.88, Sec.1, Xintai 5th Rd., Xizhi Dist.,

New Taipei City 22181, Taiwan (R.O.C)

The product sample received on Nov. 29, 2012 and completely tested on Dec. 18, 2012. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Wayne Hsu∥/ Assistant Manager

Testing Laboratory
1190

Report No.: FR2N2103

SPORTON INTERNATIONAL INC. Page No. : 1 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories Equipment	6
1.3	Testing Applied Standards	6
1.4	Testing Location Information	6
1.5	Measurement Uncertainty	7
2	TEST CONFIGURATION OF EUT	8
2.1	The Worst Case Modulation Configuration	8
2.2	Test Channel Frequencies Configuration	8
2.3	The Worst Case Measurement Configuration	8
2.4	Test Setup Diagram	9
3	TRANSMITTER TEST RESULT	11
3.1	AC Power-line Conducted Emissions	11
3.2	Emission Bandwidth	15
3.3	Field Strength of Fundamental Emissions and Spectrum Mask	17
3.4	Transmitter Radiated Unwanted Emissions	20
3.5	Frequency Stability	29
4	TEST EQUIPMENT AND CALIBRATION DATA	31
5	CERTIFICATION OF TAF ACCREDITATION	34
APP	ENDIX A. TEST PHOTOS	A5
APP	ENDIX B. PHOTOGRAPHS OF EUT	B9

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Report No.: FR2N2103

FCC Test Report Report No.: FR2N2103

Summary of Test Result

	Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]:0.1500130MHz 40.54 (Margin 15.46dB) - AV 57.81 (Margin 8.19dB) - QP	FCC 15.207	Complied		
3.2	15.215(c)	Emission Bandwidth	20dB Bandwidth 2.84 [kHz] F _L :13.5588 MHz F _H :13.5616 MHz	Fall in band F _L ≥ 13.553 MHz F _H ≤ 13.567 MHz	Complied		
3.3	15.225(a)~(d)	Field Strength of Fundamental Emissions and Spectrum Mask	Fundamental Emissions peak:44.38 dBuV/m at 10m Device complies with spectrum mask – refer to test data	103.1 dBuV/m at 10m	Complied		
3.4	15.225(d)	Transmitter Radiated Unwanted Emissions	[dBuV/m at 3m]: 30.00MHz 29.93 (Margin 10.07dB) - PK	FCC 15.209	Complied		
3.5	15.225(e)	Frequency Stability	19.17 ppm	± 0.01% (100ppm)	Complied		

SPORTON INTERNATIONAL INC. : 3 of 34
TEL: 886-3-327-3456 : Report Version : Rev. 01

Revision History

Report No.: FR2N2103

Report No.	Version	Description	Issued Date
FR2N2103	Rev. 01	Initial issue of report	Dec. 25, 2012

SPORTON INTERNATIONAL INC. : 4 of 34 TEL: 886-3-327-3456 : Report Version : Rev. 01

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information				
Frequency Range	Modulation	Ch. Frequency (MHz)	Channel Number	Field Strength (dBuV/m)
13.553 – 13.567 MHz	ISO 14443-2 (ASK)	13.56	1	44.38
Note 1: Field strength performed peak level at 10m.				

1.1.2 Antenna Information

	Antenna Category					
	Equipment placed on the	market without antennas				
\boxtimes	Integral antenna (antenna permanently attached)					
	External antenna (dedicated antennas)					
1.1.	1.1.3 Type of EUT					
Identify EUT						
EUT Serial Number		N/A				

 \square Production; \boxtimes Pre-Production; \square Prototype

Type of EUT

⊠ Stand-alone

Combined (EUT where the radio part is fully integrated within another device)

Combined Equipment - Brand Name / Model No.: ...

Plug-in radio (EUT intended for a variety of host systems)

Host System - Brand Name / Model No.: ...

1.1.4 Test Signal Duty Cycle

Other:

Presentation of Equipment

Oner

	Operated Mode for Worst Duty Cycle					
	Operated normally mode for worst duty cycle					
\boxtimes	Operated test mode for worst duty cycle					
	Test Signal Duty Cycle (x)	Voltage Duty Factor [dB] – (20 log 1/x)				
\boxtimes	100%	0				

SPORTON INTERNATIONAL INC. Page No. : 5 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

1.1.5 EUT Operational Condition

Supply Voltage	□ AC mains	⊠ DC	
Type of DC Source	☐ Internal DC supply		□ Battery

Report No.: FR2N2103

1.2 Accessories Equipment

	Accessories							
No. Equipment Brand Name Model Name Serial No.								
1	AC Adapter	hp	HSTNN-CA15	-				
Power Rating: I/P: 100-240 V~1.7A, 50-60 Hz O/P: 19.5V === 3.33A 65W								
2	2 Battery hp HSTNN-IB4F -							
Power Rating: 11.1 V=== 44 Wh								

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 174176

1.4 Testing Location Information

	Testing Location							
\boxtimes	HWA YA	ADE) :	: No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.				
		TEL	. :	886-3-327-3456	6 FAX : 886	6-3-327-0973		
T	Test Condition Test Site No. Test Engineer Test Environment Test Date						Test Date	
RF Conducted		d		TH01-HY	lan	24.8°C / 42%	02-Dec12	
AC Conduction CO04-HY Richard 24°C / 52% 18-		18-Dec12						
Radiated Emission		sion	•	10CH02-HY	Daniel	25°C / 54%	01-Dec12	
Radiated Emission		(03CH02-HY	Daniel	24.5°C / 52%	17-Dec12		

SPORTON INTERNATIONAL INC. : 6 of 34
TEL: 886-3-327-3456 : Report Version : Rev. 01

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Report No.: FR2N2103

Measurement Uncertainty					
Test Item	Uncertainty	Limit			
AC power-line conducted emissions		±2.26 dB	N/A		
Emission bandwidth		±1.42 %	N/A		
Unwanted emissions, conducted	9 – 150 kHz	±0.38 dB	N/A		
	0.15 – 30 MHz	±0.42 dB	N/A		
	30 – 1000 MHz	±0.51 dB	N/A		
All emissions, radiated	9 – 150 kHz	±2.49 dB	N/A		
	0.15 – 30 MHz	±2.28 dB	N/A		
	30 – 1000 MHz	±2.56 dB	N/A		
Temperature	<u>.</u>	±0.8 °C	N/A		
Humidity		±3 %	N/A		
DC and low frequency voltages	±3 %	N/A			
Time	±1.42 %	N/A			
Duty Cycle		±1.42 %	N/A		

SPORTON INTERNATIONAL INC. : 7 of 34
TEL: 886-3-327-3456 : Report Version : Rev. 01

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

Modulation Used for Conformance Testing				
Modulation Mode	Field Strength (dBuV/m at 10 m)			
NFC-Read/Write	44.38			

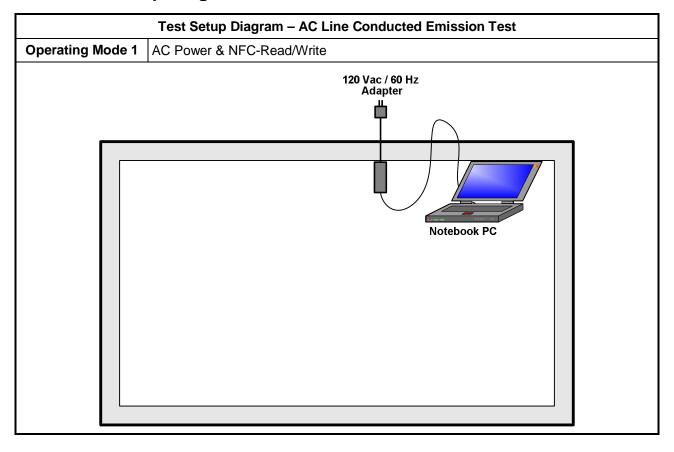
Report No.: FR2N2103

2.2 Test Channel Frequencies Configuration

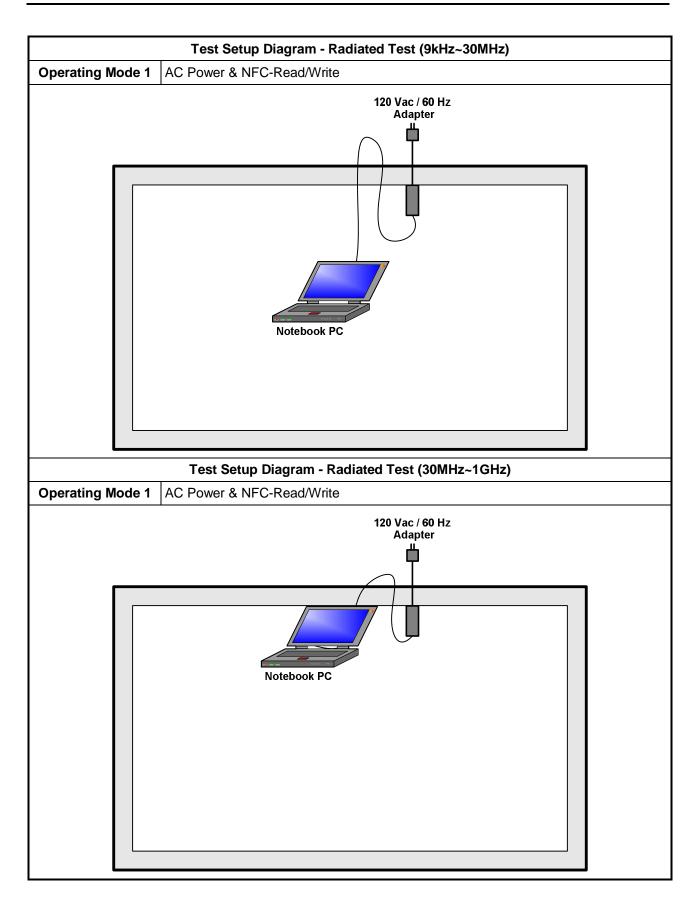
Test Channel Frequencies Configuration				
Modulation Mode Test Channel Frequencies (MHz) – FX (Frequencies Abbreviations)				
NFC-Read/Write	13.56-(F1)			

2.3 The Worst Case Measurement Configuration

TI	The Worst Case Mode for Following Conformance Tests				
Tests Item	AC power-line conducted emissions				
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz				
Operating Mode	Operating Mode Description				
1	AC Power & NFC-Read/Write				


Th	The Worst Case Mode for Following Conformance Tests						
Tests Item	Emission Bandwidth, Field Strength of Fundamental Emissions Spectrum Mask, Transmitter Radiated Unwanted Emissions Frequency Stability						
Test Condition	Radiated measurement						
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes.						
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.						
Operating Mode < 1GHz							
Modulation Mode	NFC-Read/Write						

SPORTON INTERNATIONAL INC. : 8 of 34
TEL: 886-3-327-3456 : Report Version : Rev. 01



Report No.: FR2N2103

2.4 Test Setup Diagram

SPORTON INTERNATIONAL INC. : 9 of 34
TEL: 886-3-327-3456 : Report Version : Rev. 01

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 10 of 34
Report Version : Rev. 01

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

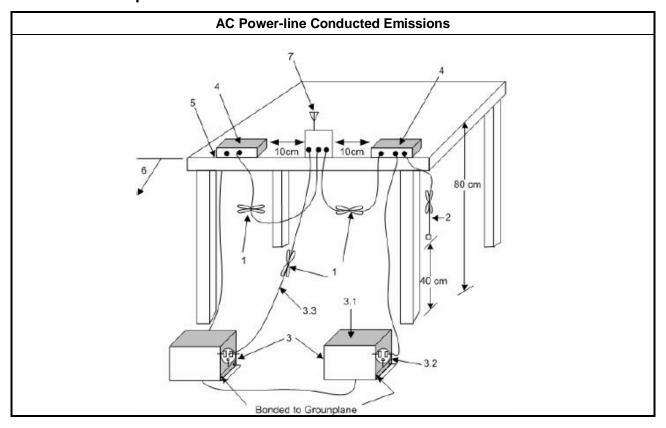
3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5	66 - 56 *	56 - 46 *					
0.5-5	56	46					
5-30	60	50					
Note 1: * Decreases with the logarithm of	of the frequency.						

Report No.: FR2N2103

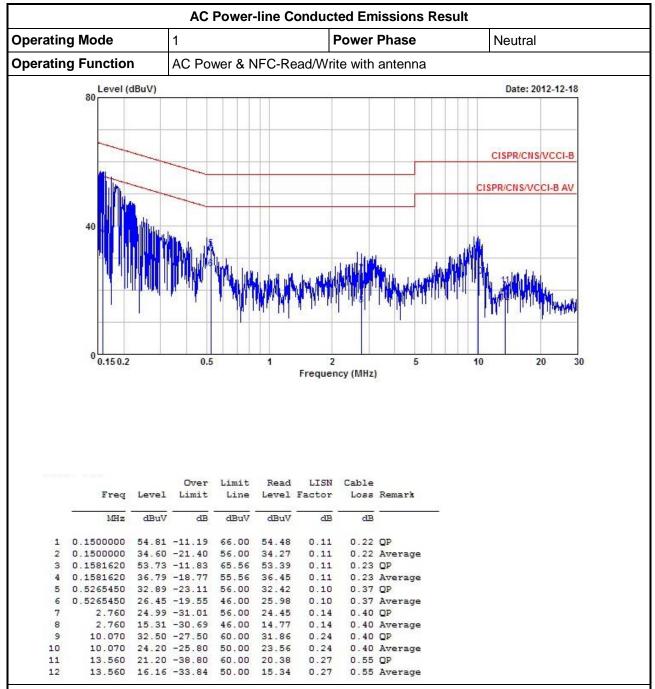
3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.1.3 Test Procedures

		Test Method							
\boxtimes	Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.								
\boxtimes	If A	C conducted emissions fall in operating band, then following below test method confirm final result.							
		Accept measurements done with a suitable dummy load replacing the antenna under the following conditions: (1) Perform the AC line conducted tests with the antenna connected to determine compliance with FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load to determine compliance with FCC 15.207 limits within the transmitter's fundamental emission band.							
		For a device with a permanent antenna operating at or below 30 MHz, accept measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) Perform the AC line conducted tests with the permanent antenna to determine compliance with the FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load in lieu of the permanent antenna to determine compliance with the FCC 15.207 limits within the transmitter's fundamental emission band.							

SPORTON INTERNATIONAL INC. Page No. : 11 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01


3.1.4 Test Setup

Report No.: FR2N2103

SPORTON INTERNATIONAL INC. Page No. : 12 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01

3.1.5 Test Result of AC Power-line Conducted Emissions

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

Note 3: When emissions are in operating band over limits, retest with a dummy load for final in-band results.

SPORTON INTERNATIONAL INC. Page No. : 13 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

AC Power-line Conducted Emissions Result Operating Mode Power Phase Line **Operating Function** AC Power & NFC-Read/Write with antenna Date: 2012-12-18 CISPR/CNS/VCCI-B CISPR/CNS/VCCI-B AV 0.15 0.2 0.5 5 10 30 Frequency (MHz) Over Limit Read LISN Cable Freq Level Limit Line Level Factor Loss Remark dBuV dB dBuV dBuV MHz dB dB 57.81 -8.19 0.1500130 66.00 0.1500130 40.54 -15.46 56.00 40.08 0.24 0.22 Average 0.1532130 53.02 -12.80 65.82 52.56 0.24 0.22 QP

Report No.: FR2N2103

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

0.1532130 28.67 -27.15 55.82 28.21

0.2173520 18.78 -34.14 52.92 18.24

3.170 28.51 -27.49 56.00 27.83

9.600 30.17 -29.83 60.00 29.36

13.560 15.89 -34.11 50.00 14.86

39.24 -23.68 62.92 38.70

16.79 -29.21 46.00 16.11

23.37 -26.63 50.00 22.56

21.27 -38.73 60.00 20.24

Note 3: When emissions are in operating band over limits, retest with a dummy load for final in-band results.

0.24

0.23

0.23

0.28

0.28

0.41

0.41

0.48

0.48

0.22 Average

0.31 Average

0.40 Average

0.40 Average

0.55 Average

0.31 QP

0.40 QP

0.40 QP

0.55 QP

SPORTON INTERNATIONAL INC. Page No. : 14 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01

FAX: 886-3-327-0973

5

10

11

0.2173520

3.170

9.600

13.560

3.2 Emission Bandwidth

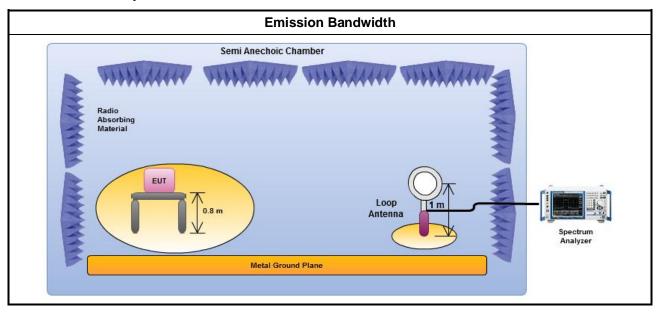
3.2.1 Emission Bandwidth Limit

20dB Bandwidth Limit

Report No.: FR2N2103

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (13.553 − 13.567 MHz).

3.2.2 Measuring Instruments

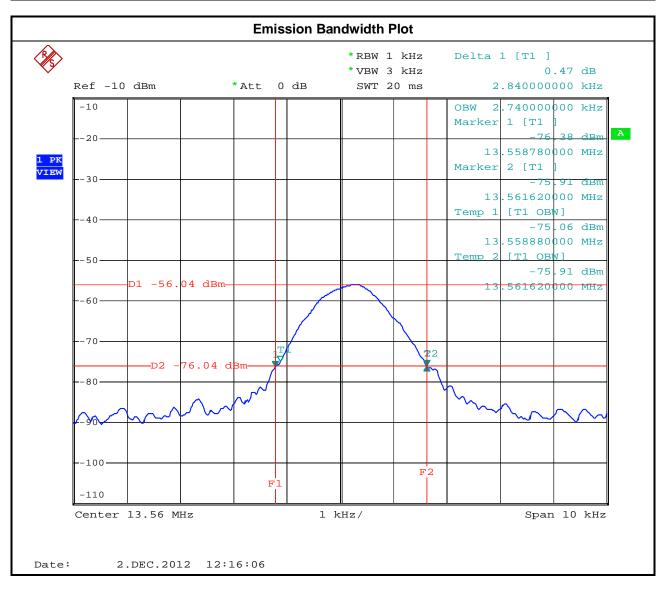

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

Test Method

- For the emission bandwidth refer ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
- For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.

3.2.4 Test Setup


SPORTON INTERNATIONAL INC. Page No. : 15 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01

3.2.5 Test Result of Emission Bandwidth

	Occupied Channel Bandwidth Result								
Modulation Mode	Frequency (MHz)	20dB Bandwidth (kHz)	F _L at 20dB BW (MHz)	F _H at 20dB BW (MHz)	99% Bandwidth (kHz)				
NFC-Read/Write	13.56	2.84	13.5588	13.5616	2.74				
Lir	nit	N/A	N/A						
Res	sult		Com	plied					

Report No.: FR2N2103

SPORTON INTERNATIONAL INC. Page No. : 16 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01

3.3 Field Strength of Fundamental Emissions and Spectrum Mask

3.3.1 Field Strength of Fundamental Emissions and Spectrum Mask Limit

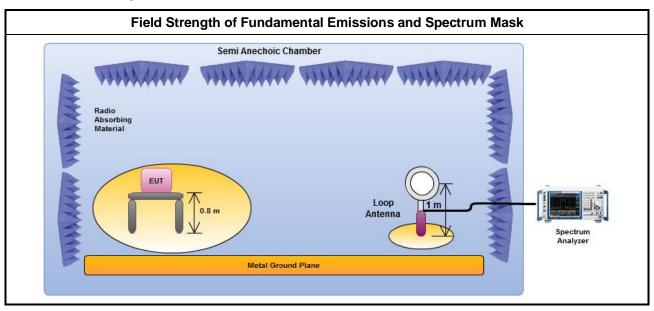
Field Strength of Fundamental Emissions								
Emissions (uV/m)@30m (dBuV/m)@30m (dBuV/m)@10m (dBuV/m)@3m (dBuV/m)@1m								
Fundamental 15848 84.0 103.1 124.0 143.1								
Quasi peak meas	Quasi peak measurement of the fundamental.							

Report No.: FR2N2103

	Spectrum Mask								
Freq. of Emission (MHz)	(uV/m)@30m	(dBuV/m)@30m	(dBuV/m)@10m	(dBuV/m)@3m	(dBuV/m)@1m				
1.705~13.110	30	29.5	48.6	69.5	88.6				
13.110~13.410	106	40.5	59.6	80.5	99.6				
13.410~13.553	334	50.5	69.6	90.5	109.6				
13.553~13.567	15848	84.0	103.1	124.0	143.1				
13.567~13.710	334	50.5	69.6	90.5	109.6				
13.710~14.010	106	40.5	59.6	80.5	99.6				
14.010~30.000	30	29.5	48.6	69.5	88.6				

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

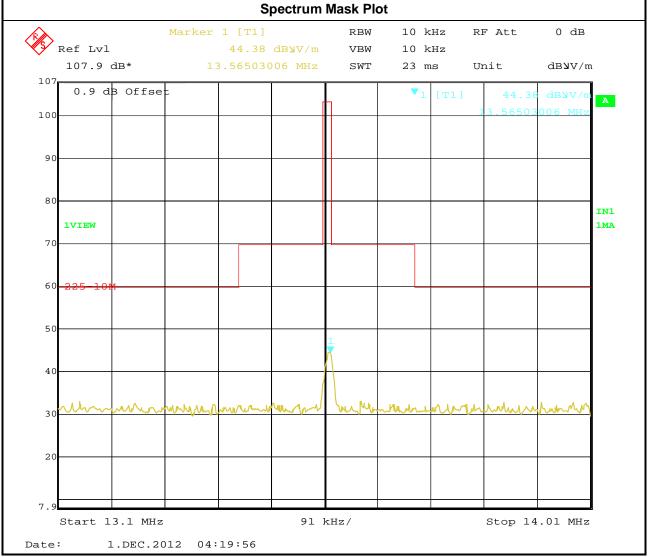

3.3.3 Test Procedures

	Test Method
	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz. quasi peak measurement of the fundamental.
	At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be following below methods.
	The results shall be extrapolated to the specified distance by making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.
	The results shall be by using the square of an inverse linear distance extrapolation factor (40 dB/decade).
\boxtimes	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.

SPORTON INTERNATIONAL INC. Page No. : 17 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01

3.3.4 Test Setup

Report No.: FR2N2103


3.3.5 Test Result of Field Strength of Fundamental Emissions and Spectrum Mask

	Field Strength of Fundamental Emissions Result								
Modulation ModeFrequency (MHz)Fundamental (dBuV/m)@10mPolarizationMargin (dB)Limit (dBuV/m)@10n									
NFC-Read/Write	F1	44.38	V	58.72	103.1				
Res	Result Complied								
Note 1: Measurer	Note 1: Measurement worst emissions of receive antenna polarization: V (Vertical).								

SPORTON INTERNATIONAL INC. Page No. : 18 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01

Spectrum Mask Plot

Spectrum Mask Plot

3.4 Transmitter Radiated Unwanted Emissions

3.4.1 Transmitter Radiated Unwanted Emissions Limit

	Transmitter Radiated Ur	nwanted Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

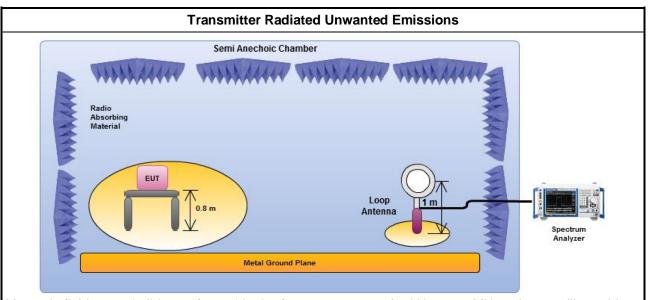
Report No.: FR2N2103

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


SPORTON INTERNATIONAL INC. Page No. : 20 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01

3.4.3 Test Procedures

Test Method \boxtimes Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz. Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz. quasi peak measurement of the fundamental. At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be following below methods. The results shall be extrapolated to the specified distance by making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor. \boxtimes The results shall be by using the square of an inverse linear distance extrapolation factor (40 dB/decade). For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.

Report No.: FR2N2103

3.4.4 Test Setup

Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. The center of the loop shall be 1 m above the ground. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna, the antenna height shall be varied from 1 m to 4 m.

SPORTON INTERNATIONAL INC. Page No. : 21 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01

3.4.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

Modulation Mode	dulation Mode NFC-Read/Write		V	
Operating Mode	1	Operating Function	AC Power & NFC-Read/Write	
	Marker 1 [T1]		RF Att 0 dB	
% Ref Lvl 107.9 dB*	48.71 dB \ V/m 9.84769539 kHz	VBW 200 Hz SWT 18 s	Unit dB y V/m	
107			db3v/iii	
0.9 dB Offset 15-209		▼1 [T1]	48.71 dBNV/m	
100		▼ ₂ [T1]	9.84769539 kHz 46.11 dBVV/m	
			24.25851703 kHz	
90		73 [T1]	32.96 dB N V/m	
			131 .35070 140 kHz	
80			IN	
1VIEW			1M	
70				
60				
50 2				
hy h				
40				
r v volum,	Mary Mary Mary Mary Mary Mary Mary Mary		3	
30	A SOUND A MANAGEMENT OF THE SECOND OF THE SE	A Man Jillian A a a la a a a a	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	•	Miller Many Mary Mary Mary Mary Mary Mary Mary Mar	Ull Mullioner Lynnyth which H	
20			, m, d/ n	
7.9				
Start 9 kHz	14.1	kHz/	Stop 150 kHz	

Report No.: FR2N2103

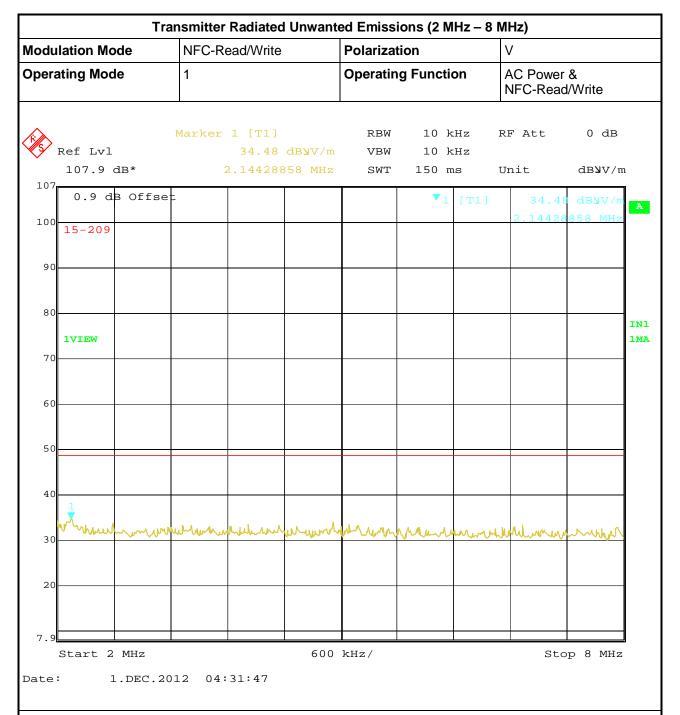
Note 1: ">20dB" means spurious emission levels that exceed the level of 6 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement worst emissions of receive antenna polarization: V (Vertical).

SPORTON INTERNATIONAL INC. Page No. : 22 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (150 kHz - 2 MHz) NFC-Read/Write **Modulation Mode Polarization Operating Function Operating Mode** AC Power & NFC-Read/Write Marker 1 [T1] RBW 10 kHz RF Att 0 dB Ref Lvl 48.47 dB**y**V/m VBW 10 kHz 107.9 dB* 502.20440882 kHz SWT 47 ms dB**y**V/m Unit 0.9 dB Offset A 100 IN1 1VIEW 1MA 50 Start 150 kHz 185 kHz/ Stop 2 MHz 1.DEC.2012 04:30:06 Date:

Report No.: FR2N2103

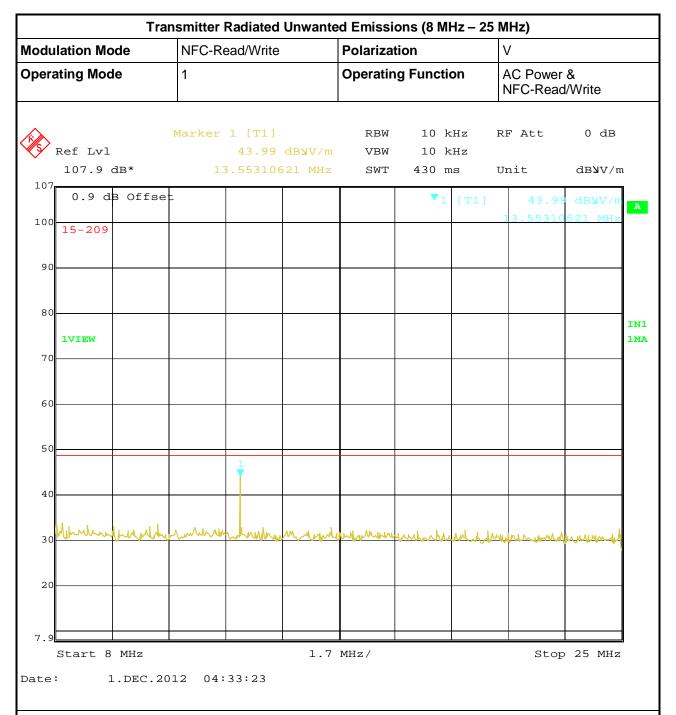

Note 1: ">20dB" means spurious emission levels that exceed the level of 6 dB below the applicable limit.

SPORTON INTERNATIONAL INC. Page No. : 23 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement worst emissions of receive antenna polarization: V (Vertical).

FCC Test Report Report No.: FR2N2103

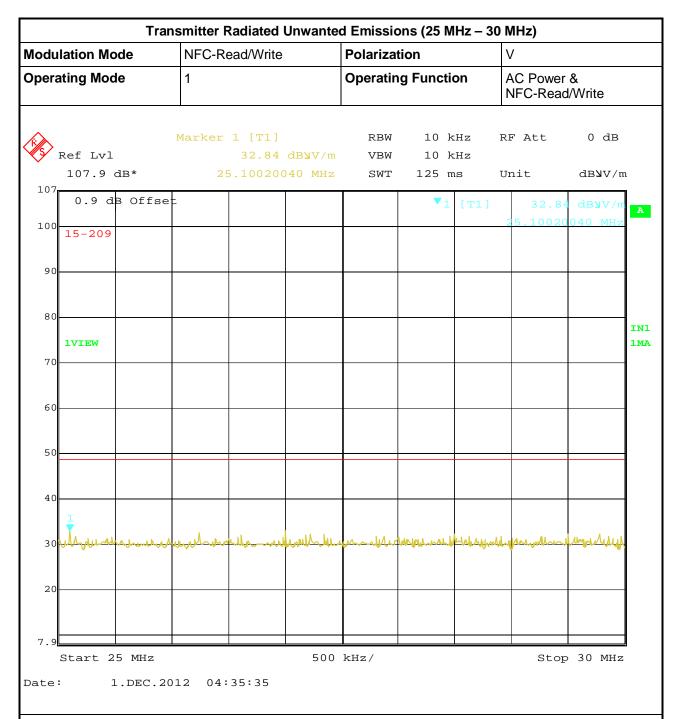


Note 1: ">20dB" means spurious emission levels that exceed the level of 6 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement worst emissions of receive antenna polarization: V (Vertical).

SPORTON INTERNATIONAL INC. Page No. : 24 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01

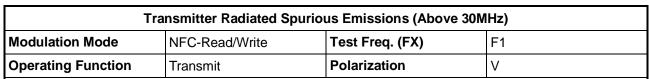


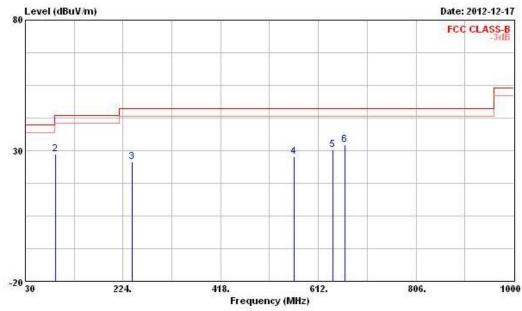
Note 1: ">20dB" means spurious emission levels that exceed the level of 6 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement worst emissions of receive antenna polarization: V (Vertical).

SPORTON INTERNATIONAL INC. Page No. : 25 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01


Note 1: ">20dB" means spurious emission levels that exceed the level of 6 dB below the applicable limit.

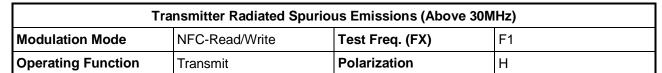

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

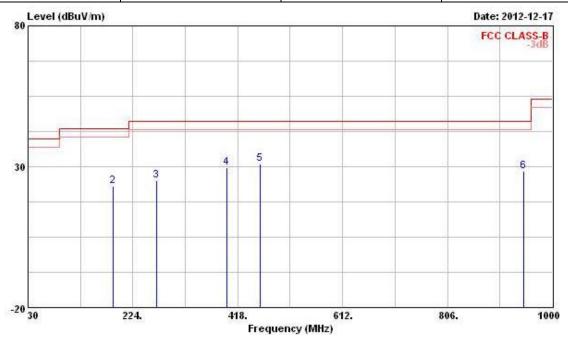
Note 3: Measurement worst emissions of receive antenna polarization: V (Vertical).

SPORTON INTERNATIONAL INC. Page No. : 26 of 34
TEL: 886-3-327-3456 Report Version : Rev. 01

3.4.6 Transmitter Radiated Unwanted Emissions (Above 30MHz)

	Freq	Freq Level 1	Over Limit	100		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dВ	dBuV/m	dBuV	dB/m	dB	dB	-	cm	deg
1 @	30.000	29.93	-10.07	40.00	40.77	16.22	0.89	27.95	Peak		
2	90.140	28.61	-14.89	43.50	45.38	9.50	1.58	27.85	Peak		
3	242.430	25.65	-20.35	46.00	37.48	12.75	2.72	27.30	Peak		
4	564.470	27.65	-18.35	46.00	32.84	19.14	4.10	28.43	Peak		
5	641.100	30.37	-15.63	46.00	34.77	19.63	4.36	28.39	Peak		
6 @	665.350	32.32	-13.68	46.00	36.91	19.31	4.44	28.34	Peak		


Note 1: ">20dB" means spurious emission levels that exceed the level of 6 dB below the applicable limit.


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 27 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01

Report No. : FR2N2103

	Freq	Level	Over Limit			Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	ав	dB		cm	deg
10	30.000	28.34	-11.66	40.00	39.18	16.22	0.89	27.95	Peak		
2	188.110	23.22	-20.28	43.50	37.86	10.48	2.34	27.46	Peak		50000
3	268.620	25.07	-20.93	46.00	36.20	13.26	2.85	27.24	Peak		
4	397.630	29.51	-16.49	46.00	38.75	15.22	3.39	27.85	Peak		

Note 1: ">20dB" means spurious emission levels that exceed the level of 6 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

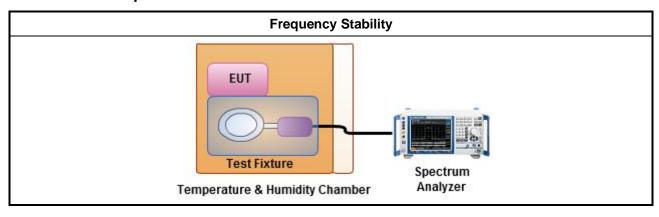
SPORTON INTERNATIONAL INC. Page No. : 28 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01

3.5 Frequency Stability

3.5.1 Frequency Stability Limit

Frequency Stability Limit

□ Carrier frequency stability shall be maintained to ±0.01% (±100 ppm).


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method					
\boxtimes	Refer as ANSI C63.10, clause 6.8 for frequency stability tests					
	Frequency stability with respect to ambient temperature					
	Frequency stability when varying supply voltage					
	For conducted measurement.					
	For radiated measurement. The equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted power level.					

3.5.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 29 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01

3.5.5 Test Result of Frequency Stability

Frequency Stability Result										
Power Level	1	Frequency Stability (ppm)								
Condition	Freq. (MHz)	0 min	2 min	5 min	10 min	Limit				
T _{20°C} Vmax	13.56	13.27	14.75	16.22	17.70	100.0				
T _{20°C} Vmin	13.56	13.27	14.75	16.22	17.70	100.0				
T _{50°C} Vnom	13.56	16.22	14.75	17.70	19.17	100.0				
T _{40°C} Vnom	13.56	13.27	14.75	13.27	16.22	100.0				
T _{30°C} Vnom	13.56	14.75	16.22	14.75	16.22	100.0				
T _{20°C} Vnom	13.56	13.27	14.75	16.22	17.70	100.0				
T _{10°C} Vnom	13.56	11.80	13.27	14.75	13.27	100.0				
T _{0°C} Vnom	13.56	13.27	13.27	11.80	14.75	100.0				
T _{-10°C} Vnom	13.56	14.75	10.32	14.75	16.22	100.0				
T _{-20°C} Vnom	13.56	11.80	13.27	14.75	17.70	100.0				
Resu	ult	Complied								

Note 1: Measure at 85 % [Vmin] and 115 % [Vmax] of the nominal voltage [Vnom]. The nominal voltage refer test report clause 1.1.5 for EUT operational condition.

SPORTON INTERNATIONAL INC. Page No. : 30 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 23, 2012	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Feb. 08, 2012	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz ~ 30MHz	Apr. 20, 2012	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	CB049	9kHz ~ 30MHz	Apr. 25, 2012	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)

Report No.: FR2N2103

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP 40	100305	9KHz ~ 40GHz	Feb. 21, 2012	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 19, 2012	Conducted (TH01-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 02, 2012	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP-SD	MAA1112-007	-20 ~ 100°C	Nov. 21, 2012	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 26, 2012	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
RF Cable-2m	HUBER+SUHNER	SUCOFLEX_104	SN 345675/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)
RF Cable-3m	HUBER+SUHNER	SUCOFLEX_104	SN 345669/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

SPORTON INTERNATIONAL INC. Page No. : 31 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
10m Semi Anechoic Chamber	TDK	SAC-10M	10CH02-HY	30 MHz ~ 1 GHz 10m,3m	Nov. 03, 2012	Radiation (10CH02-HY)
Amplifier	AGILENT	8447D	2944A10827	100 KHz ~ 1.3 GHz	May 03, 2012	Radiation (10CH02-HY)
Amplifier	AGILENT	8447D	2944A10828	100 KHz ~ 1.3 GHz	Apr. 23, 2012	Radiation (10CH02-HY)
Receiver	R&S	ESI	838496/008	20 Hz ~ 7 GHz	May 14, 2012	Radiation (10CH02-HY)
Spectrum Analyzer	R&S	FSP7	100645	9 KHz ~ 7 GHz	Apr. 25, 2012	Radiation (10CH02-HY)
Biconical Antenna	Schwarzbeck	VHBB 9124	287	30 MHz ~ 200 MHz	Dec. 17, 2011	Radiation (10CH02-HY)
Log Antenna	Schwarzbeck	VUSLP 9111	207	200 MHz ~ 1 GHz	Dec. 17, 2011	Radiation (10CH02-HY)
Turn Table	HD	DS 430	430/360	0 -360 degree	N/A	Radiation (10CH02-HY)
Antenna Mast	HD	MA240	240/664	1 m - 4 m	N/A	Radiation (10CH02-HY)
Antenna Mast	HD	MA240	240/667	1 m - 4 m	N/A	Radiation (10CH02-HY)
RF Cable-R10m	Jye Bao	RG142	CB027-INSIDE	30 MHz ~ 1 GHz	Feb. 11, 2012	Radiation (10CH02-HY)
RF Cable-R10m	Suhner Switzerland + BELDEN	RG223/U + RG8/U	CB026-DOOR	30 MHz ~ 1 GHz	Feb. 11, 2012	Radiation (10CH02-HY)

Report No.: FR2N2103

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/0001	9 kHz ~ 30 MHz	Jul. 03, 2012	Radiation (10CH02-HY)

Note: Calibration Interval of instruments listed above is two year.

SPORTON INTERNATIONAL INC. Page No. : 32 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9kHz ~ 40GHz	Sep. 14, 2012	Radiation (03CH02-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	May 10, 2012	Radiation (03CH02-HY)
Amplifier	Agilent	8447D	2944A11146	100kHz ~ 1.3GHz	Jul. 23, 2012	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 10, 2012	Radiation (03CH02-HY)
RF Cable-high	SUHNER	SUCOFLEX106	03CH02-HY	1 ~ 40GHz	Mar. 06, 2012	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 22, 2012	Radiation (03CH02-HY)
Turn Table	HD	DS 420	420/649/00	0 ~ 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	HD	MA 240	240/559/00	1 ~ 4 m	N/A	Radiation (03CH02-HY)

Report No.: FR2N2103

Note: Calibration Interval of instruments listed above is one year.

SPORTON INTERNATIONAL INC. : 33 of 34 TEL: 886-3-327-3456 Report Version : Rev. 01

5 Certification of TAF Accreditation

Certificate No.: L1190-120405

Report No.: FR2N2103

財團法人全國認證基金會 Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria :

ISO/IEC 17025:2005

Accreditation Number

1190

Originally Accredited

: December 15, 2003

Effective Period

January 10, 2010 to January 09, 2013

Accredited Scope

Testing Field, see described in the Appendix

Specific Accreditation

Program

resting riera, see described in the Appendix

Accreditation Program for Designated Testing Laboratory for Commodities Inspection

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Accreditation Program for BSMI Mutual Recognition

Arrangment with Foreign Authorities

Jay-San Chen

President, Taiwan Accreditation Foundation

Date: April 05, 2012

P1, total 24 pages

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No.

: 34 of 34

Report Version

: Rev. 01