

TEST REPORT

EUT Description	Notebook PC
Brand Name	HP
Model Name	HSN-I50C
FCC/IC ID	FCC ID: B94HNI50CPT; IC ID: 21374-L860GL16
Date of Test Start/End	2021-12-08 / 2021-12-15
Features	WWAN (3G, LTE, LTE ULCA) (see section 5)
Applicant	HP Inc.
Address	1501 Page Mill Road, Palo Alto CA 94304 USA
Contact Person	Sam Lin
Telephone/Fax/ Email	(TEL) +886 2 37896331/ (Email) sam.lin2@hp.com
Reference Standards	FCC CFR Title 47 Part 2, 22, 24, 27, 90, 96 RSS-Gen issue 5 A1, RSS 130 issue 2, RSS 132 issue 3, RSS 133 issue 6 A1, RSS 140 issue 1, RSS 139 issue 3, RSS-192 issue 4, RSS-195 issue 2, RSS 199 issue 3, RSS 197 issue 1 (see section 2)
Test Report identification	211027-01.TR05
Revision Control	Rev. 00 This test report revision replaces any previous test report revision (see section 9)
The test results relate only to the sa	amples tested.

Reference to accreditation shall be used only by full reproduction of test report.

Issued by Reviewed by

Khodor RIDA (RFR Test Engineer Lead) Ines KHARRAT (Technical Manager)

Intel Corporation S.A.S 425 rue de Goa – Le Cargo B6 - 06600, Antibes, France Tel. +33493001400 / Fax +33493001401

Table of Contents

1. Contents

2. Standards, reference documents and applicable test methods	
3. General conditions, competences and guarantees	
4. Environmental Conditions	4
5. Test samples	5
6. EUT Features	5
7. Remarks and comments	
8. Test Verdicts summary	7
9. Document Revision History	
A.1 MEASUREMENT SYSTEM	
A.2 TEST EQUIPMENT LIST	
A.2.1 RADIATED SETUP	
A.3 MEASUREMENT UNCERTAINTY EVALUATION	
B.1 RADIATED SPURIOUS EMISSION	
B.1.1 STANDARD REFERENCES	
B.1.2 TEST PROCEDURE	
B.1.3 TEST RESULTS	
B.1.3.1 WCDMA	
B.1.3.1 LTE	
B.1.3.2 UL CARRIER AGGREGATION LTE (INTRA-BAND)	
C.1 RADIATED TEST SETUP	
C.2 TEST SAMPLE	23

2. Standards, reference documents and applicable test methods

FCC Title 47 CFR part 2 - Subpart J - Equipment Authorization Procedures. 2020-10-01 Edition 1. 2. FCC Title 47 CFR part 22 - Subpart H - Cellular Radiotelephone Service. 2020-10-01 Edition FCC Title 47 CFR part 24 - Subpart E - Broadband PCS. 2020-10-01 Edition 3. FCC Title 47 CFR part 27 - Subpart C - Technical Standards. 2020-10-01 Edition 4. 5. FCC Title 47 CFR part 27 - Subpart L - 1695-1710, 1710-1755 MHz, 1755-1780 MHz, 2110-2155 MHz, 2155-2180 MHz, 2180-2200 MHz Bands. 2020-10-01 Edition FCC Title 47 CFR Part 90 - Subpart R - Regulations governing the licensing and use of frequencies in the 763-6. FCC 775 and 793-805 MHz bands. 2020-10-01 Edition 7. FCC Title 47 CFR Part 90 - Subpart S - Regulations governing licensing and use of frequencies in the 806-824, 851-869, 896-901, and 935-940 MHz bands, 2020-10-01 Edition 8. FCC Title 47 CFR Part 96 - Subpart E - Technical rules. 2020-10-01 Edition FCC OET KDB 971168 D01 v03r01 Measurement guidance for certification of licensed digital transmitters. 9. 10. FCC OET KDB 842590 D01 v01r01 Upper Microwave Flexible Use Service. 11. C63.26-2015 - IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed Radio Services 1. ISED RSS-Gen issue 5 A1 - General Requirements for Compliance of Radio Apparatus. 2. ISED RSS-130 issue 2 - Equipment Operating in the Frequency Bands 617-652 MHz, 663-698 MHz, 698-756 MHz and 777-787 MHz 3. ISED RSS 132 issue 3 - Cellular Telephone Systems Operating in the Bands 824-849 MHz and 869-894 MHz ISED RSS 133 issue 6 A1 - 2 GHz Personal Communications Services. 4. 5. ISED SRSP-510 — Technical Requirements for Personal Communications Services (PCS) in the Bands 1850-1915 MHz and 1930-1995 MHz 6. ISED RSS 139 issue 3 - Advanced Wireless Services (AWS) Equipment Operating in the Bands 1710-1780 MHz and 2110-2180 MHz 7. ISED RSS-140 issue 1 - Equipment Operating in the Public Safety Broadband Frequency Bands 758-768 MHz ISED and 788-798 MHz 8. ISED RSS-192 issue 4 - Flexible Use Broadband Equipment Operating in the Band 3450-3650 MHz ISED RSS-195 issue 2 - Wireless Communication Service (WCS) Equipment Operating in the Bands 2305-2320 9. MHz and 2345-2360 MHz 10 ISED RSS-199 issue 3 - Broadband Radio Services (BRS) Equipment Operating in the Bands 2500-2690 MHz ISED RSS-197 issue 1 - Wireless Broadband Access Equipment Operating in the Band 3650–3700 MHz 11. 12. FCC OET KDB 971168 D01 v03r01 Measurement guidance for certification of licensed digital transmitters. 13. FCC OET KDB 842590 D01 v01r01 Upper Microwave Flexible Use Service. 14. C63.26-2015 - IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

3. General conditions, competences and guarantees

- ✓ Tests performed under FCC standards identified in section 1 are covered by A2LA accreditation.
- ✓ Tests performed under ISED standards identified in section 1 are covered by Cofrac accreditation.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 testing laboratory accredited by the French Committee for Accreditation (Cofrac) with the certificate number 1-6736.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is a Registered Test Site listed by ISED, with ISED #1000Y.
- Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- ✓ This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authorities.

4. Environmental Conditions

✓ At the site where the measurements were performed the following limits were not exceeded during the tests:

Temperature	20.3ºC ± 1ºC
Humidity	36.05% ± 10.45%

5. Test samples

Sample	Control #	Description	Model	Serial #	Date of receipt	Note
#01	211027-01.S06	Notebook HB	HSN-I50C	0001760GRV	08/11/2021	Hong-Bo Antenna
#02	211027-01.S02	Notebook WNC	HSN-I50C	0001760GWR	08/11/2021	WNC Antenna

6. EUT Features

The herein information is provided by the customer.

Intel WRF Lab declines any responsibility for the accuracy of the stated customer provided information, especially if it has any impact on the correctness of test results presented in this report.

Brand Name	HP										
Model Name	HSN-I50C										
Prototype / Production	Production										
	Mode		Bands			Su	ipporte	ed Tx Mo	de		
					WCDMA	HSD	PA	HSU	JPA	DC- HSDPA	
		FDD II (1850.0 – 1910.0 MHz)		IHz)	~	\checkmark		~	/	✓	
	WCDMA / HSPA+	FDD IV (17	10.0 – 1755.0 N	/Hz)	✓	✓		~	/	✓	
		FDD V (82	24.0 – 849.0 MH	Hz)	✓	√		•		✓	
	Mode		Bands		Sup	ported	Chann	el Band	width (N	/Hz)	
					1.4	3	5	10	15	20	
		Band 2 (18	50.0 – 1910.0 N	1Hz)	✓	✓	\checkmark	~	\checkmark	✓	
		Band 4 (17	10.0 – 1755.0 N	1Hz)	✓	\checkmark	\checkmark	\checkmark	✓	✓	
• • •		Band 5 (8	24.0 – 849.0 Mł	Hz)	✓	✓	✓	~			
Supported		Band 7 (25	00.0 – 2570.0 N	1Hz)			\checkmark	\checkmark	\checkmark	\checkmark	
Radios		Band 12 (6	699.0 – 716.0 M	Hz)	✓	✓	✓	~			
		Band 13 (7	77.0 – 787.0 M	Hz)			✓	✓			
	LTE FDD	Band 14 (7	′88.0 – 798.0 M	Hz)			✓	✓			
		Band 17 (7	′04.0 – 716.0 M	Hz)			✓	✓			
		Band 25 (1850.0 – 1915.0 MHz)					✓	✓	✓	✓	
		Band 26 (814.0 – 849.0 MHz)		✓	\checkmark	✓	✓	✓			
		Band 30 (2305.0 - 2315.0 MHz)				✓	✓				
		Band 66 (1710.0 – 1780.0 MHz)		√	\checkmark	\checkmark	\checkmark	✓	\checkmark		
		Band 38 (2570.0 – 2620.0 MHz)					\checkmark	\checkmark	✓	\checkmark	
	LTE TDD	Band 41 (2496.0 – 2690.0 MHz)				✓	√	✓	✓		
			550.0 – 3700.0N	-			✓	✓	✓	✓	
	UL carrier a	aggregation	n LTE (Intra-	-band))						
				Sup	ported con	nbinatio	ons				
ULCA LTE-			FDD Band 5B	5							
Intra-band			FDD Band 66								
			TDD Band 38	с							
			TDD Band 41								
	Transmitter			t5 (TX/F	RX)						
	Manufacturer			ngBo	,						
				PIFA antenna							
	Antenna type										
	Part number			6036B0305001 (00-2602748450)							
Antenna	Antenna peal	k gain (dBi)	1.2	0							
Information	Transmitter		An	t5 (TX/F	RX)						
	Manufacture	r	177	NC							
	Antenna type	Э	PI	-A ante	nna						
	Part number		60	36B030	3501 (81EA	BL15.G	631)				
Antenna peak gain (dBi)				0.36							

7. Remarks and comments

- 1. The tested configurations were selected based on the worst-case spurious emissions per frequency band from modular type approval report (FCC ID: ZMOL860GL16).
- The DUT has two antenna manufacturers (WNC and Hong-Bo) but the WWAN module and the rated output power remain the same. For each band, tests were performed on the highest peak antenna gain.
- 3. In regard of RSS 197 annex C shows a description of the algorithm implementation for both reducing the EIRP the limit allowed and decoding an enabling signal from the base station before the mobile equipment can transmit

8. Test Verdicts summary

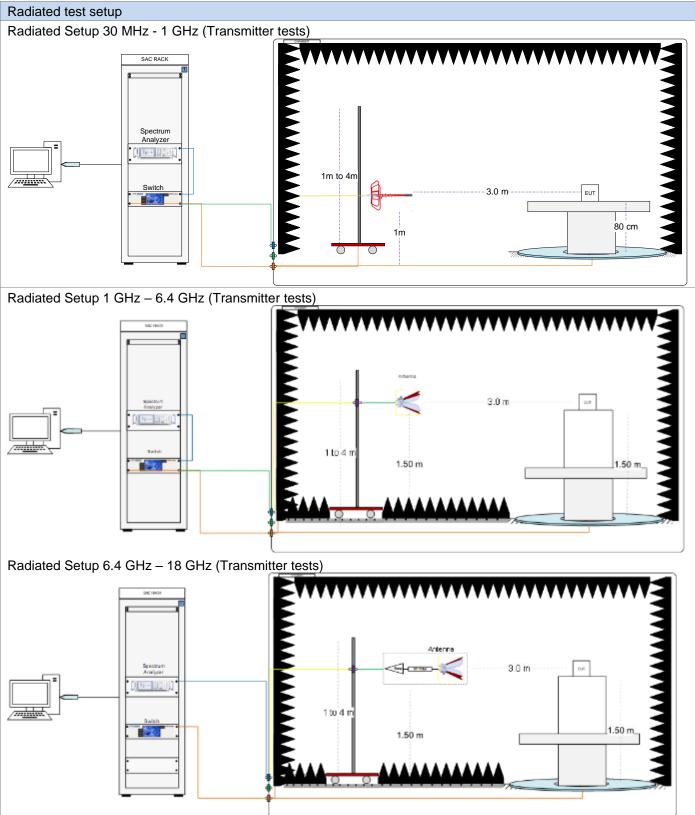
The statement of conformity to applicable standards in the table below are based on the measured values, without taking into account the measurement uncertainties.

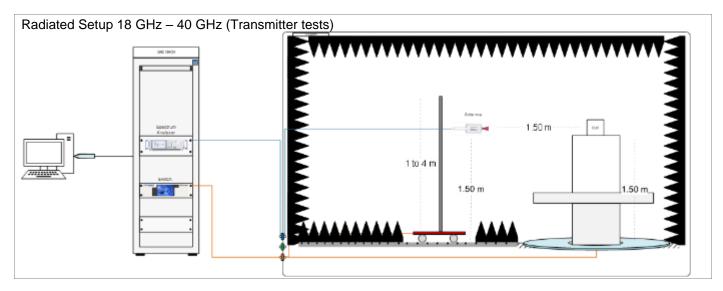
Band	Band	FCC part	RSS part	Verdict
	WCDMA II	24.238, 2.1053	133-ch 6.5.1	Р
WCDMA	WCDMA IV	27.53 (h), 2.1053	139-ch.6.5	Р
	WCDMA V	22.917(a), 2.1053	132-ch.5.5	Р
	LTE 2*	24.238(a), 2.1053	133-ch 6.5.1	NM
	LTE4	27.53 (h), 2.1053	139-ch.6.5	NM
	LTE 5*	22.917(a), 2.1053	132-ch.5.5	NM
	LTE 7	27.53 (m)(4), 2.1053	199-ch.4.5	Р
	LTE12	27.53 (g), 2.1053	130-ch.4.7	Р
	LTE 13	27.53 (c)(f), 2.1053	130-ch.4.7	Р
	LTE14	90.543(e)(f), 2.1053	140-ch.4.4	Р
LTE	LTE17	27.53 (g), 2.1053	130-ch.4.7	NM
	LTE 25*	24.238(a), 2.1053	133-ch 6.5.1	Р
	LTE 26*	90.691, 22.917(a), 2.1053	132-ch.5.5	Р
	LTE 30	27.53 (a)(4), 2.1053	195- ch.5.6.2	Р
	LTE 38	27.53 (m)(4), 2.1053	199-ch.4.5	NM
	LTE 41	27.53 (m)(4), 2.1053	199-ch.4.5	Р
	LTE 48*	96.41(e), 2.1053	192-ch.8.7, 197-ch.5.7	Р
	LTE 66	27.53(h), 2.1053	139-ch.6.5	Р
	5B_CA	22.917(a), 2.1053	132-ch.5.5	Р
LTE ULCA	66B_CA	27.53(h), 2.1053	139-ch.6.5	Р
(Intra-Band)	38C_CA	27.53 (m)(4), 2.1053	199-ch.4.5	NM
	41C_CA	27.53 (m)(4), 2.1053	199-ch.4.5	Р

* Rx Spurious emission not measured for RSS Parts 132, 133 and 197

P: Pass F: Fail NM: Not Measured NA: Not Applicable

9. Document Revision History


Revision #	Modified by	Revision Details
Rev. 00	N.Bui	First Issue


Annex A. Test & System Description

A.1 Measurement System

Measurements were performed using the following setups. A communication tester was used to establish a communication link with the EUT, and the communication tester parameters were set to get the maximum output power from the EUT.

Sample Calculation

The spurious received power P at the spectrum Analyzer is converted to EIRP the equivalent isotropically radiated power, in dBm using the transducer factor F corresponding to the Rx path Loss:

 $\label{eq:F} \begin{array}{l} \mathsf{F} \ (d\mathsf{B}) = \mathsf{Free} \ \mathsf{Space} \ \mathsf{Attenuation} \ (d\mathsf{B}) + \mathsf{Cable} \ \mathsf{losses} \ (d\mathsf{B}) - \mathsf{Amplifiers} \ \mathsf{Gain} \ (d\mathsf{B}) - \mathsf{Rx} \ \mathsf{Antenna} \ \mathsf{Gain} \ (d\mathsf{Bi}) \\ \\ \mathsf{EIRP} \ (d\mathsf{Bm}) = \mathsf{P}(\mathsf{dBm}) + \mathsf{F} \ (\mathsf{dB}) \end{array}$

A.2 **Test Equipment List**

Radiated Setup A.2.1

Radiated Setup #1

		T (14 1 1	0			
ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
006-000	Anechoic chamber	FACT 3	5720	ETS Lindgren	2020-01-07	2022-01-07
006-008	Measurement Software v11.30.00	EMC32	100623	Rohde & Schwarz	N/A	N/A
147-000	Spectrum analyzer	FSW43	101847	Rohde & Schwarz	2020-11-02	2022-11-02
006-002	Switch & Positioning	EMC center	00159757	ETS Lindgren	N/A	N/A
006-011	Boresight antenna mast	BAM4.0-P	P/278/2890.01	Maturo	N/A	N/A
006-003	Multi axis Positioning	2116CR-5905	00153265	ETS Lindgren	N/A	N/A
056-000	Horn Antenna 3117 + Amplifier + HPF6.4	3117	00157736	ETS Lindgren	2020-04-01	2022-04-01
007-008	Double Horn Ridged antenna	3116C-PA	00169308bis + 00196308	ETS-Lindgren	2021-08-05	2023-08-05
006-023	Conical log spiral antenna	3102	00154400	ETS Lindgren	N/A	N/A
007-030	Horn Antenna 1-18GHz	3115	9911-5967	Emco	N/A	N/A
006-022	Biconilog Antenna	3142E	00156946	ETS-Lindgren	2020-03-12	2022-03-12
006-020	Double Ridged Horn Antenna 1 GHz – 18 GHz	3117	00157734	ETS Lindgren	2021-08-05	2023-08-05
006-052	RF Cable 7.5m	050105105700 0GX	19.35.850	Radiall	2021-08-12	2022-02-12
006-051	RF Cable 1.0m	CBL-1.5M- SMSM+	202879	Mini-Circuits	2021-08-12	2022-02-12
006-030	RF Cable 1.2m	UFA147A-0- 0480-200200	MFR 64639223720- 003	Micro-coax	2021-08-12	2022-02-12
006-034	RF Cable 1.0m	UFA147A	-	Utilflex	2021-08-12	2022-02-12
006-036	RF Cable 1.0m	UFB311A-0- 0590-50U50U	MFR 64639 223230- 001	Micro-coax	2021-08-12	2022-02-12
006-038	RF Cable 7.0m	R286304009	-	Radiall	2021-08-12	2022-02-12
006-039	RF Cable 2.5m	050099099250 0KE	19.23.395	Radiall	2021-08-12	2022-02-12
006-033	RF Cable 2.5m	UFA147A-0- 1380-50U200	MFR 64639223219- 001	Micro-coax	N/A	N/A
365-000	Temperature & Humidity logger	RA12E-TH1- RAS	00-80-A3-E1-6E-55	Avtech	2021-03-08	2023-03-08
295-000	Communication tester	CMW500	147712	Rohde & Schwarz	N/A	N/A
142-000	Communication tester	CMW500	163186	Rohde & Schwarz	2021-05-07	2023-05-07

*Items not used outside calibration period N/A: Not Applicable

Test Report N° 211027-01.TR05

	Setup #2					
ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
007-000	Anechoic chamber	RFD-FA-100	5996	ETS Lindgren	2021-09-14	2023-09-14
007-002	Turntable	-	-	ETS Lindgren	N/A	N/A
007-003	Antenna Tower	2171B-3.0M	00150123	ETS Lindgren	N/A	N/A
007-006	Switch & Positioner	EMCenter	00151232	ETS Lindgren	N/A	N/A
007-005	Measurement SW, V11.20.00	EMC32	100401	Rohde & Schwarz	N/A	N/A
127-000	Spectrum Analyzer	FSV40	101358	Rohde & Schwarz	2021-01-15	2023-01-15
007-030	Horn Antenna 1-18GHz	3115	9911-5967	Emco	N/A	N/A
006-023	Conical log spiral antenna	3102	00154400	ETS Lindgren	N/A	N/A
007-007	Double Ridge Horn (1- 18GHz)	3117	00152266	ETS Lindgren	2020-03-18	2022-03-18
056-000	Horn Antenna 3117 + Amplifier + HPF6.4	3117	00157736	ETS-Lindgren	2020-04-01	2022-04-01
007-008	Double Horn Ridged antenna	3116C-PA	00169308bis + 00196308	ETS-Lindgren	2021-08-05	2023-08-05
007-022	RF Cable 1-18GHz, 1.5m	05010509912 00GX	19.23.493	Radiall	2021-08-12	2022-02-12
007-020	RF Cable 1-18GHz, 1.2 m	23017617612 00PJ	12.22.1104	Radiall	2021-08-12	2022-02-12
007-011	RF Cable 1-18GHz – 6.5m	140-8500-11- 51	001	Spectrum	2021-08-12	2022-02-12
007-015	RF Cable 1GHz-18GHz 1.5m	-	-	Spirent	2021-08-12	2022-02-12
007-014	RF Cable 18-40 GHz 6m	R286304009	1747364	Radiall	2021-08-12	2022-02-12
007-023	RF Cable 1m DC- 40GHz	PE360-100CM	-	Pasternack	2021-08-12	2022-02-12
007-018	RF Cable 1-9.5GHz 1.2m	05009909912 00KE	-	Radiall	2021-08-12	2022-02-12
256-000	RF Cable 18GHz	UFB311A-0- 0590-50U50U	MFR 64639 223230- 002	Micro-Coax	N/A	N/A
145-000	Temp & Humidity Logger	RA12E-TH1- RAS	RA12-B89BE3	Avtech	2020-01-22	2022-01-22
295-000	Communication tester	CMW500	147712	Rohde & Schwarz	N/A	N/A
142-000	Communication tester	CMW500	163186	Rohde & Schwarz	2021-05-07	2023-05-07

A.3 Measurement Uncertainty Evaluation

The system uncertainty evaluation is shown in the table below with a coverage factor of k = 2 to indicate a 95% level of confidence:

Measurement type	Uncertainty	Unit
Tx Radiated test < 1GHz	± 6.07	dB
Tx Radiated test 1GHz - 40 GHz	± 6.04	dB

Annex B. Test Results

The herein test results were performed by:

Test case measurement	Test Personnel
Tx spurious emissions	N. BUI

B.1 Radiated spurious emission

B.1.1 Standard references

Band	FCC part	RSS Part	FCC Limit	IC Limit
WCDMA II LTE 2 LTE 25	24.238(a), 2.1053	133-ch 6.5.1	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB	(ii) After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1 MHz is required.
WCDMA IV LTE 4 LTE 66	27.53 (h), 2.1053	139-ch.6.5	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB	(ii) After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.
WCDMA V LTE 5 LTE 26	22.917(a), 2.1053 90.691,	132-ch.5.5	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB	(ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.
LTE 12 LTE 13 LTE 17	27.53 (c)(f), 2.1053	130-ch.4.7	The power of any emission outside a licensee's frequency block shall be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.	The power of any emission outside a licensee's frequency block shall be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In addition, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions: a) The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least: (i) 76 + 10 log10 p (watts), dB, for base and fixed equipment, and (ii) 65 + 10 log10 p (watts), dB, for mobile and portable equipment. b) The e.i.r.p. in the band 1559-1610 MHz shall not exceed -70 dBW/MHz for wideband signal and -80 dBW for discrete emission with bandwidth less than 700 Hz.
LTE 14	90.543(e)(f)	140-ch4.4	 (e) For operations in the 758-768 MHz and the 788-798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following: (1) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations. (2) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 65 + 10 	 The power of any unwanted emission outside the bands 758-768 MHz and 788-798 MHz shall be attenuated below the transmitter output power P in dBW as follows, where p is the transmitter output power in watts: For any frequency between 769-775 MHz and 799-806 MHz: 76 + 10 log (p), dB in a 6.25 kHz band for fixed and base station equipment 65 + 10 log (p), dB in a 6.25 kHz band for mobile and portable/hand-held equipment

Test Report N° 211027-01.TR05

	 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations. (3) On any frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB. (4) Compliance with the provisions of paragraphs (e)(1) and (2) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment. (5) Compliance with the provisions of paragraph (e)(3) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of 30 kHz may be employed. 	For any frequency between 775-788 MHz, above 806 MHz, and below 758 MHz: 43 + 10 log (p), dB in a bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency bands 758-768 MHz and 788-798 MHz, a resolution bandwidth of 30 kHz may be employed. In addition, the equivalent isotropically radiated power (e.i.r.p.) of all emissions, including harmonics in the band 1559-1610 MHz, shall not exceed -70 dBW/MHz for wideband emissions, and -80 dBW/kHz for discrete emissions of less than 700 Hz bandwidth.
	(f) For operations in the 758-775 MHz and 788- 805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.	

Band	FCC part	RSS Part	FCC Limit	IC Limit
LTE 30*	27.53 (a)(4), 2.1053	195 ch.5.6.2	By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz; (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz; (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
LTE 7 LTE 38 LTE 41	27.53 (m), 2.1053	199- ch.4.5	For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.	for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least: (i) 40 + 10 log10 p from the channel edges to 5 MHz away (ii) 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and (iii) 55 + 10 log10 p at X MHz and beyond from the channel edges In addition, the attenuation shall not be less than 43 + 10 log10 p on all frequencies between 2490.5 MHz and 2496 MHz, and 55 + 10 log10 p at or below 2490.5 MHz.
LTE 48	96.41(e)		 (ii) Except as otherwise specified in paragraph (e)(2) of this section, for channel and frequency assignments made by a CBSD to End User Devices, the conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed -25 dBm/MHz. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3720 MHz shall not exceed -25 dBm/MHz, and the conducted power of emission below 3720 MHz shall not exceed -25 dBm/MHz, and the conducted power of emission below 3720 MHz shall not exceed -25 dBm/MHz, and the conducted power of emission below 3720 MHz shall not exceed -25 dBm/MHz, and the conducted power of emission below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz 	
LTE48		192- ch.8.7	-	Subscriber equipment shall have the TRP (per cell) or conducted power (per single antenna connector), where applicable, of unwanted emission outside the frequency block group not

			e following, wh n in table 5.	ere B is the f	requency blo	ck group in
		Frequency block	Offset frequ		•	frequency
		group (B)	0-1	1-5	5-B	>B
		10 MHz, 20MHz, 30 MHz and 40 MHz	_ 13dBm/1% of B	-10 dBm/MHz	-13 dBm/MHz	-25 dBm/MHz
		> 40 MHz	-24 dBm/30 kHz	-10 dBm/MHz	-13 dBm/MHz	-25 dBm/MHz
		cell) or condu applicable, fo for subscriber greater than	r the unwanted r the unwanted equipment: -3 (B+5) MHz fror	er single ante d emissions s 30 dBm/MHz m the edge of	nna connecto hall not exce in the frequer the frequence	or), where ed: ncy range
197- ch.5.7	-	the highest and modulation the bandwidth of bandwidth of integrated over The power of 3700 MHz sh	nd lowest char at the equipme 1 MHz or less, the transmitter er a 1 MHz bar any emissions all be attenuat	nnel of all bar ent can opera , but at least r, provided the ndwidth. s outside the ed below the	dwidths and ate with a reso 1% of the occ at the measu frequency ba channel trans	types of blution supied red power is nd 3650- smitter
	ch.5.7	ch.5.7	197- ch.5.7 - 197- ch.5.7 - <td< td=""><td>197- - 197- - 197-</td><td>197- - <td< td=""><td>197- - 197- -</td></td<></td></td<>	197- - 197- - 197-	197- - 197- - <td< td=""><td>197- - 197- -</td></td<>	197- - 197- -

*Worst case limit between FCC part and RSS part is applied

B.1.2 Test procedure

The setup described in Test & System Description section was used to measure the radiated spurious emissions. Depending on the frequency range and bands being tested, different antennas and filters were used. The final measurement is done by varying the antenna height from 1 to 4 meters, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

B.1.3 Test Results

B.1.3.1 WCDMA

WCDMA 2 – HB Antenna

30 MHz to 26.5 GHz – Tx Radiated Spurious WCDMA 2- QPSK - Low channel – 1880 MHz			
Frequency	RMS	Limit	Margin
MHz	dBm	dBm	dB
43.8	-51.4	-13	38.4
3386.5	-37.7	-13	24.7
6860.2	-48.8	-13	35.8
16437.8	-38.3	-13	25.3
17410.2	-35.2	-13	22.2
18280.5	-58	-13	45

WCDMA 4 – HB Antenna

	30 MHz to 18GHz – Tx Radiated Spurious WCDMA 4- QPSK - High channel – 1732.5 MHz				
F	requency	RMS	Limit	Margin	
	MHz	dBm	dBm	dB	
	43.8	-51.1	-13	38.1	
	1343.5	-45.8	-13	32.8	
	3391.5	-37.5	-13	24.5	
	6991.1	-49.6	-13	36.6	
	12805.8	-42.8	-13	29.8	
	17106	-36.6	-13	23.6	

WCDMA 5 – HB Antenna

30 MHz to 18 GHz – Tx Radiated Spurious WCDMA 5- QPSK - Low channel – 836.5 MHz			
Frequency	RMS	Limit	Margin
MHz	dBm	dBm	dB
960	-51.4	-13	38.4
1262.7	-55.7	-13	42.7
2339.5	-52.1	-13	39.1
2512.3	-53.3	-13	40.3
6896	-49.3	-13	36.3
7723.8	-48.4	-13	35.4

B.1.3.1 LTE

LTE 7 – HB Antenna

30MHz to 26.5GHz – Tx Radiated Spurious LTE 7- QPSK - High channel – 2510 MHz BW 20MHz				
Frequency	RMS	Limit	Margin	
MHz	dBm	dBm	dB	
43.8	-53	-25	28	
3387.5	-37.9	-25	12.9	
6991.1	-49.9	-25	24.9	
16435.9	-37.8	-25	12.8	
17115.7	-37	-25	12	
21219.6	-55.6	-25	30.6	

LTE 12 – WNC Antenna

30MHz to 9.5GHz - Tx Radiated Spurious LTE 12- QPSK - Low channel – 707.5 MHz - BW 10MHz			
	_		
Frequency	RMS	Limit	Margin
MHz	dBm	dBm	dB
980	-51.3	-13	38.3
1405.7	-51.1	-13	38.1
2282.7	-54.8	-13	41.8
2705.2	-53.1	-13	40.1
3033.4	-53.9	-13	40.9
6967	-50.6	-13	37.6

LTE 13 – HB Antenna

30 MHz to 9.5 GHz - Radiated Spurious LTE 13 - QPSK - High channel – 784.5 MHz - BW 5 MHz			
Frequency	RMS	Limit	Margin
MHz	dBm	dBm	dB
980	-51.5	-13	38.5
1797.3	-56.7	-13	43.7
2354.2	-53.8	-13	40.8
3091.9	-53.6	-13	40.6
5774.2	-52.1	-13	39.1
6857.6	-49.9	-13	36.9

LTE 14 – WNC Antenna

30MHz to 9.5GHz - Radiated Spurious LTE 14 - QPSK - Mid channel – 793 MHz - BW 5 MHz				
Frequency	RMS	Limit	Margin	
MHz	dBm	dBm	dB	
982.6	-51.3	-13	38.3	
1856.9	-57.2	-13	44.2	
2350.9	-54.6	-13	41.6	
2691.6	-53.7	-13	40.7	
5785.1	-51.1	-13	38.1	
7538.7	-50.4	-13	37.4	

LTE 25 – HB Antenna

	K - Low channel – 1	903 WIHZ - B	VV ZUIVIHZ
Frequency	RMS	Limit	Margin
MHz	dBm	dBm	dB
43.8	-53.3	-13	40.3
3363.5	-38.1	-13	25.1
6873.8	-48.6	-13	35.6
16404.7	-38.2	-13	25.2
17393.6	-37.5	-13	24.5
18300.8	-57.5	-13	44.5

LTE 26 – HB Antenna

30 MHz to 9.5 GHz - Radiated Spurious LTE 26 – QPSK - Low channel – 831.5 MHz - BW 15MHz				
Frequency	RMS	Limit	Margin	
MHz	dBm	dBm	dB	
983.7	-50.9	-13	37.9	
1271.4	-56	-13	43	
1817.9	-56.5	-13	43.5	
2474.4	-51.2	-13	38.2	
6990.8	-50.3	-13	37.3	
7832.7	-49.8	-13	36.8	

LTE 30 – HB Antenna

30MHz to 26.5GHz - Radiated Spurious LTE 30 - QPSK - Mid channel – 2310 MHz - BW 10MHz				
Г	Frequency	RMS	Limit	Margin
-	MHz	dBm	dBm	dB
-	43.8	-53.4	-40	13.4
	3358	-48.4	-40	8.4
Ī	4833.9	-53.4	-40	13.3
Γ	9985.4	-56.6	-40	16.6
ſ	15068.6	-54.7	-40	14.7
	22774.2	-56.6	-40	16.6

LTE 41 – HB Antenna

30MHz to 40GHz - Radiated Spurious LTE 41 – QPSK - High channel – 2506 MHz - BW 20MHz					
Frequency	RMS	Limit	Margin		
MHz	dBm	dBm	dB		
43.8	-55.6	-25	30.6		
3378	-49	-25	24.1		
6812	-51	-25	26		
16219	-39.6	-25	14.6		
17408	-37.5	-25	12.5		
23126.5	-57.3	-25	32.3		

LTE 48 – HB Antenna

30MHz to 40GHz – Tx Radiated Spurious LTE 48 - QPSK - Mid channel – 3690 MHz - BW 20MHz			
Frequency	RMS	Limit	Margin
MHz	dBm	dBm	dB
43.8	-54.8	-40	14.8
3527.5	-44.8	-40	4.8
3834.5	-47.2	-40	7.2
11043	-57.6	-40	17.6
17374	-55.2	-40	15.2
30781.5	-54.5	-40	14.5

LTE 66 – HB Antenna

	30MHz to 18 GHz – Tx Radiated Spurious LTE 66 - QPSK - High channel – 1770 MHz - BW 20MHz				
Г	Fraguanay	RMS	Limit	Morgin	
-	Frequency		Limit	Margin	
ŀ	MHz	dBm	dBm	dB	
ŀ	43.8	-53	-13	40	
ŀ	3391	-37.8	-13	24.8	
	6928.8	-49.3	-13	36.3	
	13356.2	-43.1	-13	30.1	
	16402.3	-37.8	-13	24.8	
	17127.9	-37	-13	24	

B.1.3.2 UL carrier aggregation LTE (Intra-band)

LTE 5B_CA – HB Antenna

30MHz to 9.5GHz – Tx Radiated Spurious LTE 5 - QPSK - Low channel – 831.6 MHz / 841.5 MHz BW 10 MHz / 10MHz				
Frequency	RMS	Limit	Margin	
MHz	dBm	dBm	dB	
977.6	-51.3	-13	38.3	
1794.6	-58.9	-13	45.9	
2338.5	-54.4	-13	41.4	
3108.2	-53.2	-13	40.2	
6857.6	-50	-13	37	
7791.6	-49.6	-13	36.6	

LTE 66B CA – HB Antenna

30MHz to 18GHz – Tx Radiated Spurious LTE 66 - QPSK - High channel – 1752.2 MHz / 1761.9MHz BW 15 MHz / 5MHz					
	Frequency	RMS	Limit	Margin	
	Frequency MHz	dBm	dBm	dB	
	43.8	-52.8	-13	39.8	
	3347.5	-38.1	-13	25.1	
	6908.4	-49.3	-13	36.3	
	11285	-45.2	-13	32.2	
	15071.2	-41.2	-13	28.2	
	17113.8	-37.5	-13	24.5	

LTE 41C CA – HB Antenna

30MHz to 40GHz – Tx Radiated Spurious LTE 41 - QPSK - High channel – 2506.0 MHz/ 2525.8 MHz BW 20 MHz / 20MHz					
Frequency	RMS	Limit	Margin		
MHz	dBm	dBm	dB		
43.8	-55.6	-25	30.6		
3386.5	-49.5	-25	24.5		
5490	-49.9	-25	24.9		
8057.5	-51.4	-25	26.4		
10656.5	-47.1	-25	22.1		
23098.5	-58	-25	33		