Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Sporton **Certificate No:** Z19-60057 ## **CALIBRATION CERTIFICATE** Object D1750V2 - SN: 1112 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: Client March 7, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | |-----------------------------------|------------|--|-----------------------|--| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | | NetworkAnalyzer E5071C MY46110673 | | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | | Name | Function | Signature. | |----------------|-------------|--------------------|------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 後 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林松 | | Approved by: | Qi Dianyuan | SAR Project Leader | Solv. | Issued: March 9, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions*: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60057 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.20 W /kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.87 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.4 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|---------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1. 4 9 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.5 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.25 W/ kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 4.92 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.8 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60057 Page 3 of 8 ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.8Ω- 1.87 jΩ | |--------------------------------------|----------------| | Return Loss | - 33.0 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.4Ω- 1.07 jΩ | | | |--------------------------------------|----------------|--|--| | Return Loss | - 28.3 dB | | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.080 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | | | - | |-----------------|-------|---| | Manufactured by | SPEAG | | Certificate No: Z19-60057 Page 4 of 8 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1112 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.389 \text{ S/m}$; $\varepsilon_r = 41.13$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 1/31/2019 Date: 03.06.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.87 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.2 W/kg; SAR(10 g) = 4.87 W/kg Maximum value of SAR (measured) = 14.4 W/kg 0 dB = 14.4 W/kg = 11.58 dBW/kg #### Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1112 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.465$ S/m; $\varepsilon_r = 53.49$; $\rho = 1000$ kg/m³ Phantom section: Center Section **DASY5** Configuration: Probe: EX3DV4 - SN3617; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/31/2019 Date: 03.06.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 -
Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.64 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.25 W/kg; SAR(10 g) = 4.92 W/kg Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg = 11.55 dBW/kg ## Impedance Measurement Plot for Body TSL ## D1750V2, serial no. 1112 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D 1750 V2 – serial no. 1112 | | | | | | | |---|------------------|-----------|----------------------|-------------|---------------------------|-------------| | | 1750MHZ | | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 03.07.2019 | -32.991 | | 48.814 | | -1.8705 | | | (Cal. Report) | -32.991 | | 40.014 | | -1.0703 | | | 03.06.2020 | -33.589 | 1.81 | 48.573 | 0.241 | -4.0211 | 2.1506 | | (extended) | -33.569 | 1.01 | 40.373 | 0.241 | -4.0211 | 2.1506 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 ## <Dipole Verification Data> - D1750 V2, serial no. 1112 (Data of Measurement : 03.06.2020) 1750 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 in Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn Client Sporton **Certificate No:** Z19-60058 ## CALIBRATION CERTIFICATE E-mail: cttl@chinattl.com Object D1900V2 - SN: 5d185 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 7, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-----------------------------------|------------|--|------------------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C MY46110673 | | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Lin Hao | SAR Test Engineer | 11 × 16 | | Approved by: | Qi Dianyuan | SAR Project Leader | | Issued: March 9, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60058 lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60058 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 1.44 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | |---|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 10.0 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 39.4 W/kg ± 18.8 % (k=2) | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | | SAR measured | 250 mW input power | 5.17 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 W/kg ± 18.7 % (k=2) | | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.0 ± 6 % | 1.56 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | | |---|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 10.2 W/kg | | | SAR for nominal Body TSL parameters | normalized to 1W | 40.1 W/kg ± 18.8 % (k=2) | | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | | SAR measured | 250 mW input power | 5.28 W/kg | | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 18.7 % (k=2) | | Certificate No: Z19-60058 ## Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.2Ω+ 6.37jΩ | | | |--------------------------------------|---------------|--|--| | Return Loss | - 23.2dB | | | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.0Ω+ 7.57jΩ | | | |--------------------------------------|---------------|--|--| | Return Loss | - 22.3dB | | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.067 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to
the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | |-----------------| |-----------------| Certificate No: Z19-60058 Page 4 of 8 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d185 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.44$ S/m; $\varepsilon_r = 40.43$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 1/31/2019 Date: 03.06.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.22 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.17 W/kg Maximum value of SAR (measured) = 15.9 W/kg 0 dB = 15.9 W/kg = 12.01 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d185 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.564$ S/m; $\varepsilon_r = 53.01$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.78, 7.78, 7.78) @ 1900 MHz; Calibrated: 1/31/2019 Date: 03.06.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.42 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 15.7 W/kg 0 dB = 15.7 W/kg = 11.96 dBW/kg ## Impedance Measurement Plot for Body TSL ## D1900V2, serial no. 5D185 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D 1900 V2 – serial no. 5D185 | | | | | | | |--|------------------|-----------|----------------------|-------------|---------------------------|-------------| | | | 1900MHZ | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 03.07.2019 | -23.244 | | 53.172 | | 6.3691 | | | (Cal. Report) | -23.244 | | 33.172 | | 0.3031 | | | 03.06.2020 | -23.473 | 0.99 | 52.362 | 0.81 | 3.0303 | 3.3388 | | (extended) | -23.473 | 0.99 | 32.302 | 0.61 | 3.0303 | 3.3300 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 ## <Dipole Verification Data> - D1900 V2, serial no. 5D185 (Data of Measurement : 03.06.2020) 1900 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D2300V2-1006_Jan19 ## **CALIBRATION CERTIFICATE** Object D2300V2 - SN:1006 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Source_ Letween 0.7-3 GHz Calibration date: January 28, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-18 (No. EX3-7349_Dec18) | Dec-19 | | DAE4 | SN: 601 | 04-Oct-18 (No. DAE4-601_Oct18) | Oct-19 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilant E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Manu Seitz | Laboratory Technicia | 436 | | Approved by: | Katja Pokovic | Technical Manager | 250 | Issued: January 28, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2300 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.4 ± 6 % | 1.71 mho/m ± 6 % | | Head
TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 48.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.87 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.9 | 1.81 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.5 ± 6 % | 1.85 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 47.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.73 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.7 W/kg ± 16.5 % (k=2) | Page 3 of 8 Certifioate No: D2300V2-1006_Jan19 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.2 Ω - 4.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.8 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 45.2 Ω - 2.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.7 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.168 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |------------------|----------| | Walturactured by | l Si Exa | Certificate No: D2300V2-1006_Jan19 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 28.01.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1006 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.71 \text{ S/m}$; $\varepsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.2, 8.2, 8.2) @ 2300 MHz; Calibrated: 31.12.2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.1 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 24.2 W/kg SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.87 W/kg Maximum value of SAR (measured) = 20.1 W/kg 0 dB = 20.1 W/kg = 13.03 dBW/kg ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 28.01.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1006 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.16, 8.16, 8.16) @ 2300 MHz; Calibrated: 31.12.2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.9 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 23.1 W/kg SAR(1 g) = 12 W/kg; SAR(10 g) = 5.73 W/kg Maximum value of SAR (measured) = 19.3 W/kg 0 dB = 19.3 W/kg = 12.86 dBW/kg ## Impedance Measurement Plot for Body TSL ## D2300V2, serial no. 1006 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D 2300 V2 − serial no. 1006 | | | | | | | |---|------------------|-----------|----------------------|-------------|---------------------------|-------------| | | 2300MHZ | | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 01.28.2019 | -27.842 | | 49.245 | | -3.9555 | | | (Cal. Report) | -27.042 | | 43.243 | | -0.0000 | | | 01.27.2020 | -28.612 2.766 | | 48.022 1.22 | 4 000 | 2.0050 | 0.0607 | | (extended) | | | | 1.223 | -2.9858 | -0.9697 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D2300 V2, serial no. 1006 (Data of Measurement : 01.27.2020) 2300 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 In Collaboration with CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60060 ## **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1078 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 6, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | 20-Aug-18 (CTTL, No.J18X06862)
20-Aug-18 (CTTL, No.J18X06862)
31-Jan-19(SPEAG,No.EX3-3617_Jan19)
06-Feb-19(SPEAG,No.DAE4-1331_Feb1 | | |---|------------------------------------| | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) |) Jan-20 | | | | | 06-Feb-19(SPEAG,No.DAE4-1331_Feb1 | 19) Feb-20 | | | | | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | 430 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | 673 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | 430 23-Jan-19 (CTTL, No.J19X00336) | Name Function Signal Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 8, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60060 Page 1 of 8 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with
TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60060 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.99 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 57.6 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.0 ± 6 % | 2.14 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 53.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.93 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.7 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60060 Page 3 of 8 #### Appendix(Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.6Ω- 6.35jΩ | |--------------------------------------|---------------| | Return Loss | - 23.9dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.0Ω- 5.66jΩ | |--------------------------------------|---------------| | Return Loss | - 22.8dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.016 ns | |----------------------------------|----------| | , ,, ,, ,, , | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z19-60060 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1078 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.992$ S/m; $\varepsilon_r = 38.91$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.19, 7.19, 7.19) @ 2600 MHz; Calibrated: 1/31/2019 Date: 03.05.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.73 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.41 W/kg Maximum value of SAR (measured) = 25.0 W/kg 0 dB = 25.0 W/kg = 13.98 dBW/kg ## Impedance Measurement Plot for Head TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1078 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.139 \text{ S/m}$; $\varepsilon_r = 51.97$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.49, 7.49, 7.49) @ 2600 MHz; Calibrated: 1/31/2019 Date: 03.05.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.97 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 29.3 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 5.93 W/kg Maximum value of SAR (measured) = 22.9 W/kg 0 dB = 22.9 W/kg = 13.60 dBW/kg Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Body TSL # D2600V2, serial no. 1078 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | | D 2600 V2 − serial no. 1078 | | | | | | |---------------------|---|-----------|----------------------|-------------|---------------------------|-------------| | | | 2600MHZ | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 03.06.2019 | -23.923 | | 49.649 | | -6.3468 | | | (Cal. Report) | -20.920 | | 49.049 | | -0.5400 | | | 03.05.2020 | -23.769 | -0.64 | 50.320 | -0.671 | -7.2897 | 0.9429 | | (extended) | -23.769 | -0.04 | 50.320 | -0.071 | -1.2091 | 0.9429 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D2600 V2, serial no. 1078 (Data of Measurement : 03.05.2020) 2600 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D3500V2-1014_Jan19 # **CALIBRATION CERTIFICATE** Object D3500V2 - SN:1014 Calibration procedure(s) QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: January 29, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration |
---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 3503 | 31-Dec-18 (No. EX3-3503_Dec18) | Dec-19 | | DAE4 | SN: 601 | 04-Oct-18 (No. DAE4-601_Oct18) | Oct-19 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | - Ve | | Approved by: | Katja Pokovic | Technical Manager | 20101 | Issued: January 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3500V2-1014_Jan19 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mhc/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 2.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | ***** | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.74 W/kg | | SAR fcr nominal Head TSL parameters | normalized to 1W | 67.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.6 W/kg ± 19.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 51.3 | 3.31 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.1 ± 6 % | 3.28 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.56 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 65.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Body TSL parameters | ncrmalized to 1W | 24.3 W/kg ± 19.5 % (k=2) | Certificate Nc: D3500V2-1014_Jan19 Page 3 cf 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.4 Ω - 3.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.4 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 54.6 Ω - 0.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.1 dB | #### **General Antenna Parameters and Design** | | Part | |----------------------------------|----------| | Electrical Delay (one direction) | 1.134 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------| | Manager by | 0. 2. (6. | Certificate No: D3500V2-1014_Jan19 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 29.01.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1014 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.89 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.6, 7.6, 7.6) @ 3500 MHz; Calibrated: 31.12.2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.60 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 6.74 W/kg; SAR(10 g) = 2.54 W/kg Maximum value of SAR (measured) = 12.8 W/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 29.01.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1014 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 3.28 \text{ S/m}$; $\varepsilon_r = 50.1$; $\rho = 1000 \text{
kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.21, 7.21, 7.21) @ 3500 MHz; Calibrated: 31.12.2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.22 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 6.56 W/kg; SAR(10 g) = 2.44 W/kg Maximum value of SAR (measured) = 12.8 W/kg 0 dB = 12.8 W/kg = 11.07 dBW/kg # Impedance Measurement Plot for Body TSL # D3500V2, serial no. 1014 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D 3500 √2 – serial no. 1014 | | | | | | | |---|------------------|-----------|----------------------|-------------|---------------------------|-------------| | | | 3500MHZ | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 01.29.2019 | 24,444 | | 55.351 | | -3.3621 | | | (Cal. Report) | 24.444 | | 33.331 | | -5.5021 | | | 01.28.2020 | 27.481 | 12.424 | 53.183 | 2.168 | -0.13305 | -3.2291 | | (extended) | 21.481 | 12.424 | 53.183 | 2.108 | -0.13305 | -3.2291 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D3500 V2, serial no. 1014 (Data of Measurement : 01.28.2020) 3500 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 ### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: DAE4-854 May20 Accreditation No.: SCS 0108 # CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BM - SN: 854 Object QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) May 26, 2020 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 03-Sep-19 (No:25949) | Sep-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 09-Jan-20 (in house check) | In house check: Jan-21 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 09-Jan-20 (in house check) | In house check: Jan-21 | Function Signature Calibrated by: Dominique Steffen Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: May 26, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-854_May20 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossarv DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-854_May20 ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.902 ± 0.02% (k=2) | 404.679 ± 0.02% (k=2) | 405.773 ± 0.02% (k=2) | | Low Range | 3.97207 ± 1.50% (k=2) | 3.94819 ± 1.50% (k=2) | 3.99503 ± 1.50% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 325.0 ° ± 1 ° | |---|---------------| Certificate No: DAE4-854_May20 ## Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 199995.13 | 2.57 | 0.00 | | Channel X | + Input | 20000.49 | -1.29 | -0.01 | | Channel X | - Input | -19998.95 | 2.31 | -0.01 | | Channel Y | + Input | 199993.48 | 0.79 | 0.00 | | Channel Y | + Input | 19999.49 | -2.26 | -0.01 | | Channel Y | - Input | -20000.37 | 0.92 | -0.00 | | Channel Z | + Input | 199993.40 | 0.68 | 0.00 | | Channel Z | + Input | 19998.76 | -2.86 | -0.01 | | Channel Z | - Input | -20001.56 | -0.21 | 0.00 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.29 | 0.12 | 0.01 | | Channel X + Input | 201.78 | 0.21 | 0.10 | | Channel X - Input | -198.04 | 0.29 | -0.15 | | Channel Y + Input | 2001.22 | 0.20 | 0.01 | | Channel Y + Input | 201.23 | -0.23 | -0.12 | | Channel Y - Input | -198.91 | -0.49 | 0.25 | | Channel Z + Input | 2001.14 | 0.16 | 0.01 | | Channel Z + Input | 200.64 | -0.72 | -0.36 | | Channel Z - Input | -199.54 | -1.00 | 0.51 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -12.20 | -13.58 | | | - 200 | 14.65 | 13.01 | | Channel Y | 200 | -7.85 | -8.28 | | | - 200 | 7.33 | 7.21 | | Channel Z | 200 | 16.85 | 16.68 | | | - 200 | -19.88 | -19.26 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 1.88 | -3.29 | | Channel Y | 200 | 7.95 | - | 3.37 | | Channel Z | 200 | 9.73 | 5.70 | - | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16117 | 14859 | | Channel Y | 15964 | 16277 | | Channel Z | 15850 | 15306 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 0.75 | -0.29 | 1.77 | 0.34 | | Channel Y | 0.27 | -0.62 | 2.21 |
0.42 | | Channel Z | -0.21 | -0.99 | 0.48 | 0.30 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Accreditation No.: SCS 0108 Certificate No: DAE4-1424_Jan20 | CALI | BRAT | ION | CERT | 115 | ICATE | | |------|------|-----|------|-----|-------|----------| | | | | | | | <u>I</u> | Object DAE4 - SD 000 D04 BM - SN: 1424 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: January 24, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 03-Sep-19 (No:25949) | Sep-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 09-Jan-20 (in house check) | In house check: Jan-21 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 09-Jan-20 (in house check) | In house check: Jan-21 | Name Function Calibrated by: Adrian Gehring Laboratory Technician Sven Kühn Approved by: Deputy Manager Issued: January 24, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 ### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. # **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1µV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.154 ± 0.02% (k=2) | 403.632 ± 0.02% (k=2) | 403.207 ± 0.02% (k=2) | | Low Range | 3.96939 ± 1.50% (k=2) | 3.99672 ± 1.50% (k=2) | 3.98379 ± 1.50% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 358.0 ° ± 1 ° | |---|---------------| |---|---------------| # Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 199991.78 | -2.60 | -0.00 | | Channel X | + Input | 20002.26 | 0.43 | 0.00 | | Channel X | - Input | -19999.39 | 2.05 | -0.01 | | Channel Y | + Input | 199992.50 | -2.06 | -0.00 | | Channel Y | + Input | 20001.82 | 0.00 | 0.00 | | Channel Y | - Input | -20002.88 | -1.46 | 0.01 | | Channel Z | + Input | 199994.03 | -0.25 | -0.00 | | Channel Z | + Input | 20000.92 | -0.79 | -0.00 | | Channel Z | - Input | -20003.25 | -1.72 | 0.01 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.27 | 0.14 | 0.01 | | Channel X + Input | 201.50 | -0.01 | -0.00 | | Channel X - Input | -197.98 | 0.37 | -0.18 | | Channel Y + Input | 2001.11 | -0.09 | -0.00 | | Channel Y + Input | 200.95 | -0.69 | -0.34 | | Channel Y - Input | -198.79 | -0.52 | 0.26 | | Channel Z + Input | 2001.32 | 0.19 | 0.01 | | Channel Z + Input | 200.32 | -1.11 | -0.55 | | Channel Z - Input | -199.90 | -1.46 | 0.74 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -1.25 | -2.37 | | | - 200 | 2.47 | 1.18 | | Channel Y | 200 | -13.29 | -13.42 | | | - 200 | 12.27 | 12.19 | | Channel Z | 200 | -9.08 | -9.03 | | | - 200 | 7.21 | 6.68 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec. | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | 4 | 3.50 | -3.56 | | Channel Y | 200 | 8.47 | - | 3.59 | | Channel Z | 200 | 9.31 | 6.86 | - | ## 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15957 | 15898 | | Channel Y | 15884 | 16568 | | Channel Z | 15879 | 14410 | ## 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.91 | -0.44 | 1.60 | 0.34 | | Channel Y | 0.05 | -0.80 | 0.98 | 0.40 | | Channel Z | -0.65 | -1.82 | 0.20 | 0.32 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | | | |-----------|----------------|------------------|--|--| | Channel X | 200 | 200 | | | | Channel Y | 200 | 200 | | | | Channel Z | 200 | 200 | | | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | |----------------|-------------------| | Supply (+ Vcc) | +7.9 | | Supply (- Vcc) | -7.6 | **9. Power Consumption** (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | | |----------------|-------------------|---------------|-------------------|--| | Supply (+ Vcc) | +0.01 | +6 | +14 | | | Supply (- Vcc) | -0.01 | -8 | -9 | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of
calibration certificates Accreditation No.: SCS 0108 Client Sporton Certificate No: EX3-3642 Apr20 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3642 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: April 29, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 660 | 27-Dec-19 (No. DAE4-660_Dec19) | Dec-20 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-19 (No. ES3-3013_Dec19) | Dec-20 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 30, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3642_Apr20 Page 2 of 21 EX3DV4 - SN:3642 April 29, 2020 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3642 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.31 | 0.32 | 0.38 | ± 10.1 % | | DCP (mV) ^B | 100.7 | 100.0 | 104.2 | | | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |--------|-----------------------------|---|---------|-----------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 146.0 | ± 3.8 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 160.4 | 1 | | | | | Z | 0.00 | 0.00 | 1.00 | 1 | 163.2 | ĺ | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 3.18 | 67.63 | 11.88 | 10.00 | 60.0 | ± 2.3 % | ± 9.6 % | | AAA | , , , | Y | 1.87 | 62.29 | 9.78 | 1 | 60.0 | | | | | | Z | 20.00 | 88.76 | 19.31 | 1 | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 2.83 | 69.49 | 11.47 | 6.99 | 80.0 | ± 1.7 % | ± 9.6 % | | AAA | 1 | Y | 1.78 | 64.64 | 9.30 |] | 80.0 | | | | | | Z | 20.00 | 90.82 | 18.95 |] | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 85.57 | 14.59 | 3.98 | 95.0 | ± 1.3 % | ± 9.6 % | | AAA | 1 | Y | 0.56 | 60.00 | 5.45 | | 95.0 | | | | | | Z | 20.00 | 95.34 | 19.55 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 84.54 | 12.91 | 2.22 | 120.0 | ± 1.3 % | ± 9.6 % | | AAA | | Υ | 0.34 | 60.00 | 3.70 | | 120.0 | | | | | | Z | 20.00 | 102.91 | 21.66 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 2.47 | 76.79 | 19.22 | 1.00 | 150.0 | ± 4.0 % | ± 9.6 % | | AAA | | Υ | 1.31 | 65.62 | 13.68 | | 150.0 | | | | | | Z | 1.74 | 68.72 | 15.96 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.37 | 71.48 | 17.86 | 0.00 | 150.0 | ± 1.0 % | ± 9.6 % | | AAA | | Y | 1.83 | 66.68 | 14.92 | | 150.0 | | | | | | Z | 2.27 | 69.32 | 16.49 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.77 | 71.68 | 19.54 | 3.01 | 150.0 | ± 0.8 % | ± 9.6 % | | AAA | | Υ | 2.63 | 68.97 | 17.92 | | 150.0 | | | | | | Z | 2.77 | 70.63 | 18.88 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.49 | 68.16 | 16.61 | 0.00 | 150.0 | ± 2.6 % | ± 9.6 % | | AAA | | Υ | 3.36 | 67.10 | 15.74 | | 150.0 | | | | | | Z | 3.41 | 67.21 | 15.88 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | Х | 4.64 | 66.27 | 16.08 | 0.00 | 150.0 | ± 5.0 % | ± 9.6 % | | AAA | | Υ | 4.65 | 65.71 | 15.64 | | 150.0 | | | | | | Z | 4.67 | 65.66 | 15.56 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 5). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3642 April 29, 2020 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3642 #### **Sensor Model Parameters** | | C1 | C2 | α | T1 | T2 | T3 | T4 | T5 | T6 | |---|------|--------|-----------------|--------|--------|------|-----------------|-----------------|------| | | fF | fF | V ⁻¹ | ms.V⁻² | ms.V⁻¹ | ms | V ⁻² | V ⁻¹ | | | X | 27.0 | 202.14 | 36.03 | 5.80 | 0.65 | 4.98 | 1.45 | 0.11 | 1.00 | | Υ | 34.0 | 264.38 | 38.07 | 6.45 | 0.86 | 5.03 | 0.00 | 0.51 | 1.01 |
| Z | 34.8 | 254.16 | 34.33 | 6.74 | 0.31 | 5.03 | 1.05 | 0.18 | 1.00 | #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 111.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Certificate No: EX3-3642_Apr20 Page 4 of 21 EX3DV4-SN:3642 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3642 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 8.90 | 8.90 | 8.90 | 0.56 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 8.73 | 8.73 | 8.73 | 0.37 | 0.96 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.49 | 8.49 | 8.49 | 0.43 | 0.85 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.14 | 8.14 | 8.14 | 0.51 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.89 | 7.89 | 7.89 | 0.27 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.75 | 7.75 | 7.75 | 0.39 | 0.86 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.66 | 7.66 | 7.66 | 0.36 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.38 | 7.38 | 7.38 | 0.36 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.11 | 7.11 | 7.11 | 0.39 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.95 | 6.95 | 6.95 | 0.41 | 0.90 | ± 12.0 % | | 3300 | 38.2 | 2.71 | 6.66 | 6.66 | 6.66 | 0.30 | 1.30 | ± 14.0 % | | 3500 | 37.9 | 2.91 | 6.60 | 6.60 | 6.60 | 0.30 | 1.30 | ± 14.0 % | | 3700 | 37.7 | 3.12 | 6.45 | 6.45 | 6.45 | 0.30 | 1.30 | ± 14.0 % | | 3900 | 37.5 | 3.32 | 6.19 | 6.19 | 6.19 | 0.30 | 1.50 | ± 14.0 % | | 4100 | 37.2 | 3.53 | 6.06 | 6.06 | 6.06 | 0.30 | 1.50 | ± 14.0 % | | 4400 | 36.9 | 3.84 | 5.98 | 5.98 | 5.98 | 0.40 | 1.60 | ± 14.0 % | | 4600 | 36.7 | 4.04 | 5.57 | 5.57 | 5.57 | 0.30 | 1.70 | ± 14.0 % | | 4800 | 36.4 | 4.25 | 5.38 | 5.38 | 5.38 | 0.30 | 1.80 | ± 14.0 % | | 4950 | 36.3 | 4.40 | 5.04 | 5.04 | 5.04 | 0.40 | 1.80 | ± 14.0 % | | 5250 | 35.9 | 4.40 | 4.43 | 4.43 | 4.43 | 0.40 | 1.80 | ± 14.0 % | | 5600 | 35.5 | 5.07 | 4.43 | 4.43 | 4.43 | 0.40 | 1.80 | ± 14.0 % | | 5750 | 35.5 | 5.07 | 4.19 | 4.19 | 4.19 | 0.40 | 1.80 | ± 14.0 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies fcr DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Auden Certificate No: EX3-7515_Oct19 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7515 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: October 22, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-19 (No. 217-02894) | Apr-20 | | DAE4 | SN: 660 | 07-Oct-19 (No. DAE4-660_Oct19) | Oct-20 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-18 (No. ES3-3013_Dec18) | Dec-19 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | Calibrated by: Name Michael Weber Function Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager Issued: October 22, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. • ConvF and Boundary Effect Parameters:
Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). EX3DV4 – SN:7515 October 22, 2019 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7515 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.42 | 0.51 | 0.45 | ± 10.1 % | | DCP (mV) ^B | 94.8 | 98.3 | 95.0 | | Calibration Results for Modulation Response | מוט | Communication System Name | | Α | В | С | D | VR | Max | Unc⁵ | |-----|---------------------------|---|-----|-------|-----|------|-------|--------|---------| | | | | dB | dB√μV | | dB | mV | dev. | (k=2) | | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 141.0 | ±2.2 % | ± 4.7 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 158.5 | | | | | | Z | 0.0 | 0.0 | 1.0 | | 145.1 | | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 5). E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:7515 October 22, 2019 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7515 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -5.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Certificate No: EX3-7515_Oct19 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7515 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 9.88 | 9.88 | 9.88 | 0.48 | 0.91 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.60 | 9.60 | 9.60 | 0.54 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.45 | 9.45 | 9.45 | 0.38 | 0.97 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.55 | 8.55 | 8.55 | 0.35 | 0.87 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.18 | 8.18 | 8.18 | 0.40 | 0.87 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.10 | 8.10 | 8.10 | 0.35 | 0.90 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.73 | 7.73 | 7.73 | 0.36 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.45 | 7.45 | 7.45 | 0.32 | 0.98 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.30 | 7.30 | 7.30 | 0.32 | 1.02 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 5.38 | 5.38 | 5.38 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.77 | 4.77 | 4.77 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.94 | 4.94 | 4.94 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance targer than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz