

Page: 1 of 133

SAR TEST REPORT

The following samples were submitted and identified on behalf of the client as:

Equipment Under TestTablet **Brand Name**HP

Model No. HSN-I07C Company Name HP Inc.

Company Address 3390 East Harmony Road Fort Collins, Colorado 80528

United States

Standards IEEE/ANSI C95.1-1992, IEEE 1528-2013,

KDB248227D01v02r02,KDB865664D01v01r04, KDB865664D02v01r02,KDB941225D01v03r01, KDB447498D01v06,KDB616217D04v01r02

FCC ID B94HNI07CWR2

Date of Receipt Nov. 11, 2016

Date of Test(s) Dec. 06, 2016 ~ Feb. 08, 2017

Date of Issue Feb. 16, 2017

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory or testing done by SGS Taiwan Electronic & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory in writing.

Signed on behalf of SGS	
Sr. Engineer	Supervisor
afor Chen	John Teh
Afu Chen	John Yeh
Date: Feb. 16, 2017	Date: Feb. 16, 2017

Page: 2 of 133

Revision History

Report Number	Revision	Description	Issue Date
EN/2016/B0010	Rev.00	Initial creation of document	Feb. 16, 2017

Page: 3 of 133

Contents

1. General Information	4
1.1 Testing Laboratory	
1.2 Details of Applicant	4
1.3 Description of EUT	5
1.4 Test Environment	12
1.5 Operation Description	12
1.6 Proximity sensor operation description	15
1.7 The SAR Measurement System	27
1.8 System Components	29
1.9 SAR System Verification	31
1.10 Tissue Simulant Fluid for the Frequency Band	33
1.11 Evaluation Procedures	35
1.12 Probe Calibration Procedures	36
1.13 Test Standards and Limits	39
2. Summary of Results	41
3. Simultaneous Transmission Analysis	46
3.1 Estimated SAR calculation	
3.2 SPLSR evaluation and analysis	48
4. Instruments List	63
5. Measurements	65
6. SAR System Performance Verification	
7. DAE & Probe Calibration Certificate	
8. Uncertainty Budget	
9. System Validation from Original Equipment Supplier	96

Page: 4 of 133

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. Electronics & Communication Laboratory					
1F, No 8, alley15, Lane120, Sec 1, NeiHu Road, NeiHu District, Taipei City 11446,					
Taiwan					
Tel	+886-2-2299-3279				
Fax +886-2-2298-0488					
Internet	http://www.tw.sgs.com/				

1.2 Details of Applicant

Company Name	HP Inc.
Company Address	3390 East Harmony Road Fort Collins, Colorado 80528 United States

Page: 5 of 133

1.3 Description of EUT

Equipment Under Test	Tablet						
Brand Name	HP						
Model No.	HSN-I07C						
Integrated Medula	WWAN	Brand Nam Model Nam					
Integrated Module	WLAN/BT	Brand Nam Model Nam		IGW			
Antenna type	PIFA						
Antenna Gain	-4.06dBi (for GPRS85 1.36dBi (for GPRS190						
FCC ID	B94HNI07CWR2						
Mada af Oxonolius	⊠GPRS ⊠EDGE ⊠	HSDPA	⊠HSU	JPA			
Mode of Operation	⊠HSPA+⊠GPS						
	GPRS		1/2 (1Dn4UP) 1/2.76 (1Dn3UP) 1/4.1 (1Dn2UP) 1/8.3 (1Dn1UP)				
Duty Cycle	EDGE		1/2 (1Dn4UP) 1/2.76 (1Dn3UP) 1/4.1 (1Dn2UP) 1/8.3 (1Dn1UP)				
	WCDMA			1			
	GPRS850		824	_	849		
TX Frequency Range	GPRS1900		1850	_	1910		
(MHz)	WCDMA Band II		1850	_	1910		
	WCDMA Band V		824	_	849		
	GPRS850		128	_	251		
Channel Number	GPRS1900		512		810		
(ARFCN)	WCDMA Band II		9262		9538		
	WCDMA Band V		4132	_	4233		

Page: 6 of 133

Max. SAR (1 g) (Unit: W/Kg)							
Band	Measured	Reported	Channel	Position			
GPRS 850	0.938	1.173	251	Back side			
GRPS 1900	0.988	1.282	810	Back side			
WCDMA Band II	1.290	1.401	9538	Back side			
WCDMA Band V	1.080	1.155	4132	Back side			

Page: 7 of 133

GPRS/EDGE conducted power table (Full power):

Burst average power							
Max. Rated Avg. Power + Max. Tolerance (dBm)			33.5	31.2	29.9	28.3	
			1Dn1UP	1Dn2UP	1Dn3UP	1Dn4UP	
EUT mode	de Frequency CH		Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	
GPRS	824.2	128	31.85	29.79	28.47	26.88	
850	836.6	190	31.65	29.57	28.26	26.67	
650	848.8		31.83	29.78	28.45	26.86	
		S	ource-based tim	e average power	er		
GPRS	824.2	128	22.82	23.77	24.21	23.87	
850	836.6	190	22.62	23.55	24.00	23.66	
650	848.8	251	22.80	23.76	24.19	23.85	
	The division factor compared to the number of TX time slot						
Division factor			1 TX time slot -9.03	2 TX time slot -6.02	3 TX time slot -4.26	4 TX time slot -3.01	

Burst average power							
Max. Rated Avg. Power + Max. Tolerance (dBm)			28	25.7	24.4	22.8	
			1Dn1UP	1Dn2UP	1Dn3UP	1Dn4UP	
EUT mode	Frequency (MHz)	CH	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	
EDGE	824.2	128	26.09	24.08	22.82	21.32	
850	836.6	190	26.06	23.97	22.62	21.19	
(MCS5)	848.8	251	26.03	24.03	22.74	21.31	
		S	ource-based tim	ne average powe	er		
EDGE	824.2	128	17.06	18.06	18.56	18.31	
850	836.6	190	17.03	17.95	18.36	18.18	
(MCS5)	848.8	251	17.00	18.01	18.48	18.30	
	The division factor compared to the number of TX time slot						
Div	ision factor		1 TX time slot	2 TX time slot	3 TX time slot	4 TX time slot	
	rision factor		-9.03	-6.02	-4.26	-3.01	

Page: 8 of 133

GPRS/EDGE conducted power table (Full power):

Burst average power							
Max. Rated Avg. Power + Max. Tolerance (dBm)			30.5	28.2	26.9	25.3	
			1Dn1UP	1Dn2UP	1Dn3UP	1Dn4UP	
EUT mode	Frequency CH		Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	
GPRS	1850.2	512	29.23	27.03	25.81	24.28	
1900	1880	661	29.17	27.04	25.79	24.30	
1900	1900 1909.8		29.11	26.99	25.75	24.26	
		S	ource-based tim	e average powe	er		
GPRS	1850.2	512	20.20	21.01	21.55	21.27	
1900	1880	661	20.14	21.02	21.53	21.29	
1900	1909.8	810	20.08	20.97	21.49	21.25	
	The division factor compared to the number of TX time slot						
Div	ision factor		1 TX time slot -9.03	2 TX time slot -6.02	3 TX time slot -4.26	4 TX time slot -3.01	

Burst average power						
Max. Rated Avg. Power + Max. Tolerance (dBm)			27	24.2	23.4	21.8
			1Dn1UP	1Dn2UP	1Dn3UP	1Dn4UP
EUT mode	Frequency	СН	Avg.	Avg.	Avg.	Avg.
LOT Mode	(MHz)	5	(dBm)	(dBm)	(dBm)	(dBm)
EDGE	1850.2	512	25.14	22.84	21.98	20.38
1900	1880	661	25.29	22.91	22.22	20.65
(MCS5)	1909.8	810	25.35	22.92	22.13	20.59
		S	ource-based tim	e average powe	er	
EDGE	1850.2	512	16.11	16.82	17.72	17.37
1900	1880	661	16.26	16.89	17.96	17.64
(MCS5)	1909.8	810	16.32	16.90	17.87	17.58
	The div	ision fa	actor compared	to the number of	f TX time slot	
Div	ision factor	•	1 TX time slot	2 TX time slot	3 TX time slot	4 TX time slot
	rision racion		-9.03	-6.02	-4.26	-3.01

Page: 9 of 133

GPRS conducted power table (Reduced power):

Burst average power						
Max. Rated Avg. Power + Max. Tolerance (dBm)			29	26.7	25.4	23.8
			1Dn1UP	1Dn2UP	1Dn3UP	1Dn4UP
EUT mode	Frequency (MHz)	CH	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)
GPRS	824.2	128	28.02	25.75	24.44	22.83
850	836.6	190	27.80	25.54	24.25	22.62
650	848.8		28.00	25.73	24.43	22.80
		S	ource-based tim	e average powe	er	
GPRS	824.2	128	18.99	19.73	20.18	19.82
850	836.6	190	18.77	19.52	19.99	19.61
650	848.8	251	18.97	19.71	20.17	19.79
	The division factor compared to the number of TX time slot					
Div	Division factor			2 TX time slot		4 TX time slot
			-9.03	-6.02	-4.26	-3.01

Burst average power							
Max. Rated Avg. Power + Max. Tolerance (dBm)			27.5	25.2	23.9	22.3	
			1Dn1UP	1Dn2UP	1Dn3UP	1Dn4UP	
EUT mode	Frequency (MHz)	СН	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	
CDDC	1850.2	512	26.20	24.03	22.78	21.18	
GPRS 1900	1880	661	26.22	24.07	22.76	21.15	
1900	1909.8	810	26.23	24.07	22.77	21.28	
		S	ource-based tim	e average powe	er		
GPRS	1850.2	512	17.17	18.01	18.52	18.17	
1900	1880	661	17.19	18.05	18.50	18.14	
1900	1909.8	810	17.20	18.05	18.51	18.27	
The division factor compared to the number of TX time slot							
Division factor			1 TX time slot -9.03	2 TX time slot -6.02	3 TX time slot -4.26	4 TX time slot -3.01	

Page: 10 of 133

WCDMA Band II / Band V - HSDPA / HSUPA / HSPA+ conducted power table (Full power)

(Full power)						
	Band	WCDMA II				
	TX Channel	9262	9400	9538		
F	requency (MHz)	1852.4	1880	1907.6		
Max. Rated Avg.	Power+Max. Tolerance (dBm)		24.50			
3GPP Rel 99	RMC 12.2Kbps	23.67	23.39	23.04		
Max. Rated Avg.	Power+Max. Tolerance (dBm)		23.50			
	HSDPA Subtest-1	23.08	22.86	22.72		
3GPP Rel 5	HSDPA Subtest-2	22.36	22.10	21.86		
SGFF NerS	HSDPA Subtest-3	22.17	21.92	21.62		
	HSDPA Subtest-4	21.89	21.65	21.52		
	HSUPA Subtest-1	22.59	22.34	22.10		
	HSUPA Subtest-2	23.08	22.81	22.57		
3GPP Rel 6	HSUPA Subtest-3	22.11	21.86	21.63		
	HSUPA Subtest-4	23.34	23.07	22.79		
	HSUPA Subtest-5	22.35	22.11	21.87		
3GPP Rel 7	HSPA+ Subtest-1	23.23	22.97	22.64		

	Band	WCDMA V			
	TX Channel	4132	4183	4233	
F	requency (MHz)	826.4	836.6	846.6	
Max. Rated Avg.	Power+Max. Tolerance (dBm)		24.50		
3GPP Rel 99	RMC 12.2Kbps	23.05	23.10	23.00	
Max. Rated Avg.	Power+Max. Tolerance (dBm)		23.50		
	HSDPA Subtest-1	22.80	22.86	22.72	
3GPP Rel 5	HSDPA Subtest-2	21.85	21.87	21.78	
SGFF NerS	HSDPA Subtest-3	21.61	21.63	21.53	
	HSDPA Subtest-4	21.55	21.56	21.51	
	HSUPA Subtest-1	22.07	22.11	22.01	
	HSUPA Subtest-2	22.53	22.57	22.46	
3GPP Rel 6	HSUPA Subtest-3	21.58	21.61	21.51	
	HSUPA Subtest-4		22.83	22.76	
	HSUPA Subtest-5	21.85	21.87	21.77	
3GPP Rel 7	HSPA+	22.74	22.75	22.71	

3GPP Rel 7

Report No.: EN/2016/B0010

Page: 11 of 133

WCDMA Band II / Band V - HSDPA / HSUPA / HSPA+ conducted power table

(Reduced power) Band WCDMA II TX Channel 9262 9400 9538 Frequency (MHz) 1852.4 1880 1907.6 Max. Rated Avg. Power+Max. Tolerance (dBm) 19.00 3GPP Rel 99 RMC 12.2Kbps 18.98 18.78 18.64 Max. Rated Avg. Power+Max. Tolerance (dBm) 19.00 **HSDPA Subtest-1** 18.56 18.82 18.58 **HSDPA Subtest-2** 18.92 18.57 18.56 3GPP Rel 5 **HSDPA Subtest-3** 18.93 18.63 18.64 **HSDPA Subtest-4** 18.91 18.65 18.63 HSUPA Subtest-1 17.79 17.84 18.06 **HSUPA Subtest-2** 18.42 18.45 18.54 3GPP Rel 6 **HSUPA Subtest-3** 18.16 18.00 18.14 **HSUPA Subtest-4** 18.24 17.84 18.00 **HSUPA Subtest-5** 18.90 18.60 18.60

HSPA+

18.76

18.51

18.54

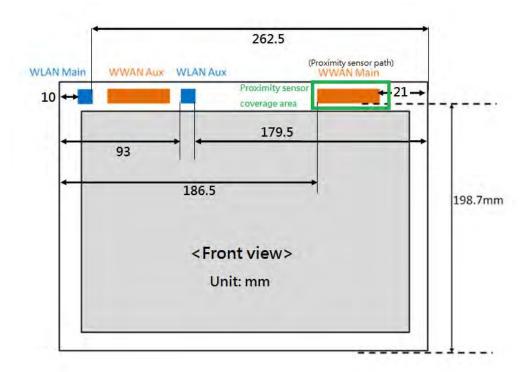
	Band	WCDMA V			
	TX Channel	4132	4183	4233	
F	requency (MHz)	826.4	836.6	846.6	
Max. Rated Avg.	Power+Max. Tolerance (dBm)		20.00		
3GPP Rel 99	RMC 12.2Kbps	19.71	19.74	19.60	
Max. Rated Avg.	Power+Max. Tolerance (dBm)		20.00		
	HSDPA Subtest-1	19.62	19.65	19.59	
3GPP Rel 5	HSDPA Subtest-2	19.63	19.59	19.52	
SGFF Ners	HSDPA Subtest-3	19.63	19.57	19.52	
	HSDPA Subtest-4	19.60	19.58	19.53	
	HSUPA Subtest-1	19.07	19.03	19.00	
	HSUPA Subtest-2	19.56	19.46	19.50	
3GPP Rel 6	HSUPA Subtest-3	19.06	19.07	19.00	
	HSUPA Subtest-4	19.02	19.05	18.95	
	HSUPA Subtest-5	19.60	19.60	19.50	
3GPP Rel 7	HSPA+	19.58	19.61	19.54	

Page: 12 of 133

1.4 Test Environment

Ambient Temperature: 22±2° C Tissue Simulating Liquid: 22±2° C

1.5 Operation Description


1. WWAN:

SAR is measured in the following configurations:

Configuration 1: back/top side_0mm with power reduction

Configuration 2: back/top side_10mm without power reduction

Configuration 3: right/left sides_0mm without power reduction

Antenna location

(The p-sensor is colocated with WWAN antenna)

Page: 13 of 133

2. WLAN

For WLAN, since the RF hardware/software of FCC ID: B94HNI07CWR2 is the same with that of FCC ID: PD98265NG, so the WLAN is refer to the WLAN SAR report of FCC ID: PD98265NG after verifying the worst cases of the WLAN SAR report.

Note:

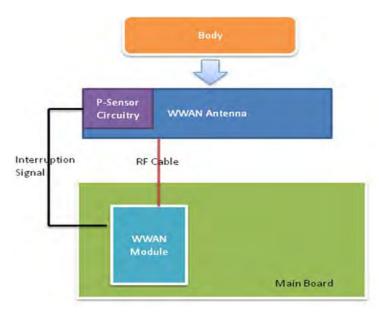
- The EUT is controlled by using a Radio Communication Tester (Anritsu MT8820C), and the communication between the EUT and the tester is established by air link.
- 2. Measurements are performed respectively on the lowest, middle and highest channels of the operating band(s). The EUT is set to maximum power level during all tests, and at the beginning of each test the battery is fully charged.
- During the SAR testing, the DASY 5 system checks power drift by comparing the e-field strength of one specific location measured at the beginning with that measured at the end of the SAR testing.
- 4. SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power. The data mode with highest specified time-averaged output power should be tested for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode. Since the maximum output power in a secondary mode (8-PSK EDGE) is ≤ 1/4 dB higher than the primary mode (GMSK GPRS/EDGE), SAR measurement is not required for the secondary mode (8-PSK EDGE).
- 5. The 3G SAR test reduction procedure is applied to HSDPA with 12.2 kbps RMC as the primary mode. Since the maximum output power in a secondary mode (HSDPA) is ≤ 1/4 dB higher than the primary mode (WCDMA), SAR measurement is not required for the secondary mode (HSDPA).
- 6. The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) with 12.2 kbps RMC as the primary mode. Since the maximum output power in a secondary mode (HSPA) is ≤ 1/4 dB higher than the primary mode (WCDMA), SAR measurement is not required for the secondary mode (HSPA).

Page: 14 of 133

7. The 3G SAR test reduction procedure is applied to (uplink) HSPA+ with 12.2 kbps RMC as the primary mode. Power is measured for HSPA+ that supports uplink 16 QAM according to configurations in Table C.11.1.4 of 3GPP TS 34.121-1 to determine SAR test reduction. Since the maximum output power in a secondary mode (HSPA+) is ≤ 1/4 dB higher than the primary mode (WCDMA), SAR measurement is not required for the secondary mode (HSPA+).

Table C.11.1.4: β values for transmitter characteristics tests with HS-DPCCH and E-DCH with 16QAM

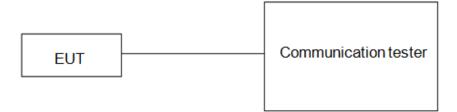
Sub- test	β _c (Note3)	β_d	β _{HS} (Note1)	βес	β _{ed} (2xSF2) (Note 4)	β _{ed} (2xSF4) (Note 4)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 4)	E-TFCI (Note 5)	E-TFCI (boost)
1	1	0	30/15	30/15	β_{ed} 1: 30/15 β_{ed} 2: 30/15	β _{ed} 3: 24/15 β _{ed} 4: 24/15	3.5	2.5	14	105	105
Note 1	Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .										
Note 2					ed on the relative		•		,0).		
Note 3	: DPD	CH is	not config	jured, the	refore the eta_c is s	et to 1 and β_d =	0 by defau	lt.			
Note 4	Note 4: β _{ed} can not be set directly; it is set by Absolute Grant Value.										
Note 5	Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E-										
	DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH configurations DPDCH is not allocated. The UE is signalled to use the extrapolation algorithm.										


- 8. According to **KDB447498D01v06**, testing of other required channels is not required when the reported 1-g SAR for the highest output channel is \leq 0.8 W/kg, when the transmission band is \leq 100 MHz.
- 9. According to KDB865664D01v01r04, SAR measurement variability must be assessed for each frequency band. When the original highest measured SAR is ≥ 0.8 W/kg, repeated that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit)

Page: 15 of 133

1.6 Proximity sensor operation description

The P-sensor being used to reduce output power is capacitive in which when the object such as human body, metal or plastic is being approached, the sensing capacitance would be increased with the antenna pad. Once the capacitance is accumulated, and reached over the threshold as set in MCU of the microchip, the interruption signal is pulled low (High state without trigger) and further inform modem module of the transmitter to make power reduction.



1.6.1 Proximity sensor measurement procedure

- 1. The proximity sensor is collocated with WWAN antenna.
- 2. Output power is measured, and monitored by using the communication tester. A RF cables with sufficient length was being attached from the antenna port of the module, and used for the measurement. The appropriate loss attenuated from cable is compensated in the communication tester.

Page: 16 of 133

1.6.2 Trigger distances for back/top side

Test procedure:

- 1. The entire back surface or edge of the tablet is positioned below a flat phantom filled with the required tissue equivalent medium and positioned at least 20 mm further than the distance that triggers power reduction.
- 2. The back surface or edge is moved toward the phantom in 3 mm steps until the sensor triggers.
- The back surface or edge is then moved back (further away) from the phantom until maximum output power is returned to the normal maximum level.
- 4. The back surface or edge is again moved toward the phantom, but in 1 mm steps, until it is at least 5 mm past the triggering point or touching the phantom
- 5. If the tablet is not touching the phantom, it is moved in 3 mm steps until it touches the phantom to confirm that the sensor remains triggered and the maximum power stays reduced.
- 6. The process is then reversed by moving the tablet away from the phantom to determine triggering release, until it is at least 10 mm beyond the point that triggers the return of normal maximum power.
- 7. The measured output power within ± 5 mm of the triggering points, or until the tablet is touching the phantom, for movements to and from the phantom should be tabulated.
- To ensure all production units are compliant, it is generally necessary to reduce the triggering distance determined from the triggering tests by 1 mm, or more if it is necessary, and use the smallest distance for

Page: 17 of 133

movements to and from the phantom, minus 1 mm, as the sensor triggering distance for determining the SAR measurement distance.

- 9. For back side, the trigger distance of proximity sensor is 11mm.
- 10. For top side, the trigger distance of proximity sensor is 12mm, and we perform the 1.6.3 tilt angle testing in next step.

Page: 18 of 133

1.6.3 Tilt angle testing

Test procedure:

- The influence of table tilt angles to proximity sensor triggering is determined by positioning each tablet edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance determined in sections 1.6.2 by rotating the tablet around the edge next to the phantom in ≤ 10 deg increments until the tablet is +/- 45deg or more from the vertical position at 0 deg.
- 2. If sensor triggering is released and normal maximum output power is restored within the +/- 45deg range, the procedures in step 1) should be repeated by reducing the tablet to phantom separation distance by 1 mm until the proximity sensor no longer releases triggering, and maximum output power remains in the reduced mode.
- The smallest separation distance determined in steps 1) and 2), minus 1
 mm, is the sensor triggering distance for tablet tilt coverage. The
 smallest separation distance determined in sections 1.6.2, 1.6.3 minus 1
 mm should be used in the SAR measurements.
- 4. The influence of tablet tilt angles to proximity sensor triggering is determined by positioning top and right sides, please refer to table 1.6.5 and 1.6.6.
- 5. After the tilt angle testing for top side, the sensor is not released during +/- 45deg, so 12-1=11mm, is the sensor triggering distance for tablet tilt coverage. The smallest separation distance minus 1 mm(11-1=10mm) should be used in the SAR measurements.

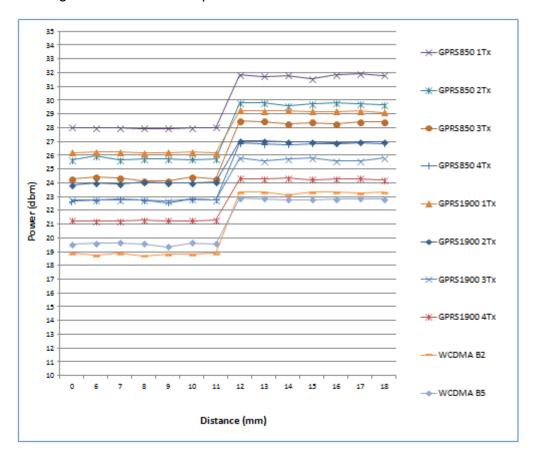
Page: 19 of 133

1.6.4 Proximity sensor coverage

The following procedures do not apply and are not required for configurations where the antenna and sensor are collocated and the peak SAR location is overlapping with the sensor.

Test procedure:

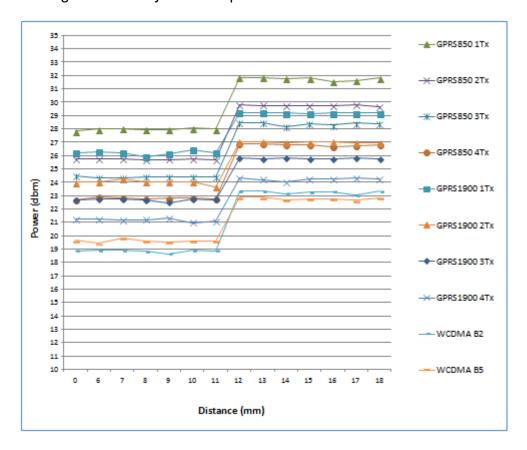
- The back surface or edges of the tablet is positioned at a test separation distance less than or equal to the distance required for back surface or edge triggering, with both the antenna and sensor pad located at least 20 mm laterally outside the edge (boundary) of the phantom, along the direction of maximum antenna and sensor offset.
- 2. The similar sequence of steps applied to determine sensor triggering distance in section 1.6.2 are used to verify back surface and edge sensor coverage by moving the tablet (sensor and antenna) horizontally toward the phantom while maintaining the same vertical separation between the back surface or edge and the phantom.
- 3. After the exact location where triggering of power reduction is determined, with respect to the sensor and antenna, the tablet movement should be continued, in 3 mm increments, until both the sensor and antenna(s) are fully under the phantom and at least 20 mm inside the phantom edge.
- 4. The process is then repeated from the other direction, at the opposite end of maximum antenna and sensor offset, by rotating the tablet 180 degrees.


Page: 20 of 133

1.6.5 Results

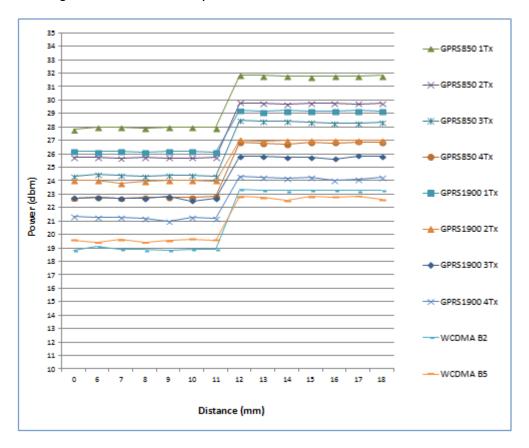
The measured output power within \pm 5 mm of the triggering points, or until the tablet is touching the phantom, for movements to and from the phantom is tabulated in the following.

Back side


Moving device toward the phantom

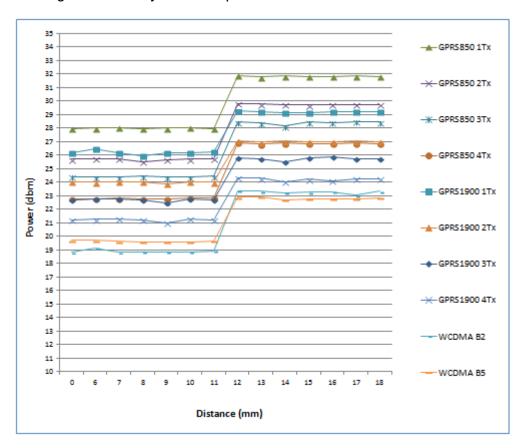
Page: 21 of 133

Moving device away from the phantom



Page: 22 of 133

Top side


Moving device toward the phantom

Page: 23 of 133

Moving device away from the phantom

For back side, the worst trigger distance of proximity sensor is 11mm, thus we test back side SAR in 10mm without power reduction and 0mm with power reduction.

Table 1.6.5 Tilt angle test results for top side

P-sensor	-50	-45	-40	-30	-20	-10	0	10	20	30	40	45	50
ON/OFF	deg												
12mm	ON												

During the tilt angle testing for top side, the sensor is not released in 12mm, so 12-1=11mm, is the sensor triggering distance for tablet tilt coverage. The smallest separation distance minus 1 mm(11-1=10mm) should be used in the SAR measurements for top side.

Page: 24 of 133

Note:

- 1. The triggering variations and hysteresis effect has been evaluated separately according to the tissue-equivalent medium required for each frequency band, and sensor triggering does not change with different tissue-equivalent media.
- 2. The default power level for sensor failure and malfunctioning, including all compliance concerns, has been addressed in the client's operation description (1.6.6) for the proximity sensor implementation to be acceptable.
- 3. Conducted power is monitored qualitatively to identify the general triggering characteristics and recorded quantitatively, versus spacing.

Page: 25 of 133

1.6.6 Operation description for P-sensor

Power Reduction Design Specification (for P-sensor)

The mechanism of power reduction is used only for WWAN. The reduced power for each technology/band is defined in Table1-1. With P-sensor mechanism, the GPRS/WCDMA default power when P-sensor failure or malfunction are show in Table1-2 as below.

Table 1-1: The power reduction scenario table

Band	Power Reduction
GPRS850	YES
GPRS1900	YES
WCDMA B2	YES
WCDMA B5	YES

Table1-2: The default maximum power when p-sensor failure or malfunction

Technology / Band	Mode	Default Maximum Power (dBm)
	Class 8	29
GPRS 850	Class 10	26.7
GPRS 850	Class 11	25.4
	Class 12	23.8
	Class 8	27.5
CDDC 1000	Class 10	25.2
GPRS 1900	Class 11	23.9
	Class 12	22.3

Page: 26 of 133

Technology / Band	Mode	Default Maximum Power (dBm)
	RMC 12.2K data	19
	HSDPA case 1	19
	HSDPA case 2	19
	HSDPA case 3	19
	HSDPA case 4	19
UMTS B2	HSUPA case 1	19
	HSUPA case 2	19
	HSUPA case 3	19
	HSUPA case 4	19
	HSUPA case 5	19
	HSPA+	19
	RMC 12.2K data	20
	HSDPA case 1	20
	HSDPA case 2	20
	HSDPA case 3	20
	HSDPA case 4	20
UMTS B5	HSUPA case 1	20
	HSUPA case 2	20
	HSUPA case 3	20
	HSUPA case 4	20
	HSUPA case 5	20
	HSPA+	20

Page: 27 of 133

1.7 The SAR Measurement System

A block diagram of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 5 professional system). The model EX3DV4 field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ ($|Ei|^2$)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY 5 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage intissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

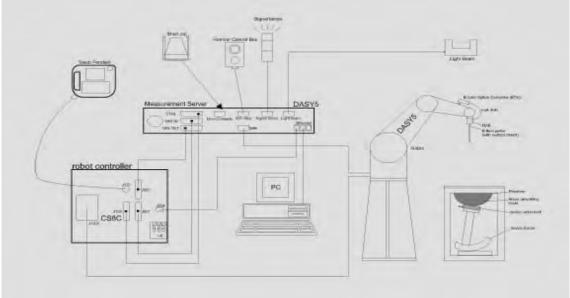


Fig. a The block diagram of SAR system

Page: 28 of 133

- 4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- 5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7. A computer operating Windows 7.
- 8. DASY 5 software.
- 9. Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 11. The device holder for handheld mobile phones.
- 12. Tissue simulating liquid mixed according to the given recipes.
- 13. Validation dipole kits allowing to validate the proper functioning of the system.

Page: 29 of 133

1.8 System Components

EX3DV4 E-Field Probe

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)				
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL 835/1900/2450/5300/5600 MHz Additional CF for other liquids and frequencies upon request				
Frequency	10 MHz to > 6 GHz				
Directivity	± 0.3 dB in HSL (rotation around probe as ± 0.5 dB in tissue material (rotation normal				
Dynamic	$10 \mu \text{W/g to} > 100 \text{mW/g}$				
Range	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)				
Dimensions	Tip diameter: 2.5 mm				
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.				

Page: 30 of 133

PHANTOM

INAITION						
Model	ELI					
Construction	The ELI phantom is used for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grid by teaching three points. The phantom is compatible with all SPEA dosimetric probes and dipoles.					
Shell Thickness	2 ± 0.2 mm					
Filling Volume	Approx. 30 liters					
Dimensions	Major axis: 600 mm Minor axis: 400 mm					

DEVICE HOLDER

Construction	The device holder (Supporter) for Notebook is made by POM (polyoxymethylene resin), which is non-metal and non-conductive. The height can be adjusted to fit varies kind of notebooks.	
		Device Holder

Page: 31 of 133

1.9 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 835/1900/2450/ 5300/ 5600 MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1 (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was 21.7°C, the relative humidity was 62% and the liquid depth above the ear reference points was \geq 15 cm \pm 5 mm (frequency \leq 3 GHz) or \geq 10 cm \pm 5 mm (frequency > 3 G Hz) in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

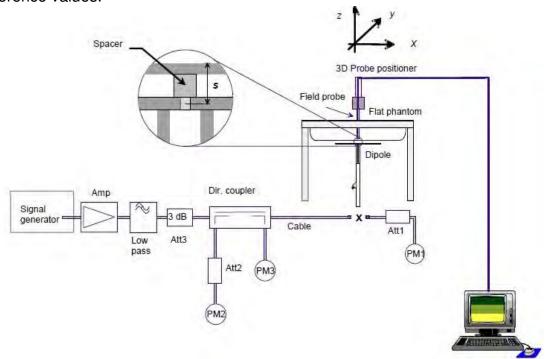


Fig. b The block diagram of system verification

Page: 32 of 133

Validation Kit	S/N	Frequ (Mł	-	1W Target SAR-1g (mW/g)	Measured SAR-1g (mW/g)	Measured SAR-1g normalized to 1W	Deviatio n (%)	Measured Date
D835V2	4d063	835	Body	9.57	2.4	9.6	0.31%	Dec. 09, 2016
D1900V2	5d027	1900	Body	39.7	10.1	40.4	1.76%	Dec. 06, 2016
D2450V2	727	2450	Body	49.6	13	52	4.84%	Feb. 08, 2016
D5GHzV2	1040	5300	Body	76.4	7.89	78.9	3.27%	Feb. 08, 2017
		5600	Body	78.4	8.14	81.4	3.83%	Feb. 08, 2017

Table 1. Results of system validation

Page: 33 of 133

1.10 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this body-simulant fluid were measured by using the Schmid & Partner Engineering AG Model DAKS-3.5 Dielectric Probe Kit in conjunction with Network Analyzer (30 KHz-6000 MHz).

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The measured conductivity and permittivity are all within \pm 5% of the target values.

Tissue Type	Measured Frequency (MHz)	Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, Er	Measured Conductivity, σ (S/m)	% dev εr	% dev σ	Measurement Date
	824.2	55.242	0.969	57.585	0.988	-4.24%	-1.94%	
	826.4	55.234	0.969	57.485	0.991	-4.08%	-2.24%	
	835	55.200	0.970	57.392	1.000	-3.97%	-3.09%	Dec. 09, 2016
	836.6	55.195	0.972	57.367	1.002	-3.93%	-3.09%	Dec. 09, 2010
	846.6	55.164	0.984	57.301	1.012	-3.87%	-2.82%	
	848.8	55.158	0.987	57.254	1.011	-3.80%	-2.43%	
	1850.2	53.300	1.520	53.309	1.536	-0.02%	-1.05%	
	1852.4	53.300	1.520	53.305	1.542	-0.01%	-1.45%	
	1880	53.300	1.520	53.212	1.566	0.17%	-3.03%	Dec. 06, 2016
Body	1900	53.300	1.520	53.166	1.584	0.25%	-4.21%	Dec. 00, 2010
	1907.6	53.300	1.520	53.140	1.594	0.30%	-4.87%	
	1909.8	53.300	1.520	53.135	1.593	0.31%	-4.80%	
	2437	52.717	1.938	51.637	1.988	2.05%	-2.60%	
	2450	52.700	1.950	51.614	2.003	2.06%	-2.72%	
	2480	52.662	1.993	51.545	2.040	2.12%	-2.36%	
	5270	48.919	5.381	47.592	5.585	2.71%	-3.79%	Feb .08, 2017
	5300	48.879	5.416	47.577	5.607	2.66%	-3.53%	
	5600	48.471	5.766	46.582	6.002	3.90%	-4.09%	
	5610	48.458	5.778	46.572	6.010	3.89%	-4.01%	

Table 2. Dielectric Parameters of Tissue Simulant Fluid

Page: 34 of 133

The composition of the body tissue simulating liquid:

				,		<u> </u>		
Frequency (MHz)	Mode		.					
		DGMBE	Water	Salt	Preventol D-7	Cellulose	Sugar	Total amount
850	Body	_	631.68 g	11.72 g	1.2 g	_	600 g	1.0L(Kg)
1900	Body	300.67 g	716.56 g	4.0 g	_	_	I	1.0L(Kg)
2450	Body	301.7ml	698.3ml	_	_	_	1	1.0L(Kg)

Simulating Liquids for 5 GHz, Manufactured by SPEAG:

Ingredients	Water	Esters, Emulsifiers, Inhibitors	Sodium and Salt
(% by weight)	60-80	20-40	0-1.5

Table 3. Recipes for Tissue Simulating Liquid

Page: 35 of 133

1.11 Evaluation Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measured volume of 30x30x30mm contains about 30g of tissue.

Page: 36 of 133

The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.12 Probe Calibration Procedures

For the calibration of E-field probes in lossy liquids, an electric field with an accurately known field strength must be produced within the measured liquid. For standardization purposes it would be desirable if all measurements which are necessary to assess the correct field strength would be traceable to standardized measurement procedures. In the following two different calibration techniques are summarized:

1.12.1 Transfer Calibration with Temperature Probes

In lossy liquids the specific absorption rate (SAR) is related both to the electric field (E) and the temperature gradient ($\delta T / \delta t$) in the liquid.

$$SAR = \frac{\sigma}{\rho} |E|^2 = c \frac{\delta T}{\delta t}$$

whereby σ is the conductivity, ρ the density and c the heat capacity of the liquid.

Hence, the electric field in lossy liquid can be measured indirectly by measuring the temperature gradient in the liquid. Non-disturbing temperature probes (optical probes or thermistor probes with resistive lines) with high spatial resolution (<1-2 mm) and fast reaction time (<1 s) are available and can be easily calibrated with high precision [1]. The setup and the exciting source have no influence on the calibration; only the relative positioning uncertainties of the standard temperature probe and the E-field probe to be calibrated must be considered. However, several problems limit the available accuracy of probe calibrations with temperature probes:

Page: 37 of 133

1.The temperature gradient is not directly measurable but must be evaluated from temperature measurements at different time steps. Special precaution is necessary to avoid measurement errors caused by temperature gradients due to energy equalizing effects or convection currents in the liquid. Such effects cannot be completely avoided, as the measured field itself destroys the thermal equilibrium in the liquid. With a careful setup these errors can be kept small.

- 2. The measured volume around the temperature probe is not well defined. It is difficult to calculate the energy transfer from a surrounding gradient temperature field into the probe. These effects must be considered, since temperature probes are calibrated in liquid with homogeneous temperatures. There is no traceable standard for temperature rise measurements.
- 3. The calibration depends on the assessment of the specific density, the heat capacity and the conductivity of the medium. While the specific density and heat capacity can be measured accurately with standardized procedures (~ 2% for c; much better for ρ), there is no standard for the measurement of the conductivity. Depending on the method and liquid, the error can well exceed $\pm 5\%$.
- 4. Temperature rise measurements are not very sensitive and therefore are often performed at a higher power level than the E-field measurements. The nonlinearities in the system (e.g., power measurements, different components, etc.) must be considered.

Considering these problems, the possible accuracy of the calibration of E-field probes with temperature gradient measurements in a carefully designed setup is about $\pm 10\%$ (RSS) [2]. Recently, a setup which is a combination of the waveguide techniques and the thermal measurements was presented in [3]. The estimated uncertainty of the setup is $\pm 5\%$ (RSS) when the same liquid is used for the calibration and for actual measurements and ± 7 -9% (RSS) when not, which is in good agreement with the estimates given in [2].

1.12.2 Calibration with Analytical Fields

In this method a technical setup is used in which the field can be calculated analytically from measurements of other physical magnitudes (e.g., input power). This corresponds to the standard field method for probe calibration in air; however, there is no standard defined for fields in lossy liquids.

When using calculated fields in lossy liquids for probe calibration, several points must be considered in the assessment of the uncertainty:

- 1. The setup must enable accurate determination of the incident power.
- 2. The accuracy of the calculated field strength will depend on the assessment of the dielectric parameters of the liquid.

Page: 38 of 133

3. Due to the small wavelength in liquids with high permittivity, even small setups might be above the resonant cutoff frequencies. The field distribution in the setup must be carefully checked for conformity with the theoretical field distribution.

References

- 1. N. Kuster, Q. Balzano, and J.C. Lin, Eds., *Mobile Communications Safety*, Chapman & Hall, London, 1997.
- 2. K. Meier, M. Burkhardt, T. Schmid, and N. Kuster, \Broadband calibration of E-field probes in lossy media", *IEEE Transactions on Microwave Theory and Techniques*, vol. 44, no. 10, pp. 1954{1962, Oct. 1996.
- 3. K. Jokela, P. Hyysalo, and L. Puranen, \Calibration of specific absorption rate (SAR) probes in waveguide at 900 MHz", *IEEE Transactions on Instrumentation and Measurements*, vol. 47, no. 2, pp. 432{438, Apr. 1998.

Page: 39 of 133

1.13 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1, By the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- 1. Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube).
- Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- 3. Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer

Page: 40 of 133

devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section. (Table 4.)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR (Brain)	1.60 W/kg	8.00 W/kg
Spatial Average SAR (Whole Body)	0.08 W/kg	0.40 W/kg
Spatial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 W/kg	20.00 W/kg

Table 4. RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Page: 41 of 133

2. Summary of Results

GPRS 850 (without power reduction)

Mode	Position	е	Distanc e CH (mm)		Max. Rated Avg. Power + Max. Tolerance (dBm)	Power	Scaling	Averaged 1 (W/	Plot page	
		(111111)			Toloranoc (abin)	(dBm)		Measured	Reported	
	Back side	10	128	824.2	29.9	28.47	39.00%	0.647	0.899	-
	Back side	10	190	836.6	29.9	28.26	45.88%	0.634	0.925	-
GPRS 850	Back side	10	251	848.8	29.9	28.45	39.64%	0.623	0.870	-
(1D3UP)	Top side	10	128	824.2	29.9	28.47	39.00%	0.256	0.356	-
	Right side	0	128	824.2	29.9	28.47	39.00%	0.282	0.392	-
	Left side	0	128	824.2	29.9	28.47	39.00%	0.043	0.060	-

GPRS 850 (with power reduction)

Mode	Position	Distanc Position e	СН	Freq.	Max. Rated Avg. Power + Max.	Avg.	Scaling	Averaged 1 (W/	Plot	
Widde	1 0010011	(mm)	5	(MHz)	Tolerance (dBm)	Power (dBm)	Power	Measured	Reported	page
	Back side	0	128	824.2	25.4	24.44	24.74%	0.668	0.833	-
0000000	Back side	0	190	836.6	25.4	24.25	30.32%	0.795	1.036	-
GPRS 850 (1D3UP)	Back side	0	251	848.8	25.4	24.43	25.03%	0.938	1.173	65
(.233.)	Back side*	0	251	848.8	25.4	24.43	25.03%	0.923	1.154	-
	Top side	0	128	824.2	25.4	24.44	24.74%	0.284	0.354	-

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 42 of 133

GPRS 1900 (without power reduction)

Mode	Position	Distanc e	СН	Freq.	Max. Rated Avg. Power + Max.	AVO		Averaged 1 (W/	Plot	
Wode	FOSILIOTT	(mm)	GIT	(MHz)	Tolerance (dBm)	Power (dBm) Scaling	Scaling	Measured	Reported	page
	Back side	10	512	1850.2	26.9	25.81	28.53%	0.414	0.532	-
GPRS 1900	Top side	10	512	1850.2	26.9	25.81	28.53%	0.369	0.474	-
(1D3UP)	Right side	0	512	1850.2	26.9	25.81	28.53%	0.044	0.057	-
	Left side	0	512	1850.2	26.9	25.81	28.53%	0.003	0.004	-

GPRS 1900 (with power reduction)

Mode	Position	Distanc e	СН	Freq.	Max. Rated Avg. Power + Max.	Measured Avg.	Scaling	Averaged 1 (W	g	Plot
Wode	1 03111011	(mm)	5	(MHz)	Tolerance (dBm)	Power (dBm)		Measured	Reported	page
	Back side	0	512	1850.2	23.9	22.78	29.42%	0.667	0.863	-
	Back side	0	661	1880	23.9	22.76	30.02%	0.715	0.930	-
0000 1000	Back side	0	810	1909.8	23.9	22.77	29.72%	0.988	1.282	66
GPRS 1900 (1D3UP)	Back side*	0	810	1909.8	23.9	22.77	29.72%	0.982	1.274	-
(15001)	Top side	0	512	1850.2	23.9	22.78	29.42%	0.698	0.903	-
	Top side	0	661	1880	23.9	22.76	30.02%	0.712	0.926	-
	Top side	0	810	1909.8	23.9	22.77	29.72%	0.734	0.952	-

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 43 of 133

WCDMA Band II (without power reduction)

Mode	Position	Distanc e (mm)	СН	(MHz) Tolerance (dBm) Power (W/kg)		g	Plot page			
		(111111)			Toloranoc (abin)	(dBm)		Measured	Reported	
	Back side	10	9262	1852.4	24.5	23.67	21.06%	0.642	0.777	-
WCDMA	Top side	10	9262	1852.4	24.5	23.67	21.06%	0.677	0.820	-
Band II	Right side	0	9262	1852.4	24.5	23.67	21.06%	0.061	0.074	-
	Left side	0	9262	1852.4	24.5	23.67	21.06%	0.004	0.005	-

WCDMA Band II (with power reduction)

Mode	Position	Position Distanc e (mm) CH Freq. (MHz) Max. Rated Avg. Power + Max. Tolerance (dBm) Measured Avg. Power (dBm)			Power + Max.	Avg.	Scaling	1	SAR over g /kg)	Plot page
				Measured	Reported					
	Back side	0	9262	1852.4	19	18.98	0.46%	1.160	1.165	-
	Back side	0	9400	1880.0	19	18.78	5.20%	1.180	1.241	-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Back side	0	9538	1907.6	19	18.64	8.64%	1.290	1.401	67
WCDMA Band II	Back side*	0	9538	1907.6	19	18.64	8.64%	1.250	1.358	-
Bana n	Top side	0	9262	1852.4	19	18.98	0.46%	0.849	0.853	-
	Top side	0	9400	1880.0	19	18.78	5.20%	0.951	1.000	-
_	Top side	0	9538	1907.6	19	18.64	8.64%	1.050	1.141	-

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 44 of 133

WCDMA Band V (without power reduction)

Mode	Position	Distanc e (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance (dBm)	Avg. Power	Scaling	Averaged SAR over 1g (W/kg) Measured Reported		Plot page
	Back side	10	4183	836.6	24.5	23.10	38.04%	0.423	0.584	-
WCDMA	Top side	10	4183	836.6	24.5	23.10	38.04%	0.160	0.221	-
Band V	Right side	0	4183	836.6	24.5	23.10	38.04%	0.231	0.319	-
F	Left side	0	4183	836.6	24.5	23.10	38.04%	0.043	0.060	-

WCDMA Band V (with power reduction)

Mode	Position	Distanc e (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance (dBm)	Avg. Power	Scaling	Scaling Averaged SAR over 1g (W/kg)		Plot page
		(11111)			Tolcrance (dBill)	(dBm)		Measured	Reported	
	Back side	0	4132	826.4	20	19.71	6.91%	1.140	1.219	68
MODIMA	Back side*	0	4132	826.4	20	19.71	6.91%	1.080	1.155	-
WCDMA Band V	Back side	0	4183	836.6	20	19.74	6.17%	0.853	0.906	-
Bana v	Back side	0	4233	846.6	20	19.60	9.65%	0.952	1.044	-
	Top side	0	4183	836.6	20	19.74	6.17%	0.253	0.269	-

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 45 of 133

In order to evaluate the simultaneous transmission SAR analysis based on the SAR data from both SAR reports(FCC ID: B94HNI07CWR2 & FCC ID: PD98265NG), we check the worst cases of WLAN SAR report in 2.4G and 5G respectively, such as the following shown.

WLAN SISO

Mode	Antenn	Position	Distance	СН	Freq.	Max. Rated Avg. Power +	Measured Avg.	Scaling	Averaged S (W/	AR over 1g /kg)	Plot
	а	FOSILION	(mm)	CH	(MHz)	Max. Tolerance (dBm)	Power (dBm)	Scaling	Measured	Reported	page
		Back side	0	6	2437	17.50	17.48	0.46%	0.229	0.230	69
	Main	Top side	0	6	2437	17.50	17.48	0.46%	0.108	0.108	70
WLAN802.11b		Left side	0	6	2437	17.50	17.48	0.46%	0.047	0.047	71
	Aux	Back side	0	6	2437	15.00	14.99	0.23%	0.599	0.600	-
	Aux	Top side	0	6	2437	15.00	14.99	0.23%	0.221	0.222	72
Bluetooth (GFSK)	Aux	Back side	0	78	2480	11.50	10.50	25.89%	0.185	0.233	-
Bidelootii (GFSK)	Aux	Top side	0	39	2480	11.50	10.50	25.89%	0.033	0.041	-
WLAN802.11n(40M) 5.3G		Back side	0	54	5270	13.50	13.48	0.46%	0.676	0.679	-
WLAN802.11ac(80M) 5.6G	Main	Top side	0	122	5610	13.50	13.47	0.69%	1.150	1.158	-
WLAN802.11n(40M) 5.3G		Left side	0	54	5270	13.50	13.48	0.46%	0.030	0.030	-
WLAN802.11ac(80M) 5.6G	Aux	Back side	0	122	5610	14.50	14.47	0.69%	0.556	0.560	-
WLAN802.11ac(80M) 5.6G	Aux	Top side	0	124	5620	14.50	14.47	0.69%	0.783	0.788	-

Page: 46 of 133

3. Simultaneous Transmission Analysis

Simultaneous Transmission Scenarios:

NO.	Simultaneous Transmit Configurations	Body
1	GPRS/EDGE + 2.4GHz WLAN Main / 2.4GHz WLAN Aux / 2.4GHz MIMO	YES
2	GPRS/EDGE + 5GHz WLAN Main / 5GHz WLAN Aux / 5GHz MIMO	YES
3	GPRS/EDGE + BT	YES
4	GPRS/EDGE + 2.4/5GHz WLAN Main + BT	YES
5	GPRS/EDGE + 5GHz MIMO + BT	YES
6	UMTS + 2.4GHz WLAN Main / 2.4GHz WLAN Aux / 2.4GHz MIMO	YES
7	UMTS + 5GHz WLAN Main / 5GHz WLAN Aux / 5GHz MIMO	YES
8	UMTS + BT	YES
9	UMTS + 2.4/5GHz WLAN Main + BT	YES
10	UMTS + 5GHz MIMO + BT	YES

Note:

- 1) WWAN and WLAN may transmit simultaneously.
- 2) Bluetooth and WLAN Aux share the same antenna path.
- 3) Bluetooth can transmit with WLAN Main simultaneously.
- 4) Bluetooth can transmit with 5GHz WLAN Main and 5GHz WLAN Aux simultaneously.

Page: 47 of 133

3.1 Estimated SAR calculation

According to KDB447498 D01 – When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

Estimated SAR =
$$\frac{\text{Max.tune up power(mW)}}{\text{Min.test separation distance(mm)}} \times \frac{\sqrt{f(GHz)}}{7.5}$$

If the minimum test separation distance is < 5mm, a distance of 5mm is used for estimated SAR calculation. When the test separation distance is >50mm, the 0.4W/kg is used for SAR-1g.

Mode / Band	Test position	test separation distance(mm)	Estimated SAR(W/kg)
WLAN Aux 2.4 / 5G	right / left	> 50mm	0.4
WLAN Main 2.4 / 5G	right	> 50mm	0.4
BT	right / left	> 50mm	0.4

Max highest reported 1-g SAR (0mm) and estimated SAR for WWAN & WLAN

Antenna	Band	High	est Reported [W/	d 1-g SAR (0 /kg]	Omm)
		Back	Тор	Right	Left
WLAN Main	2.4GHz	0.230	0.108	0.400	0.047
WLAN Main	5GHz	0.690	1.200	0.400	0.080
	2.4GHz	0.600	0.222	0.400	0.400
WLAN Aux	5GHz	1.160	0.940	0.400	0.400
	BT	0.290	0.060	0.400	0.400
	GPRS 850	1.173	0.354	0.392	0.060
WWAN	GPRS 1900	1.282	0.952	0.057	0.004
VVVVAIN	WCDMA Band II	1.290	1.050	0.074	0.005
	WCDMA Band V	1.219	0.269	0.319	0.060

Page: 48 of 133

3.2 SPLSR evaluation and analysis

Per KDB447498D01, when the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR sum to peak location separation ratio(SPLSR).

The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion.

The ratio is determined by $(SAR1 + SAR2)^1.5/Ri$, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

SAR1 and SAR2 are the highest reported or estimated SAR for each antenna in the pair, and Ri is the separation distance between the peak SAR locations for the antenna pair in mm.

When standalone test exclusion applies, SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna

Page: 49 of 133

Sum of the SAR for GPRS 850 + WLAN + Bluetooth

		Sir	multaneo	us Transr	mission S	cenario				
No.	Test Position	GPRS 850	2.40	GHz	5G	iHz	Bluetooth	ΣSAR 1g (W/kg)	SPLSR (Yes/No)	Figure
	1 OSILIOII	GPR5 650	Main	Aux	Main	Aux	Biuetootii	(W/Kg)	(103/110)	
		1.173	0.230	0.730	-	-	-	2.133	Yes	1
	Back side	1.173	0.230	-	-	-	0.290	1.693	Yes	2
	Dack Side	1.173	-	-	0.690	-	0.290	2.153	Yes	3
		1.173	-	-	0.690	1.160	0.290	3.313	Yes	4
		0.354	0.108	0.222	-	-	-	0.684	No	-
	Top side	0.354	0.108	-	-	-	0.060	0.522	No	-
	Top side	0.354	-	-	1.200	-	0.060	1.614	Yes	5
1~5		0.354	-	-	1.200	0.940	0.060	2.554	Yes	6
15		0.392	0.400	0.400	-	-	-	1.192	No	-
	Right side	0.392	0.400	-	-	-	0.400	1.192	No	-
	nigrit side	0.392	-	-	0.400	-	0.400	1.192	No	-
		0.392	-	-	0.400	0.400	0.400	1.592	No	-
		0.060	0.047	0.400	-	-	-	0.507	No	-
	Left side	0.060	0.047	-	-	-	0.400	0.507	No	-
	Len Side	0.060	-	-	0.080	-	0.400	0.540	No	-
		0.060	-	-	0.400	0.400	0.400	1.260	No	-

Sum of the SAR for GPRS 1900 + WLAN + Bluetooth

	.	S	imultaneo	us Transr	nission Sc	enario		E 0.4.D. 4	001.00	
No.	Test Position	GPRS 1900	2.40	GHz	5G	iHz	Bluetooth	Σ SAR 1g (W/kg)	SPLSR (Yes/No)	Figure
		Main Aux Main Aux	(11/119)	(100/110)						
		1.282	0.230	0.730	-	-	-	2.242	Yes	7
	Back side	1.282	0.230	-	-	1	0.290	1.802	Yes	8
	Dack Side	1.282	-	-	0.690	-	0.290	2.262	Yes	9
		1.282	1	-	0.690	1.160	0.290	3.422	Yes	10
		0.952	0.108	0.222	-	-	-	1.282	No	-
	Top side	0.952	0.108	-	-	-	0.060	1.120	No	-
	Top side	0.952	-	-	1.200	-	0.060	2.212	Yes	11
1~5		0.952	-	-	1.200	0.940	0.060	3.152	Yes	12
1~3		0.057	0.400	0.400	-	-	-	0.857	No	-
	Right side	0.057	0.400	-	-	-	0.400	0.857	No	-
	right side	0.057	-	-	0.400	-	0.400	0.857	No	-
		0.057	-	-	0.400	0.400	0.400	1.257	No	-
		0.004	0.047	0.400	-	-	-	0.451	No	-
	Left side	0.004	0.047	-	-	-	0.400	0.451	No	-
	Len Side	0.004	-	-	0.080	-	0.400	0.484	No	-
		0.004	-	-	0.400	0.400	0.400	1.204	No	-

Page: 50 of 133

Sum of the SAR for WCDMA Band II + WLAN + Bluetooth

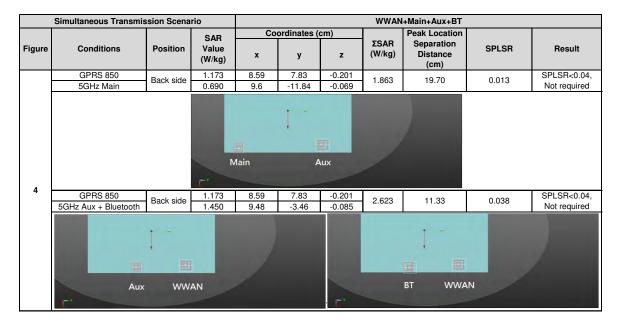
		S	imultaneo	us Transr	nission Sc	enario				
No.	Test Position	WCDMA Band II	2.40	GHz	5G	iHz	Bluetooth	Σ SAR 1g (W/kg)	SPLSR (Yes/No)	Figure
	1 00111011	WODINA Band III	Main	Aux	Main	Aux	Didelootii	(**/···g/	(100/110)	
		1.290	0.230	0.730	-	-	-	2.250	Yes	13
	Back side	1.290	0.230	-	-	-	0.290	1.810	Yes	14
	Dack Side	1.290	1	-	0.690	-	0.290	2.270	Yes	15
		1.290	ı	-	0.690	1.160	0.290	3.430	Yes	16
		1.050	0.108	0.222	-	-	-	1.380	No	-
	Top side	1.050	0.108	-	-	-	0.060	1.218	No	-
	Top side	1.050	-	-	1.200	-	0.060	2.310	Yes	17
6~10		1.050	ı	-	1.200	0.940	0.060	3.250	Yes	18
0.410		0.074	0.400	0.400	-	-	-	0.874	No	-
	Right side	0.074	0.400	-	-	-	0.400	0.874	No	-
	right side	0.074	1	-	0.400	-	0.400	0.874	No	-
		0.074	ı	-	0.400	0.400	0.400	1.274	No	-
		0.005	0.047	0.400	-	-	-	0.452	No	-
	Left side	0.005	0.047	-	-	-	0.400	0.452	No	-
	Len side	0.005	-	-	0.080	-	0.400	0.485	No	-
		0.005	-	-	0.400	0.400	0.400	1.205	No	-

Sum of the SAR for WCDMA Band V + WLAN + Bluetooth

	- .	S	imultaneo	us Transr	nission Sc	enario		E 0.4.D.4	001.00	
No.	Test Position	WCDMA Band	2.40	GHz	5G	iHz	Bluetooth	Σ SAR 1g (W/kg)	SPLSR (Yes/No)	Figure
		V	Main Aux Main Aux	(100/110)						
		1.219	0.230	0.730	-	1	1	2.179	No	19
	Back side	1.219	0.230	1	1	1	0.290	1.739	No	20
	Dack Side	1.219	1	-	0.690	-	0.290	2.199	No	21
		1.219	1	1	0.690	1.160	0.290	3.359	Yes	22
		0.269	0.108	0.222	-	-	-	0.599	No	-
	Top side	0.269	0.108	1	-	1	0.060	0.437	No	-
	Top side	0.269	-	-	1.200	-	0.060	1.529	No	-
6~10		0.269	ı	1	1.200	0.940	0.060	2.469	Yes	23
0.410		0.319	0.400	0.400	-	-	1	1.119	No	-
	Right side	0.319	0.400	1	-	1	0.400	1.119	No	-
	right side	0.319	1	-	0.400	-	0.400	1.119	No	-
		0.319	ı	1	0.400	0.400	0.400	1.519	No	-
		0.060	0.047	0.400	-	-	-	0.507	No	-
	Left side	0.060	0.047	-	-	-	0.400	0.507	No	-
	Len Side	0.060	-	-	0.080	-	0.400	0.540	No	-
		0.060	-	-	0.400	0.400	0.400	1.260	No	-

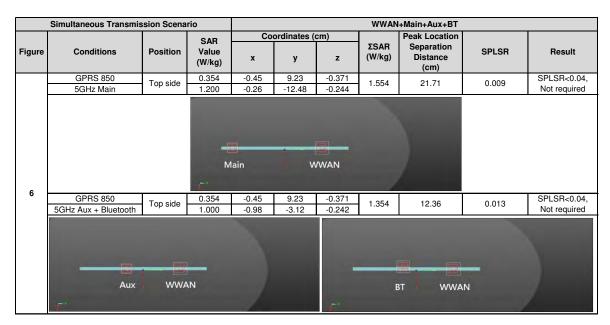
Page: 51 of 133

Figures


	Simultaneous Transmi	ssion Scena	rio				ww	N+Main+Aux		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	sition Value (W/kg) x y z (W/kg) Dis		Separation Distance (cm)	SPLSR	Result			
	GPRS 850	Back side	1.173	8.59	7.83	-0.201	1.403	19.31	0.009	SPLSR<0.04,
	2.4GHz Main	Dack side	0.230	9.38	-11.46	-0.092	1.400	19.51	0.009	Not required
1	GPRS 850	Ī		Main 8.59	1460	WAN -0.201	-			SPLSR<0.04,
	2.4GHz Aux	Back side	0.730	9.24	-3.6	-0.11	1.903	11.45	0.023	Not required
				Aus	-	WAN	7			

	Simultaneous Transmi	ssion Scena	rio				ww	AN+Main+BT		
			SAR	Co	ordinates (cm)	ΣSAR	Peak Location		
Figure	Conditions	Position	Value (W/kg)	x	у	z	(W/kg)	Separation Distance (cm)	SPLSR	Result
	GPRS 850	Back side	1.173	8.59	7.83	-0.201	1.403	19.31	0.009	SPLSR<0.04,
	2.4GHz Main	Dack side	0.230	9.38	-11.46	-0.092	1.400	15.51	0.005	Not required
2			- '	Main	w	WAN	7			
_	GPRS 850 Bluetooth	Back side	1.173 0.290	8.59 9.48	7.83 -3.46	-0.201 -0.085	1.463	11.33	0.016	SPLSR<0.04, Not required
			-	BT	-	WAN				

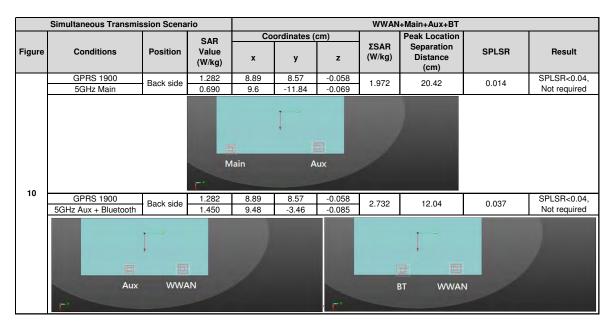
Page: 52 of 133


	Simultaneous Transmis	ssion Scena	rio				WWA	N+Main+Aux		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	х	у	z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	GPRS 850	Back side	1.173	8.59	7.83	-0.201	1.863	19.70	0.013	SPLSR<0.04,
	5GHz Main	Buon oldo	0.690	9.6	-11.84	-0.069	1.000	10.70	0.0.0	Not required
3	GPRS 850 Bluetooth	Back side	_	Main 8.59 9.48	- 2	-0.201 -0.085	1.463	11.33	0.016	SPLSR<0.04, Not required
			F'	ВТ	100	WAN				

Page: 53 of 133

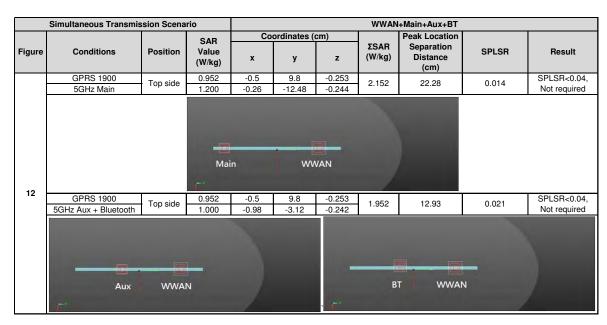
	Simultaneous Transmis	sion Scena	rio				WW.	AN+Main+BT		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	x	у	z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	GPRS 850	Top side	0.354	-0.45	9.23	-0.371	1.554	21.71	0.009	SPLSR<0.04,
	5GHz Main	1 op side	1.200	-0.26	-12.48	-0.244	1.004	21.71	0.000	Not required
5	GPRS 850 Bluetooth	Top side	0.354 0.060	-0.45 -0.98		-0.371 -0.242	0.414	12.36	0.002	SPLSR<0.04, Not required
			_	ВТ		WAN				

Page: 54 of 133


	Simultaneous Transmis	ssion Scena	rio				WWA	N+Main+Aux		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	x y z		z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	GPRS 1900	Back side	1.282	8.89	8.57	-0.058	1.512	20.04	0.009	SPLSR<0.04,
	2.4GHz Main	Buoit oldo	0.230	9.38	-11.46	-0.092	1.0.2	20.01	0.000	Not required
7	GPRS 1900	Bady side		Main		/WAN	0.010	10.10	0.000	SPLSR<0.04,
	2.4GHz Aux	Back side	0.730	9.24	-3.6	-0.11	2.012	12.18	0.023	Not required
				Au	77	WAN				

	Simultaneous Transmis	rio				WW	AN+Main+BT			
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	x	у	z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	GPRS 1900	Back side	1.282	8.89	8.57	-0.058	1.512	20.04	0.009	SPLSR<0.04,
	2.4GHz Main	Duoit side	0.230	9.38	-11.46	-0.092	1.012	20.04	0.000	Not required
8	GPRS 1900	I		Main	12.00	WAN -0.058	/			SPLSR<0.04,
	Bluetooth	Back side	0.290	9.48	-3.46	-0.085	1.572	12.04	0.016	Not required
			-	BT	No.	/AN				

Page: 55 of 133


	Simultaneous Transmi	ssion Scena	rio				WWA	AN+Main+Aux		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	x	у	z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	GPRS 1900	Back side	1.282	8.89	8.57	-0.058	1.972	20.42	0.014	SPLSR<0.04,
	5GHz Main	Dack side	0.690	9.6	-11.84	-0.069	1.572	20.42	0.014	Not required
9	GPRS 1900 Bluetooth	Back side	1.282 0.290	8.89 9.48		-0.058 -0.085	1.572	12.04	0.016	SPLSR<0.04, Not required
				BT	12.0	VAN	/			

Page: 56 of 133

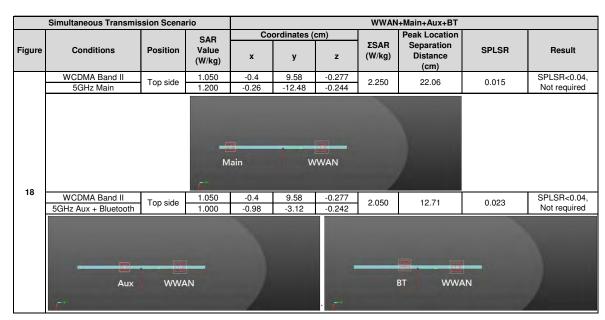
	Simultaneous Transmis	ssion Scena	rio				ww	AN+Main+BT		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	x	у	z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	GPRS 1900	Top side	0.952	-0.5	9.8	-0.253	2.152	22.28	0.014	SPLSR<0.04,
	5GHz Main	Top side	1.200	-0.26	-12.48	-0.244	2.102	22.20	0.014	Not required
11	GPRS 1900 Bluetooth	Top side	Mai 0.952 0.060	n -0.5 -0.98		-0.253 -0.242	1.012	12.93	0.008	SPLSR<0.04, Not required
			<u> </u>	BT		VAN				

Page: 57 of 133

	Simultaneous Transmis	sion Scena	rio				WWA	N+Main+Aux		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	x	у	z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	WCDMA Band II	Back side	1.290	9.05	8.72	-0.121	1.520	20.18	0.009	SPLSR<0.04,
	2.4GHz Main	Dack side	0.230	9.38	-11.46	-0.092	1.520	20.10	0.009	Not required
13	WCDMA Band II	Back side	The state of the s	Main 9.05	1180	/WAN	2.020	12.32	0.023	SPLSR<0.04,
	2.4GHz Aux	Back side	0.730	9.24	-3.6	-0.11	2.020	12.32	0.023	Not required

	Simultaneous Transmis	ssion Scena	rio				WW.	AN+Main+BT		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	х	у	z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	WCDMA Band II	Back side	1.290	9.05	8.72	-0.121	1.520	20.18	0.009	SPLSR<0.04,
	2.4GHz Main	Dack side	0.230	9.38	-11.46	-0.092	1.520	20.10	0.003	Not required
14	WCDMA Band II	Dook side		Main 9.05	110.00	WAN -0.121	1.500	10.10	0.016	SPLSR<0.04,
	Bluetooth	Back side	0.290	9.48	-3.46	-0.085	1.580	12.19	0.016	Not required
	Billetooth 0.290 9.48 -3.46 -0.085									

Page: 58 of 133

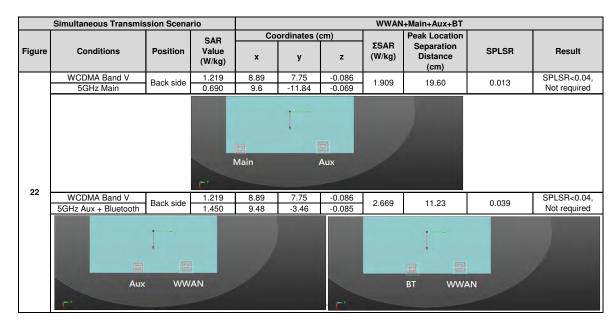

	Simultaneous Transmis	sion Scena	rio				WW	N+Main+Aux		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	x	у	z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	WCDMA Band II	Back side	1.290	9.05	8.72	-0.121	1.980	20.57	0.014	SPLSR<0.04,
	5GHz Main	Dack side	0.690	9.6	-11.84	-0.069	1.960	20.37	0.014	Not required
15	WCDMA Band II	Back side	1.290	9.05	8.72	-0.121	1.580	12.19	0.016	SPLSR<0.04,
	WCDMA Band II Back side 1.290 9.05 8.72 -0.121 1.580 12.19									Not required

	Simultaneous Transmis	rio				WWAN	l+Main+Aux+BT			
Figure	Conditions	Position	SAR Value (W/kg)	Co x	ordinates (cm)	ΣSAR (W/kg)	Peak Location Separation Distance (cm)	SPLSR	Result
	WCDMA Band II 5GHz Main	Back side	1.290 0.690	9.05 9.6	8.72 -11.84	-0.121 -0.069	1.980	20.57	0.014	SPLSR<0.04, Not required
16	WCDMA Band II	Back side	1.290	ain 9.05	100	-0.121	2.740	12.19	0.037	SPLSR<0.04,
	5GHz Aux + Bluetooth Back Side 1.450 9.48 Aux WWAN					-0.085		ET WWAN		Not required

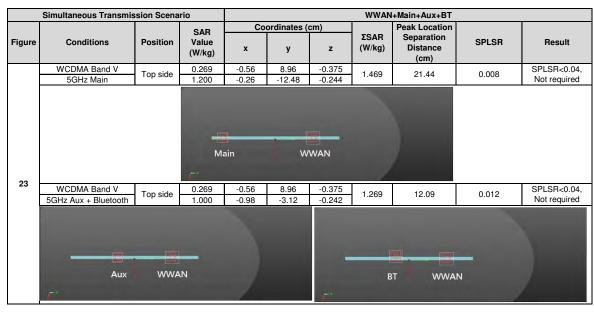
Page: 59 of 133

	Simultaneous Transmis	sion Scena	rio				WW.	AN+Main+BT		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	x	у	z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	WCDMA Band II	Top side	1.050	-0.4	9.58	-0.277	2.250	22.06	0.015	SPLSR<0.04,
	5GHz Main	1 op side	1.200	-0.26	-12.48	-0.244	2.200	22.00	0.010	Not required
17			Ma	7.07	W	wan				
	WCDMA Band II Bluetooth	Top side	1.050 0.060	-0.4 -0.98	9.58 -3.12	-0.277 -0.242	1.110	12.71	0.009	SPLSR<0.04, Not required
	BT WWAN									

Page: 60 of 133


	Simultaneous Transmis	sion Scena	rio				WWA	AN+Main+Aux		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	х	у	z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	WCDMA Band V	Back side	1.219	8.89	7.75	-0.086	1.449	19.22	0.009	SPLSR<0.04,
	2.4GHz Main	Dack side	0.230	9.38	-11.46	-0.092	1.443	19.22	0.009	Not required
19	WCDMA Band V		1.219	Main	100	VWAN				SPLSR<0.04,
	2.4GHz Aux	Back side	0.730	9.24	-3.6	-0.11	1.949	11.36	0.024	Not required
	2.4GHZ AUX 0.730 9.24 -3.6 -0.11 Aux WWAN									

	Simultaneous Transmis	sion Scena	rio				ww	AN+Main+BT		
			SAR	Co	ordinates (cm)	ΣSAR	Peak Location		
Figure	Conditions	Position	Value (W/kg)	x	у	z	(W/kg)	Separation Distance (cm)	SPLSR	Result
	WCDMA Band V	Back side	1.219	8.89	7.75	-0.086	1.449	19.22	0.009	SPLSR<0.04,
	2.4GHz Main	Baoil Glas	0.230	9.38	-11.46	-0.092		10.22	0.000	Not required
20			F*	Main	W	/WAN				
20	WCDMA Band V Bluetooth	Back side	1.219 0.290	8.89 9.48	7.75 -3.46	-0.086 -0.085	1.509	11.23	0.017	SPLSR<0.04, Not required
				ВТ		WAN	,			


Page: 61 of 133

	Simultaneous Transmis	sion Scena	rio				WW	AN+Main+Aux		
			SAR	Co	ordinates (cm)		Peak Location		
Figure	Conditions	Position	Value (W/kg)	х	у	z	ΣSAR (W/kg)	Separation Distance (cm)	SPLSR	Result
	WCDMA Band V	Back side	1.219	8.89	7.75	-0.086	1.909	19.60	0.013	SPLSR<0.04,
	5GHz Main	Dack side	0.690	9.6	-11.84	-0.069	1.505	19.00	0.013	Not required
21	WCDMA Band V	Back side	1.219	Main 8.89	7.75	Aux	1.509	11.23	0.017	SPLSR<0.04,
	Bluetooth	Dack Side	0.290	9.48	-3.46	-0.085	1.509	11.23	0.017	Not required
	BT WWAN									

Page: 62 of 133

Page: 63 of 133

4. Instruments List

Manufacturer	Device	Туре	Serial number	Date of last calibration	Date of next calibration							
Schmid & Partner Engineering AG	Dosimetric E-Field Probe	EX3DV4	3770	Apr.27,2016	Apr.26,2017							
		D835V2	4d063	Aug.25,2016	Aug.24,2017							
Schmid & Partner	System Validation Dipole	D1900V2	5d027	Apr.25,2016	Apr.24,2017							
Engineering AG		D2450V2	727	Apr.19,2016	Apr.18,2017							
		D5GHzV2	1040	Jun.17,2016	Jun.16,2017							
Schmid & Partner Engineering AG	Data acquisition Electronics	DAE4	856	Apr.21,2016	Apr.20,2017							
Schmid & Partner Engineering AG	Software	DASY 52 V52.8.8	N/A	Calibration not required	Calibration not required							
Schmid & Partner Engineering AG	Phantom	ELI	N/A	Calibration not required	Calibration not required							
Schmid & Partner Engineering AG	Vector Network Analyzer and Vector Reflect meter	DAKS VNA R140	0170813	Mar.23,2016	Mar.22,2017							
Schmid & Partner Engineering AG	Dielectric Probe Kit	DAKS-3.5	0004	Mar.23,2016	Mar.22,2017							
Agilent	Dual-directional	772D	MY46151242	Jul.11,2016	Jul.10,2017							
Agnerit	coupler	778D	MY48220468	Jul.06,2016	Jul.05,2017							
Agilent	RF Signal Generator	N5181A	MY50145142	Feb.19,2016	Feb.18,2017							
Agilent	Power Meter	E4417A	MY52240003	Oct.17,2016	Oct.16,2017							

Page: 64 of 133

Manufacturer	Device	Туре	Serial number	Date of last calibration	Date of next calibration
Agilent	Power Sensor	E9301H	MY52200003	Oct.17,2016	Oct.16,2017
Agileni	rower Serisor		MY52200004	Oct.17,2016	Oct.16,2017
TECPEL	Digital thermometer	DTM-303A	TP130073	Feb.26,2016	Feb.25,2017
Anritsu	Radio Communication Test	MT8820C	6201061049	Apr.08,2016	Apr.07,2017

Page: 65 of 133

5. Measurements

Date: 2016/12/9

GPRS 850_Body_Back side_CH 251_0mm

Communication System: GPRS (1Dn3Up); Frequency: 848.8 MHz; Duty Cycle: 1:2.76 Medium parameters used: f = 849 MHz; $\sigma = 1.011 \text{ S/m}$; $\epsilon_r = 57.254$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.2°C; Liquid temperature: 21.9°C

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(9.3, 9.3, 9.3); Calibrated: 2016/4/27;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

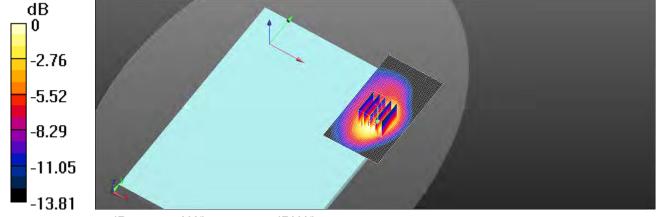
Electronics: DAE4 Sn856; Calibrated: 2016/4/21

Phantom: Body

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (51x91x1): Interpolated grid: dx=15 mm, dy=15 mm Maximum value of SAR (interpolated) = 1.28 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 2.657 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.938 W/kg; SAR(10 g) = 0.551 W/kg

Maximum value of SAR (measured) = 1.23 W/kg

0 dB = 1.23 W/kg = 0.90 dBW/kg

Page: 66 of 133

Date: 2016/12/6

GPRS 1900 Body Back side CH 810 0mm

Communication System: GPRS (1Dn3Up); Frequency: 1909.8 MHz; Duty Cycle: 1:2.76 Medium parameters used: f = 1910 MHz; $\sigma = 1.593 \text{ S/m}$; $\epsilon_r = 53.135$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

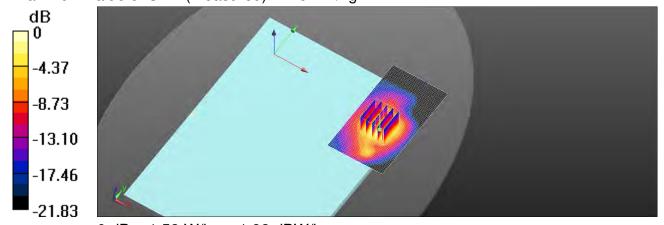
Ambient temperature: 22.1°C; Liquid temperature: 21.8°C

DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(7.71, 7.71, 7.71); Calibrated: 2016/4/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2016/4/21
- Phantom: Body
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (51x91x1): Interpolated grid: dx=15 mm, dy=15 mm Maximum value of SAR (interpolated) = 1.30 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 3.476 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.94 W/kg

SAR(1 g) = 0.988 W/kg; SAR(10 g) = 0.480 W/kg

Maximum value of SAR (measured) = 1.52 W/kg

0 dB = 1.52 W/kg = 1.82 dBW/kg

Page: 67 of 133

Date: 2016/12/6

WCDMA Band II Body Back side CH 9538 0mm

Communication System: WCDMA; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1908 MHz; $\sigma = 1.594$ S/m; $\varepsilon_r = 53.14$; $\rho = 1000$ kg/m³

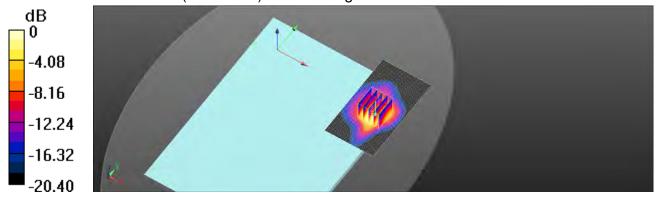
Phantom section: Flat Section

Ambient temperature: 22.1°C; Liquid temperature: 21.8°C

DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(7.71, 7.71, 7.71); Calibrated: 2016/4/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2016/4/21
- Phantom: Body
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (51x91x1): Interpolated grid: dx=15 mm, dy=15 mm Maximum value of SAR (interpolated) = 2.31 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 2.562 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 2.65 W/kg

SAR(1 g) = 1.29 W/kg; SAR(10 g) = 0.633 W/kg Maximum value of SAR (measured) = 1.79 W/kg

0 dB = 1.79 W/kg = 2.53 dBW/kg

Page: 68 of 133

Date: 2016/12/9

WCDMA Band V Body Back side CH 4132 0mm

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium parameters used: f = 826.4 MHz; $\sigma = 0.991 \text{ S/m}$; $\epsilon_r = 57.485$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.2°C; Liquid temperature: 21.9°C

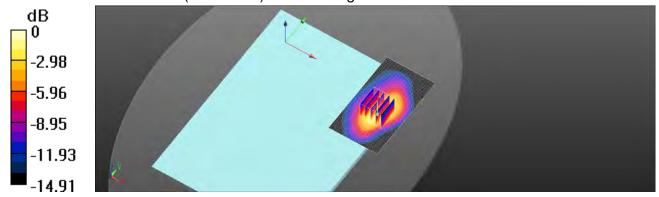
DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(9.3, 9.3, 9.3); Calibrated: 2016/4/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2016/4/21
- Phantom: Body
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (51x91x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 1.42 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 3.161 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.92 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.655 W/kg

Maximum value of SAR (measured) = 1.53 W/kg

0 dB = 1.53 W/kg = 1.85 dBW/kg

Page: 69 of 133

Date: 2017/2/8

WLAN 802.11b_Body_Back side_CH 6_Main_0mm

Communication System: WLAN 2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.988 \text{ S/m}$; $\epsilon r = 51.637$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 21.9°C; Liquid temperature: 22.2°C

DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(7.37, 7.37, 7.37); Calibrated: 2016/4/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2016/4/21
- Phantom: Body
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (51x111x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.387 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 1.895 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.595 W/kg

SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.088 W/kg

Maximum value of SAR (measured) = 0.364 W/kg

0 dB = 0.364 W/kg = -4.39 dBW/kg

Page: 70 of 133

Date: 2017/2/8

WLAN 802.11b Body Top side CH 6 Main 0mm

Communication System: WLAN 2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.988 \text{ S/m}$; $\epsilon r = 51.637$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 21.9°C; Liquid temperature: 22.2°C

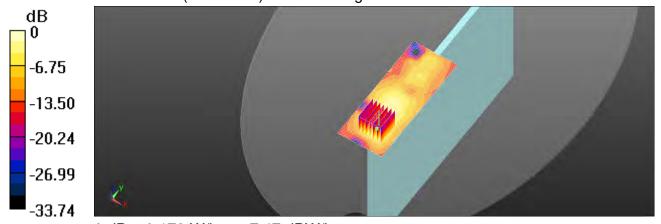
DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(7.37, 7.37, 7.37); Calibrated: 2016/4/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2016/4/21
- Phantom: Body
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (51x131x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.187 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 2.225 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.240 W/kg

SAR(1 g) = 0.108 W/kg; SAR(10 g) = 0.047 W/kg

Maximum value of SAR (measured) = 0.179 W/kg

0 dB = 0.179 W/kg = -7.47 dBW/kg

Page: 71 of 133

Date: 2017/2/8

WLAN 802.11b_Body_Left side_CH 6_Main_0mm

Communication System: WLAN 2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.988 \text{ S/m}$; $\epsilon r = 51.637$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 21.9°C; Liquid temperature: 22.2°C

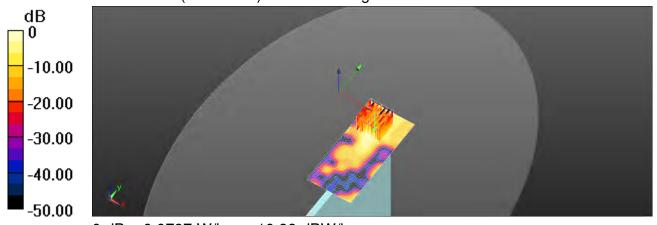
DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(7.37, 7.37, 7.37); Calibrated: 2016/4/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2016/4/21
- Phantom: Body
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (51x111x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.0745 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 2.824 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.124 W/kg

SAR(1 g) = 0.047 W/kg; SAR(10 g) = 0.017 W/kg

Maximum value of SAR (measured) = 0.0797 W/kg

0 dB = 0.0797 W/kg = -10.99 dBW/kg

Page: 72 of 133

Date: 2017/2/8

WLAN 802.11b Body Top side CH 6 Aux 0mm

Communication System: WLAN 2.45G; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.988 \text{ S/m}$; $\epsilon r = 51.637$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 21.9°C; Liquid temperature: 22.2°C

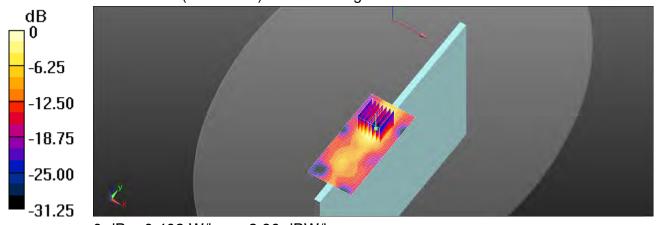
DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(7.37, 7.37, 7.37); Calibrated: 2016/4/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2016/4/21
- Phantom: Body
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (51x111x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.380 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 7.362 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.586 W/kg

SAR(1 g) = 0.221 W/kg; SAR(10 g) = 0.082 W/kg

Maximum value of SAR (measured) = 0.402 W/kg

0 dB = 0.402 W/kg = -3.96 dBW/kg

Page: 73 of 133

6. SAR System Performance Verification

Date: 2016/12/9

Dipole 835 MHz SN:4d063

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 1 \text{ S/m}$; $\epsilon_r = 57.392$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.2°C; Liquid temperature: 21.9°C

DASY5 Configuration:

• Probe: EX3DV4 - SN3770; ConvF(9.3, 9.3, 9.3); Calibrated: 2016/4/27;

Sensor-Surface: 2mm (Mechanical Surface Detection)

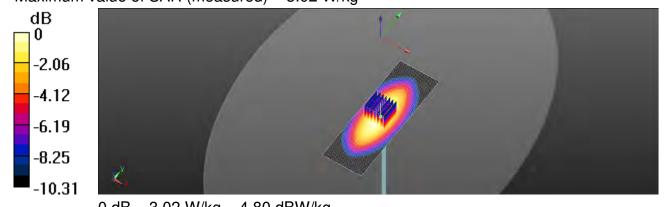
Electronics: DAE4 Sn856; Calibrated: 2016/4/21

Phantom: Body

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=250mW/Area Scan (41x121x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 3.02 W/kg


Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.06 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kgMaximum value of SAR (measured) = 3.02 W/kg

0 dB = 3.02 W/kg = 4.80 dBW/kg

Page: 74 of 133

Date: 2016/12/6

Dipole 1900 MHz SN:5d027

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.584 \text{ S/m}$; $\varepsilon_r = 53.166$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

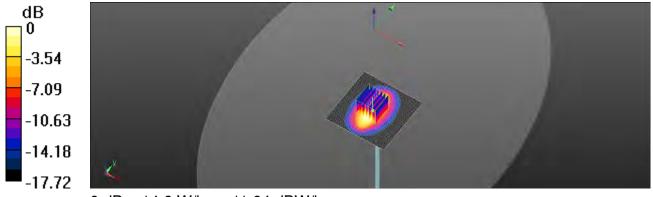
Ambient temperature: 22.1°C; Liquid temperature: 21.8°C

DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(7.71, 7.71, 7.71); Calibrated: 2016/4/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2016/4/21
- Phantom: Body
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 14.6 W/kg


Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.09 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.21 W/kg Maximum value of SAR (measured) = 14.6 W/kg

0 dB = 14.6 W/kg = 11.64 dBW/kg

Page: 75 of 133

Date: 2017/2/8

Dipole 2450 MHz SN:727

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.003 \text{ S/m}$; $\varepsilon_r = 51.614$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 21.9°C; Liquid temperature: 22.2°C

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.37, 7.37, 7.37); Calibrated: 2016/4/27;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2016/4/21

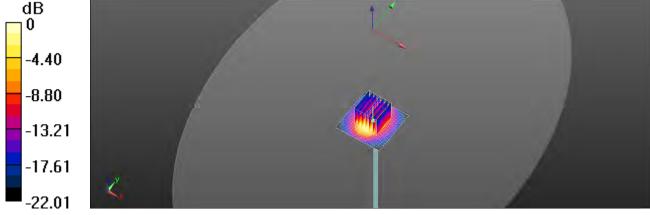
Phantom: Body

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=250mW/Area Scan (51x51x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 21.6 W/kg

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.3 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 5.93 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.1 W/kg = 13.03 dBW/kg

Page: 76 of 133

Date: 2017/2/8

Dipole 5300 MHz_SN:1040

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 5.607 \text{ S/m}$; $\varepsilon_r = 47.577$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.1°C; Liquid temperature: 22.1°C

DASY5 Configuration:

• Probe: EX3DV4 - SN3770; ConvF(4.34, 4.34, 4.34); Calibrated: 2016/4/27;

Sensor-Surface: 2mm (Mechanical Surface Detection)

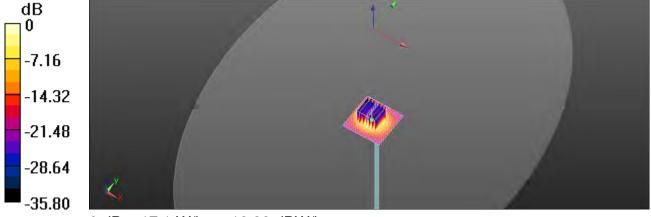
• Electronics: DAE4 Sn856; Calibrated: 2016/4/21

Phantom: Body

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (51x51x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 17.0 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 59.64 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 35.1 W/kg

SAR(1 g) = 7.89 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 17.1 W/kg

Page: 77 of 133

Date: 2017/2/8

Dipole 5600 MHz_SN:1040

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 6.002 \text{ S/m}$; $\varepsilon_r = 46.582$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.1°C; Liquid temperature: 22.3°C

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(3.7, 3.7, 3.7); Calibrated: 2016/4/27;

Sensor-Surface: 2mm (Mechanical Surface Detection)

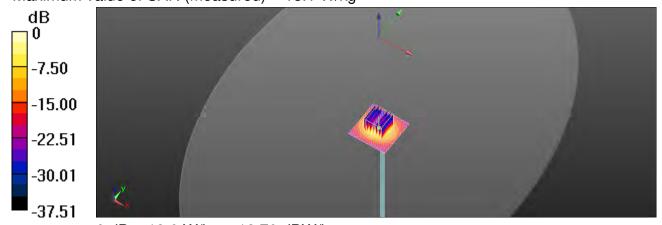
• Electronics: DAE4 Sn856; Calibrated: 2016/4/21

Phantom: Body

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (51x51x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 18.1 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.52 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 36.5 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 18.1 W/kg

0 dB = 18.6 W/kg = 12.70 dBW/kg

Page: 78 of 133

7. DAE & Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Appreditation No.: SCS 0108

SGS-TW (Auden) Certificate No: DAE4-856_Apr16 CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 856 Caribration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) April 21, 2016 Calibration date: This calibration certificate documents the freceepility to retional standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)/C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Keithiay Multimoter Type 2001 SN: 0810278 09-Sep-15 (No:17153) Sep-16 Scheduled Check Secondary Standards SE UWS 053 AA 1001 05-Jan-15 (in house check) Auto DAE Calibration Unit In house check: Janv17 Calibrator Box V2.1 SE UMS 006 AA 1002 05-Jan-16 (in house check) In house official: Jan-17 Name Function Calibrated by **R** Мауотаг Technician Approved by: Fin Bombat Deputy Technical Manager Issued April 21, 2016 This celibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: DAE4-856_Apr16

Page 1 of 5

Page: 79 of 133

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdiannt Service suissa dVtatennage C Servizio svizzero di taratura Swiss Calibration Service

According by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signaturies to the EA Meditatoral Agreement for the recognition of calibration corificates Accreditation No.: SCS 0108

Glossary

DAF

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range:
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset. current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No. CIAE4-856_Apr16

Page 2 of 5

Page: 80 of 133

DC Voltage Measurement
A/D - Converter Resolution nominal
High Range: 1LSB = High Range: 1LSB = 6.1µV , full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	403.450 ± 0.02% (k=2)	404.571 ± 0.02% (k=2)	403.888 ± 0.02% (k=2)
Low Range	3.97641 ± 1.50% (k=2)	3.97912 ± 1.50% (k=2)	3.97796 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	52.0 ° ± 1 °

Page: 81 of 133

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Inpu	t 199996.11	0.91	0.00
Channel X + Inpu	19999.18	-2.34	-0.01
Channel X - Input	-19999.41	1.06	-0.01
Channel Y + Inpu	199997.66	2.51	0.00
Channel Y + Inpu	19998.64	-2.84	-0.01
Channel Y - Input	-20002.21	-1.65	0.01
Channel Z + Inpu	199995.99	0.62	0.00
Channel Z + Inpu	19999.35	-2.13	-0.01
Channel Z - Input	-20002.57	-1.88	0.01

Low Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	2001.58	0.10	0.01
Channel X + Input	202.26	0.40	0.20
Channel X - Input	-197.29	0.76	-0.38
Channel Y + Input	2001.59	0.10	0.00
Channel Y + Input	200.88	-1.06	-0.52
Channel Y - Input	-199.46	-1.39	0.70
Channel Z + Input	2001.75	0.28	0.01
Channel Z + Input	201.40	-0.39	-0.19
Channel Z - Input	-198.94	-0.69	0.35

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-14.19	-16.06
	- 200	18.03	16.49
Channel Y	200	-2.43	-2.73
	- 200	0.85	0.06
Channel Z	200	10.84	10.76
	- 200	-12.44	-12.80

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (μV)	Channel Z (µV)
Channel X	200		1.98	-2.81
Channel Y	200	7.60	-	4.11
Channel Z	200	9.54	4.60	-

Certificate No: DAE4-856_Apr16

Page 4 of 5

B.

Page: 82 of 133

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	16223	16358
Channel Y	15947	17393
Channel Z	15877	17066

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time; 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.86	0.04	1.50	0.29
Channel Y	-0.51	-2.36	0.33	0.41
Channel Z	-0.75	-2.04	0.01	0.30

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vec)	-0.01	-8	-9

Certificate No: DAE4-856_Apr16

Page: 83 of 133

Calibration Laboratory of Schmid & Partner Engineering AG Zaughaustrases 43, 8004 Zarich, Switzerland

S Schweizenscher Kallmiesdienst
C Service suisse d'étalonnage
Service sviezent di tensture
Seiss Califoration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilatural Agreement for the recognition of salibration certificates

client SGS-TW (Auden)

Accreditation No.: SCS 0108

Gerifficate No: EX3-3770_Apr16

CALIBRATION CERTIFICATE

Clinic

EX3DV/I - SN 377(1

(2stambon procession(n)

DA CAL-01.v8. QA CAL-12.v9, QA CAL-14.v4. QA CAL-23.v5.

DA CAL-25.V6

Calibration procedure for dosimetric E-field probes

Calculation date

April 27, 2016

This calibration cartificate documents the haceability to national standards, which resize the physical units of measurements (31). The measurements and the uncentainness with confidence probability are given on the following pages and are part of the confidence.

All cultivations have been conducted in the closed laboratory facility: environment fergerature (22 ± 3)°C and framidity = 10%

Castration Engineer used (M&TE color) for calibration)

Printary Standards	0	Cal Date (Certificate No.)	Schndised Calibratus
Power water NRP	3N: 104778	06-Apr-18 (No. 217-0288/02269)	Apr-17
Power sensor NRP 291	SN: 103244	08-Apr-18 (No. 217-02288)	App-17
Power sensor NRP-Z91	BN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reservoice 20 dB Attenuator	BN: S5277 (20x)	65-April 6 (No. 217 (2293)	Ape-17
Reference Prote ESSOV2	3N:3013	31-Dec-15 (No. EES-3013_Dec15)	Dep-18
DAE4	SN:060	23-Dec-15 (Nn: DAE4-680_Dec15)	Dec-16
Secondary Standards	1D	Check Date (in house)	Scheduled Check
Priver mater E44108	EN: G841293874	Q6-Apt-10 (No. 217-02285-02284)	In house check: Jun-16
Power sensor E4412A	EN: NY41498067	06-Apr-19 (No. 217-02285)	In house check: Jun-16
Power sensor EA412A	8N: 000110210	C6-Apr-16 (No. 217-02284)	in house check: Jun-16
RP generator HP 65480	SN: US3842U91700	Q4-Aug-09 (in house check Apr-13)	In house check: Jun-15
Notwork Analyzer HP 8753E	SN: L/S17390585	18-DH-01 (in House check Oct-15)	In house check: Oct-16.

Contrated by Paradia Eastin Eastin Lagoratory Rectnician

Approved by Kasa Pracos: Textingal Manage

Insurer Agril 27, 2018

This calibration confidence shall not be reproduced except in bill setting written approval of the laboratory

Certricate No. EX3-3770_Apr16

Page 7 of 21

Page: 84 of 133

Calibration Laboratory of Schmid & Partner Engineering AG Zoughnusstrasse 43, 0004 Zurich, Switzerland

Schweizerlscher Kalibnerdienst Service suisse d'écionnage C Servicio systemu di taratnesi 5 Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swes Appreditation Service (SAS)

The Swiss Accreditation Service is one of the eignstones to the EA Multisamel Agreement for the recognition of calibration certification

Glossary:

lissue simulating liquid NORMX,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

crest factor (1/duty_cycle) of the RF signal modulation dependent imearization parameters CF A.B.C.D

Palarization a is rotalion around probe sols

Polarization a a rotation around an axis that is in the plane normal to probe axis let measurement center).

i.e., 9 = 0 is normal to probe exis

information used in DASY system to align probe sensor X to the robot coordinate system.

Calibration is Performed According to the Following Standards:

a) IEEE Std 1529-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices; Measurement

Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices

used in clase proximity to the human body (frequency range of 30 MHz to 6 GHz)". March 2010 KDB 86664, "SAR Measurement Requirements for 100 MHz to 6 GHz."

Methods Applied and Interpretation of Parameters:

- NORMx,y,z, Assessed for E-field polarization 8 = 0.(F < 900 MHz in TEM-call; f > 1900 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field
- uncertainty inside TSL (see below ConvF).

 NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response a included in the stated uncertainty of ConvF
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the skinst
- Ax,y,z, Bx,y,z; Cx,y,z; Ox,y,z; VRx,y,z, A, B, C, D are runnerical linearization parameters assessed biased on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the clode.
- ConvF and Boundary Effect Parameters. Assessed in flat phantom using E-field (or Temperature Transfer Standard for I = 800 MHz) and inside waveguide using analytical field distributions based on power measurements for t > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat plaunion. exposed by a patch antenna
- Sensor Offset: The sensor affaet corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No inferance required.
- Connector Angle: The angle is assessed using the information galited by determining the MORAN (no uncertainty required).

Certificate No. EX3-3770, April 6

Page 2 of 11

Page: 85 of 133

EX3DV4 -- SN:3770

April 27, 2016

Probe EX3DV4

SN:3770

Manufactured: Calibrated:

July 6, 2010 April 27, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3770_Apr16

Page 3 of 11

Page: 86 of 133

EX3DV4-SN:3770 April 27, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.31	0.61	0.40	± 10.1 %
DCP (mV) ^a	100.4	97.4	102.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	145.0	±2.2 %
		Y	0.0	0.0	1.0		148.7	
		Z	0.0	0.0	1.0		135.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3770_Apr16

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical invariation parameter: uncertainty not required.

**Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page: 87 of 133

EX3DV4-SN:3770

April 27, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	11.36	11.36	11.36	0.18	1.20	± 13.3 %
750	41.9	0.89	9.83	9.83	9.83	0.41	0.88	± 12.0 %
835	41.5	0.90	9.47	9.47	9.47	0.14	1.48	± 12.0 %
900	41.5	0.97	9.17	9.17	9.17	0.15	1.78	± 12.0 %
1750	40.1	1.37	8.19	8.19	8.19	0.12	1.68	± 12.0 %
1900	40.0	1.40	7.88	7.88	7.88	0.12	1.77	± 12.0 %
2000	40.0	1.40	7.91	7.91	7.91	0.14	1.61	± 12.0 %
2300	39.5	1.67	7.47	7.47	7.47	0.13	2.08	± 12.0 %
2450	39.2	1.80	7.12	7.12	7.12	0.14	2.00	± 12.0 %
2600	39.0	1.96	6.95	6.95	6.95	0.21	1.26	± 12.0 %
5250	35.9	4.71	5.03	5.03	5.03	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.42	4.42	4.42	0.50	1.80	± 13.1 %
5750	35.4	5.22	4.83	4.83	4.83	0.50	1.80	± 13.1 %

⁰ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), also it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty of calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

⁷ At frequencies below 3 GHz, the validity of tissue parameters (c and of) can be referred to ± 10% if liquid comparisation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and of) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁸ AlphaDopth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip demeter from the boundary.

Certificate No: EX3-3770_Apr16

Page 5 of 11

Page: 88 of 133

EX3DV4-- SN:3770

April 27, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

Calibration Parameter Determined in Body Tissue Simulating Media

	Diation Farameter Determined in Body 1155dd Omitelating media								
f (MHz) ^C	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ⁶ (mm)	Unc (k=2)	
450	56.7	0.94	10.49	10.49	10.49	0.09	1.20	± 13.3 %	
750	55.5	0.96	9.43	9.43	9.43	0.19	1.26	± 12.0 %	
835	55.2	0.97	9.30	9.30	9.30	0.17	1.43	± 12.0 %	
900	55.0	1.05	9.15	9.15	9.15	0.28	1.06	± 12.0 %	
1750	53.4	1.49	7.88	7.88	7.88	0.10	2.60	± 12.0 %	
1900	53.3	1.52	7.71	7.71	7.71	0.11	2.44	± 12.0 %	
2000	53.3	1.52	7.82	7.82	7.82	0.18	1.42	± 12.0 %	
2300	52.9	1.81	7.53	7.53	7.53	0.54	0.69	± 12.0 %	
2450	52.7	1.95	7.37	7.37	7.37	0.80	0.56	± 12.0 %	
2600	52.5	2.16	7.12	7.12	7.12	0.80	0.56	± 12.0 %	
5250	48.9	5.36	4.34	4.34	4.34	0.50	1.90	± 13.1 %	
5600	48.5	5.77	3.70	3.70	3.70	0.60	1.90	± 13.1 %	
5750	48.3	5.94	4.07	4.07	4.07	0.60	1.90	± 13.1 %	

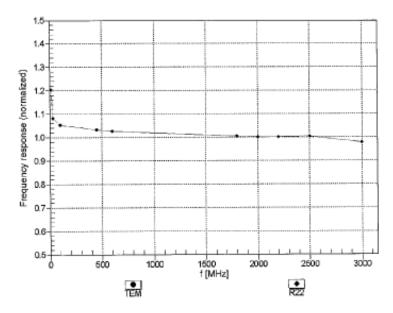
Firequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), olse it is restricted to ± 50 MHz. The uncertainty is the RSS of the ComF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for comF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

*At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be released to ± 10% if liquid componentian formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) to restricted to ± 5%. The uncertainty is the RSS of the ComF uncertainty for indicated target tissue parameters.

*AlphaDepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after companisation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3770_Apr16

Page 6 of 11



Page: 89 of 133

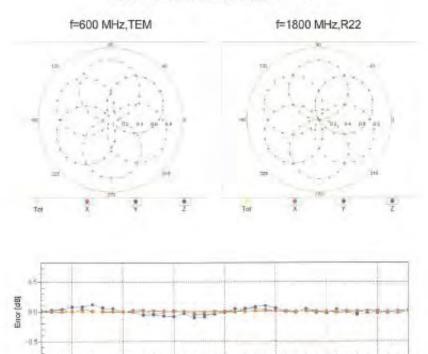
EX3DV4-SN:3770

April 27, 2016

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3770_Apr16


Page 7 of 11

Page: 90 of 133

EX3DV4-SN:3770 April 27, 2016

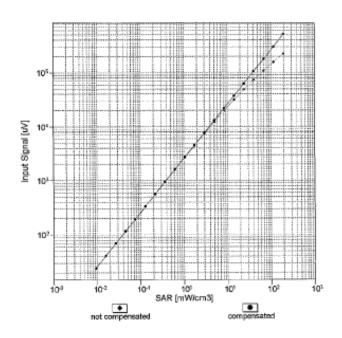
Receiving Pattern (6), 9 = 0°

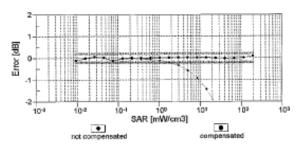
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

2500 FR45

Certificate No: EX3-3770_Apr16.

Page 8 of 11


(00) 10-12

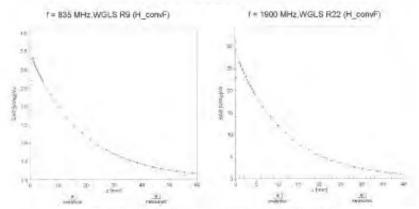


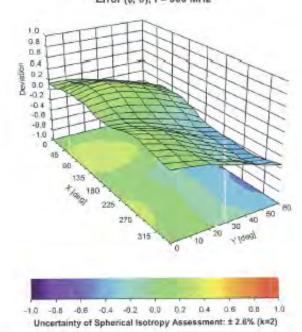
Page: 91 of 133

EX3DV4-SN:3770 April 27, 2016

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3770_Apr16


Page: 92 of 133

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (6, 9), f = 900 MHz

Certificate No: EX3-3770_Apr16

Page 10 of 11

Page: 93 of 133

EX3DV4-SN:3770

April 27, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-29.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3770_Apr16

Page 11 of 11

Page: 94 of 133

8. Uncertainty Budget

Measurement Uncertainty evaluation template for DUT SAR test (3-6G)

	1			aluation ter					
A	C Talananaa/	D Duala alailit	е		İ	g	h=c * f / e	i=c * g / e	k
Source of Uncertainty	Tolerance/ Uncertainty	Probabilit v	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty	vi, or Veff
Measurement system									
Probe calibration	6.55%	N	1	1	1	1	6.55%	6.55%	œ
Isotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	œ
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	œ
Modulation Response	2.40%	R	√3	1.732	1	1	1.40%	1.40%	∞
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	œ
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	œ
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	œ
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	œ
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	œ
RF ambient condition - noise	3.00%	R	√3	1.732	1	1	1.73%	1.73%	œ
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	œ
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	œ
Probe Positioning with respect to phantom	2.90%	R	√3	1.732	1	1	1.67%	1.67%	œ
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	00
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	œ
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	œ
Liquid permittivity (mea.)	3.90%	N	1	1	0.64	0.43	2.50%	1.68%	М
Liquid Conductivity (mea.)	4.09%	N	1	1	0.6	0.49	2.45%	2.00%	М
Combined standard uncertainty		RSS					12.23%	11.99%	
Expant uncertainty (95% confidence							24.46%	23.99%	

Page: 95 of 133

Measurement Uncertainty evaluation template for DUT SAR test (0.3-3G)

A	С	D	е		f	g	h=c * f / e	i=c * g / e	k
Source of Uncertainty	Tolerance/ Uncertainty	Probabilit y	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty	vi, or Veff
Measurement system									
Probe calibration	6.00%	N	1	1	1	1	6.00%	6.00%	∞
Isotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	∞
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	∞
Modulation Response	2.40%	R	√3	1.732	1	1	1.40%	1.40%	∞
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	∞
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	∞
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	∞
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	∞
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	∞
RF ambient condition - noise	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	∞
Probe Positioning with respect to phantom	2.90%	R	√3	1.732	1	1	1.67%	1.67%	∞
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	∞
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	∞
Liquid permittivity (mea.)	4.24%	N	1	1	0.64	0.43	2.71%	1.82%	М
Liquid Conductivity (mea.)	4.87%	N	1	1	0.6	0.49	2.92%	2.39%	М
Combined standard uncertainty		RSS					12.09%	11.80%	
Expant uncertainty (95% confidence							24.19%	23.59%	

Page: 96 of 133

9. System Validation from Original Equipment Supplier

Calibration Laboratory of Schmid & Partner Engineering AG Zeugnausstrasse 43, 8664 Zurich, Switzerland

S Schweizenscher Kallbrierdienet
C Service stilsse d'étalonnage
Servicio sylzzero di taratiara
S Swizs Californilon Service

Accredited by the Swiss Accreditation Service (SAS).

The Swise Accreditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 0108

Client

SGS-TW (Auden)

Certificate No: D835V2-4d063 Aug16

	ERTIFICATE					
Dijeci	D835V2 - SN:40063					
Calibration procedure(s)	QA CAL-05.V9 Calibration proces	idure for dipole validation kits abo	ve 700 MHz			
Cellowism date	August 25, 2016					
The measurements and the once	rtienties with confidence p	ional standents; which resize the physical un violability are given on the following pages an	d are part of the certificate.			
All calibrations have been conduc Calibration Equipment issed (M&)		ry facility, emmaternal temperature (22° ± 3)°1	and humidity < 70%.			
Primary Standards	ID #	Gal Detn (Certificals No.)	Sciterfuled Calibration			
Power moses NAP	5N: 104778	DS Apr. 15 (No. 217-02288/02289)	Apr-17			
	SN: 103244	16-Ap/-16 (No. 217-02288)	Apr-17			
Power sensor MRF-ZB1	CON. 10000411	through any transfer was a constrained	(c)			
Charles and the second of the second	5N£ 103240	00-Apr-10 (No. 217-02289)	Apr-57			
Power sensor NRP-Z91	Service State of Co.		Apr-17 Apr-17			
Power sensor NRP-Z91 Reference 20 dB Attenuator	SNL 103240	06-Apr-10 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 317-02295)	Apr-57 Apr-17			
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Prote EX3DV4	SNL 103240 SNL 5058 (20k) SNL 5047 2 / 06327 SNL 7340	06-Apr-10 (No. 217-02889) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 317-02295) 16-Jun-16 (No. EX3-7340_Jun16)	Apr-57 Apr-57 Apr-17 Jun-17			
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Prote EX3DV4	5N: 103240 5N: 5058 (20k) 5N: 5047 2 / 06327	06-Apr-10 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 317-02295)	Apr-57 Apr-17			
Power sensor NRP-Zijh Reference 20 dB Attenuation Type-M mismatch combination Reference Probe EX3DV4 DAE4	SNL 103240 SNL 5058 (20k) SNL 5047 2 / 06327 SNL 7340	06-Apr-10 (No. 217-02889) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 317-02295) 16-Jun-16 (No. EX3-7340_Jun16)	Apr-57 Apr-57 Apr-17 Jun-17			
Power sensor NRP-Zéh Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 103240 SN: 5058 (20k) SN: 5047 2 / 06327 SN: 7340 SN: 601	05-Apr-10 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7340_Jun16) 30-Dec-15 (No. DAE4-B01_Dec15)	Apr-17 Apr-17 Apr-17 Jun-17 Dec-16			
Power sensor NRP-Zijh Reference 20 dB Attenusion Type-M mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power mater EFM-442A	SN: 103240 SN: 5058 (20k) SN: 5047 2 / 06327 SN: 7340 SN: 661	00-Apr-10 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7340_Jun16) 30-Dec-15 (No. DAE4-801_Dec15) Check Date (in house)	Apr-17 Apr-17 Apr-17 Jun-17 Dep-16 Segectation Especk			
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Prope EXSDV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 103240 SN: 5058 (204) SN: 5058 (204) SN: 507 (2106327 SN: 501 IO #	06-Apr-10 (No. 217-02289) 05-Apr-16 (No. 217-02292) (5-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7340_Jun16) 30-Dec-15 (No. DAE4-B01_Dec15) Check Date (In neuse) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Jun-17 Den-16 Ecnschiller Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16			
Power sensor NRP-Zijn Reference 20 dB Attenuarier Type-N mismatch combination Reference Probe EXSDV4 DAE4 Biscondary Standards Power meter EPNI-142A Power sensor HP 8481A	SNL 103240 SNL 5058 (204) SNL 5058 (204) SNL 5067 (2 / 106327 SNL 5067 (2 / 106327 SNL 5067 (2 / 106327 SNL 5067 (2 / 106327 SNL 10067 (2 / 106327 SNL 10067 (2 / 106327 SNL 10067 (2 / 106327)	06-Apr-10 (No. 217-02289) 05-Apr-16 (No. 217-02292) 15-Apr-16 (No. 217-02292) 15-Apr-16 (No. EX3-7340_Jun16) 30-Dec-15 (No. DAE4-B01_Dec15) Check Date (in neuso) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 15-Jun-15 (in nouso check Jun-10)	Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Senschiller Chack In house check: Oct-16			
Power sensor NRP-Zéh Reference 20 dB Attenuation type-N mismatch combination Reference Probe EXSDV4 DAE4 Biscondary Standards Power meter EPN-42A Power sensor HP 8481A RF generator RAS SMT-06	SN: 103240 SN: 5058 (204) SN: 5058 (204) SN: 5047 2 / 106327 SN: 504 SN: GB37480704 SN: GB37480704 SN: USS7292783 SN: MY41002317	06-Apr-10 (No. 217-02289) 05-Apr-16 (No. 217-02292) (5-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7340_Jun16) 30-Dec-15 (No. DAE4-B01_Dec15) Check Date (In neuse) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Jun-17 Den-16 Ecnschiller Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16			
Power sensor NRP-Zén Reference 20 dB Attenuarin Type-N mismatch combination Reference Probe EXSDV4 DAE4 Biscondary Standards Power meter EFM-442A Power sensor HP 8481A DF generalor PAS SMT-06	SNL 103240 SNL 5058 (204) SNL 5058 (204) SNL 5067 (2 / 106327 SNL 5067 (2 / 106327 SNL 5067 (2 / 106327 SNL 5067 (2 / 106327 SNL 10067 (2 / 106327 SNL 10067 (2 / 106327 SNL 10067 (2 / 106327)	06-Apr-10 (No. 217-02289) 05-Apr-16 (No. 217-02292) 15-Apr-16 (No. 217-02292) 15-Apr-16 (No. EX3-7340_Jun16) 30-Dec-15 (No. DAE4-B01_Dec15) Check Date (in neuso) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 15-Jun-15 (in nouso check Jun-10)	Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Senschiller Chack In house check: Oct-16			
Contract of the Contract of th	SN: 103240 SN: 5058 (20k) SN: 5058 (20k) SN: 5061 SN: 5061 SN: 6857480704 SN: USS7292788 SN: MY41002917 SN: 100972 SN: USS7390505	06-Apr-16 (No. 217-02889) 05-Apr-16 (No. 217-02295) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7340_Jun16) 30-Dec-15 (No. DAE4-801_Dec15) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 15-Jun-16 (in house check Jun-10) 18-Oct-01 (in house check Jun-10)	Apr-17 Apr-17 Jun-17 Dep-16 Beneduled Check In house check: Oct-16			
Type-N mismatch combination Reference Probe EXSDV4 DAE4 Sisconciory Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RE generalor FAS SMT-06 Network Analyzer HP 875SE	SN: 103240 SN: 5058 (20k) SN: 5058 (20k) SN: 5051 SN: 5601 IO # SN: GB37480704 SN: USS7292783 SN: MY4100217 SN: 100972 SN: USS7390505	06-Apr-16 (No. 217-02889) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7340_Jun16) 30-Dec-15 (No. DAE4-801_Dec15) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 15-Jun-15 (in house check Jun-10) 18-Oct-01 (in house check Jun-10) Function	Apr-17 Apr-17 Jun-17 Dep-16 Beneduled Check In house check: Oct-16			

Certificate No: D835V2-4d063_Aug16

Page | of 8

Page: 97 of 133

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrassu 43, 8004 Zurich, Switzenami

S Schwätzertacher Kallbrierunge G Service waters d'étatonnege Services evezzen di tandura S Swiss Cartaration Service

Appreciation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS).
The Swice Accreditation Service is one of the algorithms to the EA Multimum Agreement for the recognition of calibration certificates.

Glossary:

TSL tissue simulating tiquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, TEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices. Measurement Techniques, June 2013.
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005
- EC 62209-2, "Procedure to determine the Specific Absorption Flate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the and
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power, No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Gertlipate No. Dea5V3-4d063_Aug16

Page Z ol €

Page: 98 of 133

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL.	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz = 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Parmittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	41,5	0,90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.1 ± 6 %	0.93 mha/m ± 6 %
Head TSL lemperature change during test	< 0.5 °C		-

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.40 W/kg = 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.05 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55,2	0.97 mhoym
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6.%	1.01 mbom = 5 %
Body TSL temperature change during test	< 0,5 °C	-	-

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.57 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm2 (10 g) of Body TSL	candition	
SAR measured	250 mW input power	1.81 W/kg
SAR for nominal Body TSL parameters	namalized to 1W	8,28 W/kg ± 16,5 % (k=2)

Page: 99 of 133

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impadance, transformed to feed point	51.2 Ω - 2.8 ju	
Helum Loss	- 30.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω - 5,5 jΩ		
Relum Loss	-24.0 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.392 ns
Electrical Delay (one direction)	1.392 ns

After long term use with 100W radiated power, only a slight warming of the dipola near the feedpoint can be measured

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when leaded according to the position as explained in the "Massurement Conditions" paregraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the subtered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

Certificate No. DB35V2-4d083_Aug16

Page 4 of 6

Page: 100 of 133

DASY5 Validation Report for Head TSL

Date: 25.08.2016

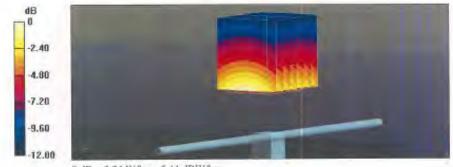
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d063

Communication System: UID 0 - CW; Frequency: 835 MHz.

Medium parameters used: f = 835 MHz; $\sigma = 0.93 \text{ S/m}$; $r_s = 42.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

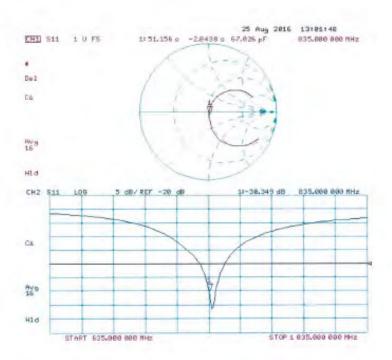
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8,8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.75 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.54 W/kgMaximum value of SAR (measured) = 3.24 W/kg

0 dB = 3.24 W/kg = 5.11 dBW/kg


Certificate No: D835V2-4d063_Aug16

Page 5 of 8

Page: 101 of 133

Impedance Measurement Plot for Head TSL

Certificate No: D635V2-4d063_Aug16

Page: 102 of 133

DASY5 Validation Report for Body TSL

Date: 25.08.2016

Test Laboratory: SPEAG, Zurich, Switzerland

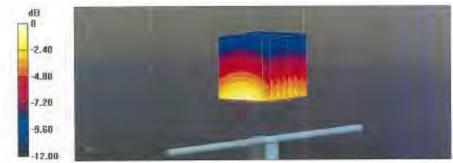
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d063

Communication System: UID 0 - CW; Frequency; 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_c = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63 19-2011)


DASY52 Configuration:

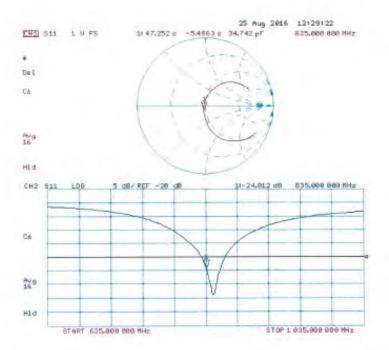
- Probe: EX3DV4 SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 15.06,2016;
- Sensor-Surface: L4mm (Mechanical Surface Detection)
- Electronics: DAE4 Su601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L.; Type: QD000P49AA; Serial: 100T
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372).

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.83 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.61 W/kgMaximum value of SAR (measured) = 3.25 W/kg

0 dB = 3.25 W/kg = 5.12 dBW/kg


Certificate No: DB35V2-4d063_Aug16

Page 7 of 8

Page: 103 of 133

Impedance Measurement Plot for Body TSL

Page: 104 of 133

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzenland

S Schweizerischer Kaltorierdienst
C Service ausse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swise Accreditation Service (SAS)
The Swise Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client SGS-TW (Auden)

D1000V2-Ed027 April

Object	D1900V2 - SN: 5	d027	
Calibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits abo	we 700 MHz
Celibratión date	April 25, 2016		
The measurements and the under All calibrations have been conduc	rtainties with comidence g	conal standards, which realize the physical on redeability are given on the following pages as ny facility: environment (emperature (22 ± 3)*)	d are part of the conflicate.
Calibration Equipment used (M&)	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power mater NRP	5N: 104778	06-Apr-16 (No. 217-02288/02389)	Agr-17
Power mater NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr.17
	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17.
Same and the State of			Apr-37
Design College	EN 5058 (206)		
Reference 20 dB Attenuator	5N: 5058 (20k) SN: 8047 9 / 08397	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	
Reference 20 dB Attenuator Type-N mismatch combination	SN:3047.2 / 06327	05-Apr-16 (No. 217 02295)	Apr-17 Dec-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4			Apr-17
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 3047.2 / 06327 SN: 7349	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349_Dec15)	Apr-17 Dec-16
Reference 20 dB Attenuator Type-N mismaich combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 3047.2 / 06327 SN: 7349 SN: 601	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7348, Dec15) 30-Dec-15 (No. DAE4-601, Dec15) Check Date (In house) 07-Oct-15 (No. 217-02222)	Apr-17 Dec-16 Dec-16 Scheduled Check In House check - Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EXSDV4 DAE4 Secondary Standards Power mater EPM-442A	SN: 3047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7348, Dec15) 30-Dec-15 (No. DAE4-601, Dec15) Check Date (In house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EXSDV4 DAE4 Secondary Standards Power motor EPM-442A Power sensor HP 8481A	SN: 3047 2 / 06327 SN: 7349 SN: 601 ID # SN: GBS7480704 SN: US37292783 SN: MY41032317	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7348, Dec15) 30-Dec-15 (No. DAE-4-601, Dec15) Check Date (In house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Dec-16 Dec-16 Scheduled Check In House check: Oct-16 In house check: Oct-16 In house check: Oct-18
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator RAS SMT-06	SN: 3047 2 / 06327 SN: 7349 SN: 601 IO # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7349, Dec15) 30-Dec-15 (No. DAE-4-501, Dec15) Check Date (In house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (In house check Jun-15)	Apr-17 Dec-16 Dec-16 Scheduled Check In House check: Oct-16 In house check: Oct-16 In nouse check: Oct-16 In nouse check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator RAS SMT-06	SN: 3047 2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41032317	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7348, Dec15) 30-Dec-15 (No. DAE-4-601, Dec15) Check Date (In house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Dec-16 Dec-16 Scheduled Check In House check: Oct-16 In house check: Oct-16 In house check: Oct-18
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EXSDV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator RAS SMT-06 Network Analyzer HP 8753E	SN: 5047 2 / 06327 SN: 7349 SN: 601 IO # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390685	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7348, Dec15) 30-Dec-15 (No. DAE4-601, Dec15) Check Date (In house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (In house check Jun-15) 16-Oct-01 (in house check Oct-15) Function	Apr-17 Dec-16 Dec-16 Scheduled Check In House check: Oct-16 In house check: Oct-16 In nouse check: Oct-16 In nouse check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EXSDV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Proper sensor HP 8481A RF generator RAS SMT-06	SN: 5047 2 / 06327 SN: 7349 SN: 601 IO # SN: GB37480704 SN: USS7292783 SN: MY41092317 SN: 100872 SN: USS7390685	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7348, Dec15) 30-Dec-15 (Nn. DAE-601 Dec15) Check Date (In house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	Apr-17 Dec-16 Dec-16 Scheduled Check In House check: Oct-16 In house check: Oct-16 In nouse check: Oct-16 In house check: Oct-16 In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EXSDV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator RAS SMT-06 Network Analyzer HP 8753E	SN: 5047 2 / 06327 SN: 7349 SN: 601 IO # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390685	05-Apr-16 (No. 217-02295) 31-Dec-15 (No. EX3-7348, Dec15) 30-Dec-15 (No. DAE4-601, Dec15) Check Date (In house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (In house check Jun-15) 16-Oct-01 (in house check Oct-15) Function	Apr-17 Dec-16 Dec-16 Scheduled Check In House check: Oct-16 In house check: Oct-16 In nouse check: Oct-16 In house check: Oct-16 In house check: Oct-16

Certificate No: D1900V2-5d027_Apr16

Page 1 of 8

Page: 105 of 133

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland

Schweizenscher Kallbrierdienin Service suisse d'étalonnage Servizie svizzere di teratura Swiss Califrellon Service

Accreditation No.: SCS 0108

Acceptied by the Symes Acceptibition Service (SAS)
The Swiss Accreditation Service is one of the algoritories to the EA
Multilatoral Agreement for the recognition of calibration certificative

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) 1EC 82209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Anlenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Gertificate No: D1900V2-5d027 Aprilia

Page 2 of B

Page: 106 of 133

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

-	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.83 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d027_Apr16

Page 3 of 8

Page: 107 of 133

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω + 4.4 jΩ
Return Loss	- 27.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.5 Ω + 5.6 jΩ
Return Loss	- 23.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.196 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 17, 2002

Certificate No: D1900V2-5d027_Apr16

Page 4 of 8

Page: 108 of 133

DASY5 Validation Report for Head TSL

Date: 25.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d027

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_c = 40$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

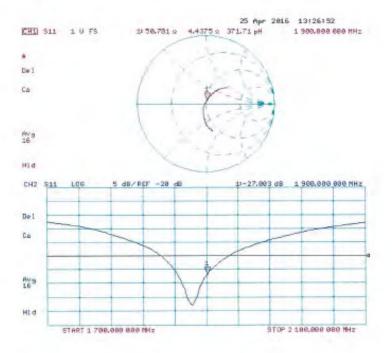
- Probe: EX3DV4 SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.12,2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.9 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.55 W/kg; SAR(10 g) = 5.03 W/kg

Maximum value of SAR (measured) = 14.3 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg


Certificate No: D1900V2-5d027_Apr16

Page 5 of 8

Page: 109 of 133

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d027_Apr16

Page: 110 of 133

DASY5 Validation Report for Body TSL

Date: 25.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d027

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.49 \text{ S/m}$; $\epsilon_c = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

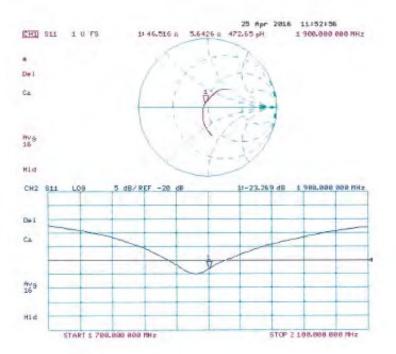
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.03, 8.03, 8.03); Calibrated; 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002.
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372).

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.2 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.83 W/kg; SAR(10 g) = 5.21 W/kg

Maximum value of SAR (measured) = 14.7 W/kg


0 dB = 14.7 W/kg = 11.67 dBW/kg

Certificate No: D1900V2-5d027_Apr16

Page: 111 of 133

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d027_Apr16

Page 8 of 8

Page: 112 of 133

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schwetzerischer Kallonerdiens
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signaturies to the EA
Nuttilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client SGS-TW (Auden)

Ourtificate No: D2450V2-727 Apr16

	ERTIFICATE		
Ollopect	D2450V2 - SN:72	27	
Subtration procedure(a)	OA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	April 19, 2016		
		ronal standards, which realize the physical un robability are given on the following pages an	
4i calibrations have been conduc	cled in the closed laborato	ry laidffly: unvironment tempelature (22 ± 3) \	Danid humidity = 70%
Calibration Equipment used (M&)	E critical for calibration)		
	1.7%	Colors Colors No.	Andrew Sandara
nimary Standards	ID 6	Cal Dale (Certificate No.)	Scheduled Calibration
	ID 8 SN: 104778	C6-Apr-16 (No. 217-02288/02289)	Apr-17
Swer mister NEP			
Power mater NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	06-Apr-16 (No. 217-02268/02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288)	Apr-17 Apr-17 Apr-17
Power mater NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	06-Apr-16 (No. 217-02288/02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02292)	Apr-17 Apr-17 Apr-17 Apr-17
Power mister NRIP Power sensor NRIP-291 Power sensor NRIP-291 Reference 20 dB Alternation Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02288/02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17
Power moter NRP Power sensor NRP-291 Power sensor NRP-291 Poterance 20 cB Attenuator Type-N mismatch combination Reference Probe EX30V4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02283) 06-Apr-16 (No. 217-02292) 06-Apr-16 (No. 217-02293) 31-Dec-15 (No. EX3-7349_Dec16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16
Power mister NRP Power sensor NRP-291 Power sensor NRP-291 Reterance 29 dB Abbenuator Type-N mismatch combination Reterance Probe EX30V4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02288/02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17
Power mister NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reterrance 20 dB Abenuation Type-N mismatch combination Reterrance Probe EX30V4 CAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02283) 06-Apr-16 (No. 217-02292) 06-Apr-16 (No. 217-02293) 31-Dec-15 (No. EX3-7349_Dec16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16
Power mister NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuation Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104776 SN: 103244 SN: 103245 SN: 9038 (204) SN: 9047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 06-Apr-16 (No. 217-02280) 06-Apr-16 (No. 217-02280) 31-Dec-15 (No. EXX-7349, Dec-16) 30-Dec-15 (No. DAE4-601_Dec-15)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-18 Dec-16 Scheduled Check
Power mister NRP Power sensor NRP-291 Power sensor NRP-291 Reterrance 20 dB Attenuation Type-N mismatch combination Reterrance Probe EX3DV4 DAE4 Secondary Standards Power mater EPM-442A	SN: 104776 SN: 103244 SN: 103245 SN: 9038 (204) SN: 9047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 06-Apr-16 (No. 217-02290) 06-Apr-16 (No. 217-02290) 31-Dec-15 (No. EX3-7349_Dec16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in touse)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16
Power midler NRP Power sensor NRP-291 Power sensor NRP-291 Power sensor NRP-291 Reterance 29 dB Abenuation Type-N mismatch combination Fleterance Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 (106327 SN: 7349 SN: 601 ID 4 SN: 0837480704 SN: US37282703 SN: MY4+082317	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02282) 06-Apr-16 (No. 217-02282) 31-Occ-15 (No. EX3-7349_Dec16) 30-Dac-15 (No. EX3-7349_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Dec-16 Schadulad Chack In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power mister NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reterance 20 dB Abenuator Type-N mismatich combination Type-N mismatich combination Poter Probe EX30V4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A Prower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5038 (204) SN: 5047.2 (105327 SN: 5047.2 (105327 SN: 601 ID 4 SN: 0637480704 SN: US37292703 SN: US37292703 SN: 100972	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02282) 06-Apr-16 (No. 217-02282) 06-Apr-16 (No. 217-02282) 07-Oct-15 (No. EXS-7349_Dec16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 15-Jun-15 (in intuse check Jun-15)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Dec-16 In house check: Oct-16
Power mister NRP Power sensor NRP-Z91 Power sensor NRP-8481A Power sensor HP-8481A Power sensor HP-8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 (106327 SN: 7349 SN: 601 ID 4 SN: 0837480704 SN: US37282703 SN: MY4+082317	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02282) 06-Apr-16 (No. 217-02282) 31-Occ-15 (No. EX3-7349_Dec16) 30-Dac-15 (No. EX3-7349_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Dec-16 In house check: Oct-16
Power midler NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reforance 20 GB Abenuator Type-N mismatich combination Reformice Probe EX30V4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A Propersonsor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5038 (204) SN: 5047.2 (105327 SN: 5047.2 (105327 SN: 601 ID 4 SN: 0637480704 SN: US37292703 SN: US37292703 SN: 100972	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02282) 06-Apr-16 (No. 217-02282) 06-Apr-16 (No. 217-02282) 07-Oct-15 (No. EXS-7349_Dec16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 15-Jun-15 (in intuse check Jun-15)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Dec-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In nouse check: Oct-16
Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Rotoranca 20 dB Attenuator Type-N mismatch combination Reteronce Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Cetterofred By Catterofred by: Catterofred by:	SN: 104778 SN: 103244 SN: 103245 SN: 9038 (20k) SN: 9047.2 / 06327 SN: 7349 SN: 601 IO A SN: 0837480704 SN: US37292703 SN: MYX+082317 SA: 109872 SN: US37390585	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02282) 06-Apr-16 (No. EX3-7349_Dec16) 30-Dec-15 (No. EX3-7349_Dec16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02222) 15-Jun-15 (in house check Jun-15) 18-Oct-16 (in house check Jun-15)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In nouse check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power midler NRIP-Z91 Power sensor NRIP-Z91 Power sensor NRIP-Z91 Reterunce 29 dB Abenuarior Type-N mismatch combination Reterince Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Piff generator R&S SMT-06 Network Analyzer HP 6763E	SN: 104778 SN: 103244 SN: 103245 SN: 9038 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID 4 SN: 0637480704 SN: US37292793 SN: MY4+082317 SN: 100972 SN: US37390585 Neme	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02283) 06-Apr-16 (No. 217-02283) 31-Dec-15 (No. EX3-7349 Dec16) 20-Dec-15 (No. DAE4-601 Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02222) 15-Jun-15 (in house check Jun-15) 18-Oct-11 (in nouse check Dct-15) Function	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In nouse check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power midler NRIP-Z91 Power sensor NRIP-Z91 Power sensor NRIP-Z91 Reterunce 29 dB Abenuarior Type-N mismatch combination Reterince Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Piff generator R&S SMT-06 Network Analyzer HP 6763E	SN: 104778 SN: 103244 SN: 103245 SN: 9038 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID 4 SN: 0637480704 SN: US37292793 SN: MY4+082317 SN: 100972 SN: US37390585 Neme	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02283) 06-Apr-16 (No. 217-02283) 31-Dec-15 (No. EX3-7349 Dec16) 20-Dec-15 (No. DAE4-601 Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02222) 15-Jun-15 (in house check Jun-15) 18-Oct-11 (in nouse check Dct-15) Function	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Oct-16

Certificate No: D2450V2-727_Apr16

Page 1 of 8

Page: 113 of 133

Calibration Laboratory of Schmid & Partner

Engineering AG Zeuphaustrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kallbrützeinne Service salese d'ételonnage Servizio evizzero di taretura S Swiss Calibration Service

Accreditation No.: SCS 0108

According by the Swiss Accordinator, Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multimiaral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005.
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010.
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Anterna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Centricate Not D2450V2-727_Aprilis

Page 2 of 8

Page: 114 of 133

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

nie toriowing paramoters and calculations were applied	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-727_Apr16

Page 3 of 8

Page: 115 of 133

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.3 Ω + 2.0 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.1 Ω + 4.8 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.148 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve metching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 09, 2003

Certificate No: D2450V2-727_Apr16

Page 4 of 8

Page: 116 of 133

DASY5 Validation Report for Head TSL

Date: 19.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.83 \text{ S/m}$; $\epsilon_r = 40$; $\rho = 1000 \text{ kg/m}^2$

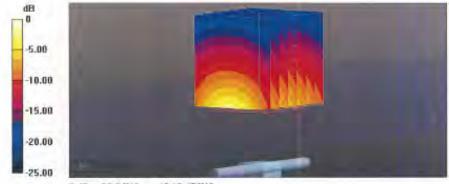
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.76, 7.76, 7.76); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12,2015.
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

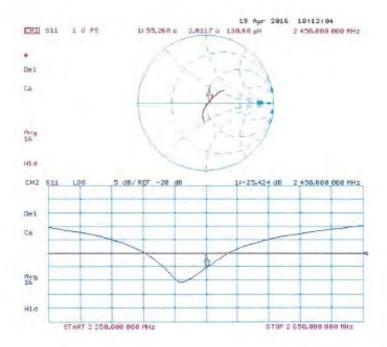
Reference Value = 112.1 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 25.7 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.93 W/kg

Maximum value of SAR (measured) = 20.8 W/kg

0 dB = 20.8 W/kg = 13.18 dBW/kg


Certificate No; D2450V2-727_Apr16

Page 5 of 8

Page: 117 of 133

Impedance Measurement Plot for Head TSL

Page: 118 of 133

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
C Service suiese d'étalennage
Servizie svizzero di tarature
S Seiss Calibration Service

Appreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Cint Auden

and the second second second second

Object	D5GHzV2 - SN:	040	
Castrolien proceduse(a)	QA CAL-22.v2 Calibration proce	edure for dipole validation kits bet	ween 3-6 GHz
Taibiator d	Juna 17, 2016		
		ional standards. Which makes the physical un includedly are given on the following pages an	
All calibrations have been condu	ated in the capsed laborato	ry facility, environment temperature (22 + 3) i	C and humbly < //h
Carbinton Equipment used IM&	E omical for ealthrition)		
wimary Standards	(D+	Cal Date (Centinate No.)	Scheduled Calibration
	ID 4 SN: 104778	Cal Date (Centificate No.) 06-Apr-16 (No. 217-02266/02269)	Scheduled Californium Apr.17
ower meter NRP		06-Apr-16 (No. 217-02288/02289)	Apr-17
ower meter NRP ower sensor NRP-ZSt	SN: 104778	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288)	Apr-17 Apr-17
ower meter NRP ower sensor NRP-29t ower sensor NRP-29t	SN 104778 SN 103244	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power meter NRP 291 Power sensor NRP 291 Power sensor NRP 291 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245	06-Apr-16 (No. 217-02260/02269) 06-Apr-16 (No. 217-02268) 06-Apr-16 (No. 217-02269)	Apr.17 Apr.17 Apr.17
Cower meter NRP Cower sensor NRP -294 Cower sensor NRP -294 Reference 20 dB Attenuator ype-N mismatch combination	SN: 104778 SN: 103244 SN: 100245 SN: 0056 (20%)	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02282)	Apr-17 Apr-17 Apr-17 Apr-17
Power meter NRP Power sensor NRP Z91 Power N	SN: 104778 SN: 103244 SN: 103245 SN: 5056 (20k) SN: 5047.2 / 06327	08-Apr-16 (No. 211-02286/02289) 08-Apr-16 (No. 211-02288) 08-Apr-16 (No. 217-02289) 08-Apr-16 (No. 217-02292) 08-Apr-16 (No. 217-02295)	Apr-17 Apr-17 Apr-17 Apr-17
Power meter NRP Power sensor NRP-294 Power sensor NRP-294 Represent 20 dB Attenuation (spe-N mismatch combination Reference Probe EX30V4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 06-Apr-16 (No. 217-02282) 06-Apr-16 (No. 217-02295) 31-0ec-15 (No. EX3-3503, Dec-15)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16
Power meter NRP Power sensor NPP-294 Power sensor NPP-294 Reference 20 dB Attenuator (ype-N mismatch combination Reference Probe EX30V4 DAE3 Secondary Standards	SN 104778 SN 103244 SN 103245 SN 0056 (29k) SN 5047.2 / 06327 SN 3503 SN 8611	06-Apri-16 (No. 217-02288/02289) 06-Apri-16 (No. 217-02288) 06-Apri-16 (No. 217-02289) 05-Apri-16 (No. 217-02292) 06-Apri-16 (No. 217-02292) 06-Apri-16 (No. 217-02295) 31-Oeo-15 (No. EX3-3503 Dec15) 30-Oeo-16 (No. DAE-601_Deo15)	Apr. 17 Apr. 17 Apr. 17 Apr. 17 Apr. 17 Dec. 16 Dec. 16 Scheduled Check
ower meter NFP ower sensor NFP-Z91 ower sensor NFP-Z91 laterawoe 20 dB Attenuator ypa-N minimach combination inference Proba EX3DV4 laC4 secondary Standarda ower mater EFM-442A	SN 104778 SN 103244 SN 103245 SN 0056 (20k) SN 5047.2 (06327 SN 3503 SN 801	08-Apr-16 (No. 211-02288/02289) 08-Apr-16 (No. 211-02288) 08-Apr-16 (No. 217-02289) 08-Apr-16 (No. 217-02292) 08-Apr-16 (No. 217-02295) 31-040-15 (No. EX3-3503, Dec15) 30-Dec-15 (No. EX3-3503, Dec15) Check Disc (in house)	April 17 April 17 April 17 April 17 April 17 April 19 Decil 18 Decil 18 Scheduled Check In nouse check: Oct 18
Power meter NRP Power sensor NRP Z91 Inference 20 dB Attenuator type-N mismach combination Telerance Probe EX3DV4 DAE4 Secondary Standards Power mister EPM-442A Power sensor HP 8461A	SN 104778 SN 103244 SN 103245 SN 9058 (26k) SN 9057 (27) 06327 SN 3503 SN 801	08-Apr-16 (No. 217-02288/) 08-Apr-16 (No. 217-02288) 08-Apr-16 (No. 217-02288) 08-Apr-16 (No. 217-02282) 08-Apr-16 (No. 217-02282) 08-Apr-16 (No. 217-02282) 31-Dec-15 (No. EX3-3503, Dec-15) 30-Dec-15 (No. EX3-3503, Dec-15) 07-Dec-16 (No. DAE=-601_Dec-15) Check Disc (ip house)	Apr.17 Apr.17 Apr.17 Apr.17 Apr.17 Apr.17 Dec.16 Dec.16 Scheduled Check In nouse check: Oct.16 In nouse check: Oct.16
Tower meter NRP Tower sensor NRP-Z91 Tower Sensor ST Standards Tower sensor NP 846TA Tower sensor NP 846TA	SN 104778 SN 103244 SN 103245 SN 6058 (29k) SN 6047.2 / 08327 SN 3503 SN 801 ID 4 SN 0837480704 SN US37292783	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 06-Apr-16 (No. 217-02292) 06-Apr-16 (No. 217-02295) 31-040-15 (No. EX3-3503, Dec15) 30-040-15 (No. DAE=601_04015) Check Disse (in house) 07-04-15 (No. 217-02222) 07-04-15 (No. 217-02222)	Apr.17 Apr.17 Apr.17 Apr.17 Apr.17 Apr.17 Apr.17 Dec-16 Dec-16 Scheduled Check In house check Oct.16 In house check Oct.16 In house check Oct.16 In house check Oct.16
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Hadrenuce 20 dB Alternatics (ype-N miamach combinistion Reference Probe EX3DV4 JAES Secondary Standards Power meter EPM-442A Power meter EPM-442A Power sensor HP 8461A Power sensor HP 8461A	SN 104778 SN 103244 SN 103245 SN 5058 (29k) SN 5047.2 / 06327 SN 3903 SN 801 ID 4 SN 0837480704 SN: USSI 292703 SN: MY41082317	06-Apri-16 (No. 217-02288/02289) 06-Apri-16 (No. 217-02288) 06-Apri-16 (No. 217-02289) 06-Apri-16 (No. 217-02292) 06-Apri-16 (No. 217-02292) 31-0-60-15 (No. EX3-3003, Dec15) 30-Dec-15 (No. DAE-1-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr.17 Apr.17 Apr.17 Apr.17 Apr.17 Dec.16 Dec.16 Dec.16 Scheduled Check In nouse check: Oct.16 In house check: Oct.16 In house check: Oct.16 In house check: Oct.16 In house check: Oct.16
Primary Standards Power meter NPP Power sensor NPP-Z91 Power sensor NPP-Z91 Reference 20 dff Afteruster Type-N mismisch combination Higherence Probe Excord DAEa Secondary Standards Power sensor HF 8461A Power sensor HF 8461A Power sensor HF 8461A Riff generator H&S SMT-00 Network Analyzer HP 8753E	SN 104778 SN 103244 SN 103245 SN 0056 (20k) SN 5047.2 (06327 SN 3503 SN 861 ID 4 SN GB37460704 SN US37292703 SN WY41032317 SN 100872	08-Apri-16 (No. 211-02280/02289) 08-Apri-16 (No. 211-02288) 08-Apri-16 (No. 211-02282) 08-Apri-16 (No. 211-02292) 08-Apri-16 (No. 211-02292) 08-Apri-16 (No. 211-02292) 09-Dec-15 (No. DAE=601_Dec-15) Check Date (in house) 09-Oct-16 (No. 211-022222) 09-Oct-15 (No. 211-022222) 09-Oct-15 (No. 211-022222) 09-Oct-15 (No. 211-022223) 15-Jun-15 (No. 211-02223)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16
Power meter NRP Power sensor NPP-294 Power sensor NPP-294 Reference 20 dB Attenuator (ype-N mismatch combination Reference Probe EX30V4 DAEa Secondary Standards Power misher EPM-442A Power sensor NP 8481A Regenerator R&S SMT-00	SN 104778 SN 103244 SN 103245 SN 9058 (29k) SN 9047.2 / 06327 SN 3503 SN 801 ID 4 SN 0837460704 SN US37292703 SN: MY4108317 SN: 190872 SN: US37390585	08-Apri-16 (No. 217-02288/02289) 08-Apri-16 (No. 217-02288) 08-Apri-16 (No. 217-02289) 08-Apri-16 (No. 217-02289) 08-Apri-16 (No. 217-02295) 31-0ec-15 (No. EX3-3503, Dec-15) 30-0ec-15 (No. EX3-3503, Dec-15) 07-0ct-16 (No. 217-02222) 07-0ct-15 (No. 217-02222) 07-0ct-15 (No. 217-02223) 15-Jun-15 (In floure check Jun-15) 18-Out-16 (In floure check Jun-15)	April 17 April 17 April 17 April 17 April 17 April 17 Decil 16 Decil 16 Scheduled Chack In house chack: Octil 16 In house chack: Octil 16 In house chack: Octil 16 In house of ack: Octil 16 In house of ack: Octil 16

Cartificate No. DSGHzV2-1040_Jun16

Page 1 of 16

Page: 119 of 133

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 80th Zurich, Switzerland

Service suisse d'étalonnege

C Servizio svizzere di teratura Swiss Calibration Service

Accrecitation No.: SCS 0108

Accredited by the Swiss Aucredition Service (SAS) The Swiss Accorditation Service is one of the algoritories to the EA Multinieral Agreement for the recognition of collibration condition

Glossary:

TSL tissue simulating liquid ConvE sensitivity in TSL / NORM x, v, z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 50 MHz to 6 GHz)1, March 2010.
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end. of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%

Contitodo No: D5GHzV3-1040 Junt6

Page 2 of fall

Page: 120 of 133

Measurement Conditions

DASY system configuration, as far as not given on page 1.

AS 1 System Comiguration, as far as not		
DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz	
Frequency	5500 MHz ± 1 MHz	
	5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.54 mha/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.68 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21,9 W/kg ± 19,5 % (k=2)

Certificate No: D5GHzV2-1040_Jun16

Page 3 of 16

Page: 121 of 133

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittiviity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.64 mha/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	4.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1040_Jun16

Page 4 of 16

Page: 122 of 133

Head TSL parameters at 5600 MHz

The following parameters and extrubations were applied

	Temperature	Permittivity	Conductivity
Numinal Head TSL parameters	22,0 °C	36.5	5.07 mhp/m
Measured Head TSL parameters	(22.0±0.2) C	34.2 ± 5 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	4 0.5 °C	-	_

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	100 mW Input power	8.12 W/kg
SAR for nominal Heart TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	35.3	5.27 mmo/m
Measured Head TSL parameters	(22.0±0.2) °C	339±5%	5.14 mho/m ± 6.%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7 Bit Wikg
SAR for nominal Head TSL parameters.	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAIT measured	100 mW Input power	2.19 W/kg
SAR for nominal Hind TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Certificate No. D5GHzV2-1040_Jun16

Page B of 10

Page: 123 of 133

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.41 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.35 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	72.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.70 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1040_Jun16

Page 6 of 16

Page: 124 of 133

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittiviity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.92 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.90 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1040_Jun16

Page 7 of 16

Page: 125 of 133

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6.%	6.23 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1040_Jun16

Page 8 of 16

Page: 126 of 133

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.2 Ω - 8.5 jΩ
Return Loss	- 21.4 dlB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	47.8 Ω - 3.3 jΩ
Return Loss	- 27.8 dlB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.0 Ω - 5.9 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.4 Ω - 3.3 jΩ
Return Loss	- 23.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	54.3 Ω - 2.3 μΩ
Return Loss	- 26.6 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.7 Ω - 7.0 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	48.6 Ω - 16 jΩ
Return Loss	- 33.4 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.3 Ω - 4.4 jΩ
Return Loss	- 27.2 dB

Certificate No: D5GHzV2-1040_Jun16

Page 9 of 16

Page: 127 of 133

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	57.9 Ω - 2.3 jΩ
Return Loss	- 22.4 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	54.6 Ω - 0.7 jΩ
Return Loss	- 27.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 30, 2005

Certificate No: D5GHzV2-1040_Jun16

Page 10 of 16

Page: 128 of 133

DASY5 Validation Report for Head TSL

Date: 17.06.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1040

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.54$ S/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.64$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5500 MHz; $\sigma = 1000$ kg/m 3 4.83 S/m; $\varepsilon_r = 34.3$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 4.93 \text{ S/m}$; $\varepsilon_r = 34.2$; $\rho = 4.93 \text{ S/m}$; $\rho = 4.93 \text{ S$ 1000 kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.14$ S/m; $\epsilon_r = 33.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.59, 5.59, 5.59); Calibrated: 31.12.2015, ConvF(5.25, 5.25, 5.25); Calibrated: 31.12.2015, ConvF(5.18, 5.18, 5.18); Calibrated: 31.12.2015, ConvF(4.99, 4.99, 4.99); Calibrated: 31.12.2015, ConvF(4.95, 4.95, 4.95); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.41 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.21 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.35 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.36 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.02 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 30.8 W/kg

SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Certificate No: D5GHzV2-1040 Jun16

Page 11 of 16

Page: 129 of 133

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

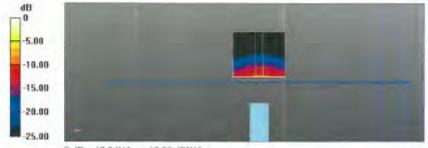
Reference Value = 71.08 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.32 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

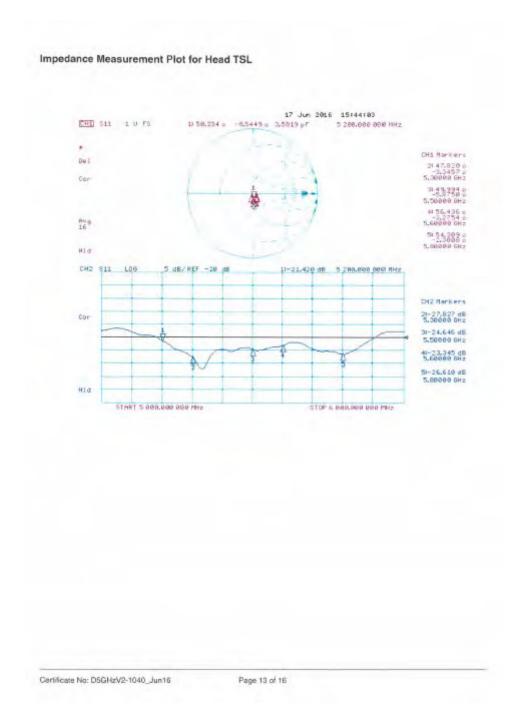

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.92 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.19 W/kg

Maximum value of SAR (measured) = 18.4 W/kg


0 dB = 17.3 W/kg = 12.38 dBW/kg

Certificate No. D5GHzV2-1040_Jun16

Page 12 of 16

Page: 130 of 133

Page: 131 of 133

DASY5 Validation Report for Body TSL

Date: 16.06.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1040

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.41 \text{ S/m}$; $\epsilon_e = 47.1$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5300 MHz; $\sigma = 5.53 \text{ S/m}$; $\varepsilon_r = 46.9$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5500 MHz; $\sigma =$ 5.8 S/m; $\epsilon_r = 46.5$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 5.95 \text{ S/m}$; $\epsilon_r = 46.3$; $\rho = 5.95 \text{ M}$; $\epsilon_r = 46.3$; 1000 kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.23$ S/m; $\varepsilon_c = 46$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.99, 4.99, 4.99); Calibrated: 31.12.2015, ConvF(4.75, 4.75, 4.75); Calibrated: 31.12.2015, ConvF(4.4, 4.4, 4.4); Calibrated: 31.12.2015, ConvF(4.35, 4.35, 4.35); Calibrated: 31.12.2015, ConvF(4.27, 4.27, 4.27); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.34 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 7.35 W/kg; SAR(10 g) = 2.07 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.02 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 7.7 W/kg; SAR(10 g) = 2.16 W/kg

Maximum value of SAR (measured) = 17.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.81 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.19 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

Certificate No: D5GHzV2-1040_Jun16

Page 14 of 16

Page: 132 of 133

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

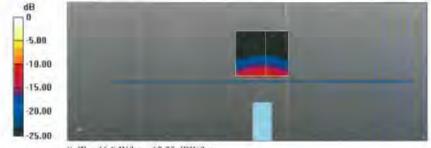
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.28 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.9 W/kg; SAR(10 g) = 2.21 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

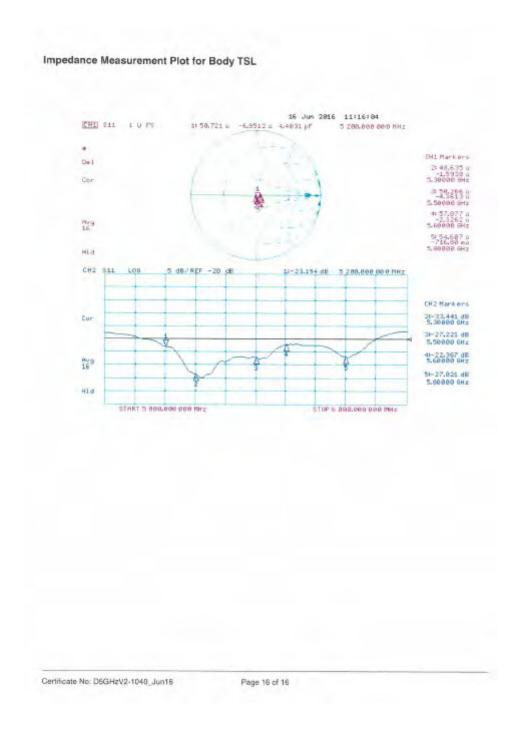

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.14 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7,58 W/kg; SAR(10 g) = 2.1 W/kg

Maximum value of SAR (measured) = 18.3 W/kg


 $0 dB \approx 16.8 \text{ W/kg} = 12.25 dBW/kg$

Certificate No: D5GHzV2-1840_Jun18

Page 15 of 16

Page: 133 of 133

- End of 1st part of report -