

FCC Test Report

Equipment	:	Tablet PC
Brand Name	:	hp
Model Name	:	HSTNN-C78C
FCC ID	:	B94HNC78CHWWR
Standard	:	47 CFR FCC Part 15.225
Operating Band	:	13.553 – 13.567 MHz (channel freq. 13.56 MHz)
Equipment Class	:	DXX
Applicant	:	Hewlett-Packard Company 3000 Hanover Street, Palo Alto, California 94304, USA
Manufacturer	:	COMPAL ELECTRONICS, INC. No.581, Ruiguang Rd., Neihu District, Taipei City 11492, Taiwan (R.O.C.)

The product sample received on Oct. 15, 2013 and completely tested on Nov. 04, 2013. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Assistant Manager avne b

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories	6
1.3	Support Equipment	6
1.4	Testing Applied Standards	6
1.5	Testing Location Information	6
1.6	Measurement Uncertainty	7
2	TEST CONFIGURATION OF EUT	8
2.1	The Worst Case Modulation Configuration	8
2.2	Test Channel Frequencies Configuration	8
2.3	The Worst Case Measurement Configuration	8
2.4	Test Setup Diagram	9
3	TRANSMITTER TEST RESULT	11
3.1	AC Power-line Conducted Emissions	11
3.2	Emission Bandwidth	15
3.3	Field Strength of Fundamental Emissions and Spectrum Mask	17
3.4	Transmitter Radiated Unwanted Emissions	19
3.5	Frequency Stability	
4	TEST EQUIPMENT AND CALIBRATION DATA	

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result			
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.5854040MHz 26.79 (Margin 19.21dB) - AV 45.15 (Margin 10.85dB) - QP	FCC 15.207	Complied			
3.2	15.215(c)	Emission Bandwidth	20dB Bandwidth 2.48 [kHz] FL: 13.559219 MHz FH: 13.561693 MHz	Fall in band F _L ≥ 13.553 MHz F _H ≤ 13.567 MHz	Complied			
3.3	15.225(a)~(d)	Field Strength of Fundamental Emissions and Spectrum Mask	Fundamental Emissions quasi peak:33.25 dBuV/m at 10m Device complies with spectrum mask – refer to test data	103.08 dBuV/m at 10	Complied			
3.4	15.225(d)	Transmitter Radiated Unwanted Emissions	[dBuV/m at 3m]: 31.940MHz 34.42 (Margin 5.58dB) - QP	FCC 15.209	Complied			
3.5	15.225(e)	Frequency Stability	39.45 ppm	± 0.01% (100ppm)	Complied			

Revision History

Report No.	Version	Description	Issued Date
FR392719-02	Rev. 01	Initial issue of report	Nov. 28, 2013
FR392719-04	Rev. 01	Add Wi-Fi and WWAN function and revised radiated emissions (above 30MHz) tested.	Nov. 29, 2013

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information					
Frequency Range Modulation Ch. Frequency (MHz) Channel Number Field Strength (dBuV/m)					
13.553 – 13.567 MHz	13.56	1	33.25		
Note 1: Field strength p	Note 1: Field strength performed quasi peak level at 10m.				

1.1.2 Antenna Information

	Antenna Category				
	Equipment placed on the market without antennas				
\square	Integral antenna (antenna permanently attached)				
	External antenna (dedicated antennas)				

1.1.3 Type of EUT

	Identify EUT				
EUT	EUT Serial Number N/A				
Pre	sentation of Equipment	□ Production ; □ Pre-Production ; □ Prototype			
		Type of EUT			
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle				
Operated test mode for worst duty cycle				
Test Signal Duty Cycle (x)Voltage Duty Factor [dB] - (20 log 1/x)				
⊠ 100%	0			

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	External DC adapter	Li-on Battery

1.2 Accessories

Accessories Information					
	Brand Name	HP	Model Name	HSTNN-DA34	
AC Adapter	Power Rating	I/P: 100-240V ~ 0.5A 50-60Hz ; O/P: 9V 1.1A			
	Power Cord	1.7meter, non-shielded cable, with w/o ferrite core			
Li-ion Battery	Brand Name	HP	Model Name	HSTNN-IB5O	
LI-ION Dallery	Power Rating	7.4Vdc, 4200mAh			
NFC Chip	Part Number	PN65OPC			

Reminder: Regarding to more detail and other information, please refer to user manual.

1.3 Support Equipment

	Support Equipment					
No.	lo. Equipment Brand Name Model Name FCC ID					
1	Identity Badge	-	-	-		

1.4 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 174176

1.5 Testing Location Information

	Testing Location						
	HWA YA	ADD :	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.				
		TEL :	886-3-327-3456 FAX	386-3-327-3456 FAX : 886-3-327-0973			
Test Condition Test Site No. Test Enginee			Test Engineer	Test Environment			
	AC Conduction		CO04-HY	Zeus	24°C / 49%		
RF Conducted		cted	TH06-HY	Shiming	22.1°C / 61%		
Radiated Emission		nission	10CH02-HY	Teddy	23°C / 42%		
ŀ	Radiated Err	nission	03CH03-HY	Hsiao	23°C / 66%		

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty				
Test Item		Uncertainty		
AC power-line conducted emissions		±2.26 dB		
Emission bandwidth		±1.42 %		
Unwanted emissions, conducted	9 – 150 kHz	±0.38 dB		
	0.15 – 30 MHz	±0.42 dB		
	30 – 1000 MHz	±0.51 dB		
All emissions, radiated	9 – 150 kHz	±2.49 dB		
	0.15 – 30 MHz	±2.28 dB		
	30 – 1000 MHz	±2.56 dB		
Temperature		±0.8 °C		
Humidity		±3 %		
DC and low frequency voltages		±3 %		
Time		±1.42 %		
Duty Cycle		±1.42 %		

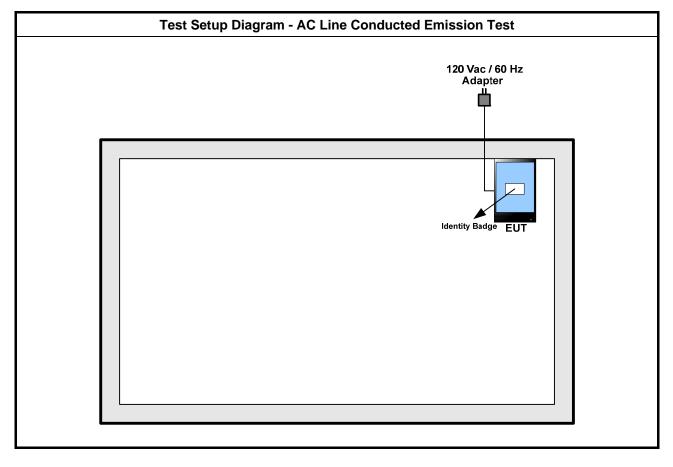
2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

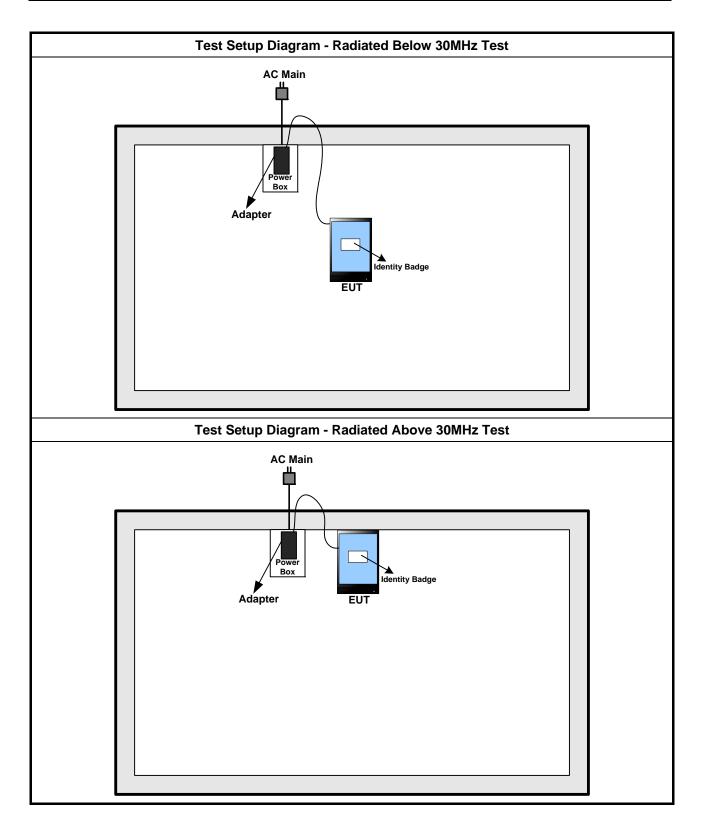
Modulation Used for Conformance Testing	
Modulation Mode Field Strength (dBuV/m at 10 m)	
NFC-Read/Write 33.25	

2.2 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration	
Modulation ModeTest Channel Frequencies (MHz) – FX (Frequencies Abbreviations)	
NFC-Read/Write 13.56-(F1)	


2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests		
Tests Item AC power-line conducted emissions		
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz		
Operating Mode	Operating Mode Description	
1	AC Power & Radio link	


Th	e Worst Case Mode for Follo	owing Conformance Tests	
Tests Item	Emission Bandwidth, Field Strength of Fundamental Emissions Spectrum Mask, Transmitter Radiated Unwanted Emissions Frequency Stability		
Test Condition	Radiated measurement		
	EUT will be placed in fixe	ed position.	
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes.		
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes. The worst planes is Y.		
Operating Mode < 1GHz	1. AC Power & Radio link		
Modulation Mode	NFC-Read/Write		
	X Plane	Y Plane	Z Plane
Orthogonal Planes of EUT			

2.4 Test Setup Diagram

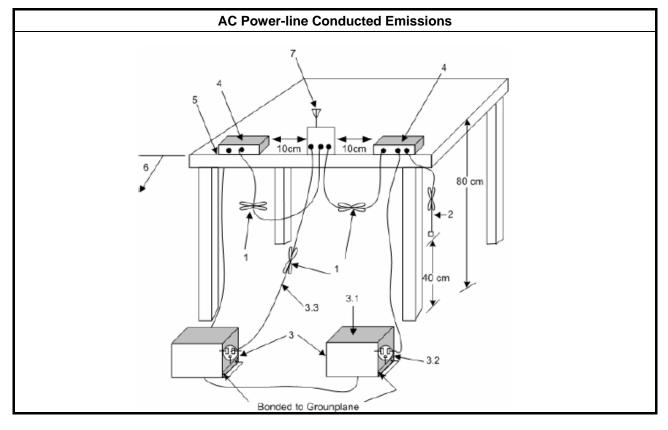
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

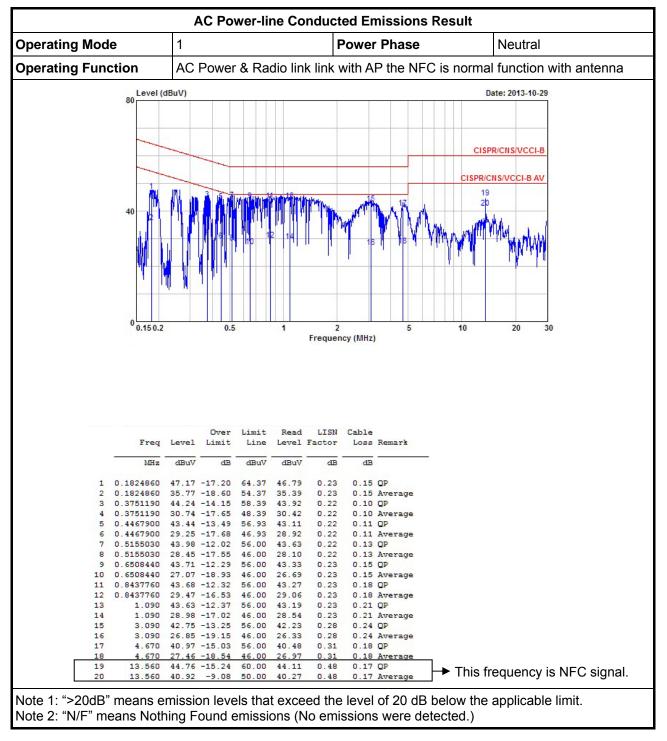
3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30 60 50					
Note 1: * Decreases with the logarithm of the frequency.					

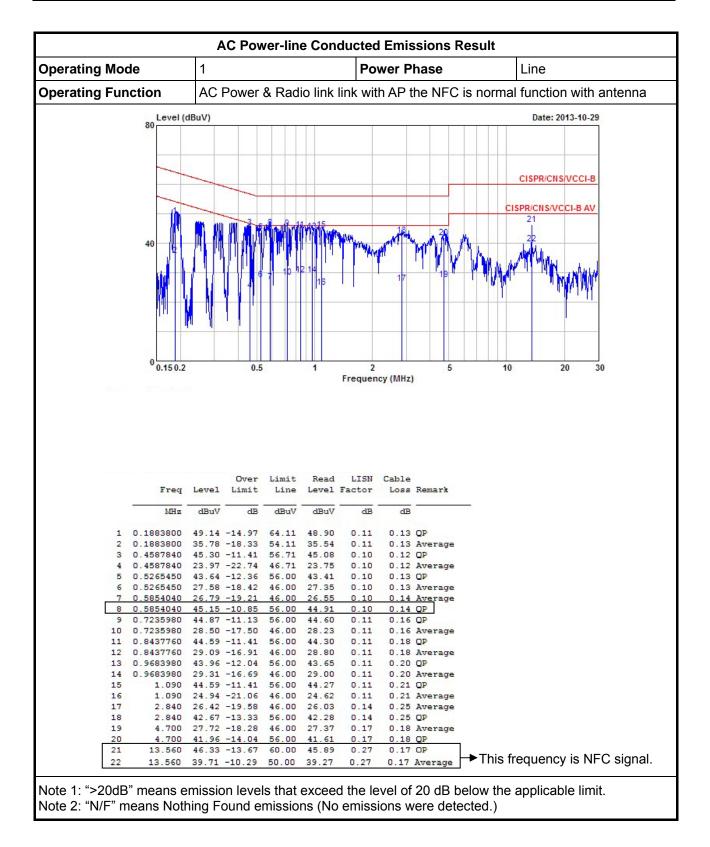
3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures


	Test Method					
\boxtimes	Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.					
\boxtimes	If AC conducted emissions fall in operating band, then following below test method confirm final result.					
	 Accept measurements done with a suitable dummy load replacing the antenna under the following conditions: (1) Perform the AC line conducted tests with the antenna connected to determine compliance with FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load to determine compliance with FCC 15.207 limits within the transmitter's fundamental emission band. 					
	 For a device with a permanent antenna operating at or below 30 MHz, accept measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) Perform the AC line conducted tests with the permanent antenna to determine compliance with the FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load in lieu of the permanent antenna to determine compliance with the FCC 15.207 limits within the transmitter's fundamental emission band; 					

3.1.4 Test Setup



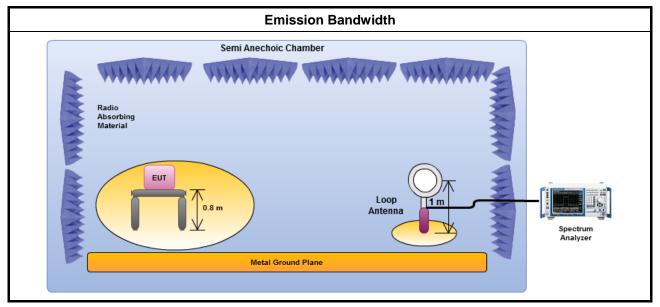
3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth Limit

20dB Bandwidth Limit

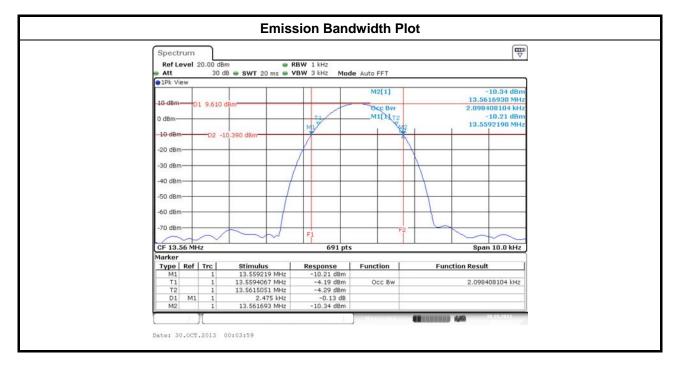
☑ Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (13.553 – 13.567 MHz).


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method
\boxtimes	For the emission bandwidth refer ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

	Occupied Channel Bandwidth Result				
Modulation Mode	Frequency (MHz)	20dB Bandwidth (kHz)	F _∟ at 20dB BW (kHz)	F _H at 20dB BW (MHz)	99% Bandwidth (kHz)
NFC-Read/Write	13.56	2.48	13.559219	13.561693	2.10
Limit		N/A	13.553	13.567	N/A
Result			Com	plied	

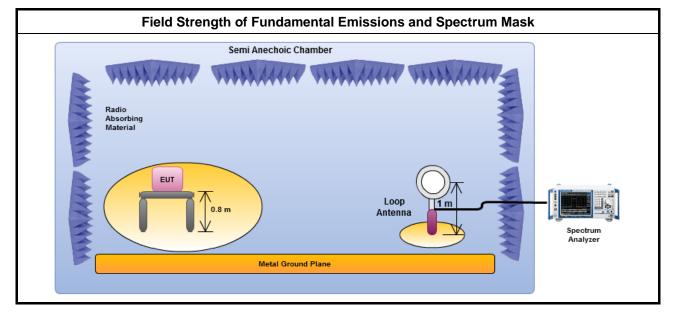
3.3 Field Strength of Fundamental Emissions and Spectrum Mask

3.3.1 Field Strength of Fundamental Emissions and Spectrum Mask Limit

Field Strength of Fundamental Emissions					
Emissions (uV/m)@30m (dBuV/m)@30m (dBuV/m)@10m (dBuV/m)@3m (dBuV/m)@1m					
Fundamental	15848	84.0	103.08	124.0	143.1
Quasi peak measurement of the fundamental.					

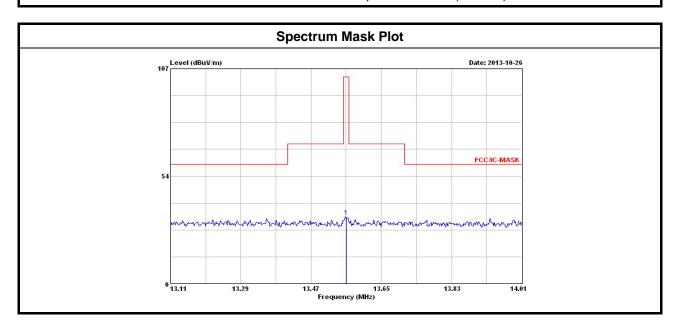
	Spectrum Mask				
Freq. of Emission (MHz)	(uV/m)@30m	(dBuV/m)@30m	(dBuV/m)@10m	(dBuV/m)@3m	(dBuV/m)@1m
1.705~13.110	30	29.5	48.6	69.5	88.6
13.110~13.410	106	40.5	59.6	80.5	99.6
13.410~13.553	334	50.5	69.6	90.5	109.6
13.553~13.567	15848	84.0	103.1	124.0	143.1
13.567~13.710	334	50.5	69.6	90.5	109.6
13.710~14.010	106	40.5	59.6	80.5	99.6
14.010~30.000	30	29.5	48.6	69.5	88.6

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method
\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz and test distance is 10m.
	At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be following below methods.
	The results shall be extrapolated to the specified distance by making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.
	The results shall be by using the square of an inverse linear distance extrapolation factor (40 dB/decade).
	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.



3.3.4 Test Setup

3.3.5 Test Result of Field Strength of Fundamental Emissions and Spectrum Mask

	Field S	trength of Fundan	nental Emissions	s Result	
Modulation Mode	Frequency (MHz)	Fundamental (dBuV/m)@10m	Polarization	Margin (dB)	Limit (dBuV/m)@10m
NFC-Read/Write F1		33.25	Н	69.83	103.08
Res	sult		Com	plied	
Note 1: Measuren	nent worst emissi	ons of receive anter	nna polarization: \	/ (Vertical).	

3.4 Transmitter Radiated Unwanted Emissions

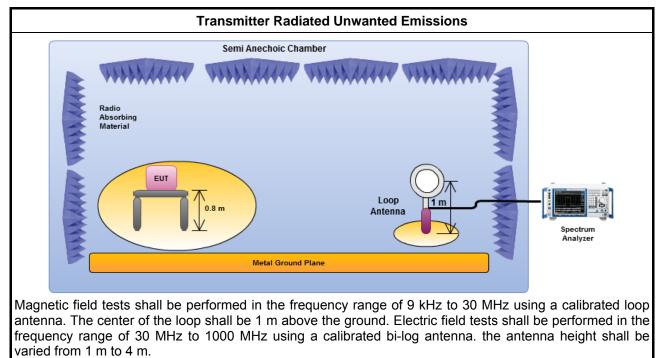
3.4.1 Transmitter Radiated Unwanted Emissions Limit

	Transmitter Radiated U	nwanted Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

	Test Method
\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1 GHz and test distance is 3m.
\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz and test distance is 10m.
\boxtimes	At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be following below methods.
	The results shall be extrapolated to the specified distance by making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.
	The results shall be by using the square of an inverse linear distance extrapolation factor (40 dB/decade).
	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.
\boxtimes	The any unwanted emissions level shall not exceed the fundamental emission level.
	All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.4.4 Test Setup

Operating Mode 1 Operating Function AC Power & Radio link 107		ation Mode	NFC-Rea	ad/Write	Polariz	zation		Н		
	Opera	ting Mode	1		Opera	ting Fur	nction	AC Powe	er & Radi	io link
			uV/m)						Date	2013-10-26
0.009 0.037 0.065 0.094 0.122 0.1		107								
		0 0.009	0.037				.094	0.:	122	0.1
					ad Preamp			0		Table
			level Limit	Line Lev	rel Factor	Loss	Factor :	Remark	Pos	Pos
MHz dBuV/m dB dBuV/m dBuV dB dB dB/m cm deg			level Limit	Line Lev	rel Factor	Loss	Factor :	Remark	Pos	Pos
		MHz dB	Limit Limit Limit Limit Limit Limit Limit Limit	Line Lev dBuV/m dl 84.95 6.	rel Factor BuV dB	Loss dB 0.14	Factor : 	Peak	Pos	Pos

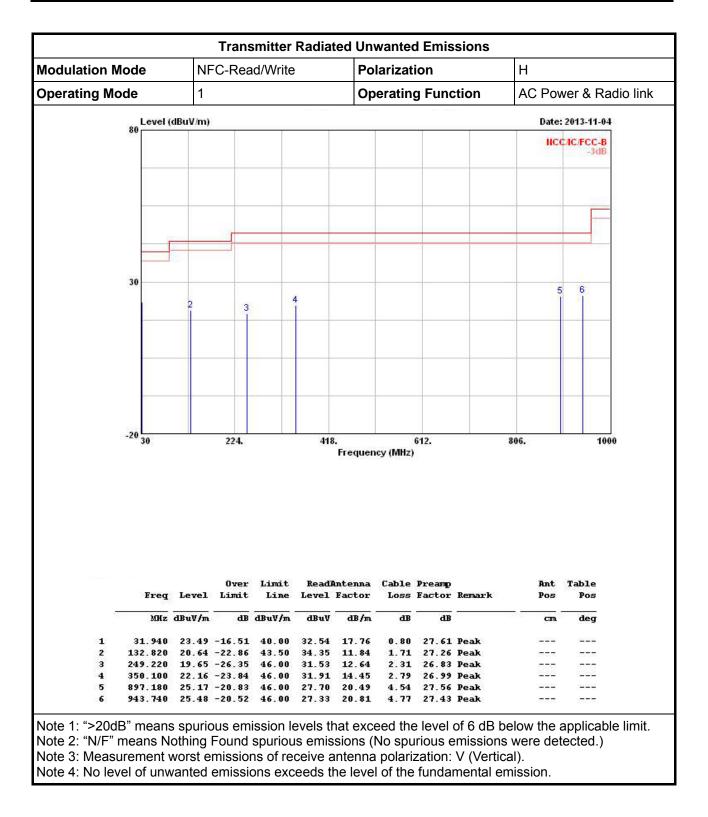
3.4.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

	NFC-Re	ad/Write	Polar	ization		н		
erating Mode	1		Opera	ating Fu	unction	AC F	Power & Ra	adio link
Level (dBuV	/m)						Date	2013-10-26
107								
					_			-
					_			
54					-			
10.00							FC	C/NCC/CR
· · · · · · ·								
								2 3
0								
0.15	0.52	0.8	9 Frequenc		.26		1.63	
			Preamp					Table
Freq Lev		Limit Read Line Level				Remark		Table Pos
Freq Lev MHz dBuV	el Limit					Remark		
	el Limit /m dB 12 -17.56	Line Level 1BuV/m dBuV 48.68 10.88	Factor	Loss 1	Factor	Peak	Pos	Pos

ating Mode 1 Level (dBuV/m)		perating Functior		adio link
107			Date	
				: 2013-10-2
54				CC/IICC/CR
		1 2	3	
0 2 3.	3.2 4.4 From	5.6 uency (MHz)	6.8	

rating Mode 1 Operating Function AC Power & Radio link 107 Level (dBuV/m) Date: 2013-10-26 107	ulation Mode	NFC-Re	ead/Write	Pola	rization		Н		
	erating Mode	1		Oper	ating F	unctior	n AC F	Power & Ra	adio link
	Level (dBuV)	m)						Date:	2013-10-2
54									
	54							FC	C/IICC/CR
						1	2		3
0 8 11.4 14.8 18.2 21.6 2 Frequency (MHz)	0 8	11.4	14.			18.2		21.6	
	Freq Lev	V. S		-			Remark	Ant Pos	Table Pos
Over Limit Read Preamp CableAntenna Ant Table Freq Level Limit Line Level Factor Loss Factor Remark Pos Pos		/m dB	dBuV/m dBuV	dB	dB	dB/m		cm	deg
Freq Level Limit Line Level Factor Loss Factor Remark Pos Pos	MHz dBuV		48.64 2.49	0.00	0.89	20.16	Dook		

Level (dBuV/m) Date: 2013-10-26 107	lulation Mode	NFC-R	Read/Write	Pola	rization	1	н		
107	erating Mode	1		Оре	rating F	unction	AC Po	wer & Ra	adio link
54	Level (dBu	l/m)						Date:	2013-10-20
					-				
	54								
	54							FC	C/NCC/CR
		<u>.</u>							
								2	3
[©] 25 26. 27. 28. 29. 3 Frequency (MHz)	0 25	26.		27.		28.	2	9.	;
	fred re		<u></u>	0.00	. <u> </u>		kemark	Pos	Pos
Freq Level Limit Line Level Factor Loss Factor Remark Pos Pos		vym dr	anatu a	RAA GR	СВ			CM	aeg
Mtz dBuV/m dB dBuV/m dBuV dB dB dB/m cm deg				FA 0.00					
MHz dBuV/m dB dBuV/m dB dB dB/m cm deg 1 @ 28.660 24.73 -23.90 48.63 3.52 0.00 1.11 20.10 Peak 2 @ 29.060 24.74 -23.89 48.63 3.52 0.00 1.12 20.10 Peak	1 @ 28.660 24 2 @ 29.060 24	. 74 -23.89	48.63 3	. 52 0.00	1.12	20.10	Peak		



Modulation Mo	ode	NF	C-Rea	ad/Write	9	Po	lariza	tion		V		
Operating Mod	de	1				Op	eratin	g Fun	ction	AC Po	wer & Radio	link
	Level (dBuV/m)			147 - 488844	1067173	с. 	224 (314	71	Date	: 2013-11-04	
	80									NC	C/IC/FCC-B	
											-3dB	
							1					
			1									
	- F											
			-255									
	30					5						
	30	2	24	. D	4	Ĩ				6		
			3		i							
	_			-		-						
	201040											
12	-20 30		224.		418	3.		612.		806.	1000	
						Frequen	CV/MHZ					
						250 ASIN - 550 ASIN	cy (Ianiz)				
							cy (MIIZ)				
							icy (iiiiz)					
							cy (winz,	,				
							cy (winz	,				
						in hid - solver	cy (winz,	,				
						14 34d •10785	cy (winz,	,				
			Over	Limit	Readi					Ant	Table	
	Freq	Level	2022	Limit Line		Antenna Factor	Cable	Preamp	Remark	Ant Pos	Table Pos	
		Level dBuV/m	Limit			Antenna Factor	Cable	Preamp Factor			Pos	
	Mrz	dBuV/m	Limit dB	Line dBuV/m	Level dBuV	Antenna Factor dB/m	Cable Loss dB	Preamp Factor dB	0	Pos	Pos	
 1 2	Mrz	dBuV/m 34.42	Limit dB	Line dBuV/m 40.00	Level	Antenna Factor dB/m	Cable Loss	Preamp Factor dB 27.61	QP	Pos	Pos deg	
2 3	MHz 31.940 126.030 249.220	dBuV/m 34.42 23.73 21.36	Limit dB -5.58 -19.77 -24.64	Line dBuV/m 40.00 43.50 46.00	Level dBuV 43.47 36.99 33.24	Antenna Factor dB/m 17.76 12.35 12.64	Cable Loss dB 0.80 1.67 2.31	Preamp Factor dB 27.61 27.28 26.83	QP Peak Peak	Pos 	Pos deg 	
2 3 4	MHz 31.940 126.030 249.220 350.100	dBuV/m 34.42 23.73 21.36 22.67	Limit dB -5.58 -19.77 -24.64 -23.33	Line dBuV/m 40.00 43.50 46.00 46.00	Level dBuV 43.47 36.99 33.24 32.42	Antenna Factor dB/m 17.76 12.35 12.64 14.45	Cable Loss dB 0.80 1.67 2.31 2.79	Preamp Factor dB 27.61 27.28 26.83 26.99	QP Peak Peak Peak	Pos 	Pos 	
2 3 4 5	MHz 31.940 126.030 249.220 350.100 448.070	dBuV/m 34.42 23.73 21.36 22.67 28.41	Limit dB -5.58 -19.77 -24.64 -23.33 -17.59	Line dBuV/m 40.00 43.50 46.00 46.00 46.00	Level dBuV 43.47 36.99 33.24 32.42 36.41	Antenna Factor dB/m 17.76 12.35 12.64 14.45 16.43	Cable Loss dB 0.80 1.67 2.31 2.79 3.17	Preamp Factor dB 27.61 27.28 26.83 26.99 27.60	OP Peak Peak Peak Peak Peak	Pos 	Pos deg 	
2 3 4 5 6	MHz 31.940 126.030 249.220 350.100 448.070 828.310	dBuV/m 34.42 23.73 21.36 22.67 28.41 26.09	Limit dB -5.58 -19.77 -24.64 -23.33 -17.59 -19.91	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 46.00	Level dBuV 43.47 36.99 33.24 32.42 36.41 29.31	Antenna Factor dB/m 17.76 12.35 12.64 14.45 16.43 20.12	Cable Loss dB 0.80 1.67 2.31 2.31 3.17 3.17 4.39	Preamp Factor dB 27.61 27.28 26.83 26.99 27.60 27.73	QP Peak Peak Peak Peak Peak	Pos 	Pos deg 	
2 3 4 5 6 Note 1: ">20dB	MHz <u>31.940</u> 126.030 249.220 350.100 448.070 828.310 87 means	dBuV/m 34.42 23.73 21.36 22.67 28.41 26.09 S Spurio	Limit dB -5.58 -19.77 -24.64 -23.33 -17.59 -19.91 OUS EM	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 46.00 16.00	Level dBuV 43.47 36.99 33.24 32.42 36.41 29.31 evels t	Antenna Factor dB/m 17.76 12.35 12.64 14.45 16.43 20.12 hat exc	Cable Loss dB 0.80 1.67 2.31 2.31 3.17 4.39 eed th	Preamp Factor dB 27.61 27.28 26.83 26.99 27.60 27.73 e level	QP Peak Peak Peak Peak Peak	Pos 	Pos deg applicable lir	mit.
2 3 4 5 6	MHz 31.940 126.030 249.220 350.100 448.070 828.310 87 means neans N	dBuV/m 34.42 23.73 21.36 22.67 28.41 26.09 S spuric othing	Limit dB -5.58 -19.77 -24.64 -23.33 -17.59 -19.91 Dus em Found	Line dBuV/m 40.00 43.50 46.00 46.00 46.00 46.00 ission l spuriou	Level dBuV 43.47 36.99 33.24 32.42 36.41 29.31 evels t us emis	Antenna Factor dB/m <u>17.76</u> 12.35 12.64 14.45 16.43 20.12 hat exc ssions (Cable Loss dB 0.80 1.67 2.31 2.79 3.17 4.39 eed th No spo	Preamp Factor dB 27.61 27.28 26.99 27.60 27.73 e level urious (OP Peak Peak Peak Peak Peak of 6 dB l	Pos cm below the s were de	Pos deg applicable lir	mit.

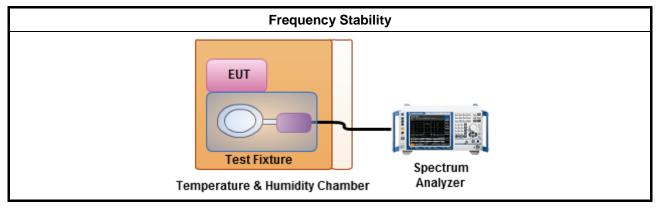
3.4.6 Transmitter Radiated Unwanted Emissions (Above 30MHz)

3.5 Frequency Stability

3.5.1 Frequency Stability Limit

Frequency Stability Limit

 \boxtimes Carrier frequency stability shall be maintained to ±0.01% (±100 ppm).


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method
\boxtimes	Refer as ANSI C63.10, clause 6.8 for frequency stability tests
	Frequency stability with respect to ambient temperature
	Frequency stability when varying supply voltage
	For conducted measurement.
\boxtimes	For radiated measurement. The equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted power level.

3.5.4 Test Setup

3.5.5 Test Result of Frequency Stability

	Frequency S	tability Result
Power Level	1	Frequency Stability Max. Deviation Limit < 100 ppm
Condition	Freq. (MHz)	10 min
T _{20°C} Vmax	13.56048	35.32
T _{20°C} Vmin	13.56048	35.25
T _{50°C} Vnom	13.56045	33.11
T _{40°C} Vnom	13.56045	33.11
T _{30°C} Vnom	13.56045	33.11
T _{20°C} Vnom	13.56048	35.25
T _{10°C} Vnom	13.56051	37.39
$T_{0^{\circ}C}$ Vnom	13.56052	38.42
T _{-10°C} Vnom	13.56054	39.45
T _{-20°C} Vnom	13.56054	39.45
Re	sult	Complied

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 26, 2013	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 21, 2013	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	7.61183201e+012	9kHz ~ 30MHz	Nov. 09, 2012	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101013	9KHz~40GHz	Jan. 29, 2013	Conducted (TH06-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 21, 2013	Conducted (TH06-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-S	MAB0103-001	-20 ~ 100℃	Nov. 21, 2012	Conducted (TH06-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
10m Semi Anechoic Chamber	TDK	SAC-10M	10CH02-HY	30 MHz ~ 1 GHz 10m,3m	Nov. 03, 2012	Radiation (10CH02-HY)
Receiver	R&S	ESI	838496/008	20 Hz ~ 7 GHz	May 14, 2013	Radiation (10CH02-HY)
Turn Table	EM Electronics	EM Electronics	060546	0 -360 degree	N/A	Radiation (10CH02-HY)
RF Cable-R10m	Suhner Switzerland + BELDEN	RG223/U + RG8/U	CB026-DOOR	30 MHz ~ 1 GHz	Feb. 09, 2013	Radiation (10CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/0001	9 kHz - 30 MHz	Jul. 03, 2012	Radiation (10CH02-HY)

Note: Calibration Interval of instruments listed above is two year.

Report No. : FR392719-04

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Dec. 01, 2012	Radiation (03CH03-HY)
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May. 03, 2013	Radiation (03CH03-HY)
Spectrum	R&S	FSP30	100023	9kHz ~ 30GHz	Jul. 20, 2013	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 21, 2013	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Jan. 17, 2013	Radiation (03CH03-HY)
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is one year.