

TEST REPORT

EUT Description	WLAN and BT, 2x2 PCle M.2 2230 adapter card,			
Brand Name	Intel® Wi-Fi 6 AX201			
Model Name	AX201NGW			
FCC ID ISED ID	PD9AX201NG 1000M-AX201NG			
Date of Test Start/End	2018-09-13 / 2018-11-22			
Features	802.11ax, Dual Band, 2x2 Wi-Fi + Bluetooth® 5 (see section 5)			
Applicant	Intel Mobile Communications			
Address	100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA			
Contact Person	Steven Hackett			
Telephone/Fax/ Email	steven.c.hackett@intel.com			
Reference Standards	FCC CFR Title 47 Part 15 C RSS-247 issue 2, RSS-Gen issue 5 (see section 1)			
Test Report identification	180717-02.TR05			
Revision Control	Rev. 00 This test report revision replaces any previous test report revision (see section 8)			
	ced in full, without written approval of the laboratory.			
Issued by	Reviewed by			

Gregory ROUSTAN (Test Engineer Lead)

Cheiel IN (Technical Manager)

Intel Corporation S.A.S – WRF Lab 425 rue de Goa – Le Cargo B6 - 06600, Antibes, France Tel. +33493001400 / Fax +33493001401

Table of Contents

1. S	tandards, reference documents and applicable test methods	3
2. G	General conditions, competences and guarantees	3
	nvironmental Conditions	
4. To	est samples	4
	UT Features	
	emarks and comments	
	est Verdicts summary	
7.1.		
8. D	ocument Revision History	
Annex	x A. Test & System Description	6
A.1	MEASUREMENT SYSTEM	6
A.2	TEST EQUIPMENT LIST	8
A.3	MEASUREMENT UNCERTAINTY EVALUATION	9
Annex	x B. Test Results	10
B.1	20DB BANDWIDTH AND CARRIER FREQUENCY SEPARATION	10
B.2	NUMBER OF HOPPING CHANNELS	14
B.3	TIME OF OCCUPANCY (DWELL TIME)	18
B.4	MAXIMUM PEAK OUTPUT POWER ANTENNA GAIN	25
B.5	OUT-OF-BAND EMISSION (CONDUCTED)	28
B.6	RADIATED SPURIOUS EMISSION	54
B.7	TEST SETUP	62
B.8	TEST SAMPLE	64

1. Standards, reference documents and applicable test methods

- 1. FCC 47 CFR part 15 Subpart C §15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.
- 2. FCC 47 CFR part 15 Subpart C §15.209 Radiated emission limits; general requirements.
- 3. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- 4. DA 00-705 Released March 30, 2000 Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
- 5. RSS-247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
- 6. RSS-Gen Issue 5 General Requirements for Compliance of Radio Apparatus.

2. General conditions, competences and guarantees

- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2005 testing laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is a Registered Test Site listed by ISED, with ISED Assigned Code 1000Y.
- ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- ✓ This report is only referred to the item that has undergone the test.
- This report does not imply an approval of the product by the Certification Bodies or competent Authorities.

3. Environmental Conditions

✓ At the site where the measurements were performed the following limits were not exceeded during the tests:

Temperature	22 °C ±2 °C
Humidity	50 % ± 30 %

4. Test samples

Sample	Control #	Description	Model	Serial #	Date of receipt	Note
	180717-02.S05	RF MODULE	AX201NGW	WFM: 3413E8CA86BD	2018-09-06	
#1	180522-02.S03	EXTENDER	PCB00651_01	6510818-190	2018-05-31	Used for conducted tests
	170000-01.S04 LAPTOP	LATITUDE E5470	DMRKMC2	2017-05-10		
	180717-02.S07	RF MODULE	AX201NGW	WFM: 3413E8CA866D	2018-09-06	Dadieted Courieus
#2	180326-01.S03	EXTENDER	PCB00651_01	6510818-198	2018-03-27	Radiated Spurious emission from 30MHz to 1 GHz
	170209-01.S16	0209-01.S16 LAPTOP	LATITUDE E7470	C1HTPF2	2017-02-09	3011112 10 1 3112
	180717-02.S08	RF MODULE	AX201NGW	WFM:3413E8CA8681	2018-09-06	Dadieted Courieus
#3	180717-03.S18	EXTENDER	PCB00651_01	6510817-133	2018-08-21	Radiated Spurious emission from 1 GHz to 26.5 GHz
	170801-01.S10	LAPTOP	LATITUDE E7470	7KNOXF2	2017-09-07	10 20.0 0112

5. EUT Features

Brand Name	Intel® Wi-Fi 6 AX201		
Model Name	AX201NGW		
FCC ID	PD9AX201NG		
ISED ID	1000M-AX201NG		
Software Version	OEM DRTU_08048_11_183	2_0G	
Driver Version	99.0.39.1 (V010.16.t64)		
Prototype / Production	Production		
Supported Radios	802.11b/g/n/ax 802.11a/n/ac/ax Bluetooth 5	2.4GHz (2400.0 – 2483.5 MHz) 5.2GHz (5150.0 – 5350.0 MHz) 5.6GHz (5470.0 – 5725.0 MHz) 5.8GHz (5725.0 – 5850.0 MHz) 2.4GHz (2400.0 – 2483.5 MHz)	
Antenna Information	CHAIN A: PIFA antenna. WiFi 2.4GHz & 5GHz and BT CHAIN B: PIFA antenna. WiFi 2.4GHz & 5GHz		
Additional Information			

6. Remarks and comments

N/A

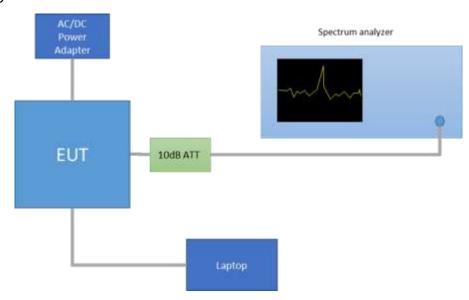
7. Test Verdicts summary

7.1. BT Basic Data Rate / Enhanced Data Rate

FCC part	RSS part	Test name	Verdict
15.247 (a) (1)	RSS-247 Clause 5.1 (a) and (b)	20dB Bandwidth and Carrier frequency separation	Р
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	Number of hopping channels	Р
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	Р
15.247 (b) (1)	RSS-247 Clause 5.4 (b)	Maximum Peak Output Power and antenna gain	Р
15.247 (d)	RSS-247 Clause 5.5	Out-of-band Emissions (conducted)	Р
15.247 (d) 15.209	RSS-247 Clause 5.5 RSS GEN Clause 8.9	Out-of-band Emissions (radiated)	Р

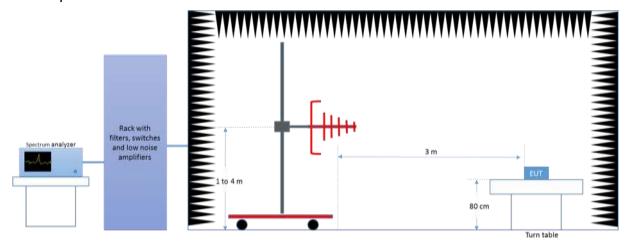
8. Document Revision History

Revision #	Date	Modified by	Revision Details
Rev. 00	2018-11-30	G. Roustan I. Kharrat	First Issue

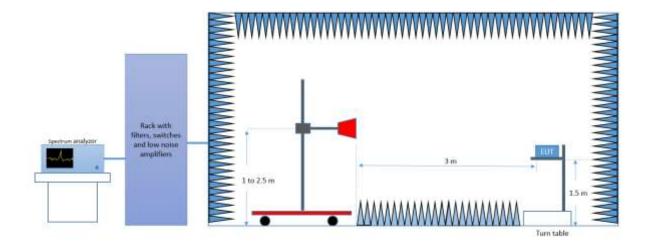

Annex A. Test & System Description

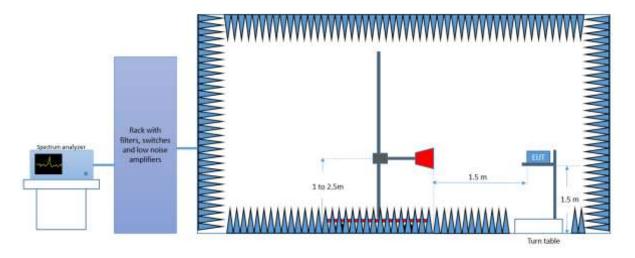
A.1 Measurement System

Measurements were performed using the following setups.


The DUT was installed in a test fixture and this test fixture is connected to a laptop computer and AC/DC power adapter. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes.

Conducted Setup




Radiated Setup 30 MHz- 1 GHz

Radiated Setup 1 GHz - 18 GHz

Radiated Setup 18 GHz - 26.5 GHz

A.2 Test Equipment List

Conducted Setup

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0316	Spectrum analyzer	FSV30	103309	Rohde & Schwarz	2017-09-22	2019-09-22

Radiated Setup-1

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0420	Spectrum analyzer	FSV40	101556	Rohde & Schwarz	2018-05-17	2020-05-17
0137	Log antenna 30 MHz – 1 GHz	3142E	00156946	ETS Lindgren	2017-12-19	2019-12-19
0135	Semi Anechoic chamber	FACT 3	5720	ETS Lindgren	2018-04-18	2020-04-18
0530	Measurement Software	EMC32	100623	Rohde & Schwarz	N/A	N/A

N/A: Not Applicable

Radiated Setup-2

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0133	Spectrum analyzer	FSV40	101358	Rohde & Schwarz	2018-04-11	2020-04-11
0138	Double Ridged Horn Antenna 1 GHz – 18 GHz	3117	00152266	ETS Lindgren	2018-03-29	2020-03-29
0141	Double Ridged Horn Antenna 1 GHz – 18 GHz	3117	00157736	ETS Lindgren	2018-05-11	2020-05-11
0334	Double Ridged Horn Antenna 18 GHz – 40 GHz	3116C-PA	00196308	ETS Lindgren	2017-08-22	2019-08-22
0337	Full Anechoic chamber	RFD_FA_100	5996	ETS Lindgren	2018-04-17	2020-04-17
0329	Measurement Software	EMC32	100401	Rohde & Schwarz	N/A	N/A

N/A: Not Applicable

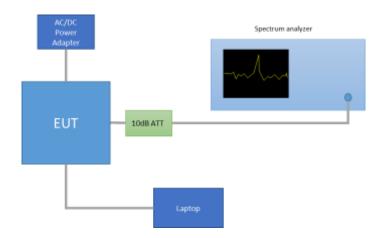
Radiated Setup - shared equipment

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0617	Power Sensor 50MHz-18GHz	NRP-Z81	104386	Rohde & Schwarz	2018-04-16	2020-04-16
0618	Power Sensor 50MHz-18GHz	NRP-Z81	104382	Rohde & Schwarz	2018-04-16	2020-04-16

A.3 Measurement Uncertainty Evaluation

The system uncertainty evaluation is shown in the below table:

Measurement type	Uncertainty [±dB]
Conducted Power	±1.0
Conducted Spurious Emission	±2.9
Radiated tests <1GHz	±3.8
Radiated tests 1GHz - 40 GHz	±4.7



Annex B. Test Results

B.1 20dB Bandwidth and carrier frequency separation

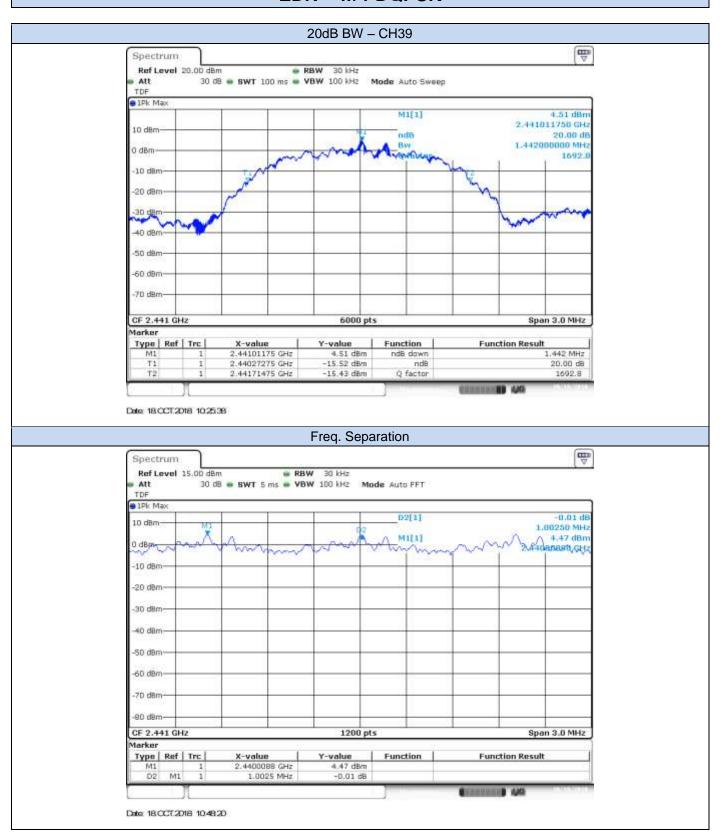
Test limits

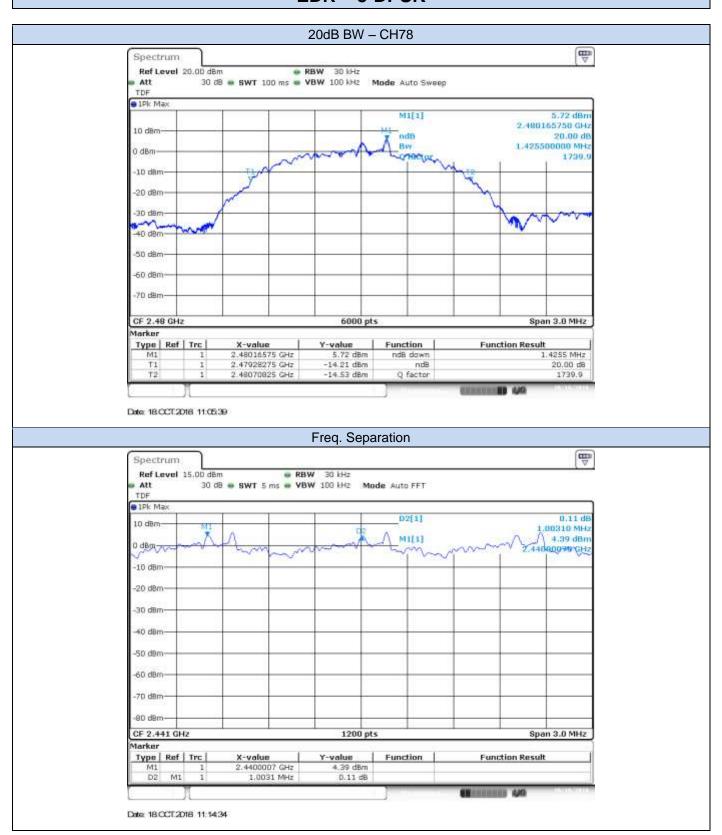
FCC part	RSS part	Limits
15.247 (a) (1)	RSS-247 Clause 5.1 (a) and (b)	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Results tables:

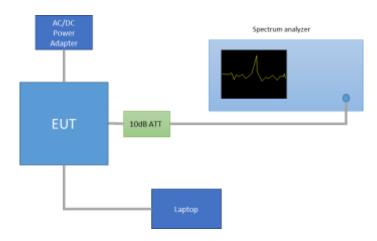
Mode	Packet Type	Channel Number	Frequency [MHz]	20dB BW [MHz]	Freq. Separation [kHz]
Davis Data		0	2402	0.822	
Basic Rate GFSK	DH5	39	2441	0.833	1000
OI OIL		78	2480	0.832	
500	2DH5	0	2402	1.424	1000
EDR π/4-DQPSK		39	2441	1.442	
11/4-DQ1 510		78	2480	1.429	
EDR 8-DPSK	3DH5	0	2402	1.421	1000
		39	2441	1.421	
		78	2480	1.426	

Results screenshot


Basic Rate - GFSK


EDR $-\pi/4$ -DQPSK

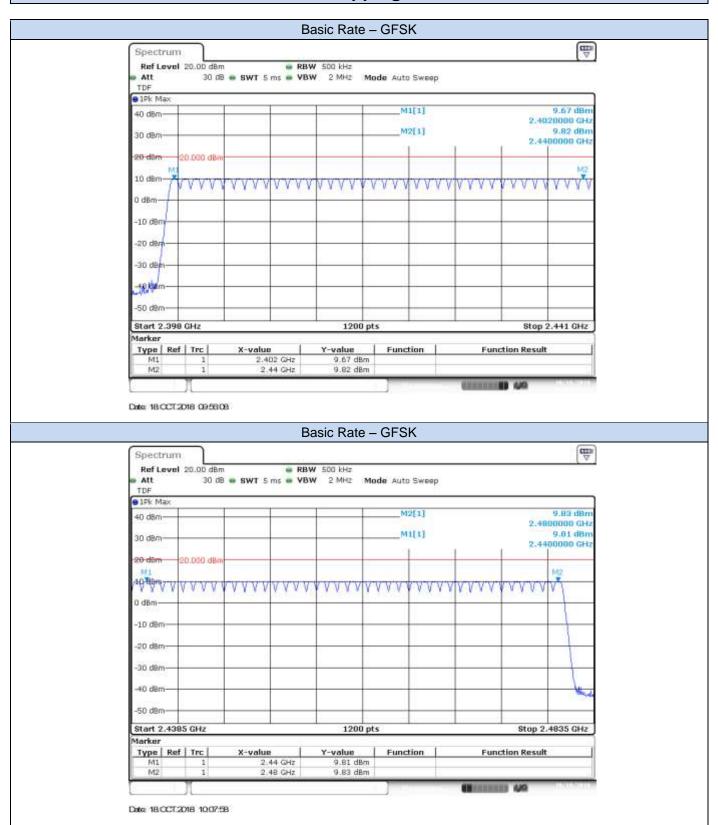
EDR - 8-DPSK


B.2 Number of hopping channels

Test limits

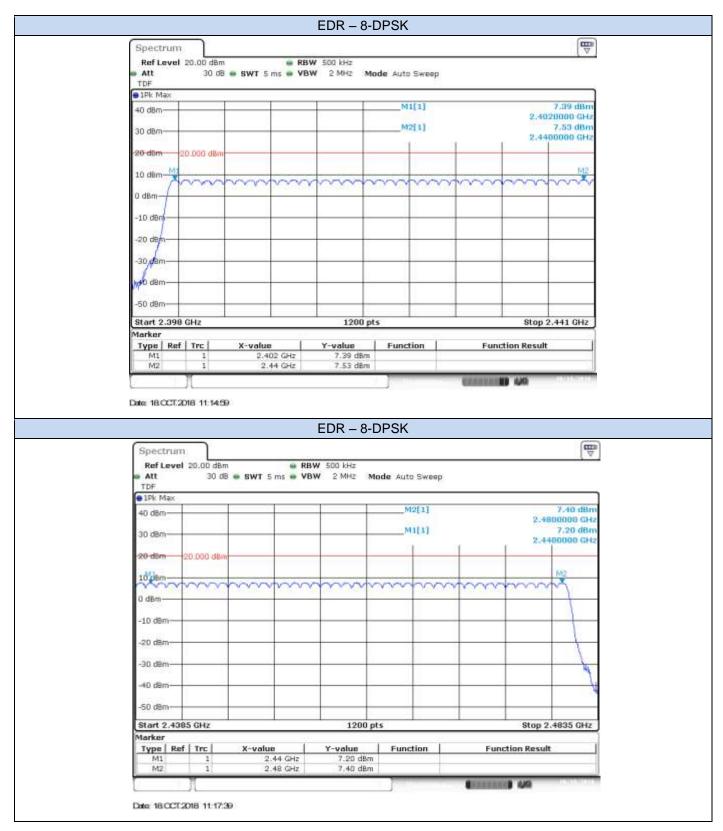
FCC part	RSS part	Limits
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

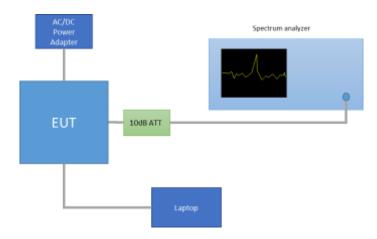
Test procedure


The setup below was used to measure the number of hopping channels. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.


Results tables

Mode	Packet Type	Number of hopping channels
Basic Rate GFSK	DH5	79
EDR π/4-DQPSK	2DH5	79
EDR 8-DPSK	3DH5	79


Number of hopping channels



B.3 <u>Time of Occupancy (Dwell Time)</u>

FCC part	RSS part	Limits
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	The average time of occupancy (Dwell Time) on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test procedure

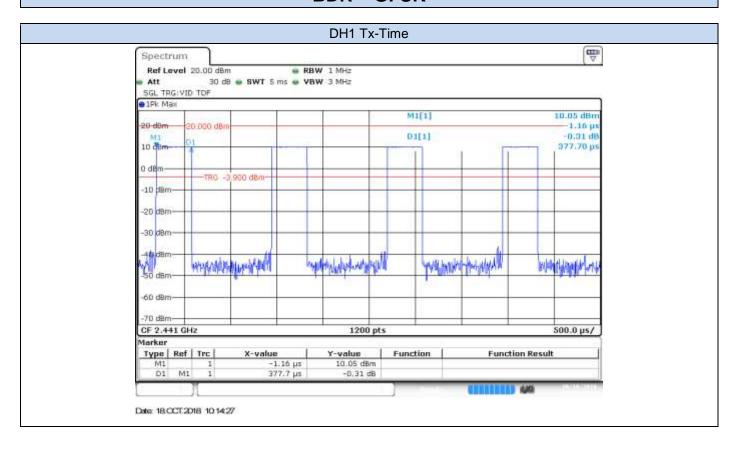
The setup below was used to measure the dwell time. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

In the worst case, the system makes 1600 hops per second with 79 channels, providing a 1 timeslot length of 625 µs.

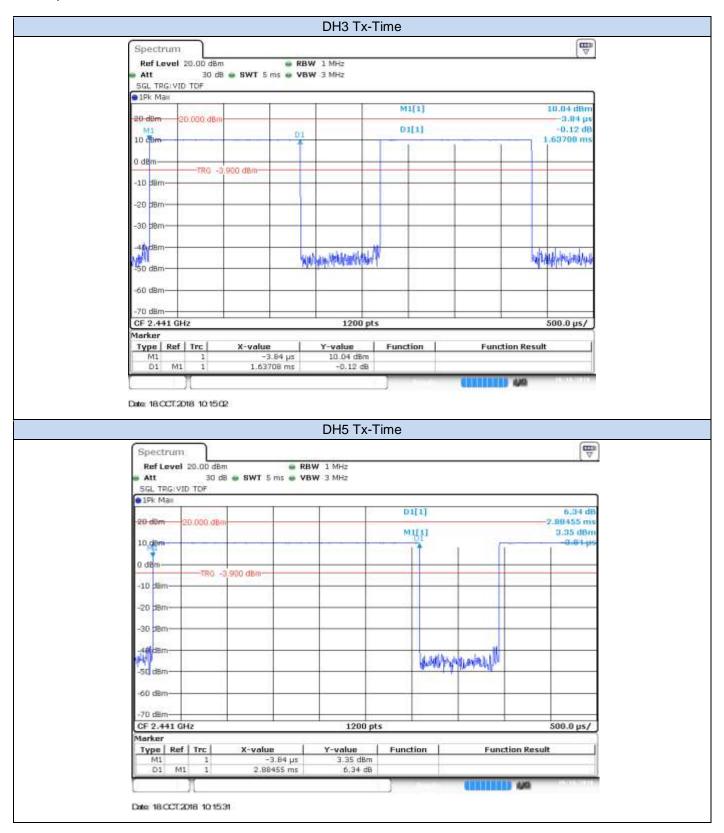
A DH1 packet, with independence of the modulation, needs 1 time slot for transmitting and 1 time slot for receiving. Then, the system makes in the worst case 1600/2 = 800 hops per second with 79 channels. So each channel appears 800/79 = 10.13 times per second and, for a period of $0.4 \times 79 = 31.6$ seconds, each channel appears $10.13 \times 31.6 = 320.11$ times.

A DH3 packet, with independence of the modulation, needs 3 time slots for transmitting and 1 time slot for receiving. Then, the system makes in the worst case 1600/4 = 400 hops per second with 79 channels. So each channel appears 400/79 = 5.1 times per second and, for a period of $0.4 \times 79 = 31.6$ seconds, each channel appears $5.1 \times 31.6 = 161.16$ times.

A DH5 packet, with independence of the modulation, needs 5 time slots for transmitting and 1 time slot for receiving. Then, the system makes in the worst case 1600/6 = 266.67 hops per second with 79 channels. So each channel appears 166.67/79 = 3.37 times per second and, for a period of $0.4 \times 79 = 31.6$ seconds, each channel appears $3.37 \times 31.6 = 106.49$ times.

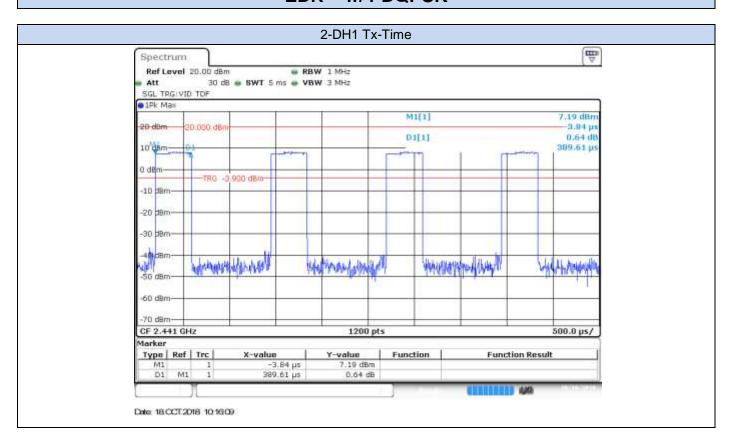

Thus, the total time of occupancy is obtained by multiplying the calculated maximum number of appearances per packet type and the measured Tx-time, as shown in the results screenshots.

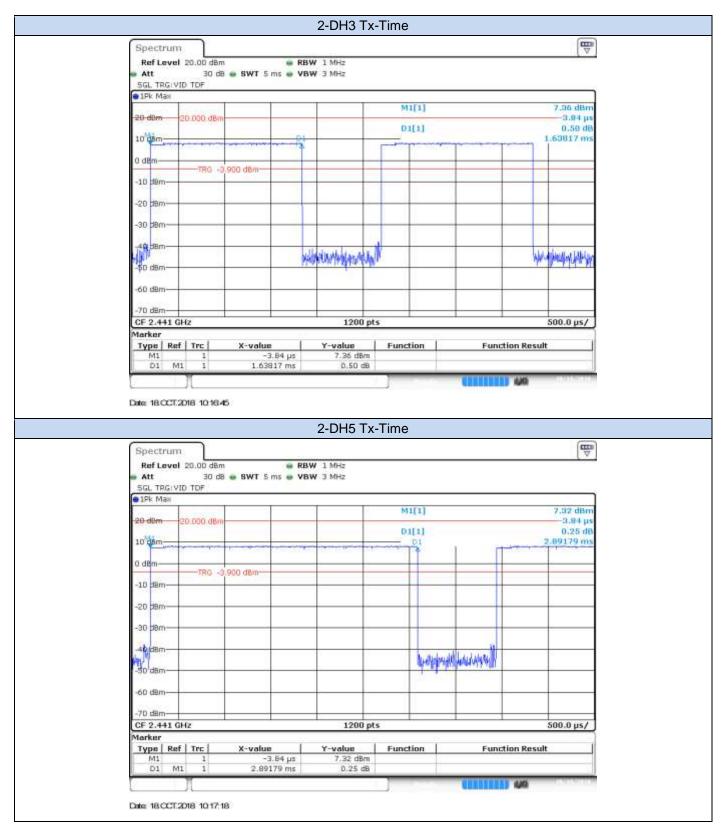
Results tables

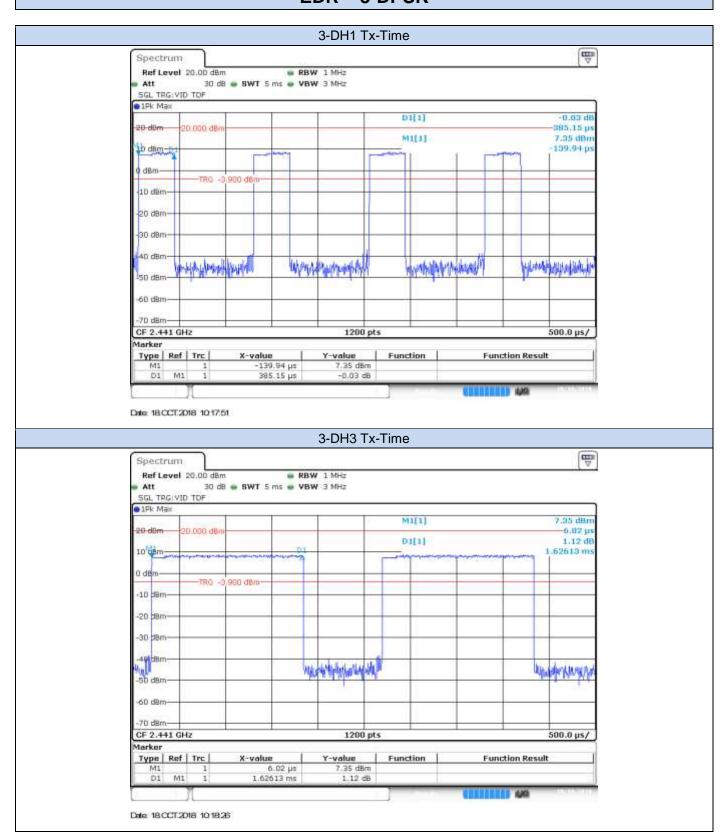

Mode	Packet Type	Times of appearance	Tx-time [ms]	Dwell Time [ms]
Basic Rate	DH1	320.11	0.377	120.681
GFSK	DH3	161.16	1.637	263.819
GFSK	DH5	106.49	2.884	307.117
EDR	2-DH1	320.11	0.389	124.523
π/4-DQPSK	2-DH3	161.16	1.638	263.980
11/4-DQP3K	2-DH5	106.49	2.891	307.863
EDR	3-DH1	320.11	0.385	123.242
8-DPSK	3-DH3	161.16	1.626	262.046
0-DF3K	3-DH5	106.49	2.890	307.756

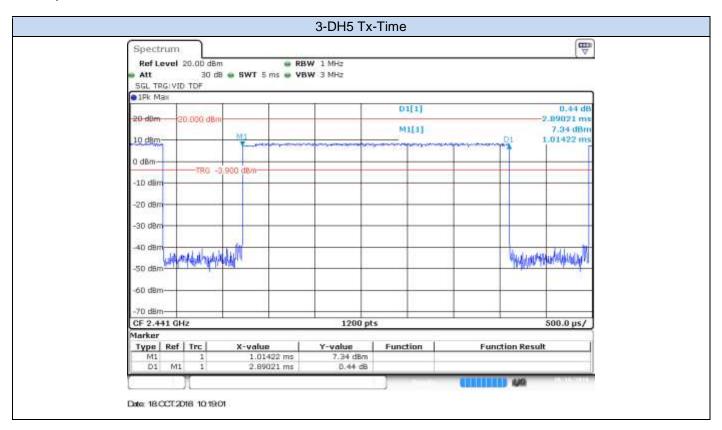
Results Screenshot:

BDR - GFSK



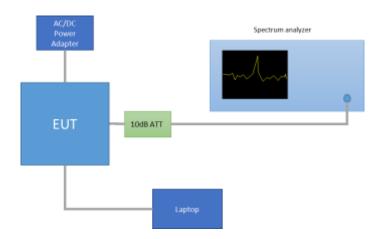



EDR - π/4-DQPSK



EDR - 8-DPSK

Rev 00


B.4 Maximum Peak Output Power antenna gain

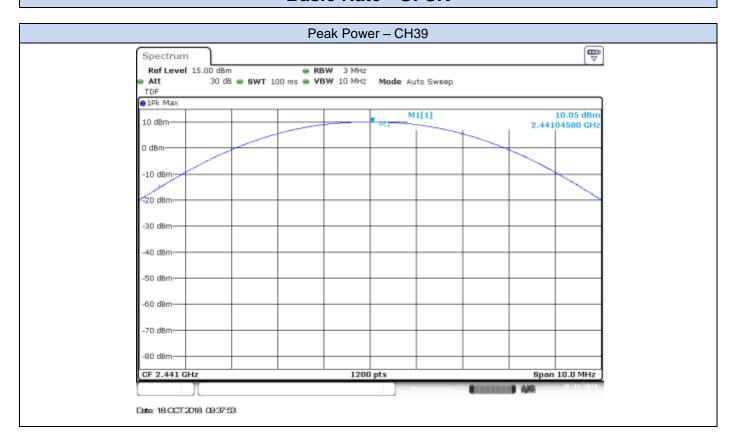
Test Limits

FCC part	RSS part	Limits
15.247 (b) (1)	RSS-247 Clause 5.4 (b)	 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. ()
		(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

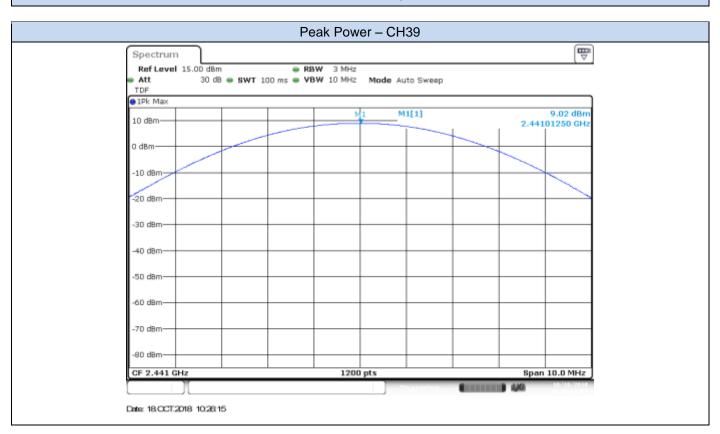
Test procedure

The setup below was used to measure the maximum peak output power. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

The declared maximum antenna gain is 3.24dBi.


Results tables

Mode	Packet Type	Channel Number	Frequency [MHz]	Peak Power [dBm]	Peak Power [mW]	Peak Power EIRP [dBm]	Peak Power EIRP [mW]
5 . 5 .		0	2402	9.88	9.73	13.12	20.51
Basic Rate GFSK	DH5	39	2441	10.05	10.12	13.29	21.33
OI OIC		78	2480	9.85	9.66	13.09	20.37
500	2DH5	0	2402	8.83	7.64	12.07	16.11
EDR π/4-DQPSK		39	2441	9.02	7.98	12.26	16.83
II/4-DQF3R		78	2480	8.83	7.64	12.07	16.11
		0	2402	8.94	7.83	12.18	16.52
EDR 8-DPSK	3DH5	39	2441	9.17	8.26	12.41	17.42
		78	2480	8.96	7.87	12.20	16.60

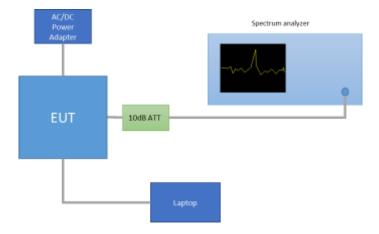


Results Screenshot

Basic Rate - GFSK

EDR - π/4-DQPSK

EDR - 8-DPSK

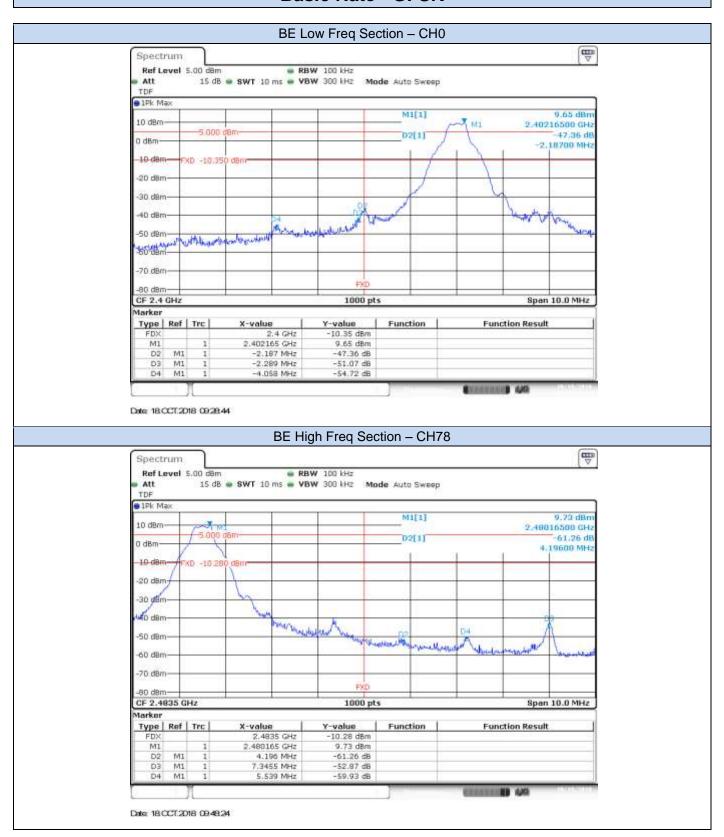

B.5 Out-of-band emission (conducted)

Test limits

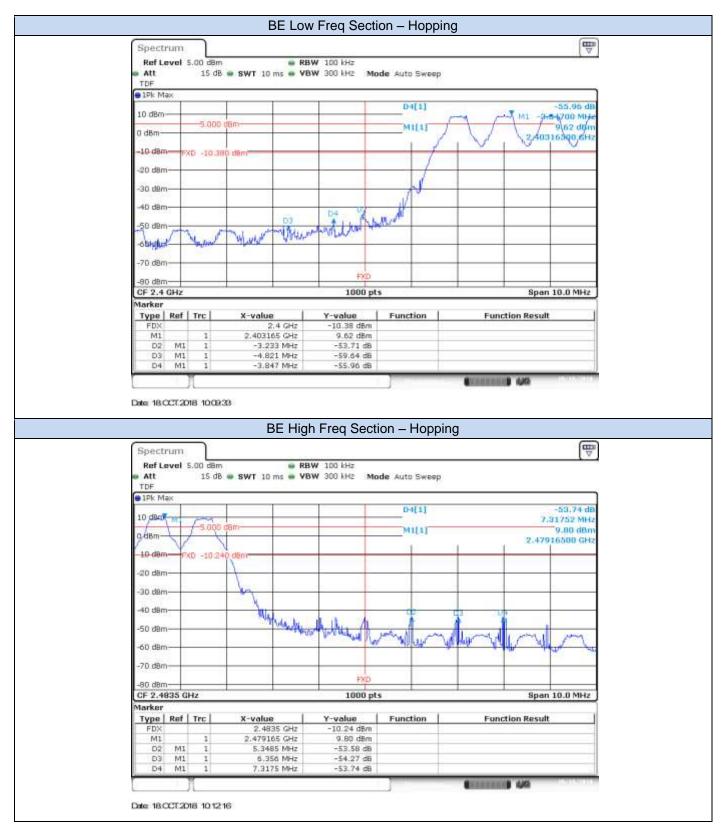
FCC part	RSS part	Limits
15.247 (d)	RSS-247 Clause 5.5	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test procedure

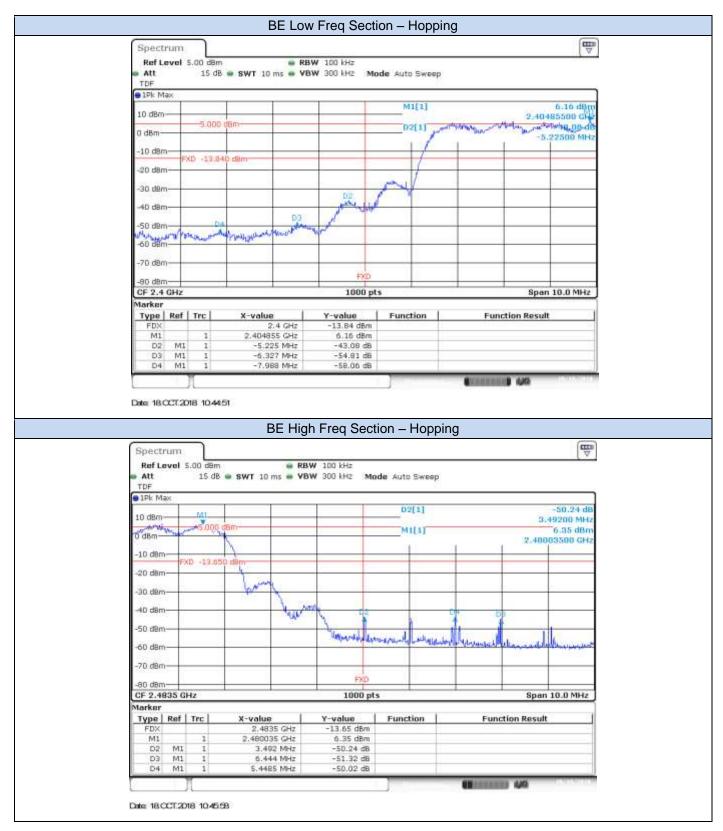
The setup below was used to measure the out-of-band emissions (conducted). The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.


Test Report N° 180717-02.TR05

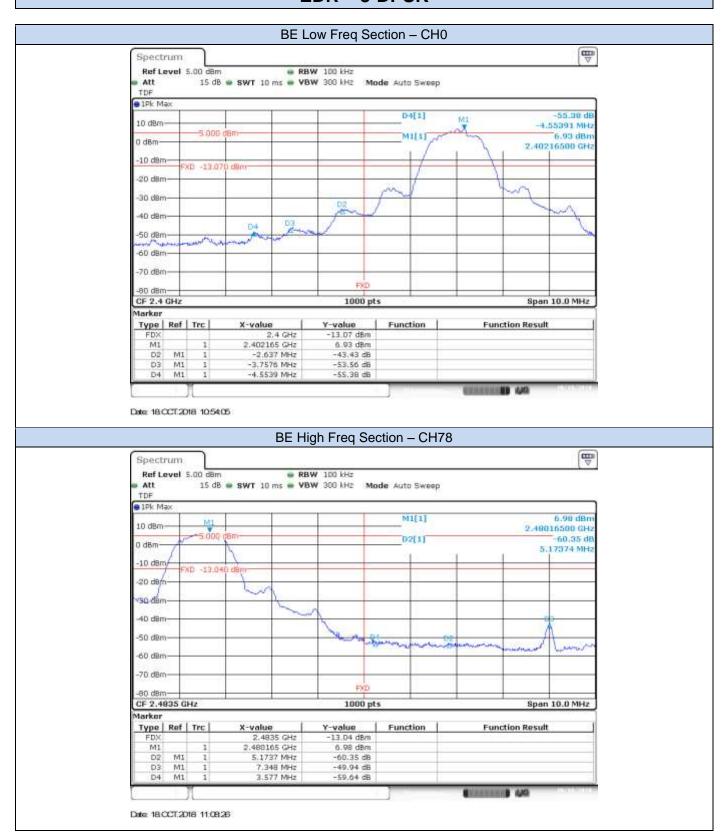
Note: these PSD_{Peak} values are shown just as a reference for the compliance of the Out-of-band Measurements. Thus the RBW used for these measurements was 100 kHz.

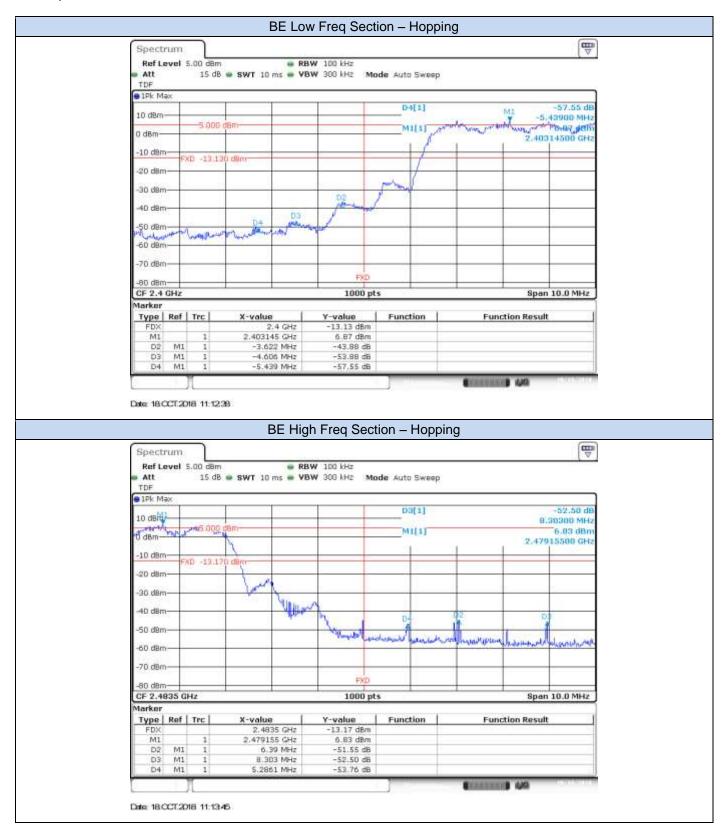

Mode	Packet Type	СН	Frequency [MHz]	PSD Peak [dBm/100kHz]
		0	2402	9.65
Basic Rate - GFSK	DH5	39	2441	9.84
Si Si		78	2480	9.73
	2DH5	0	2402	6.86
EDR – π/4- DQPSK		39	2441	7.17
DQI OK		78	2480	6.89
		0	2402	6.93
EDR – 8-DPSK	3DH5	39	2441	7.26
		78	2480	6.98

Basic Rate - GFSK

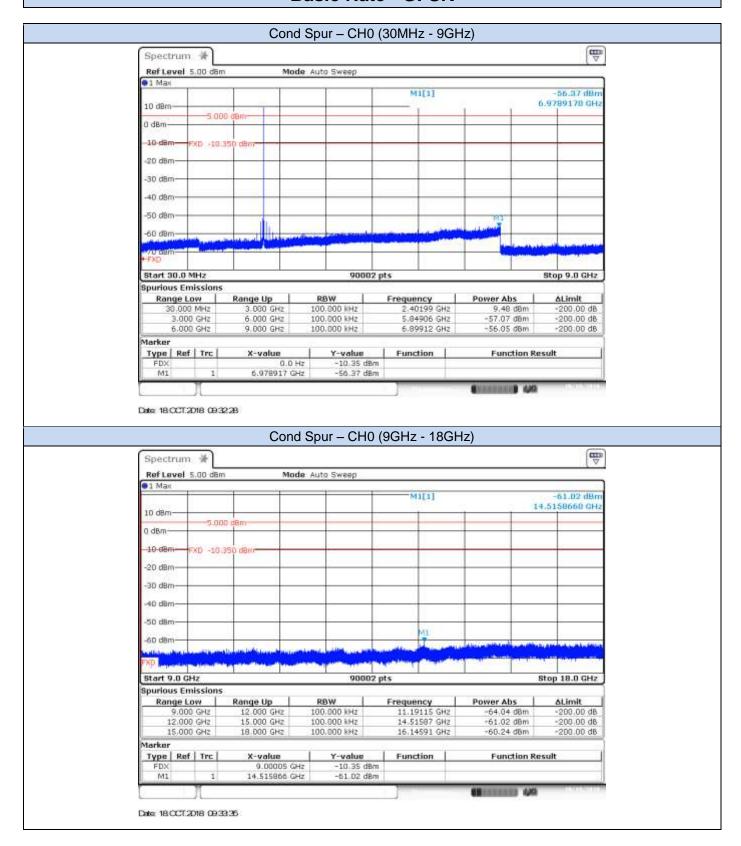


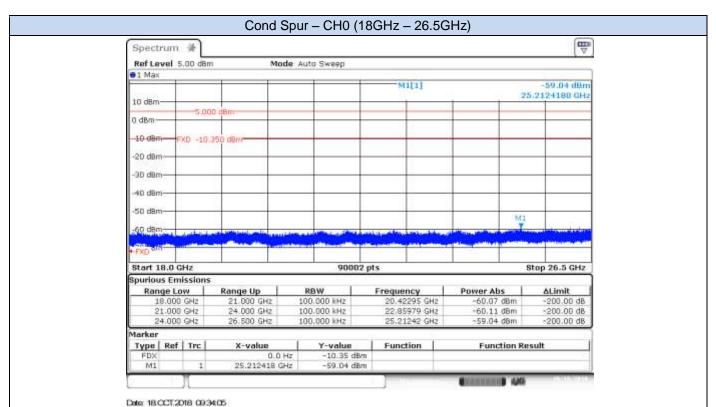
EDR $-\pi/4$ -DQPSK

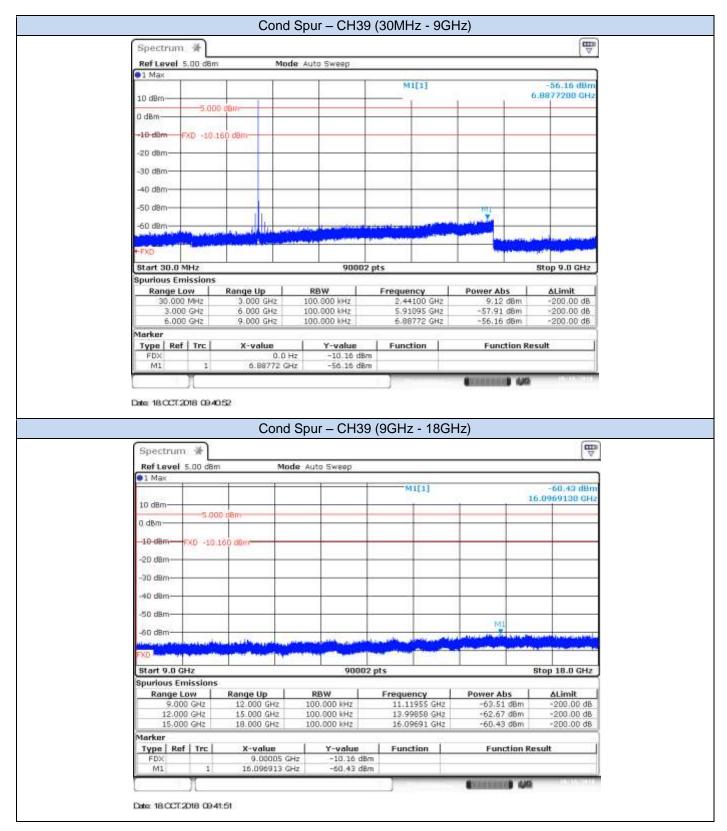


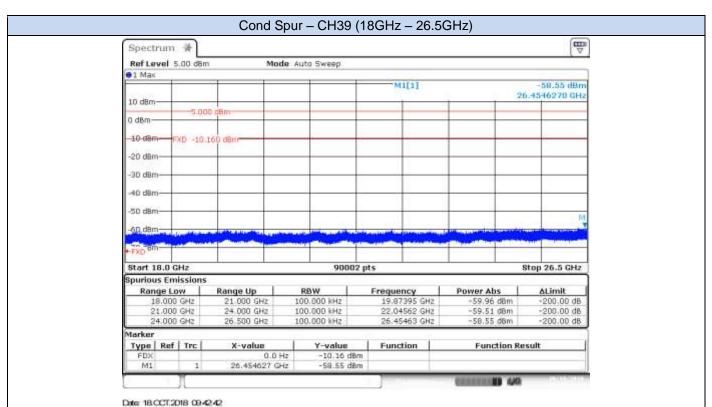


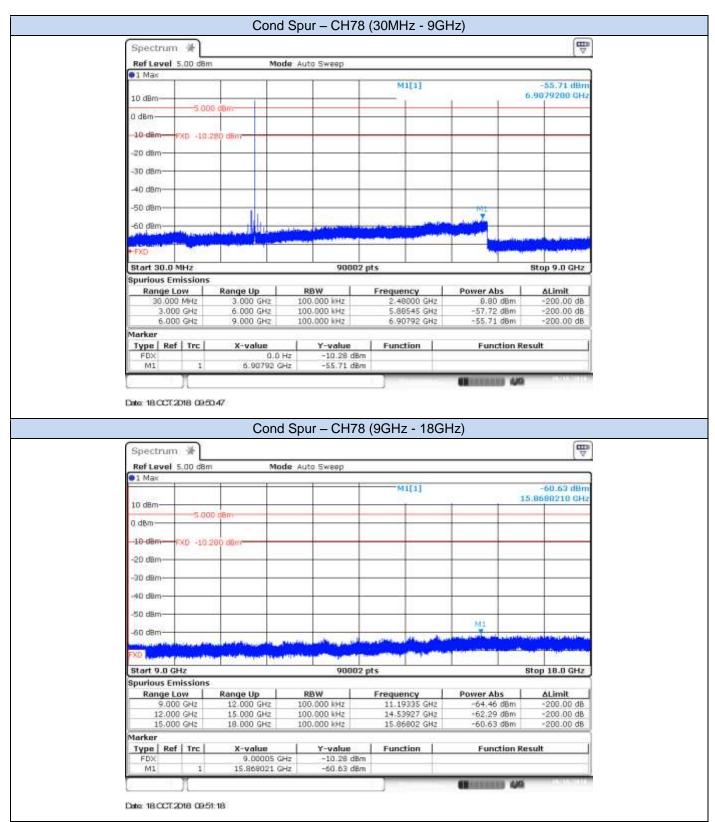
EDR - 8-DPSK

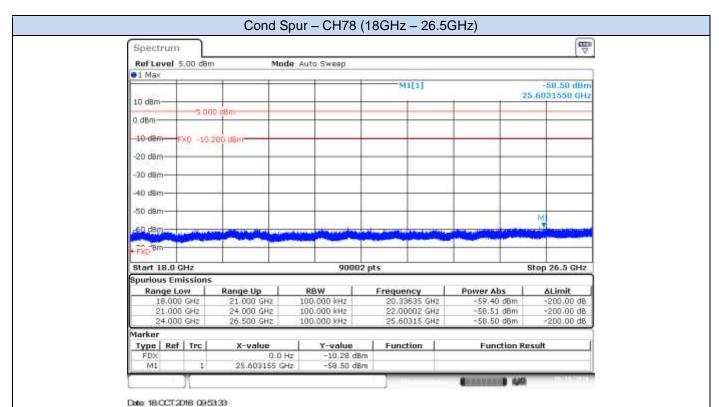


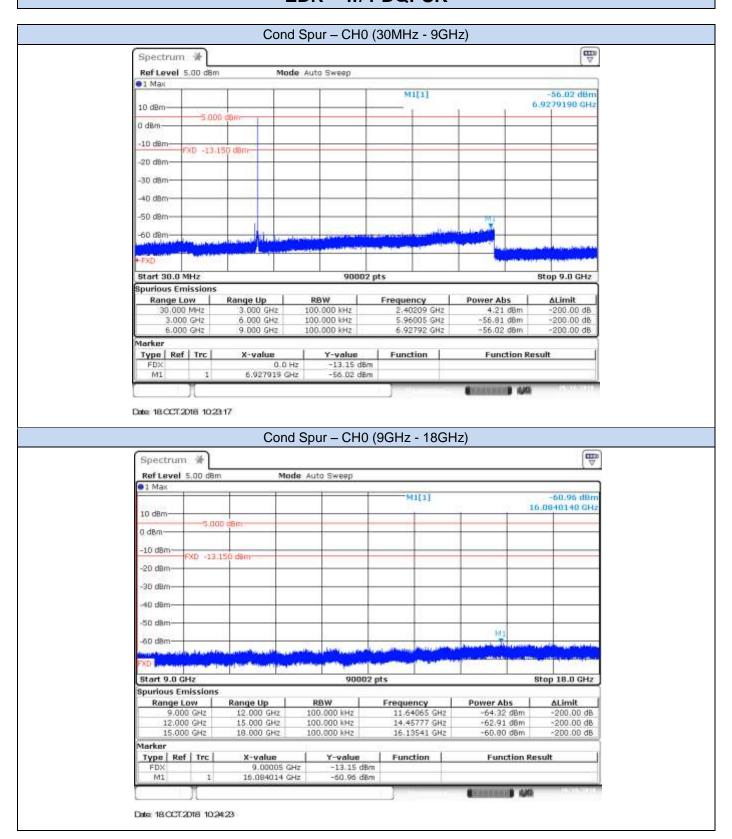


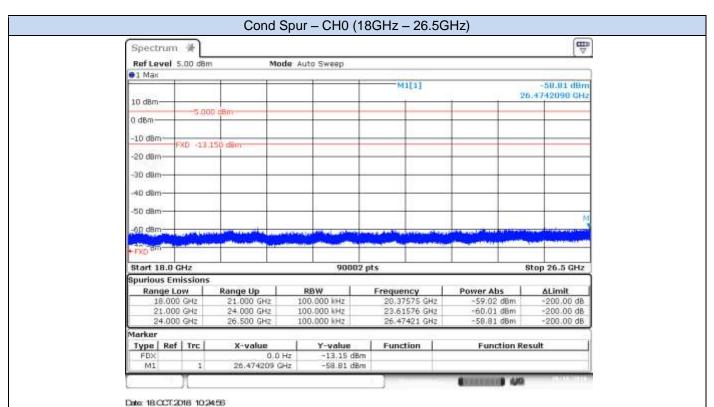

Conducted Spurious results Screenshot

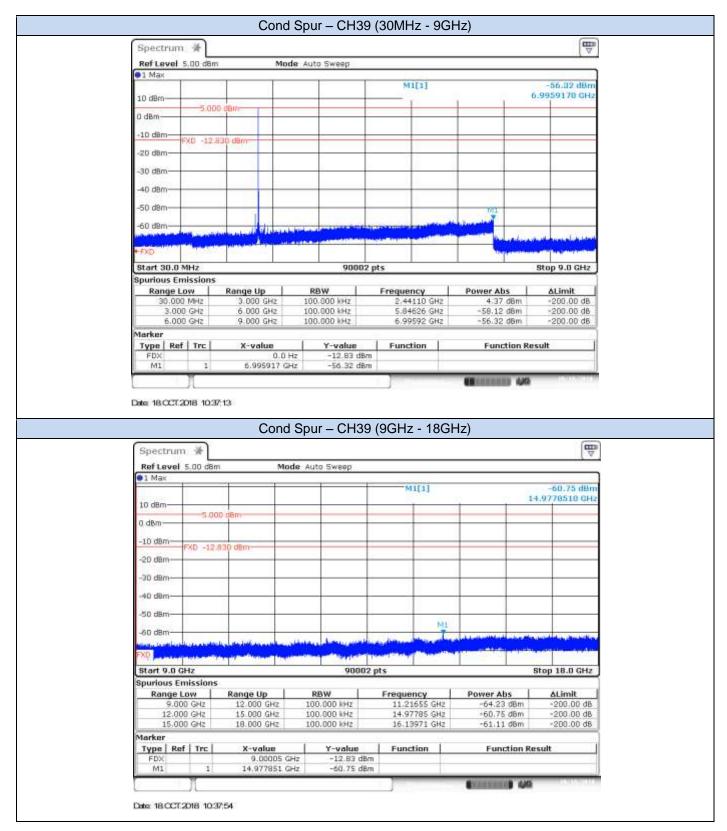

Basic Rate - GFSK

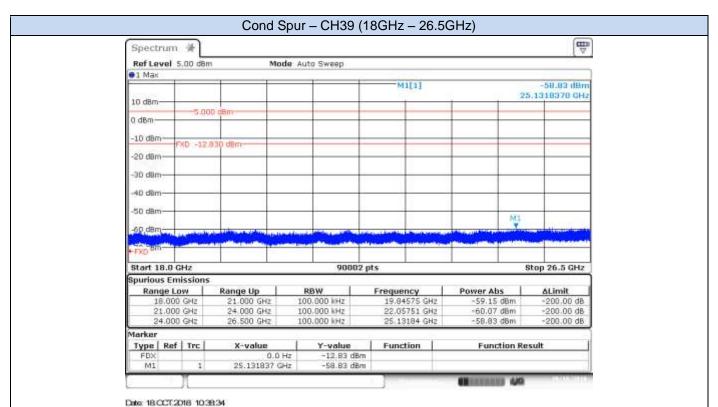


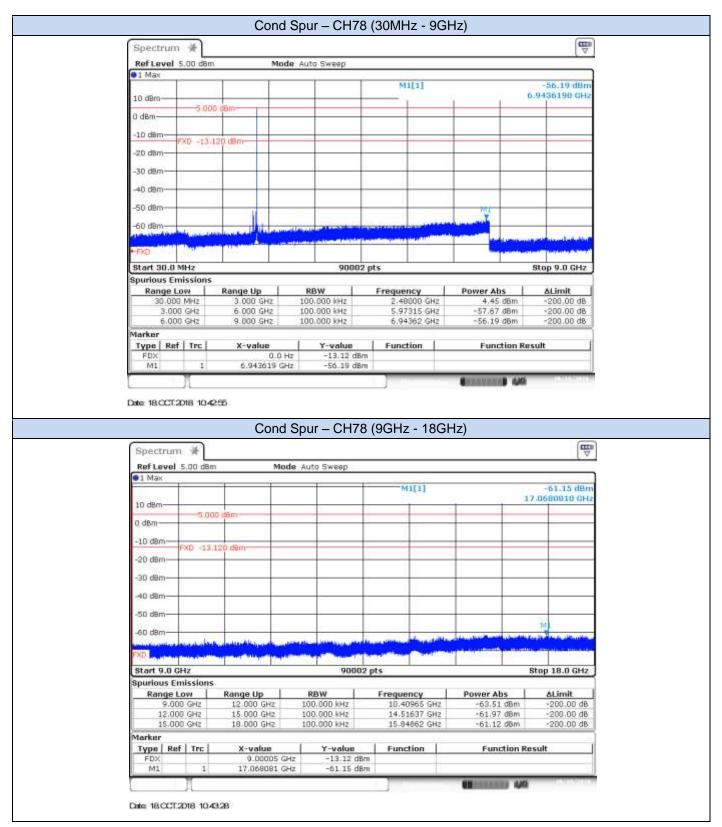


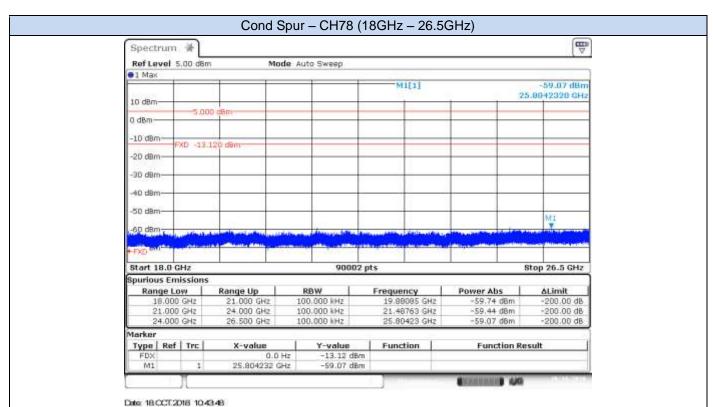


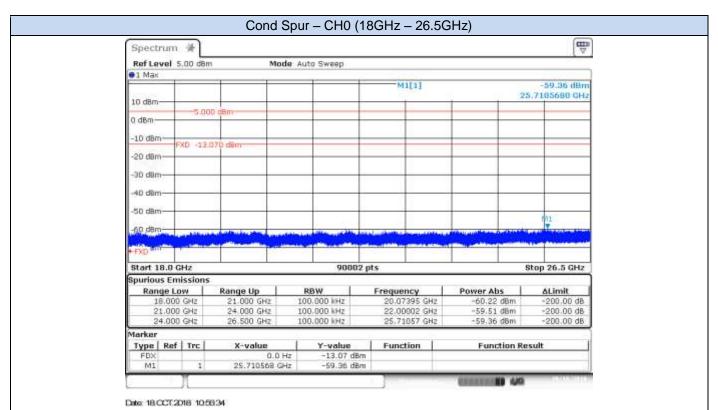


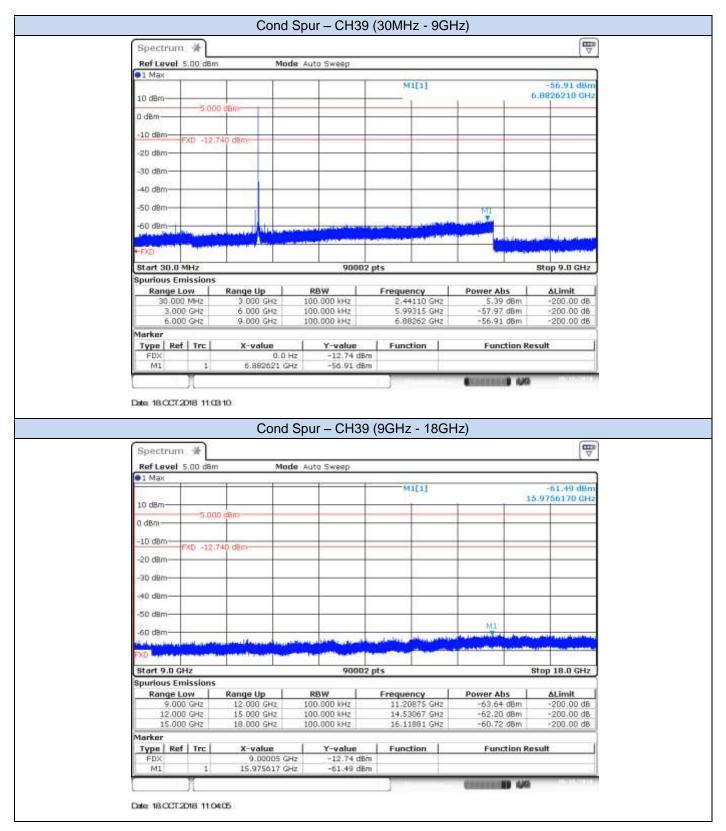



EDR $-\pi/4$ -DQPSK

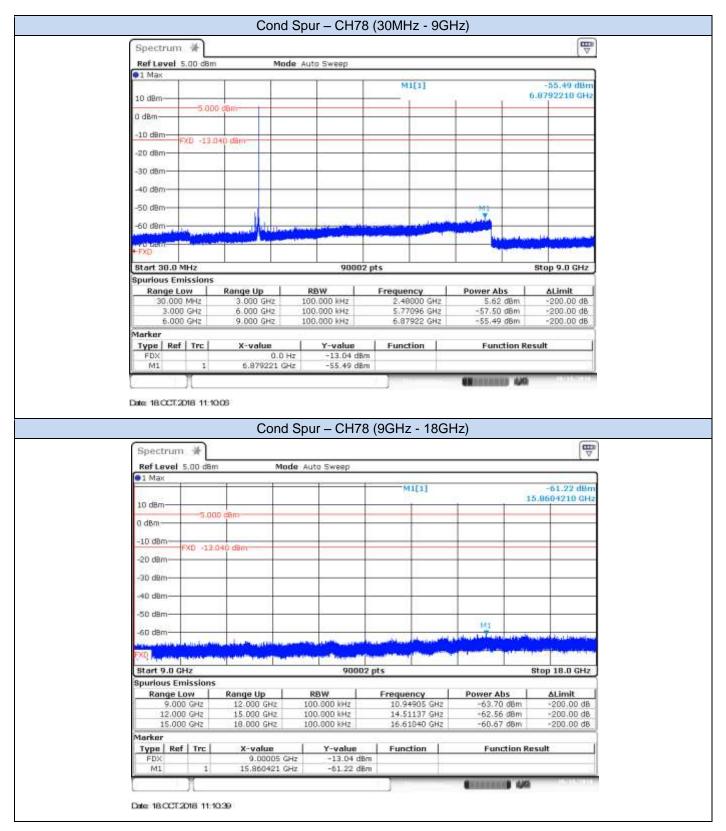








EDR - 8-DPSK



Date: 18:CCT:2018 11:04:35

Cond Spur - CH39 (18GHz - 26.5GHz) W Spectrum # Ref Level 5.00 d8m Mode Auto Sweep ●1 Max -58.69 dBm 25.1690960 GHz M1[1] 10 dBm-5.000 0 dBm--10 d8m-FXD -12.740 d8m--20 dBm--30 dBm-40 dBm--50 dBm 60 dam Start 18.0 GHz 90002 pts Stop 26.5 GHz Spurious Emissions RBW 100.000 kHz 100.000 kHz Range Low 18.000 GHz 21.000 GHz Range Up 21.000 GHz 24.000 GHz Frequency 19.88355 GHz 21.45493 GHz Power Abs -60.26 d8m -59.09 d8m **ΔLimit** -200.00 dB -200.00 dB 24.000 GHz 26.500 GHz 100,000 kHz 25.16909 GHz -58.69 dBm -200:00 dB Type | Ref | Trc | X-value 0.0 Hz 25.169086 GHz Y-value -12.74 dBm -58.69 dBm Function **Function Result** FDX M1

Date: 18.CCT.2018 11:10:59

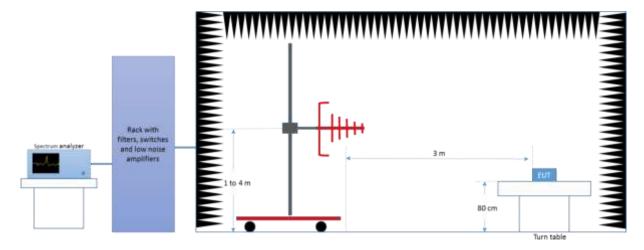
Cond Spur - CH78 (18GHz - 26.5GHz) W Spectrum # Ref Level 5.00 d8m Mode Auto Sweep ●1 Max -59.34 dBm 22.8393890 GHz M1[1] 10 dBm-5.000 0 dBm -10 d8m FXD =13.040 d8m⁻¹ -20 dBm--30 dBm 40 d8m -50 dBm Stop 26.5 GHz Start 18.0 GHz 90002 pts Spurious Emissions Frequency 18,30225 GHz 22,00002 GHz 26,46521 GHz RBW 100.000 kHz 100.000 kHz Range Low 18.000 GHz 21.000 GHz Range Up 21.000 GHz 24.000 GHz Power Abs -59.96 d8m **ΔLimit** -200.00 dB -200.00 dB 24.000 GHz 26.500 GHz 100,000 kHz -59.47 dBm -200:00 dB Type | Ref | Trc | X-value 0.0 Hz 22.839389 GHz Y-value -13.04 dBm -59.34 dBm Function **Function Result** FDX M1

B.6 Radiated spurious emission

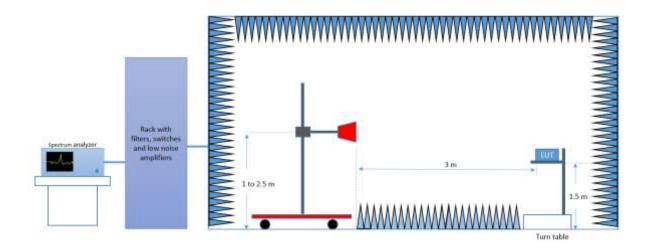
Standards references

FCC part	RSS part	Limits											
						s defined in §15.2 cified in §15.209(
				Freq Range (MHz)	Field Stregth (μV/m)	Field Stregth (dBμV/m)	Meas. Distance (m)						
			30-88	100	40	3							
	RSS-247 Clause 5.5	DCC 247	DCC 047	DCC 047	DCC 247	DCC 247	DCC 247		88-216	150	43.5	3	
			216-960	200	46	3							
15.247 (d)				Above 960	500	54	3						
15.209 (a)	RSS GEN Clause 8.9	employ kHz, 1 three b For ave a limit	The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit specified when measuring with peak detector function, corresponding to 20 dB above the indicated values in the table.										

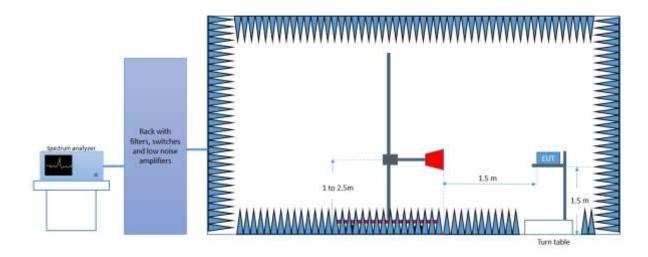
Test procedure:


The setups below were used to measure the radiated spurious emissions.

Depending of the frequency range and bands being tested, different antennas and filters were used.


The final measurement is done by varying the antenna height as indicated in the setups below for each band, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

The radiated spurious emission was measured on the worst case configuration found.


Radiated Setup 30 MHz - 1GHz

Radiated Setup 1 GHz - 18 GHz

Radiated Setup 18 GHz - 26.5 GHz

Sample Calculation

The field strength is deduced from the radiated measurement using the following equation:

$$E = 126.8 - 20\log(\lambda) + P - G$$

where

E is the field strength of the emission at the measurement distance, in dBµV/m

P is the power measured at the output of the test antenna, in dBm

 λ is the wavelength of the emission under investigation [300/f_{MHz}], in m

G is the gain of the test antenna, in dBi

NOTE – The measured power P includes all applicable instrument correction factors up to the connection to the test

Antenna e.g. cable losses, amplifier gains.

For field strength measurements made at other than the distance at which the applicable limit is specified, the field strength of the emission at the distance specified by the limit is deduced as follows:

$$E_{SpecLimit} = E_{Meas} + 20log(D_{Meas}/D_{SpecLimit})$$

where

EspecLimit is the field strength of the emission at the distance specified by the limit, in dBμV/m

E_{Meas} is the field strength of the emission at the measurement distance, in dBμV/m

D_{Meas} is the measurement distance, in m

DspecLimit is the distance specified by the limit, in m

Test Results

30 MHz - 26.5 GHz, BR - GFSK

Radiated Spurious - CH0 DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBµV/m	dBμV/m	dBμV/m	dB
128.7	31.3		43.6	12.2
624.0	38.2		46.0	7.8
3369.0	58.0		74.0	16.0
3369.0		46.7	54.0	7.3
16716.3		47.6	54.0	6.4
16777.2	58.8		74.0	15.2
25929.7	49.4		74.0	24.6
25949.6		37.4	54.0	16.6

Radiated Spurious - CH39 DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBµV/m	dBµV/m	dBµV/m	dB
128.1	30.4		43.6	13.2
256.2	32.6		46.0	13.4
3370.0		46.1	54.0	7.9
3381.0	59.2		74.0	14.8
16726.9	59.8		74.0	14.2
16754.0		47.6	54.0	6.4
19458.2	47.2		74.0	26.8
19527.0		36.2	54.0	17.8

Radiated Spurious – CH78 DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBμV/m	dBμV/m	dBμV/m	dB
127.5	28.5		43.6	15.1
541.3	34.7		46.0	11.3
3192.5	57.0		74.0	17.0
3192.5		46.7	54.0	7.3
16748.7	58.4		74.0	15.6
16751.6		47.7	54.0	6.3
19488.8	47.6		74.0	26.4
19529.2		36.0	54.0	18.0

30 MHz - 26.5 GHz, EDR - π /4-DQPSK

Radiated Spurious - CH0 2DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBµV/m	dBμV/m	dBμV/m	dB
128.7	31.0		43.6	12.6
730.3	38.9		46.0	7.1
3375.5	58.0		74.0	16.0
3376.5		46.5	54.0	7.5
16682.0	59.9		74.0	14.1
16744.3		47.8	54.0	6.2
19856.0		36.4	54.0	17.6
19860.7	48.1		74.0	25.9

Radiated Spurious - CH39 2DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBμV/m	dBμV/m	dBμV/m	dB
128.2	30.7		43.6	12.9
298.8	31.7		46.0	14.3
3101.5	57.6		74.0	16.4
3101.5		46.6	54.0	7.4
16747.2	58.9		74.0	15.1
16754.0		47.9	54.0	6.1
19932.9		35.8	54.0	18.2
19944.4	48.4		74.0	25.6

Radiated Spurious - CH78 2DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBμV/m	dBμV/m	dBμV/m	dB
128.1	31.0		43.6	12.5
298.9	31.9		46.0	14.1
3380.5	58.9		74.0	15.1
3380.5		46.6	54.0	7.4
16693.1	58.8		74.0	15.2
16704.7		47.9	54.0	6.1
21484.6		36.7	54.0	17.3
21492.7	48.6		74.0	25.4

30 MHz - 26.5 GHz. EDR - 8-DPSK

Radiated Spurious - CH0 3DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBµV/m	dBμV/m	dBμV/m	dB
128.1	31.3		43.6	12.3
672.0	36.7		46.0	9.3
3360.5		46.3	54.0	7.7
3384.5	58.8		74.0	15.2
16777.2	58.4		74.0	15.6
16779.1		47.2	54.0	6.8
19496.0		35.7	54.0	18.3
19497.3	47.2		74.0	26.8

Radiated Spurious - CH39 3DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBµV/m	dBµV/m	dBµV/m	dB
127.5	29.4		43.6	14.1
311.3	30.4		46.0	15.6
3380.5	58.9		74.0	15.1
3380.5		46.6	54.0	7.4
16723.5	58.4		74.0	15.6
16726.4		47.6	54.0	6.4
19455.6	46.7		74.0	27.3
19496.0		35.7	54.0	18.3

Radiated Spurious - CH78 3DH5

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBμV/m	dBµV/m	dBμV/m	dB
128.7	31.2		43.6	12.3
311.9	31.7		46.0	14.3
3374.0		46.5	54.0	7.5
3374.5	59.1		74.0	15.0
16732.7	59.1		74.0	14.9
16741.9		47.6	54.0	6.4
19471.4		34.7	54.0	19.3
19472.2	46.9		74.0	27.1