

Page: 1 of 84

Hearing Aid Compatibility (HAC) TEST REPORT

<For RF-Emission Measurement>

Applicant Name	HP Inc
Address of Applicant	3390 East Harmony Road Fort Collins, Colorado 80528 United
	States
EUT Name	Phablet
Brand Name	HP
Model No.	HSTNH-F606V
FCC ID	B94HHF606V
Date of receive	May. 06, 2016
Date of Test(s)	May. 13, 2016, Mar. 03, 2017
Date of Issue	Mar. 16, 2017

Standards:

ANSI C63.19-2011

FCC RULE PART(S): 47 CFR PART 20.19(B)

HAC CATEGORY: M4 (M Category)

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronics & Communication Laboratory or testing done by SGS Taiwan Electronics & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronics & Communication Laboratory in writing.

Signed on behalf of SGS	
Engineer	Supervisor
Matt Kuo Matt Kno	John Yeh
Date: Mar. 16, 2017	Date: Mar. 16, 2017

Page: 2 of 84

Revision History

Report Number	Revision	Description	Issue Date
E5/2017/10013	Rev.00	Initial creation of document	Mar. 16, 2017

Page: 3 of 84

Table of Contents

1. Introduction	4
2. Testing Laboratory	5
3. Details of Applicant	5
4. Description of EUT	6
5. Air Interfaces and Bands	10
6. Test Environment	11
7. Description of test system	12
8. Test Procedure	15
9. System Verification	17
10. Modulation Interference Factor	18
11. Measured conducted output power	20
12. Justification of held to ear modes tested	22
13. ANSI C63.19-2011 performance and categories	24
14. Instruments List	25
15. Summary of Results	27
16. Measurement Data	28
17. System Verification	40
18. DAE & Probe Calibration Certificate	44
19. Uncertainty Budget	74
20. System Validation from Original Equipment Supplier	75

Page: 4 of 84

1. Introduction

The purpose of the Hearing Aid Compatibility is to enable measurements of the near electric fields generated by wireless communication devices in the region controlled for use by a hearing aid in accordance with ANSI-C63.19-2011

The purpose of this standard is to establish categories for hearing aids and for WD (wireless communications devices) that can indicate to health care practitioners and hearing aid users which hearing aids are compatible with which WD, and to provide tests that can be used to assess the electromagnetic characteristics of hearing aids and WD and assign them to these categories. The various parameters required, in order to demonstrate compatibility and accessibility are measured. The design of the standard is such that when a hearing aid and WD achieve one of the categories specified, as measured by the methodology of this standard, the indicated performance is realized.

In order to provide for the usability of a hearing aid with a WD, several factors must be coordinated:

a) Radio frequency (RF) measurements of the near-field electric fields emitted by a WD to categorize these emissions for correlation with the RF immunity of a hearing aid.

Hence, the following are measurements made for the WD: RF E-Field emissions

The measurement plane is parallel to, and 1.5cm in front of, the reference plane.

Applications for certification of equipment operation under part 20, that a manufacturer is seeking to certify as hearing aid compatible, as set forth in §20.19 of that part, shall include a statement indication compliance with the test requirements of §20.19 and indicating the appropriate U-rating for the equipment. The manufacturer of the equipment shall be responsible for maintaining the test results.

Page: 5 of 84

2. Testing Laboratory

Company Name	SGS Taiwan Ltd. Electronics & Communication Laboratory			
Company address	o.2, Keji 1st Rd., Guishan Township, Taoyuan County 333,			
	Taiwan (R.O.C.)			
Telephone	+886-2-2299-3279			
Fax	+886-2-2298-0488			
Website	http://www.tw.sgs.com/			

3. Details of Applicant

Applicant Name	HP Inc.	ı							
Applicant Address	3390 E	ast	Harmony	Road	Fort	Collins,	Colorado	80528	United
Applicant Address	States								

Page: 6 of 84

4. Description of EUT

EUT Name	Phablet					
Brand Name	HP					
Model No.	HSTNH-F606V					
FCC ID	B94HHF606V					
Mode of Operation	WCDMA ⊠HSDPA ⊠	EDGE HSUPA ⊠HSPA+ CDMA EVDO Rev.0/ Rev.A //80M) ⊠Bluetooth				
	GSM GPRS (support multi class 12 max)	1/8.3 1/2 (1Dn4UP) 1/2.76 (1Dn3UP) 1/4.1 (1Dn2UP) 1/8.3 (1Dn1UP)				
Duty Cycle	EDGE (support multi class 12 max)	1/2 (1Dn4UP) 1/2.76 (1Dn3UP) 1/4.1 (1Dn2UP) 1/8.3 (1Dn1UP)				
	WCDMA	1				
	CDMA 1xRTT / EVDO Rev.0/ Rev. A	1				
	LTE(data only, not support VoLTE)	1				
	WLAN 802.11 a/b/g/n/ac(20M/40M/80M)	1				
	Bluetooth	1				

Report No. : E5/2017/10013 Page : 7 of 84

	GSM850	824	_	848
	GSM1900	1850	_	1910
	WCDMA Band II	1850	_	1910
	WCDMA Band IV	1710	_	1755
	WCDMA Band V	824	_	848
	CDMA Cellular (BC0)	824	_	848
	CDMA PCS (BC1)	1850	_	1910
	LTE FDD Band II	1850	_	1910
	LTE FDD Band IV	1710	_	1755
	LTE FDD Band V	824	_	849
	LTE FDD Band VII	2500	_	2570
	LTE FDD Band XII	699	_	716
TV F	LTE FDD Band XIII	777	_	787
TX Frequency Range (MHz)	LTE FDD Band XXX	2305	_	2315
,	WLAN802.11 b/g/n(20M)	2412	_	2462
	WLAN802.11 n(40M)	2422	_	2452
	WLAN802.11 a/n(20M)/ac(20M) 5.2G	5180	_	5240
	WLAN802.11 n(40M)/ac(40M) 5.2G	5190	_	5230
	WLAN802.11 ac(80M) 5.2G			
	WLAN802.11 a/n(20M)/ac(20M) 5.3G	5260	_	5320
	WLAN802.11 n(40M)/ac(40M) 5.3G	5270	_	5310
	WLAN802.11 ac(80M) 5.3G		5290	
	WLAN802.11 a/n/ac(20M) 5.6G	5500		5720
	WLAN802.11 n/ac(40M) 5.6G	5510	_	5710
	WLAN802.11 ac(80M) 5.6G	5530	_	5690

Page: 8 of 84

	WLAN802.11 a/n(20M)/ac(20M) 5.8G	5745	_	5825
	WLAN802.11 n(40M)/ac(40M) 5.8G	5710	_	5795
(IVII IZ)	WLAN802.11 ac(80M) 5.8G			
	Bluetooth	2402	_	2480
	GSM850	128	_	251
	GSM1900	512	_	810
	WCDMA Band II	9262	_	9538
	WCDMA Band IV	1312	_	1513
	WCDMA Band V	4132	_	4233
	CDMA Cellular (BC0)	1013	_	777
	CDMA PCS (BC1)	25	_	1175
	LTE FDD Band II	18607	_	19193
	LTE FDD Band IV	19957	_	20393
Charanal Number	LTE FDD Band V	20407	_	20643
Channel Number (ARFCN)	LTE FDD Band VII	20775	_	21425
	LTE FDD Band XII	23007	_	23173
	LTE FDD Band XIII	23205	_	23255
	LTE FDD Band XXX	27685	_	27735
	WLAN 802.11 b/g/n(20M)	1	_	11
	WLAN802.11 n (40M)	3	_	9
	WLAN802.11a/n(20M)/ac(20M) 5.2G	36	_	48
	WLAN802.11n(40M)/ac(40M) 5.2G	38	_	46
	WLAN802.11 ac(80M) 5.2G		42	
	WLAN802.11 a/n(20M)/ac(20M) 5.3G	52	_	64

Page: 9 of 84

	WLAN802.11 n(40M)/ac(40M) 5.3G	54	_	62
	WLAN802.11 ac(80M) 5.3G		58	
	WLAN802.11 a/n/ac(20M) 5.6G	100	_	144
	WLAN802.11 ac(80M) 5.6G	106	_	138
Channel Number (ARFCN)	WLAN802.11 n/ac(40M) 5.6G	102	_	142
	WLAN802.11 a/n(20M)/ac(20M) 5.8G	149	_	165
	WLAN802.11 n(40M)/ac(40M) 5.8G	142	_	159
	WLAN802.11 ac(80M) 5.8G		155	
	Bluetooth	0	_	78

Page: 10 of 84

5. Air Interfaces and Bands

	Band	Type		Simultaneous	Voice Over	Power										
Air- Interface		Type Transport	C63.19 tested	Transmitter	Digital Transport											
	(MHZ)	Transport		but not tested	OTT capability	Reduction										
GSM	850	VO	Vaa	Vac MiCi or Divistanth	No	No										
GSIVI	1900	VO	Yes	Yes, WiFi or Bluetooth	No	No										
ODMA 4 DTT	BC0	VO	Vaa	Vac MiCi or Divistanth	No	No										
CDMA 1xRTT	BC1	VO	Yes	Yes, WiFi or Bluetooth	No	No										
CDMA EVDO	BC0	DT	NIA	Vac MiCi or Divistanth	Yes	No										
Rev.0/ Rev. A	BC1	DT	NA	NA Yes, WiFi or Bluetooth	Yes	No										
	II		Vaa	V	No	No										
WCDMA	IV	VO	Yes, WiFi or Bluetooth	Yes, WiFi or Bluetooth	No	No										
	٧			No	No											
	II				Yes	No										
	IV		No '	No Ye											Yes	No
	V										Yes	No				
LTE	VII	DT			Yes, WiFi or Bluetooth	Yes	No									
	XII	1					Yes	No								
	XIII											Yes	No			
	XXX	1			Yes	No										
WiFi	2450	DT	No	Yes, WWAN or BT	Yes	No										
Bluetooth	2450	DT	No	Yes, WWAN or BT	No	No										
NO ONDO VIII O II																

VO= CMRS Voice Service

Note

DT= Digital Transport

1.It applies the low power exemption based on ANSI

VD=CMRS IP Voice Service and Digital Transport

C63.19-2011

Page: 11 of 84

6. Test Environment

Ambient Temperature	21.7° C
Relative Humidity	<80 %

Page: 12 of 84

7. Description of test system

7.1 Measurement system Diagram for SPEAG Robotic

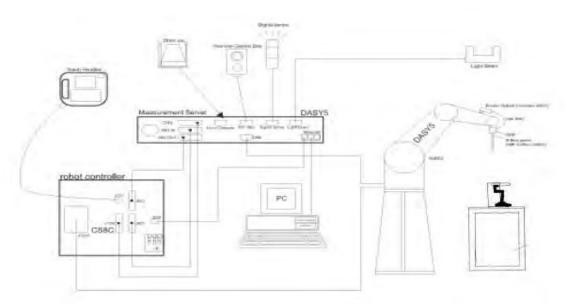


Fig.1 The SPEAG Robotic Diagram

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- E Field probe.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.

Page: 13 of 84

- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The Test Arch phantom.
- The device holder for handheld mobile phones.
- Validation dipole kits allowing to validate the proper functioning of the system.

Page: 14 of 84

7.2 E Field Probe

Construction	One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges PEEK enclosure material				
Calibration	In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%, k=2)				
Frequency	(extended to 20 MHz for MRI), Linearity: ± 0.2 dB (100 MHz to 3 GHz)	ER3DV6 E-Field Probe			
Directivity	± 0.2 dB in air (rotation around probe axis) ± 0.4 dB in air (rotation normal to probe axis)				
Dynamic Range	2 V/m to > 1000 V/m; Linearity: ± 0.2 dB				
Dimensions	Tip diameter: 8 mm Distance from probe tip to dipole centers: 2.5 mm				

7.3 Test Arch

Description	Enables easy and well defined	
	positioning of the phone and	
	validation dipoles as well as simple	
	teaching of the robot.	
Dimensions	length: 370 mm	
	width: 370 mm	
	height: 370 mm	Test Arch

7.4 Phone Holder

Description	Supports accurate and reliable positioning of any phone Effect on near field <+/- 0.5 dB	
		Diago Haldar
		Phone Holder

Page: 15 of 84

8. Test Procedure

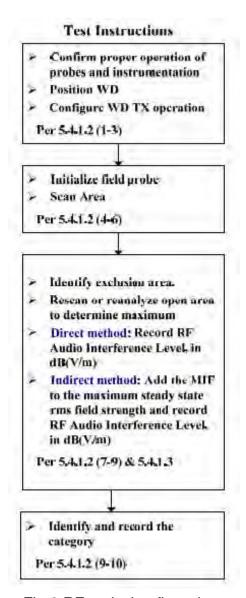


Fig.2 RF emission flow chart

Page: 16 of 84

The following illustrate a typical RF emissions test scan over a wireless communications device (Indirect method):

- 1. Proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed.
- 2. WD is positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
- 3. The WD operation for maximum rated RF output power was configured and confirmed with the base station simulator, at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test.
- 4. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The WD audio output was positioned tangent (as physically possible) to the measurement plane.
- 5. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the HAC Phantom.
- 6. The measurement system measured the field strength at the reference location.
- 7. Measurements at 5mm increments in the 5 × 5 cm region were performed and recorded. A 360° rotation about the azimuth axis at the maximum interpolated position was measured. For the worst-case condition, the peak reading from this rotation was used in re-evaluating the HAC category.
- 8. The system performed a drift evaluation by measuring the field at the reference location.

Note.

Per KDB 285076 D01 v04r01 2.d) 1), handsets that that have the ability to support concurrent connections using simultaneous transmissions shall be independently tested for each air interface/band given in ANSI C63.19-2011. At the present time ANSI C63.19 does not provide simultaneous transmission test procedures.

Page: 17 of 84

9. System Verification

A dipole antenna meeting the requirements given in ANSI C63.19-2011 was placed in the position normally occupied by the WD.

The length of the dipole was scanned by E-field probes and the maximum values for each were recorded.

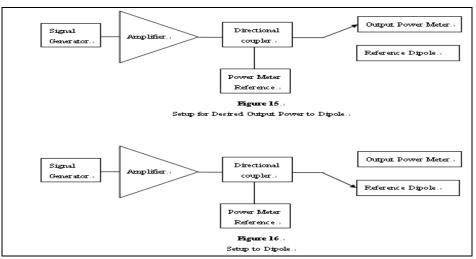


Fig.3 System verification

For E-Field Scan

1 0 = 1 1010 000.							
Mode	Frequency (MHz)	Input Power(dBm)	E-Field 1 (V/m)	E-Field 2(V/m)	Target Value(V/m)	Deviation	Measured Date
CW	835	20	114.0	106.6	108.5	1.66%	May.13, 2016
CW	1880	20	101.4	90.46	87.8	9.25%	May.13, 2016
CW	835	20	114.0	106.5	108.5	1.61%	Mar.03, 2017
CW	1880	20	92.98	90.45	87.8	4.46%	Mar.03, 2017

Note:

For E-Field, the deviation is [(E-Field 1 + E-Field 2) / 2 – Target value] / Target value x 100%

Page: 18 of 84

10. Modulation Interference Factor

For any specific fixed and repeatable modulated signal, a modulation interference factor (MIF, expressed in dB) may be developed that relates its interference potential to its steady-state rms signal level or average power level. This factor is a function only of the audio-frequency amplitude modulation characteristics of the signal and is the same for field-strength and conducted power measurements. It is important to emphasize that the MIF is valid only for a specific repeatable audio-frequency amplitude modulation characteristic. Any change in modulation characteristic requires determination and application of a new MIF

The MIF may be determined using a radiated RF field or a conducted RF signal,

- b) Using RF illumination or conducted coupling, apply the specific modulated signal in
- question to the measurement system at a level within its confirmed operating dynamic range.
- c) Measure the steady-state rms level at the output of the fast probe or sensor.
- d) Measure the steady-state average level at the weighting output.
- e) Without changing the square-law detector or weighting system, and using RF illumination or conducted coupling, substitute for the specific modulated signal a 1 kHz, 80% amplitude modulated carrier at the same frequency and adjust its strength until the level at the weighting output equals the step d) measurement.
- f) Without changing the carrier level from step e), remove the 1 kHz modulation and again

measure the steady-state rms level indicated at the output of the fast probe or sensor.

g) The MIF for the specific modulation characteristic is provided by the ratio of the step f)

measurement to the step c) measurement, expressed in dB $(20 \times \log(\text{step f}))/\text{step c})$.

Page: 19 of 84

Based on the KDB285076 D01, the handset can also use the MIF values predetermined by the test equipment manufacturer, and the following table lists the MIF values evaluated by DASY manufacturer (SPEAG), and the test result will be calculated with the MIF parameter automatically.

SPEAG UID	UID version	Communication system	MIF(dB)
10021	DAB (10.14.2015)	GSM-FDD (TDMA, GMSK)	3.63
10011	CAB (10.14.2015)	UMTS-FDD (WCDMA)	-27.23
10081	CAB (16.11.2016)	CDMA(SO3; RC3; full frame rate)	-19.71
10295	AAB (10.14.2015)	CDMA(SO3; RC1; 1/8 th frame rate)	3.26

Page: 20 of 84

11. Measured conducted output power

Band	Channel	Average power(dBm)
	128	31.62
GSM 850 (GMSK)	190	31.69
(Girrior t)	251	31.72
0014.4000	512	29.30
GSM 1900 (GMSK)	661	29.53
(======	810	29.78
	9262	23.45
WCDMA Band II	9400	23.43
	9538	23.51
	1312	23.49
WCDMA Band IV	1412	23.24
	1513	23.28
	4132	24.05
WCDMA Band V	4183	23.87
	4133	24.11

Page: 21 of 84

Band	Channel	Average power(dBm)
CDMA 1xRTT	1013	23.33
cellular(BC0)	384	23.36
SO3;RC3	777	23.19
CDMA 1xRTT	1013	23.37
cellular(BC0)	384	23.46
SO3;RC1	777	23.26
CDMA 1xRTT	25	23.41
PCS(BC1)	600	23.58
SO3;RC3	1175	23.43
CDMA 1xRTT	25	23.41
PCS(BC1)	600	23.64
SO3;RC1	1175	23.44

Page: 22 of 84

12. Justification of held to ear modes tested

I. Analysis of RF air interface technologies

a. OTT data services are outside the current definition of a managed CMRS service and are currently not required to be evaluated.

b. Based on ANSI. C63.19-2011. An RF air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is ≤17 dBm for any of its operating modes. If a device supports multiple RF air interfaces, each RF air interface shall be evaluated individually.

The MIF plus the worst case average power for all modes are investigated below to determine the testing requirements for this device.

Page: 23 of 84

II. Low power exemption

Air interference	Maximum power(dB)	MIF(dB)	Power + MIF (dB)	ANSI C63.19 2011 test required
GSM850	31.72	3.63	35.35	Yes
GSM1900	29.78	3.63	33.41	Yes
WCDMA B2	23.51	-27.23	-3.72	No
WCDMA B4	23.49	-27.23	-3.74	No
WCDMA B5	24.11	-27.23	-3.12	No
CDMA 1xRTT SO3;RC3	23.58	-19.71	3.87	No
CDMA 1xRTT SO3;RC1	23.64	3.26	26.90	Yes

[#] We used the predetermined MIF to evaluate the low power exemption.

[#] Based on ANSI. C63.19 2011, RF emission testing for WCDMA / CDMA 1xRTT SO3; RC3 is exempted.

[#] Based on ANSI. C63.19 2011, WCDMA / CDMA 1xRTT SO3; RC3 that is exempted from testing shall be rated as M4.

Page: 24 of 84

13. ANSI C63.19-2011 performance and categories

The measurements were performed to ensure compliance to the ANSI C63.19-2011 standard,

Category	E-Field Emissions dB(V/m) < 960MHz
M1	50-55
M2	45-50
M3	40-45
M4	<40

Category	E-Field Emissions dB(V/m) > 960MHz
M1	40-45
M2	35-40
M3	30-35
M4	<30

WD RF audio interference level categories in logarithmic units

Page: 25 of 84

14. Instruments List

Manufacturer	Device	Туре	Serial number	Date of last calibration	Date of next calibration
Schmid & Partner		EDOD) (0		Nov.20,2015	Nov.19,2016
Engineering AG	E-Field Probe	ER3DV6	2306	Nov.23,2016	Nov.22,2017
Schmid & Partner	835/1880 MHz System Validation	CD835V3	1052	Mar.17,2016	Mar.16,2017
Engineering AG	Dipole	CD1880V3	1044	Mar.17,2016	Mar.16,2017
Schmid & Partner	Data acquisition	DAE4	1374	Oct.23,2015	Aug.22,2016
Engineering AG	Electronics	DAE4	1374	Aug.23,2016	Aug.22,2017
Schmid & Partner	Software	DASY52	NI/A	Calibration	Calibration
Engineering AG	Sollware	52.8.8	N/A	not required	not required
Agilopt	Dielectric Probe Kit	85070D	US01440168	Calibration	Calibration
Agilent	Dielectric Probe Kit	030700	0301440100	not required	not required
Agilent	Dual-directional	778D	MV49220469	Jul.16,2015	Jul.15,2016
Agilent	coupler	778D MY48220468	Jul.06,2016	Jul.05,2017	
Agilent	RF Signal	N5181A	MY50141235	Dec.24,2015	Dec.23,2016
Agilent	Generator		MY50144143	Mar.01,2017	Feb.28,2018
Dec	Radio	CMILIOOO	122498	Aug.25,2015	Aug.24,2016
R&S	Communication Test	CMU200	122498	Aug.19,2016	Aug.18,2017
Schmid & Partner Engineering AG	Test Arch SD HAC	P01	1047	Calibration not required	Calibration not required

Page: 26 of 84

Manufacturer	Device	Туре	Serial number	Date of last calibration	Date of next calibration
Agilopt	Power Meter	Dawer Mater 544170	MY52240003	Jul.15,2015	Jul.14,2016
Agiletit	Agilent Power Meter E4417A	C441/A		Jan.20,2017	Jan.19,2018
Agilopt	Power Sensor	E9301H	MY51470002	Jan.07,2016	Jan.06,2017
Agilent	r ower Serisor		MY52200004	Oct.17,2016	Oct.16,2017

Page: 27 of 84

15. Summary of Results

E-Field

E-Fleid							
E-Field Emission	Channel	Modulation Interference Factor	Conducted Power (dBm)	Power Drift(dB)	Audio Interference Level dB(V/m)	RESULT	Excl Blocks per 4.3.1.2.2
	128	3.63	31.62	-0.03	37.35	M4	236
GSM 850	190	3.63	31.69	0.01	38.34	M4	236
	251	3.63	31.72	-0.02	38.52	M4	236
E-Field Emission	Channel	Modulation Interference Factor	Conducted Power (dBm)	Power Drift(dB)	Audio Interference Level dB(V/m)	RESULT	Excl Blocks per 4.3.1.2.2
	512	3.63	29.30	0.09	28.97	M4	789
GSM 1900	661	3.63	29.53	0.08	29.25	M4	789
	810	3.63	29.78	0.14	28.97	M4	689
E-Field Emission	Channel	Modulation Interference Factor	Conducted Power (dBm)	Power Drift(dB)	Audio Interference Level dB(V/m)	RESULT	Excl Blocks per 4.3.1.2.2
CDMA Callular	1013	3.26	23.37	-0.06	30.62	M4	236
CDMA Cellular (BC0)	384	3.26	23.46	-0.00	31.05	M4	236
(BC0)	777	3.26	23.26	0.04	31.02	M4	236
E-Field Emission	Channel	Modulation Interference Factor	Conducted Power (dBm)	Power Drift(dB)	Audio Interference Level dB(V/m)	RESULT	Excl Blocks per 4.3.1.2.2
CDMA DCC	25	3.26	23.41	0.15	23.06	M4	789
CDMA PCS	600	3.26	23.64	0.16	23.79	M4	689
(BC1)	1175	3.26	23.44	-0.05	23.26	M4	689

Page: 28 of 84

16. Measurement Data

Date: 2016/5/13

HAC-E GSM 850 CH 128

Communication System: GSM; Frequency: 824.2 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2015/11/20;

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

Phantom: HAC Test Arch

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 58.28 V/m; Power Drift = -0.03 dB

Applied MIF = 3.63 dB

RF audio interference level = 37.35 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
36.67 dBV/m	37.58 dBV/m	37.44 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
35.9 dBV/m	37.35 dBV/m	37.29 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
35.26 dBV/m	36.64 dBV/m	36.56 dBV/m

Cursor:

Total = 37.58 dBV/m E Category: M4

Location: -4, -23.5, 8.7 mm

0 dB = 75.68 V/m = 37.58 dBV/m

Page: 29 of 84

Date: 2016/5/13

HAC-E GSM 850 CH 190

Communication System: GSM; Frequency: 836.6 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2015/11/20;

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

Phantom: HAC Test Arch

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

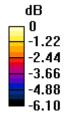
Device Reference Point: 0, 0, -6.3 mm

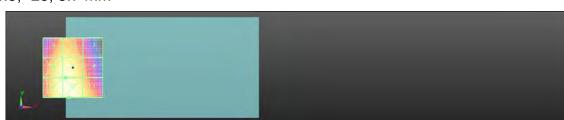
Reference Value = 64.51 V/m; Power Drift = 0.01 dB

Applied MIF = 3.63 dB

RF audio interference level = 38.34 dBV/m

Emission category: M4


MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
37.7 dBV/m	38.61 dBV/m	38.47 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
36.83 dBV/m	38.34 dBV/m	38.29 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
36.03 dBV/m	37.56 dBV/m	37.49 dBV/m

Cursor:

Total = 38.61 dBV/m E Category: M4

Location: -3.5, -25, 8.7 mm

0 dB = 85.24 V/m = 38.61 dBV/m

Page: 30 of 84

Date: 2016/5/13

HAC-E GSM 850 CH 251

Communication System: GSM; Frequency: 848.6 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2015/11/20;

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

Phantom: HAC Test Arch

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 65.58 V/m; Power Drift = -0.02 dB

Applied MIF = 3.63 dB

RF audio interference level = 38.52 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
37.95 dBV/m	38.88 dBV/m	38.72 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
37 dBV/m	38.52 dBV/m	38.5 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
36.13 dBV/m	37.62 dBV/m	37.58 dBV/m

Cursor:

Total = 38.88 dBV/m E Category: M4

Location: -4, -25, 8.7 mm

0 dB = 87.87 V/m = 38.88 dBV/m

Page: 31 of 84

Date: 2016/5/13

HAC-E GSM 1900 CH 512

Communication System: GSM; Frequency: 1850.2 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2015/11/20;

Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

Phantom: HAC Test Arch

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

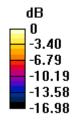
Device Reference Point: 0, 0, -6.3 mm

Reference Value = 16.33 V/m; Power Drift = 0.09 dB

Applied MIF = 3.63 dB

RF audio interference level = 28.97 dBV/m

Emission category: M4


MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
21.47 dBV/m	22.17 dBV/m	21.68 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
26.7 dBV/m	28.97 dBV/m	28.83 dBV/m
Grid 7 M4	Grid 8 M3	Grid 9 M3
29.83 dBV/m	31.49 dBV/m	31.19 dBV/m

Cursor:

Total = 31.49 dBV/m E Category: M3

Location: -3, 25, 8.7 mm

0 dB = 37.53 V/m = 31.49 dBV/m

Page: 32 of 84

Date: 2016/5/13

HAC-E GSM 1900 CH 661

Communication System: GSM; Frequency: 1880 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2015/11/20;

Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

Phantom: HAC Test Arch

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

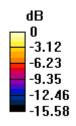
Device Reference Point: 0, 0, -6.3 mm

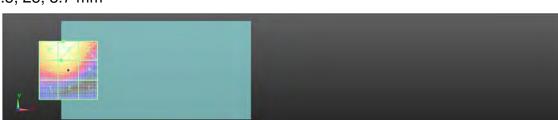
Reference Value = 17.95 V/m; Power Drift = 0.08 dB

Applied MIF = 3.63 dB

RF audio interference level = 29.25 dBV/m

Emission category: M4


MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
20.59 dBV/m	22.33 dBV/m	22.23 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
26.64 dBV/m	29.25 dBV/m	29.15 dBV/m
Grid 7 M4	Grid 8 M3	Grid 9 M3
29.42 dBV/m	31.3 dBV/m	31.1 dBV/m

Cursor:

Total = 31.30 dBV/m E Category: M3

Location: -4.5, 25, 8.7 mm

0 dB = 36.71 V/m = 31.30 dBV/m

Page: 33 of 84

Date: 2016/5/13

HAC-E GSM 1900 CH 810

Communication System: GSM; Frequency: 1909.8 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2015/11/20;

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

Phantom: HAC Test Arch

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

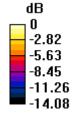
Device Reference Point: 0, 0, -6.3 mm

Reference Value = 18.15 V/m; Power Drift = 0.14 dB

Applied MIF = 3.63 dB

RF audio interference level = 28.97 dBV/m

Emission category: M4


MIF scaled E-field

		Grid 3 M4 23.63 dBV /m
	Grid 5 M4	Grid 6 M4
Grid 7 M4 27.76 dBV/m		Grid 9 M3 30.25 dBV/m

Cursor:

Total = 30.32 dBV/m E Category: M3

Location: -6, 24, 8.7 mm

0 dB = 32.80 V/m = 30.32 dBV/m

Page: 34 of 84

Date: 2017/3/3

HAC-E_CDMA Cellular(BC0)_CH 1013

Communication System: CDMA; Frequency: 824.7 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2016/11/23;

Sensor-Surface: (Fix Surface)

Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: HAC Test Arch with AMCC

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 28.98 V/m; Power Drift = -0.06 dB Applied MIF = 3.26 dB

RF audio interference level = 30.62 dBV/m

Emission category: M4

MIF scaled E-field

		Grid 3 M4
28.15 dBV/m	29.88 aBV/m	29.72 dBV/m
		Grid 6 M4
27.37 dBV/m	30.62 dBV/m	29.52 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
26.66 dBV/m	28.87 dBV/m	29.1 dBV/m

Cursor:

Total = 30.62 dBV/m E Category: M4

Location: -0.5, -5.5, 8.7 mm

0 dB = 33.95 V/m = 30.62 dBV/m

Page: 35 of 84

Date: 2017/3/3

HAC-E CDMA Cellular(BC0) CH 384

Communication System: CDMA; Frequency: 836.52 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2016/11/23;

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: HAC Test Arch with AMCC

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 24.66 V/m; Power Drift = -0.00 dB

Applied MIF = 3.26 dB

RF audio interference level = 31.05 dBV/m

Emission category: M4

MIF scaled E-field

		Grid 3 M4
29.46 dBV/m	31.12 dBV/m	31.74 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
28.56 dBV/m	31.05 dBV/m	31.02 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
28.61 dBV/m	30.14 dBV/m	30.17 dBV/m

Cursor:

Total = 31.74 dBV/m E Category: M4

Location: -19, -20, 8.7 mm

0 dB = 38.62 V/m = 31.74 dBV/m

Page: 36 of 84

Date: 2017/3/3

HAC-E CDMA Cellular(BC0) CH 777

Communication System: CDMA; Frequency: 848.31 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2016/11/23;

Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: HAC Test Arch with AMCC

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 23.79 V/m; Power Drift = 0.04 dB

Applied MIF = 3.26 dB

RF audio interference level = 31.02 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
29.03 dBV/m	31.1 dBV/m	31.23 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
28.74 dBV/m	31.02 dBV/m	31.38 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
27.63 dBV/m	30.26 dBV/m	30.38 dBV/m

Cursor:

Total = 31.38 dBV/m E Category: M4

Location: -10, -0.5, 8.7 mm

0 dB = 37.09 V/m = 31.39 dBV/m

Page: 37 of 84

Date: 2017/3/3

HAC-E CDMA PCS(BC1) CH 25

Communication System: CDMA; Frequency: 1851.25 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2016/11/23;

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: HAC Test Arch with AMCC

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 8.619 V/m; Power Drift = 0.15 dB

Applied MIF = 3.26 dB

RF audio interference level = 23.06 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
13.07 dBV/m	15.16 dBV/m	16.36 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
19.27 dBV/m	22.95 dBV/m	23.06 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
23.39 dBV/m	25.86 dBV/m	25.05 dBV/m

Cursor:

Total = 25.86 dBV/m E Category: M4

Location: -5.5, 25, 8.7 mm

0 dB = 19.63 V/m = 25.86 dBV/m

Page: 38 of 84

Date: 2017/3/3

HAC-E CDMA PCS(BC1) CH 600

Communication System: CDMA; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2016/11/23;

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: HAC Test Arch with AMCC

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

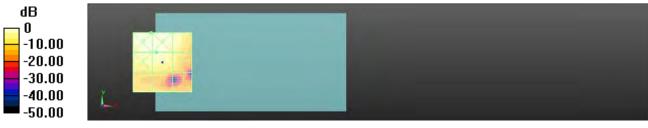
Device Reference Point: 0, 0, -6.3 mm

Reference Value = 9.837 V/m; Power Drift = 0.16 dB

Applied MIF = 3.26 dB

RF audio interference level = 23.79 dBV/m

Emission category: M4


MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
12.88 dBV/m	15.61 dBV/m	16.94 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
19.23 dBV/m	23.79 dBV/m	23.1 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
22.69 dBV/m	25.67 dBV/m	25.75 dBV/m

Cursor:

Total = 25.75 dBV/m E Category: M4

Location: -9.5, 25, 8.7 mm

0 dB = 19.39 V/m = 25.75 dBV/m

Page: 39 of 84

Date: 2017/3/3

HAC-E CDMA PCS(BC1) CH 1175

Communication System: CDMA; Frequency: 1908.75 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2016/11/23;

Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: HAC Test Arch with AMCC

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Device E-Field measurement /E Scan: Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 7.316 V/m; Power Drift = -0.05 dB

Applied MIF = 3.26 dB

RF audio interference level = 23.26 dBV/m

Emission category: M4

MIF scaled E-field

		Grid 3 M4
17.36 dBV/m	17.62 dBV/m	18.27 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
18.97 dBV/m	23.26 dBV/m	23.08 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
22.47 dBV/m	26.5 dBV/m	25.9 dBV/m

Cursor:

Total = 26.50 dBV/m E Category: M4

Location: 3.5, 25, 8.7 mm

0 dB = 21.13 V/m = 26.50 dBV/m

Page: 40 of 84

17. System Verification

Date: 2016/5/13

Dipole CD835 SN:1052

Communication System: CW; Frequency: 835 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2015/11/20;

Sensor-Surface: (Fix Surface)

Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

Phantom: HAC Test Arch

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

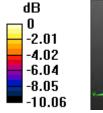
Dipole E-Field measurement: Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

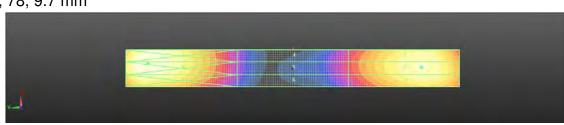
Device Reference Point: 0, 0, -6.3 mm

Reference Value = 110.7 V/m: Power Drift = -0.01 dB

E-field emissions = 106.6 V/m

Near-field category: M4 (AWF 0 dB)


PMF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
105.4 V/m	106.6 V/m	103.9 V/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
63.93 V/m	64.09 V/m	61.99 V/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
114.0 V/m	114.0 V/m	107.0 V/m

Cursor:

Total = 114.0 V/m E Category: M4

Location: 3, 78, 9.7 mm

0 dB = 114.0 V/m = 41.14 dBV/m

Page: 41 of 84

Date: 2016/5/13

Dipole CD1880_SN:1044

Communication System: CW; Frequency: 1880 MHz

Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2015/11/20;

• Sensor-Surface: (Fix Surface)

Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

Phantom: HAC Test Arch

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

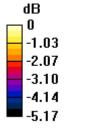
Dipole E-Field measurement: Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

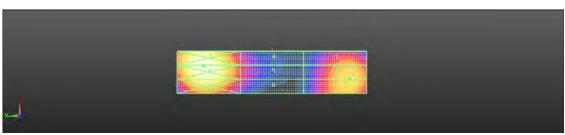
Device Reference Point: 0, 0, -6.3 mm

Reference Value = 151.8 V/m; Power Drift = 0.00 dB

E-field emissions = 90.46 V/m

Near-field category: M3 (AWF 0 dB)


PMF scaled E-field


Grid 1 M3	Grid 2 M3	Grid 3 M3
84.88 V/m	90.46 V/m	90.42 V/m
Grid 4 M3	Grid 5 M3	Grid 6 M3
76.16 V/m	76.64 V/m	74.39 V/m
Grid 7 M3	Grid 8 M3	Grid 9 M3

Cursor:

Total = 101.4 V/m E Category: M3

Location: 3, 32.5, 9.7 mm

0 dB = 101.4 V/m = 40.12 dBV/m

Page: 42 of 84

Date: 2017/3/3

Dipole CD835_SN:1052Communication System: CW; Frequency: 835 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2016/11/23;

Sensor-Surface: (Fix Surface)

Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: HAC Test Arch

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Dipole E-Field measurement: Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

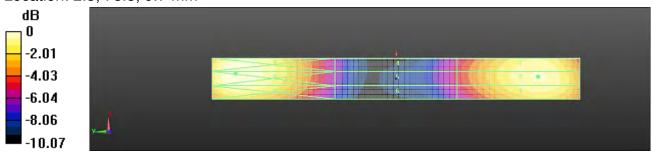
Device Reference Point: 0, 0, -6.3 mm

Reference Value = 110.7 V/m; Power Drift = -0.03 dB

PMR not calibrated. PMF = 1.000 is applied.

E-field emissions = 106.5 V/m

Near-field category: M4 (AWF 0 dB)


PMF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
105.5 V/m	106.5 V/m	103.8 V/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
63.99 V/m	64.13 V/m	61.95 V/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
113.9 V/m	114.0 V/m	107.2 V/m

Cursor:

Total = 114.0 V/mE Category: M4

Location: 2.5, 78.5, 9.7 mm

0 dB = 114.0 V/m = 41.14 dBV/m

Page: 43 of 84

Date: 2017/3/3

Dipole CD1880 SN:1044

Communication System: CW; Frequency: 1880 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY5 Configuration:

Probe: ER3DV6 - SN2306; ConvF(1, 1, 1); Calibrated: 2016/11/23;

• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: HAC Test Arch

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Dipole E-Field measurement: Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

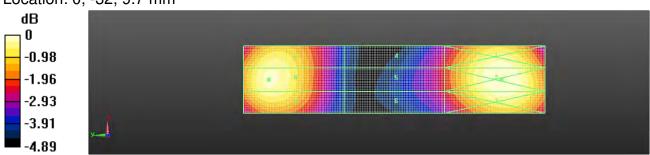
Device Reference Point: 0, 0, -6.3 mm

Reference Value = 162.3 V/m; Power Drift = -0.01 dB

PMR not calibrated. PMF = 1.000 is applied.

E-field emissions = 90.45 V/m

Near-field category: M3 (AWF 0 dB)


PMF scaled E-field

Grid 1 M3 91.70 V/m	
Grid 4 M3 71.20 V/m	
Grid 7 M3 89.30 V/m	

Cursor:

Total = 92.98 V/m E Category: M3

Location: 0, -32, 9.7 mm

0 dB = 92.98 V/m = 39.37 dBV/m

Page: 44 of 84

18. DAE & Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client SGS - TW (Auden)

Accreditation No.: SCS 0108

Certificate No: DAE4-1374_Oct15

CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BM - SN: 1374 Object Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: October 23, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 09-Sep-15 (No:17153) Sep-16 Secondary Standards ID# Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 06-Jan-15 (in house check) In house check: Jan-16 Calibrator Box V2.1 SE UMS 006 AA 1002 06-Jan-15 (in house check) In house check: Jan-16 Name Function Calibrated by: Dominique Steffen Technician Approved by: Deputy Technical Manager Issued: October 23, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: DAE4-1374_Oct15

Page 1 of 5

Page: 45 of 84

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di tareture Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swise Accreditation Service is one of the signaturies to the EA Muttilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

information used in DASY system to align probe sensor X to the robot Connector angle

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating

Certificate No: DAEA-1374_Oct15

Page: 46 of 84

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -10....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Υ	Z
High Range	403.597 ± 0.02% (k=2)	403.842 ± 0.02% (k=2)	404.121 ± 0.02% (k=2)
Low Range	3.98111 ± 1.50% (k=2)	3.96638 ± 1.50% (k=2)	3.98936 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	41.0°±1°

Page: 47 of 84

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	200033.09	-0.21	-0.00
Channel X	+ Input	20006.43	2.25	0.01
Channel X	- Input	-20003.08	2.09	-0.01
Channel Y	+ Input	200033.11	-0.07	-0.00
Channel Y	+ Input	20001.24	-2.89	-0.01
Channel Y	- Input	-20006.12	-0.87	0.00
Channel Z	+ Input	200032.98	-0.38	-0.00
Channel Z	+ Input	20001.71	-2.35	-0.01
Channel Z	- Input	-20007.05	-1.72	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.72	0.10	0.00
Channel X + Input	200.90	0.07	0.04
Channel X - Input	-198.32	0.99	-0.50
Channel Y + Input	2000.56	-0.00	-0.00
Channel Y + Input	199.87	-0.82	-0.41
Channel Y - Input	-199.92	-0.51	0.26
Channel Z + Input	2000.72	0.21	0.01
Channel Z + Input	199.48	-1.11	-0.56
Channel Z - Input	-200.66	-1.13	0.57

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	6.36	3.97
	- 200	-2.21	-4.56
Channel Y	200	7.13	6.98
	- 200	-8.29	-8.73
Channel Z	200	6.37	6.35
	- 200	-9.60	-9.25

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-2.02	-1.56
Channel Y	200	4.68	-	-1.06
Channel Z	200	11.09	1.58	-

Certificate No: DAE4-1374_Oct15

Page: 48 of 84

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15950	15957
Channel Y	16166	15762
Channel Z	16101	16123

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.61	-0.78	1.59	0.44
Channel Y	-0.47	-2.13	0.46	0.39
Channel Z	-0.68	-1.72	0.64	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1374_Oct15

Page 5 of 5

Page: 49 of 84

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

SGS-TW (Auden)

Certificate No: DAE4-1374_Aug16

Object	DAE4 - SD 000 DO	04 BM - SN: 1374	
Calibration procedure(s)	QA CAL-06.v29 Calibration proced	iure for the data acquisition electron	pnics (DAE)
Calibration date:	August 23, 2016		
		nal standards, which realize the physical units obability are given on the following pages and	
All calibrations have been condu	ucted in the closed laboratory	facility: environment temperature $(22\pm3)^{\circ}$ G a	
All calibrations have been condu Calibration Equipment used (M& Primary Standards	arcted in the closed laboratory ATE critical for call prattion)	facility: environment temperature $(22\pm3)^{\circ}$ C $_{4}$ Cal Date (Certificate No.)	and humidity < 70%, Scheduled Calibration
All calibrations have been conducted (M8 Primary Standards Keithley Multimeter Type 2001	ID # SN: 0810278	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 09-Sep-15 (No:17153)	Scheduled Calibration Sep-16
All calibrations have been condu Calibration Equipment used (M& Primary Standards	arcted in the closed laboratory ATE critical for call prattion)	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 09-Sep-15 (No:17153) Check Date (in house)	and humidity < 70%, Scheduled Calibration
All calibrations have been conducted (M8 Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SE UWS 053 AA 1001	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 09-Sep-15 (No:17153) Check Date (in house) 05-Jan-16 (in house check)	Scheduled Calibration Sep-16 Scheduled Check In house check: Jan-17
All calibrations have been condu- Calibration Equipment used (M8 Primary Standards Kalithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SE UWS 053 AA 1002 Name	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 09-Sep-15 (No:17153) Check Date (in house) 05-Jan-16 (in house check) 05-Jan-16 (in house check)	Scheduled Calibration Sep-16 Scheduled Check In house check: Jan-17
All calibrations have been conducted (M8 Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS D05 AA 1002	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 09-Sep-15 (No:17153) Check Date (in house) 05-Jan-16 (in house check)	Scheduled Calibration Sep-16 Scheduled Check In house check: Jan-17 In house check: Jan-17

Certificate No: DAE4-1374_Aug16

Page 1 of 5

Page: 50 of 84

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlacher Kalibrierdianst
C Service suisse d'étalonnage
Servizio sylzzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this manufacturement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted; Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel Input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for Information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Gertilicate No: DAE4-1374 Aug16

Page 2 of 5

Page: 51 of 84

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = 6.1μV, full range = -100...+300 mV
Low Range: 1LSB = 61nV, full range = -1....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	403.637 ± 0.02% (k=2)	403,886 ± 0.02% (k=2)	404,160 ± 0.02% (k=2)
Low Range	3.98275 ± 1.50% (k=2)	3.96719 ± 1.50% (k=2)	3.99036 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	42.5 " ± 1 "

Certificate No: DAE4-1374_Aug16

Page 3 of 5

Page: 52 of 84

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200039.11	0.18	0.00
Channel X + Input	20005.23	0.57	0.00
Channel X - Input	-20004.46	1,52	-0.01
Channel Y + Input	200041.10	3.98	0.00
Channel Y + Input	20002.96	-1.76	-0.01
Channel Y - Input	-20007.46	-1.38	0.01
Channel Z + Input	200039.71	2.56	0.00
Channel Z + Input	20002.57	-2.04	-0.01
Channel Z - Input	-20008.39	-2.20	0.01

Low Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	2001.14	0.37	0.02
Channel X + Input	200.90	0.07	0.03
Channel X - Input	-198.75	0.41	-0.20
Channel Y + Input	2000.82	0.06	0.00
Channel Y + Input	200.17	-0.51	-0.25
Channel Y - Input	-199.47	-0.29	0.15
Channel Z + Input	2000.50	-0.29	-D.01
Channel Z + Input	199.36	-1.24	-0.62
Channel Z - Input	-200.79	-1,45	0.73

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	6,08	3.93
	- 200	-2,69	4.73
Channel Y	200	7.56	7.12
	- 200	-8,69	-8.88
Channel Z	200	5.83	5.98
	- 200	-8.94	-9.16

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time; 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	-2.29	-1.91
Channel Y	200	4.65	(4)	-1.13
Channel Z	200	10.99	2.02	

Certificate No: DAE4-1374_Aug16

Page: 53 of 84

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15938	14709
Channel Y	16155	14646
Channel Z	16095	15566

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10Ms

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.17	0.20	1.90	0,33
Channel Y	0.61	-0.17	1.24	0.30
Channel Z	-1.30	-2.42	-0.33	0.37

6. Input Offset Current

Nominal input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)	
Channel X	200	200	
Channel Y	200	200	
Channel Z	200	200	

8. Low Battery Alarm Voltage (Typical values for information)

Typical values Alarm Level (VDC)		
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7,6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA	
Supply (+ Vac)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Certificate No: DAE4-1374_Aug16

Page: 54 of 84

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst.
C Service suisse d'étalonnage.
S Servizio svizzero di taratura.
Swiss Calibration Service.

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multillatoral Agreement for the recognition of calibration certificates

Client SGS-TW (Auden)

Certificate No: ER3-2306_Nov15

CALIBRATION CERTIFICATE

Doject ER3DV6 - SN:2306

Calibration procedure(s) QA CAL-02.v8, QA CAL-25.v6

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date: November 20, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability and given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%

Calibration Equipment used (M&TE onlical for calibration)

Primary Standards	ID	Cat Date (Certificate No.)	Scheduled Calibration
Flower meter E44195	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: 95277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ER30V6	SN: 2328	12-Oct-15 (No. ER3-2328 Oct15)	Oct-16
DAE4	SN: 769	16-Mar-15 (No. DAE4-789_Mar-15)	Mar-16
Secondary Standards	(D	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US373905R5	18-Oct-01 (in house chark Oct-15)	In Draine chees: Det. 16

Name Function Signature
Calibrated by Claudio Leubler Laboratory Technician

Approved by Katja Pakovic Technical Manager

Issued November 21, 2015

This calibration sentificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ER3-2306, Nov15

Page 1 of 10

Page: 55 of 84

Calibration Laboratory of Schmid & Partner Engineering AG sughausstrasse 43, 18004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accompliation No.: SCS 0108

Aspresilled by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space diode compression point DCP

CF crest factor (1/duty_cycle) of the RF signal A, B, C. D modulation dependent linearization parameters

Polarization o o rotation around probe axis

Polarization 9 9 rotation around an exist hat is in the plane normal to probe axis (at measurement center),

i.e., θ = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.0, November 2013

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta=0$ for XY sensors and $\vartheta=90$ for Z sensor ($t\leq 900$ MHz in TEM-cell: t>1800 MHz: R22 waveguide).
- NORM(I)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z. DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax.y.z; Bx y.z; Cx,y.z: Dx,y,z: VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide selup
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip. (on probe exis). No tolerance required,
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required)

Certificate No. ER3-2306, Nov15

Page 2 of 10

Page: 56 of 84

ER3DV6 - SN:2306

November 20, 2015

Probe ER3DV6

SN:2306

Manufactured: Calibrated: December 17, 2002 November 20, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ER3-2306_Nov15

Page 3 of 10

Page: 57 of 84

November 20, 2015

ER3DV6 - SN:2306

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2306

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²)	1.08	1.12	1.23	± 10.1 %
DCP (mV) ^B	102.8	101.2	105.2	

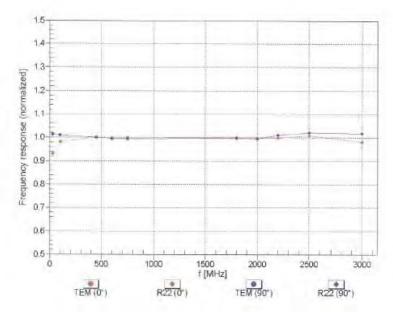
Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	х	0.0	0.0	1.0	0.00	155.0	±3.0 %
		Υ	0.0	0.0	1.0		166.6	
		z	0.0	0.0	1.0		158.1	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	х	0.34	50.0	4.4	10.00	36.4	±2.7 %
		Υ	0.43	49.8	2.6		38.0	
		Z	0.39	49.9	4.1		37.2	
10011- CAB	UMTS-FDD (WCDMA)	Х	3.07	66.2	18.2	2.91	122.1	±0.5 %
		Y	3.08	66.1	18.1		133.0	
		Z	3.29	67.7	18.9		124.0	
10021- DAB	GSM-FDD (TDMA, GMSK)	Х	2.69	71.9	17.0	9.39	130.8	±1.9 %
		Υ	2.34	71.2	16.9		137.4	
		Z	2.66	69.6	15.3		131.2	
10081- CAB	CDMA2000 (1xRTT, RC3)	Х	3.47	64.6	17.8	3.97	113.7	±0.5 %
		Y	3.60	65.3	18.2		125.9	
		Z	3.68	66.1	18.6		117.1	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	х	5.42	70.1	26.7	12.49	80.7	±1.4 %
		Υ	5.56	71.3	27.8		87.9	
		Z	5.89	71.7	26.9		84.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2306_Nov15

Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

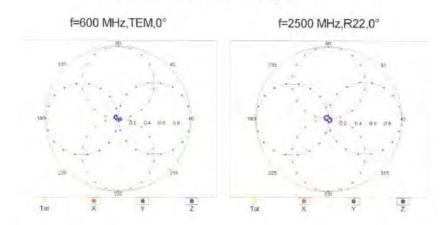


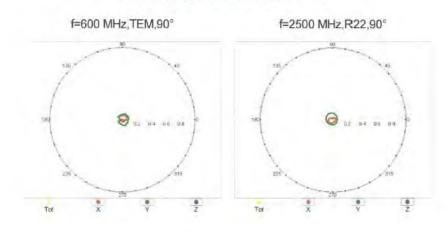
Page: 58 of 84

ER3DV6 - SN:2306

November 20, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Page: 59 of 84

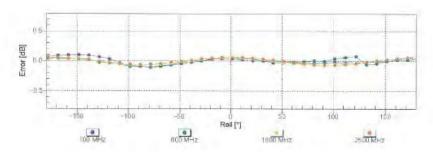
ER3DV6 - SN:2306 November 20, 2015

Receiving Pattern (4), 9 = 0°

Receiving Pattern (6), 9 = 90°

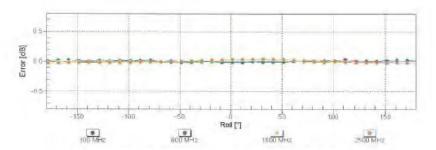
Certificate No: ER3-2306_Nov15

Page 6 of 10



Page: 60 of 84

ER3DV6 - SN:2306


November 20, 2015

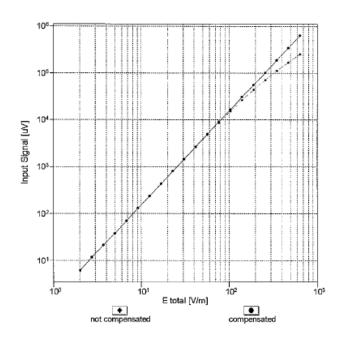
Receiving Pattern (6), 9 = 0°

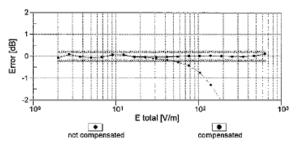
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (6), 9 = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ER3-2306_Nov15


Page 7 of 10



Page: 61 of 84

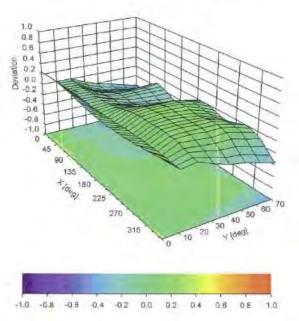
ER3DV6 - SN:2306 November 20, 2015

Dynamic Range f(E-field) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ER3-2306_Nov15

Page 8 of 10


Page: 62 of 84

ER3DV6 - SN:2306

November 20, 2015

Deviation from Isotropy in Air

Error (6, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2306_Nov15

Page 9 of 10

Page: 63 of 84

ER3DV6 - SN:2306

November 20, 2015

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2306

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	131.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Certificate No: ER3-2306_Nov15

Page: 64 of 84

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS-TW (Auden)

Certificate No: ER3-2306_Nov16

CALIBRATION CERTIFICATE

Object

ER3DV6 - SN:2306

Calibration procedure(s)

QA CAL-02.v8, QA CAL-25.v6

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date:

November 23, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (S1). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the confidence

All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	(D)	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN. 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Altenuator	SN: 55277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ER3DV6	SN: 2328	14-Oct-16 (No. ER3-2328_Oct16)	Oct-17
DAE4	SN: 789	11-Nov-16 (No. DAE4-789_Nov16)	Nov-17
Secondary Standards	ID.	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	05-Apr-16 (in house check Jun-15)	In house check, Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun 18
Power sensor E4412A	SN: 000110210	05-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator MP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-15)	In house check: Jun-18
Notwerk Analyzer HP 8753E	SN: US37300686	1E Oct 01 (in house check Oxt-16)	In house check: Oct-17

Michael Weber Laboratory Technician Calibrated by: Kalja Pokovic Cechnical Manager Issued: November 25, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ER3-2306_Nov16

Page 1 of 10

Page: 65 of 84

Calibration Laboratory of

Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zunch, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

NORMx,y,z sensitivity in free space DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A. B. C. D modulation dependent linearization parameters

Polarization o φ rotation around probe axis

Polarization 9 B rotation around an axis that is in the plane normal to probe axis (at measurement center)

i.e., θ = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

iEEE Std 1309-2005. "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.0, November 2013

Methods Applied and Interpretation of Parameters:

- NORMX,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 8 = 90 for Z sensor (f \leq 900 MHz in TEM-cell; f \geq 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW. signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open wavequide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No ER3-2306_Nov16

Page 2 of 10

Page: 66 of 84

ER3DV6 - SN:2306

November 23, 2016

Probe ER3DV6

SN:2306

Manufactured: Calibrated: December 17, 2002 November 23, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ER3-2306_Nov16

Page 3 of 10

Page: 67 of 84

ER3DV0 - SN:2306

November 23, 2016

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2306

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²)	1.05	1.08	1.19	± 10.1 %
DCP (mV) ⁸	102.1	101.9	104.6	1

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc [±] (k=2)
0	CW	×	0.0	0.0	1.0	0.00	153.2	±3.3 %
		Y	0.0	0.0	5.0		166.4	1
	the contract of the contract o	Z	0.0	0.0	1:0		156.4	1-4-5-
10010- CAA	SAR Validation (Square, 100ms, 10ms)	×	0.33	5,0,6	4.6	10.00	36.4	±2.7 %
		Y	0.34	49.4	4.6		37.8	
		2	0.42	50.7	4.4		36.9	
10021- DAC	GSM-FDD (TDMA, GMSK)	×	2.39	69.1	15.0	9.39	131.5	±2.5 %
		Y	3.18	76.0	19.5		139.0	
		2	2.56	68.9	15.1	to come	130.6	4.00
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	5.49	70.5	26.8	12.49	80.8	#1.4%
		Y	5.73	72.3	28.6		87.7	
		Z	6.01	72.1	27.0		84.7	

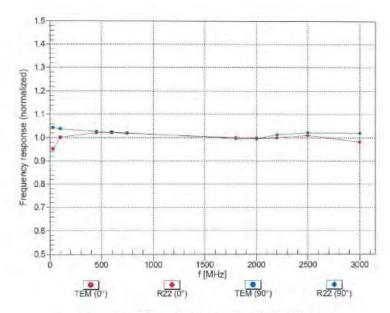
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No. ER3-2306_Nov16

Page 4 of 10

^{*} Numerical linearization parameter; uncertainty not required,

** Uncertainty is determined using the max, deviation from linear response applying regiangular distribution and is expressed for the Equare of the field value.



Page: 68 of 84

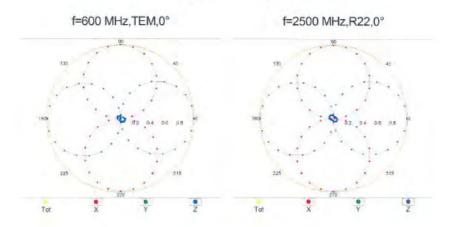
ER3DV6 - SN:2306

November 23, 2016

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ER3-2306_Nov16


Page 5 of 10


Page: 69 of 84

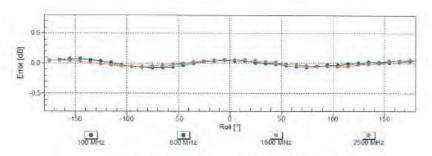
ER3DV6 – SN:2306 November 23, 2016

Receiving Pattern (6), 9 = 0°

Receiving Pattern (\$\phi\$), 9 = 90°

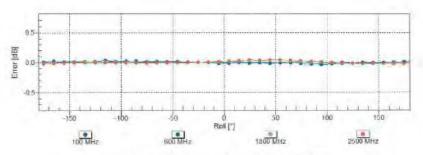
Certificate No: ER3-2306_Nov16

Page 6 of 10



Page: 70 of 84

ER3DV6 - SN:2306


November 23, 2016

Receiving Pattern (\$\phi\$), 9 = 0°

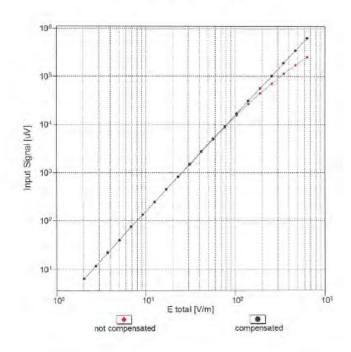
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

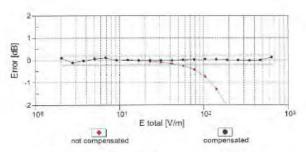
Receiving Pattern (\$\phi\$), 9 = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ER3-2306_Nov16

Page 7 of 10




Page: 71 of 84

ER3DV6 - SN:2306

November 23, 2016

Dynamic Range f(E-field) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ER3-2306_Nov16

Page 8 of 10



Page: 72 of 84

ER3DV6 - SN:2306

November 23, 2016

Deviation from Isotropy in Air Error (ø, ৪), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2306_Nov16

Page 9 of 10

Page: 73 of 84

ER3DV6 - SN.2306

November 23, 2016

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2306

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (")	134.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Trp Length	10 mm
Tip Diameter	8 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Certificate No. ER3-2305_Nov16

Page 10 of 10

Page: 74 of 84

19. Uncertainty Budget

Error Description	Uncert. value	Prob. Dist.	Div.	(c _i) E	$\begin{pmatrix} c_i \end{pmatrix}$	Std. Unc.	Std. Unc
Measurement System							
Probe Calibration	±5,1%	N	1	1	1	±5.1%	±5.1 %
Axial Isotropy	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	$\pm 2.7\%$
Sensor Displacement	±16.5 %	R	$\sqrt{3}$	1	0.145	±9.5 %	$\pm 1.4\%$
Boundary Effects	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%
Phantom Boundary Effect	±7.2%	R	$\sqrt{3}$	1	0	±4.1%	±0.0%
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
Scaling with PMR calibration	±10.0%	R	$\sqrt{3}$	1	1	±5.8%	±5.8%
System Detection Limit	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3 %
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%
RF Ambient Conditions	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%
RF Reflections	±12.0%	R	$\sqrt{3}$	1	1	±6.9%	±6.9 %
Probe Positioner	±1.2%	R	$\sqrt{3}$	1	0.67	±0.7%	±0.5 %
Probe Positioning	±4.7%	R	$\sqrt{3}$	1	0.67	±2.7%	±1.8%
Extrap. and Interpolation	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%
Test Sample Related				77.7			
Device Positioning Vertical	±4.7%	R	$\sqrt{3}$	1	0.67	±2.7%	±1.8%
Device Positioning Lateral	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%
Device Holder and Phantom	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9 %	±2.9 %
Phantom and Setup Related		- 1					
Phantom Thickness	±2.4%	R	$\sqrt{3}$	1	0.67	±1.4%	$\pm 0.9 \%$
Combined Std. Uncertainty				14.2		±16,3 %	±12.3 %
Expanded Std. Uncertainty on Power Expanded Std. Uncertainty on Field						±32.6 %	$\pm 24.6 \%$

Page: 75 of 84

20. System Validation from Original Equipment Supplier

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client SGS-TW (Auden)

Certificate No: CD835V3-1052_Mar16

	CERTIFICATI	E	
Object	CD835V3 - SN:	1052	
Calibration procedure(s)	QA CAL-20.v6 Calibration proce	dure for dipoles in air	
Calibration date:	March 17, 2016		
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M8	ertainties with confidence p ucted in the closed isborato kTE critical for calibration)	onal standards, which realize the physical unit robability are given on the following pages and ry facility: environment temperature $(22\pm3)^{\circ}$ C	d are part of the certificate. S and humidity < 70%.
	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards			
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power meter EPM-442A Power sensor HP 8481A	GB37480704 US37292783	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Oct-16 Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	GB37480704 US37292783 MY41092317	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Oct-16 Oct-16 Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Attenuator	GB37480704 US37292783 MY41092317 SN: 5047.2/06327	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Ap=15 (No. 217-02130)	Oct-16 Oct-16 Oct-16 Mar-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6	GB37480704 US37292783 MY41082317 SN: 5047.2 / 06327 SN: 2336	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336 Dec-15)	Oct-16 Oct-16 Oct-16 Mar-16 Dec-16
Power meter EPM-442A Power sensor HP 8481A	GB37480704 US37292783 MY41092317 SN: 5047.2/06327	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Ap=15 (No. 217-02130)	Oct-16 Oct-16 Oct-16 Mar-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reterence 10 dB Attenuator Probe ER30V6 Probe H3DV6	GB37480704 US37292783 MY41092317 SN: 5047,2/06927 SN: 2336 SN: 6066	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Ap=-15 (No. 217-0233) 31-Dec-15 (No. ER3-2336 Dec15) 31-Dec-15 (No. H3-6065 Dec15)	Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reterence 10 dB Attenuator Probe ER30V6 Probe H30V6 DAE4 Secondary Standards Power meter Agilent 4419B	GB37480704 US37292783 MY41092317 SN: 5047.2/06927 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-0233) 31-Dec-15 (No. ER3-2335 Dec15) 31-Dec-15 (No. H3-6065_Duc15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (In house)	Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agitant 4419B Power sensor HP E4412A	GB37480704 US37292783 MY41082317 SN: 5047.2/06927 SN: 2336 SN: 6066 SN: 781 ID # SN: GB42420161 SN: US38485102	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Ape-15 (No. 217-02233) 01-Ape-15 (No. ER3-2335 Dec15) 31-Dec-15 (No. H3-6065_Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house) 09-Oct-09 (in house check Sep-14) 05-Jan-10 (in house check Sep-14)	Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16
Power meter EPM-442A Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilant 4419B Power sensor HP 8482A	GB37480704 US37292783 MY41092317 SN: 5047.2./06927 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US387295597	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336 Dec15) 31-Dec-15 (No. ER3-2336 Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house) 09-Oct-09 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 09-Oct-09 (in house check Sep-14)	Oct-16 Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reterence 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP 8482A Network Analyzer HP 8763E	GB37480704 US37292783 MY41082317 SN: 5047.2/06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420161 SN: US38485102 SN: US37295597 US37390585	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336 Dec-15) 31-Dec-15 (No. H3-6065 Dec-15) 04-Sep-15 (No. DAE4-781_Sep-15) Check Date (In house) 09-Oct-09 (In house check Sep-14) 05-Jan-10 (In house check Sep-14) 18-Oct-09 (In house check Sep-14)	Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16 In house check: Sep-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reterence 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP 8482A Network Analyzer HP 8763E	GB37480704 US37292783 MY41092317 SN: 5047.2./06927 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US387295597	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336 Dec15) 31-Dec-15 (No. ER3-2336 Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house) 09-Oct-09 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 09-Oct-09 (in house check Sep-14)	Oct-16 Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16
Power meter EPM-442A Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilant 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E RE generator R&S SMT-08	GB37480704 US37292783 MY41082317 SN: 5047.2/06927 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 US37390585 SN: 832283/011	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336 Dec15) 31-Dec-15 (No. ER3-2336 Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house) 09-Oct-09 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 18-Oct-01 (in house check Sep-14) 18-Oct-01 (in house check Oct-15) 27-Aug-12 (in house check Oct-15)	Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16 In house check: Sep-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Peterence 10 d8 Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilant 4419B Power sensor HP 8482A Network Analyzer HP 8763E	GB37480704 US37292783 MY41092317 SN: 5047.2/06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US38485102 SN: US37295597 US37290585 SN: 832283/011	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336 Dec15) 31-Dec-15 (No. H3-6065 Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house) 09-Oct-09 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 18-Oct-01 (in house check Sep-14) 18-Oct-01 (in house check Sep-14)	Oct-16 Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16 In house check: Sep-16 In house check: Oct-16 In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reterence 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agiliant 4419B Power sensor HP 8482A Network Analyzer HP 8753E RF generator R&S SMT-06 Calibrated by:	GB37480704 US37292783 MY41092317 SN: 5047.2./06327 SN: 5047.2./06327 SN: 6066 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US38485102 SN: US37295597 US37290585 SN: 832283/011	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336 Dec15) 31-Dec-15 (No. H3-6065 Dec15) 04-Sep-15 (No. DAE4-781 Sep15) Check Date (in house) 09-Oct-09 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 18-Oct-01 (in house check Sep-14) 18-Oct-01 (in house check Cct-15) 27-Aug-12 (in house check Oct-15) Function Laboratory Technician	Oct-16 Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16 In house check: Sep-16 In house check: Oct-16 In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilant 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E RE generator R&S SMT-08	GB37480704 US37292783 MY41082317 SN: 5047.2/06927 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 US37390585 SN: 832283/011	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336 Dec15) 31-Dec-15 (No. ER3-2336 Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house) 09-Oct-09 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 18-Oct-01 (in house check Sep-14) 18-Oct-01 (in house check Oct-15) 27-Aug-12 (in house check Oct-15)	Oct-16 Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16 In house check: Sep-16 In house check: Oct-16 In house check: Oct-16

Certificate No: CD835V3-1052_Mar16

Page | of 5

Page: 76 of 84

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

References

[1] ANSI-C63,19-2011

American National Standard, Methods of Measurement of Compalibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, x-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Anterina Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job, Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (upper forms distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network
 Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was
 eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any
 obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD835V3-1052_Mar16

Page 2 of 5

Page: 77 of 84

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	835 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 835 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	110.2 V/m = 40.85 dBV/m
Maximum measured above low end	100 mW input power	106.8 V/m = 40.57 dBV/m
Averaged maximum above arm	100 mW input power	108.5 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	15.9 dB	43.2 Ω - 13.5 jΩ
835 MHz	26.6 dB	49.6 Ω + 4.6 jΩ
900 MHz	16.4 dB	57.2 Ω - 14.7 jΩ
950 MHz	20.4 dB	45.6 Ω + 8.1 jΩ
960 MHz	15.6 dB	52.2 Ω + 17.0 jΩ

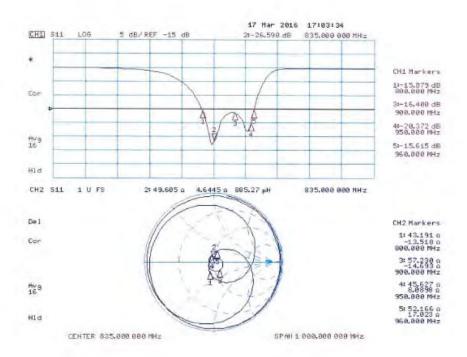
3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


Certificate No: CD835V3-1052_Mar16

Page 3 of 5

Page: 78 of 84

Impedance Measurement Plot

Page: 79 of 84

DASY5 E-field Result

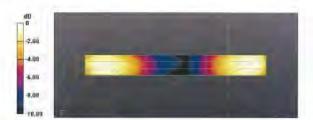
Date: (7.03.2016)

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1052

Communication System: UID 0 - CW : Frequency: 835 MHz Medium parameters used: $\sigma = 0$ S/m, $s_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe; ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2015;
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 04.09.2015
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1);

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 113.4 V/m; Power Drift = -0.04 dB Applied MIF = 0.00 dB RF audio interference level = 40.85 dBV/m Emission category: M3

MIF scaled E-field

Grid 1 M3	Grid Z M3	Grid 3 M3
40.5 dBV/m	40.57 dBV/m	40.35 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
35.73 dBV/m	35.8 dBV/m	35.6 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
40.58 dBV/m	40.85 dBV/m	40.78 dBV/m

0 dB = 110.2 V/m = 40.84 dBV/m

Certificate No; CD835V3-1052_Mar16

Page 5 of 5

Page: 80 of 84

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SGS-TW (Auden)

Cartificate No: CD1880V3-1044 Mar16

Object	CD1880V3 - SN	1044	
Calibration procedure(s)	QA CAL-20.v6 Calibration proces	edure for dipoles in air	
Calibration date.	March 17, 2016		
This calibration certificate docum	ments the traceability to nati	ional standards, which realize the physical unit	s of measurements (Si)
		robability are given on the following pages and	
All the second of the second o	intend in the standard introvers.	To will be a sent to a sent many a sent a sent to the	and boundable - 700
All calibrations have been condi-	acted in the closed isologilo	ry facility; environment temperature (22 ± 3) °C	and numberly < 70%
		ry facility; environment temperature (22 ± 3)°C	and narrious < 70%
Calibration Equipment used (M&	STE critical for calibration)		
Calibration Equipment used (M8 himary Standards	STE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
alibration Equipment used (Ma nimery Standards ower meter EPM-442A	STE critical for calibration) 4D # GBS7480704	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222)	Scheduled Calibration Oct-16
relibration Equipment used (M8 nimery Standards ower meter EPM-442A ower sensor HP 8481A	4D # GB97480704 US37292783	Cai Dale (Certificale No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Scheduled Calibration Oct-16
Calibration Equipment used (M& humary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ITE critical for calibration) 4D # GBS7480704 US37292783 MY41092317	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Scheduled Calibration Oct-16 Oct-16 Oct-16
Calibration Equipment used (M8 Purmary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Inference 10 dB Altenuator	ITE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130)	Scheduled Calibration Oct-16 Oct-16 Mar-16
Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Inference 10 dB Attenuator Probe ER3DV6	ID # GB57480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336_Dec15)	Scheduled Celibration Oct-16 Oct-16 Oct-16 Mar-16 Dec-16
calibration Equipment used (M8 minimary Standards lower meter EPM-442A lower sensor HP 8481A lower sensor HP 8481A faference 10 dB Altenuator trobe ERBDV6	ATE critical for calibration) ID # GBS7480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336_Dec15) 31-Dec-15 (No. H3-6055_Dec15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16
calibration Equipment used (M8 minimary Standards lower meter EPM-442A lower sensor HP 8481A lower sensor HP 8481A faference 10 dB Altenuator trobe ERBDV6	ID # GB57480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336_Dec15)	Scheduled Celibration Oct-16 Oct-16 Oct-16 Mar-16 Dec-16
Calibration Equipment used (M8 Pulmary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Inference 10 dB Attenuator Probe ER3DV6 Probe H3DV6	ATE critical for calibration) ID # GBS7480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336_Dec15) 31-Dec-15 (No. H3-6055_Dec15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16
Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Altenuator Probe ER3DV6 Probe HSDV6 DAE4 Secondary Standards	ATE critical for calibration) 4D # GBS7480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336_Dec15) 31-Dec-15 (No. H3-6055_Dec15) 04-Sep-15 (No. DAE4-781_Sep15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check
Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe HSDV6 DAE4 Secondary Standards Power meter Agilent 4419B	STE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336_Dec15) 31-Dec-15 (No. H3-6055_Dec15) 04-Sep-15 (No. DAE4-781_Sep15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16
Calibration Equipment used (M8 Paimery Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Paference 10 dB Altenuator Probe ER3DV6 Probe H3DV6 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	ID # GB57480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336_Dec15) 31-Dec-15 (No. H3-6055_Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house)	Scheduled Celibration Oct-16 Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16
Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Porobe ER3DV6 Poble HSDV6 PABE4 Secondary Standards Power meter Agilent 4419B Power sensor HP 8482A	ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102	Cal Date (Certificate No.) 07-Cct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02130) 31-Dec-15 (No. ER3-2336_Dec15) 31-Dec-15 (No. H3-6055_Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house) 09-Oct-05 (in house check Sep-14) 05-Jan-10 (in house check Sep-14)	Scheduled Celibration Oct-16 Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16
calibration Equipment used (M8 trumary Standards frower meter EPM-442A frower sensor HP 8481A fower sensor HP 8481A leference 10 dB Altenustor robe ER3DV6 frobe HSDV6 frobe HSDV6 from the HSDV6 from the HSDV6 from the HSDV6 from the HSDV6 frower sensor HP 8482A frower sensor HP 8482A fetwork Analyzer HP 8783E	ATE critical for calibration) ID # GBS7480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02223) 31-Dec-15 (No. ER3-2336_Dec15) 31-Dec-15 (No. H3-6055_Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 09-Oct-09 (in house check Sep-14)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16
Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Altenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP 84412A Power sensor HP 8482A Vetwork Analyzer HP 8753E	ATE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US37295597 US37390585	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02223) 31-Dec-15 (No. ER3-2336_Dec15) 31-Dec-15 (No. H3-6055_Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house) 09-Oct-05 (in house check Sep-14) 05-Jan-10 (in house check Sep-14) 18-Oct-05 (in house check Sep-14)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16 In house check: Sep-16 In house check: Oct-16
Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe ER3DV6 Probe H3DV6 Probe H3DV6 Probe ER3DV6 Probe H3DV6 Probe	ID # GB57480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US387295597 US37390585 SN: 832283/011	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02223) 31-Dec-15 (No. ER3-2336_Dec15) 31-Dec-15 (No. H3-6055_Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house) 09-Oct-05 (in house check Sep-14) 05-Jan-10 (in house check Sep-14) 06-Oct-06 (in house check Sep-14) 18-Oct-01 (in house check Oct-15) 27-Aug-12 (in house check Oct-15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Altenuator Probe ER3DV6 Probe HSDV6 DAE4 Secondary Standards Prower meter Agiliant 4419B Power sensor HP 8482A Network Analyzer HP 6753E RF generator R&S SMT-06 Calibrated by:	ATE critical for calibration) ID # GBS7480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 US37390585 SN: 832283/011 Name	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02223) 31-Dec-15 (No. ER3-2336_Dec15) 31-Dec-15 (No. H3-6055_Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house check Sep-14) 09-Oct-05 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 18-Oct-01 (in house check Sep-14) 18-Oct-01 (in house check Oct-15) 27-Aug-12 (in house check Oct-15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Calibration Equipment used (M8 Primary Standards Prower meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 DAE4 Secondary Standards Prower meter Agilient 4419B Prower sensor HP 8482A Network Analyzer HP 8753E RF generator R&S SMT-06	ATE critical for calibration) ID # GBS7480704 US37292783 MY41092317 SN: 5047.2 / 06327 SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 US37390585 SN: 832283/011 Name	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02223) 31-Dec-15 (No. ER3-2336_Dec15) 31-Dec-15 (No. H3-6055_Dec15) 04-Sep-15 (No. DAE4-781_Sep15) Check Date (in house check Sep-14) 09-Oct-05 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 18-Oct-01 (in house check Sep-14) 18-Oct-01 (in house check Oct-15) 27-Aug-12 (in house check Oct-15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Sep-16 Scheduled Check In house check: Sep-16 In house check: Sep-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16

Certificate No: CD1880V3-1044_Mar16

Page 1 of 5

Page: 81 of 84

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zürlich, Switzerland

S

C

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Mullilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

References

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes.
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the approach.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network
 Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was
 eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any
 obstacles.
- E-field distribution. E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna teed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the
and a start of the

Certificate No: CD1880V3-1044 Mar16

Page 2 of 5

Page: 82 of 84

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1880 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	89.3 V/m = 39.01 dBV/m
Maximum measured above low end	100 mW input power	86.3 V/m = 38.72 dBV/m
Averaged maximum above arm	100 mW input power	87.8 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
1730 MHz	23.7 dB	49.0 Ω + 6.4 jΩ
1880 MHz	20.2 dB	$51.0 \Omega + 9.8 j\Omega$
1900 MHz	20.3 dB	54.2 Ω + 9.1 jΩ
1950 MHz	28.1 dB	$54.1 \Omega + 0.5 j\Omega$
2000 MHz	21.4 dB	$42.3 \Omega + 1.6 j\Omega$

3.2 Antenna Design and Handling

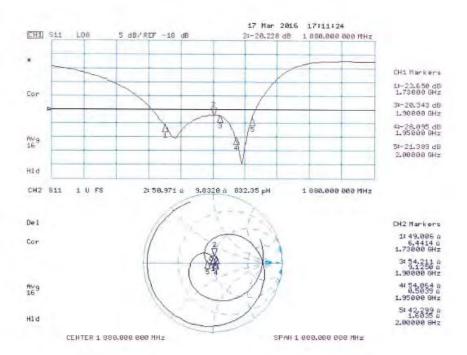
The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


Certificate No: CD1880V3-1044_Mar16

Page 3 of 5

Page: 83 of 84

Impedance Measurement Plot

Page: 84 of 84

DASY5 E-field Result

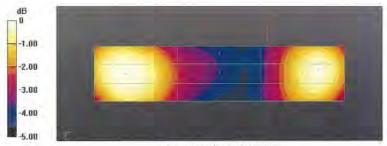
Date: 17.03.2016

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type; CD1880V3; Serial: CD1880V3 - SN: 1044

Communication System: UID 0 - CW; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ S/m, $\nu_{\rm s} = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2015;
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 04.09.2015
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 147.6 V/m; Power Drift = 0.00 dB Applied MIF = 0.00 dB RF audio interference level = 39.01 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.89 dBV/m	39.01 dBV/m	38.88 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
36.59 dBV/m	36.66 dBV/m	36.53 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.52 dBV/m	38.72 dBV/m	38.65 dBV/m

0 dB = 89.26 V/m = 39.01 dBV/m

Certificate No: CD1880V3-1044_Mar16

Page 5 of 5

End of 1st part of report

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at