

FCC Test Report

Test report no.: EMC_423FCC15.247_2003 FCC Part 15.247 for DSSS systems / CANADA RSS-210 (5092-0115)

FCC ID: B9450920115

Accredited according to ISO/IEC 17025

Bluetooth Qualification Test Facility (BQTF)

FCC listed # 101450

IC recognized # 3925

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A. Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • <u>http://www.cetecom.com</u> *CETECOM* Inc. is a Delaware Corporation with Corporation number: 2113686 Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

© Copyright by CETECOM

Page 2 (59)

Table of Contents

1	General information
1.1	Notes
1.2	Testing laboratory
1.3	Details of applicant
1.4	Application details
1.5	Test item
1.6	Test standards
2	Technical test
2.1	Summary of test results
2.2	Test report
1	General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

TEST REPORT PREPARED BY: EMC Engineer: Philip Kim

1.2 Testing laboratory CETECOM Inc. 411 Dixon Landing Road, Milpitas, CA-95035, USA Phone: +1 408 586 6200 Fax: +1 408 586 6299 E-mail: lothar.schmidt@cetecomusa.com Internet: www.cetecom.com

Page 3 (59)

CETECOM

1.3 Details of applicant

Name	:	Hewlet Packard			
Street	:	8000 Foothills Blvd., Bldg R3U, ms 5677			
City / Zip Code	:	Roseville, CA 95747			
Country	:	USA			
Contact	:	Jim Henry			
Telephone	:	916-785-5417			
Tele-fax	:	916-785-2885			
e-mail	:	jhenry@hp.com			
1.4 Application detail	S				
Date of receipt of applica	tion :	2002-12-12			
Date of receipt test item	:	2003-01-23			
Date of test	:	$2003-02-27 \sim 2003-02-28$			
1.5 Test item					
Manufacturer	:	MITAC Computer (Kunshan) Ltd.			
Street	:	Changjiang South Road, Export Processing Zone			
City / Zip Code	:	Kunshan/Jiangsu			
Country	:	Peoples Republic of China			
Marketing Name	:	USB WLAN module			
Model No.	:	5092-0115			
Description	:	(802.11b) WLAN module fro use in printservers an similar			
		applications			
FCC-ID	:	B9450920115			
Additional information					
Frequency	:	2.4GHz ISM			
Type of modulation	:				
Number of channels	:	13			
Antenna	:	Internal SMD			
Power supply	:	Host (3.3Vdc)			
Output power	:	Channels 1-12 Max output = 20Bm (Avg)			
		Channel 13 Max output = 13.5dBm(Avg)			
Extreme temp. Tolerance	:	$0^{\circ} \sim 35^{\circ}$			

1.6Test standards:FCC Part 15 §15.247 / CANADA RSS-210Note: All radiated measurementswere made in all three orthogonal planes. The valuesreported are the maximum values.

Test report no.: EMC_423FCC15.247_2003

Issue date: 2003-03-10

Page 4 (59)

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests Performed			
Final Verdict: (only "passed" if all single measurements are "passed")	Passed		

Technical responsibility for area of testing:

2003-03-10 EMC & Radio Lothar Schmidt (Manager)

2003-03-10 EMC & Radio Philip Kim (EMC Engineer)

Date

Section

Name

lehmich

Signature

Responsible for test report and project leader:

Ali ti

Date

Section

Name

Signature

Page 5 (59)

CETECOM

2.2 Test report

TEST REPORT

Test report no.: EMC_423FCC15.247_2003 (5092-0115)

_

Test report no.: EMC_423FCC15.247_2003	ssue date: 2003-03-10 Pa	ge 6 (59)
TEST REPORT REFERENCE		
LIST OF MEASUREMENTS		PAGE
ANTENNA GAIN	§ 15.204	7
SPECTRUM BANDWIDTH OF DSSS S	YSTEM §15.247(a) (2)	8
MAXIMUM PEAK OUTPUT POWER	§ 15.247 (b) (1)	12
POWER SPECTRAL DENSITY	§15.247 (d)	20
BAND EDGE COMPLIANCE	§15.247 (c)	28
EMISSION LIMITATIONS	§ 15.247 (c) (1)	32
CONDUCTED EMISSIONS	§ 15.107/207	51
RECEIVER SPURIOUS RADIATION	§ 15.209	52
TEST EQUIPMENT AND ANCILLARI	ES USED FOR TESTS	57
BLOCK DIAGRAMS		58

Test report no.: EMC_423FCC15.247_2003

Issue date: 2003-03-10

Page 7 (59)

ANTENNA GAIN

§ 15.204

The antenna gain of the complete system is calculated by the difference of conducted power of the module and the radiated power in EIRP. The antenna with the highest gain was used for all measurements.

	Low channel	Mid channel	High channel
Conducted Power	23.91 dBm	24.17 dBm	18.24 dBm
Radiated Power (EIRP)	19.07 dBm	19.37 dBm	13.92 dBm
Antenna Gain	-4.84 dBi	-4.8 dBi	-4.32 dBi

The calculated antenna gain is between -4.84dBi and -4.32dBi.

Test report no.: EMC_423FCC15.247_2003

Issue date: 2003-03-10

Page 8 (59)

§15.247(a) (2)

SPECTRUM BANDWIDTH OF DSSS SYSTEM 6 dB bandwidth

 TEST CONDITIONS
 6 dB BANDWIDTH (MHz)

 Frequency (MHz)
 2412
 2442
 2472

 T_{nom}(23)°C
 V_{nom}(3.3) VDC
 9.96
 10.17
 10.67

LIMIT

SUBCLAUSE §15.247(a) (2)

The minimum 6dB bandwidth shall be at least 500 KHz

§15.247(a) (2)

Issue date: 2003-03-10

Page 9 (59)

SPECTRUM BANDWIDTH OF DSSS SYSTEM 6 dB bandwidth

§15.247(a) (2)

Page 10 (59)

Page 11 (59)

SPECTRUM BANDWIDTH OF DSSS SYSTEM 6 dB bandwidth

§15.247(a) (2)

Page 12 (59)

MAXIMUM PEAK OUTPUT POWER (Conducted)

§ 15.247 (b) (1)

TEST CONDITIONS		ľ	MAXIMUM PEAK OUTPUT POWER (dBm)			
Frequence	Frequency (MHz)		2412	2442	2472	
T _{nom} (23)°C	V _{nom} (3.3) VDC	Pk	23.91	24.17	18.24	
		Av	19.73	20.11	13.54	
Measurement uncertainty				±0.5dBm	•	

RBW / VBW: 10MHz

LIMIT

SUBCLAUSE § 15.247 (b) (1)

Frequency range	RF power output
2400-2483.5 MHz	1.0 Watt / 30dBm

Test report no.: EMC_423FCC15.247_2003

Issue date: 2003-03-10

Page 14 (59)

Test report no.: EMC_423FCC15.247_2003

Issue date: 2003-03-10

Page 16 (59)

MAXIMUM PEAK OUTPUT POWER (RADIATED)

§ 15.247 (b) (1)

EIRP:

TEST CONDITIONS		MAXIMUM	PEAK OUTPUT P	OWER (dBm)
Frequency (MHz)		2412	2442	2472
T _{nom} (23)°C	V _{nom} (3.3) VDC	19.07 19.37 13.		13.92
Measurement uncertainty			±0.5dBm	

RBW/VBW: 10MHz

LIMIT

SUBCLAUSE § 15.247 (b) (1)

Frequency range	RF power output
2400-2483.5 MHz	1.0 Watt / 30dBm

Page 17 (59)

PEAK OUTPUT POWER (RADIATED)

§15.247 (b) (1)

Lowest Channel: 2412MHz

WEEP Short De Start Trequen .387GI	P TABLE: "EIRP 1 escription: Stop acy Frequency Hz 2.437GHz	RLAN ch-1" EIRP RLAN Detector MaxPeak	channel-2412N Meas. Time Coupled	MHz IF BW 10 MHz			
Mark	ker:	2.41315230	5 GHz	19.	07 dBm		
Lev	vel [dBm]						
30							
20							
10		- Marine - M	and the second s	Market Market	men and the	m M	
0							
-10	www.www.www	w.W.W				Μ,	www.ruhum
-20	2.2070	2.40		440	2.400		0.4070
	2.38/G	2.4G	2 Frequer	ncy [Hz]	2.42G		2.437G

Page 18 (59)

PEAK OUTPUT POWER (RADIATED)

§15.247 (b) (1)

Mid Channel: 2442MHz

Page 19 (59)

Page 20 (59)

POWER SPECTRAL DENSITY

§15.247 (d)

TEST CONDITIONS		POWER SPECTRAL DENSITY (dBm)		
Frequency (MHz)		2412	2442	2472
T _{nom} (23)°C	V _{nom} (3.3) VDC	-4.99	-5.67	-11.57

LIMIT

SUBCLAUSE §15.247(d)

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band

ANALYZER SETTINGS: RBW=3KHz, VBW=3KHz

Span 25 MHz

2.5 MHz/

Center 2.412 GHz

-30

-40

-50

-60 -64.3

A

Date: 28.FEB.2003 12:00:11

Nun

Span 25 MHz

2.5 MHz/

-60 -64.3

Date:

Center 2.472 GHz

28.FEB.2003 11:58:55

Test report no.: EMC_423FCC15.247_2003

Issue date: 2003-03-10

Page 24 (59)

POWER SPECTRAL DENSITY

RSS-210

TEST CONDITIONS		POWER SPECTRAL DENSITY (dBm/MHz)		
Frequency (MHz)		2412	2442	2472
T _{nom} (23)°C	V _{nom} (3.3) VDC	15.9	16.7	10.7

Correction factor of 60dBm is added to convert measured values from dBm/Hz to dBm/MHz

LIMIT

RSS-210

The peak power spectral density shall be ≤ 50mW/MHz (17dBm/MHz)

ANALYZER SETTINGS: RBW=1MHz, VBW=1MHz

Page 25 (59)

POWER SPECTRAL DENSITY

RSS-210

Lowest Channel: 2412MHz

Page 26 (59)

POWER SPECTRAL DENSITY

RSS-210

Mid Channel: 2442MHz

Page 27 (59)

POWER SPECTRAL DENSITY

RSS-210

Highest Channel: 2472MHz

Low frequency section (spurious in the restricted band 2310 – 2390 MHz)

Page 29 (59)

BAND EDGE COMPLIANCE

§15.247 (c)

Page 30 (59)

BAND EDGE COMPLIANCE

20

2.462G

2.47G

2.475G

2.48G

Frequency [Hz]

2.485G

2.49G

2.5G

§15.247 (c)

Page 31 (59)

BAND EDGE COMPLIANCE

§15.247 (c)

Test report no.: EMC_423FCC15.247_2003

Issue date: 2003-03-10

Page 32 (59)

§ 15.247 (c) (1)

EMISSION LIMITATIONS Transmitter (Conducted) LIMITS

In any 100 kHz bandwidth outside the frequency band at least 20dB below the highest level of the desired power. In addition, radiated emissions, which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

<u>NOTE</u>: Frequency resolution is not fine enough to show the exact frequency of the carrier, refer to plots under EIRP.

Page 33 (59)

EMISSION LIMITATIONS - Conducted (Transmitter)

§ 15.247 (c) (1)

Lowest Channel (2412MHz): 30MHz - 3GHz

Page 34 (59)

EMISSION LIMITATIONS - Conducted (Transmitter)

§ 15.247 (c) (1)

Lowest Channel (2412MHz): 2GHz - 25GHz

Page 35 (59)

EMISSION LIMITATIONS - Conducted (Transmitter)

§ 15.247 (c) (1)

Mid Channel (2442MHz): 30MHz - 3GHz

Page 36 (59)

EMISSION LIMITATIONS - Conducted (Transmitter)

§ 15.247 (c) (1)

Mid Channel (2442MHz): 2GHz - 25GHz

Page 37 (59)

EMISSION LIMITATIONS - Conducted (Transmitter)

§ 15.247 (c) (1)

Highest Channel (2472MHz): 30MHz - 3GHz

Page 38 (59)

EMISSION LIMITATIONS - Conducted (Transmitter)

§ 15.247 (c) (1)

Highest Channel (2472MHz): 2GHz - 25GHz

Test report no.: EMC_423FCC15.247_2003

Issue date: 2003-03-10

Page 39 (59)

EMISSION LIMITATIONS Transmitter (Radiated)

§ 15.247 (c) (1)

LIMITS

In any 100 kHz bandwidth outside the frequency band at least 20dB below the highest level of the desired power. In addition, radiated emissions, which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

NOTE:

1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 18 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.

2. Frequency resolution is not fine enough to show the exact frequency of the carrier, refer to plots under EIRP.

3. All measurements are done in peak mode unless specified with the plots.

Results for the radiated measurements below 30MHz according § 15.33

Frequency	Measured values	Remarks
9KHz – 30MHz	No emissions found, caused by the EUT	This is valid for all the tested channels

Page 40 (59)

EMISSION LIMITATIONS - Radiated (Transmitter)§ 15.247 (c) (1)

Note: All radiated measurements were made in all three orthogonal planes. The values reported are the maximum values.

Transmi	t at Lowest channel	Frequency 2402MHz			
Frequency (MHz)		Level (dBµV/m)			
	Peak	Quasi-Peak	Average		
2619	48.85				
2583	47.49				
Transmi	t at Middle channel	Frequency 2440MHz			
Frequency (MHz)		Level (dBµV/m)			
	Peak	Quasi-Peak	Average		
2619	48.33				
4300	47.27				
7250	46.50				
9763	47.20				
Transmit	t at Highest channel	Frequency 2480MHz	Z		
Frequency (MHz)		Level (dBµV/m)			
	Peak	Quasi-Peak	Average		
2619	47.67				

Test report	no.: EMC_423	FCC15.247_200	3 Is	sue date: 2003-0	03-10 Page 43 (59)
EMISSIC Lowest C	DN LIMITA hannel(241	ATIONS - H 2MHz): 30	Radiated (1 GHz – 18Gl	Fransmitter) Hz	§ 15.247 (c) (1)
NOTE: Th SWEEP TA	e peak above † BLE:	t he limit is th "BT Spuri ł	ne carrier free ni 1-8G"	quency.	
Short Descr	iption:	Bluetooth S	Spurious 1-8 C	θHz	
Start	Stop	Detector	Meas.	RBW	Transducer
Frequency	Frequency	Time	Bandw.	VBW	
1.0 GHz	8.0 GHz	MaxPeak	Coupled	1 MHz	#326 horn (dBi)

Note: due to the high noise floor measurement between 6GHz – 8GHz was repeated with different pre-amp and the emissions were found more than 6dB below the limit line.

Test report no.: EMC_423FCC15.247_2003	Issue date: 2003-03-10	Page 51 (59)
CONDUCTED EMISSIONS		§ 15.107/207
Measured with AC/DC power adapter		

SWEEP TABLE: "55022 cond"

Short Description:		EN 55022 for 150KHz-30MHz			
Start	Stop	Detector	Meas	IF	Transducer
Frequency	Frequency		Time	Bandw.	
150.0 kHz	30.0 MHz	MaxPeak	Coupled	10 kHz	None

Technical specification : 15.107 / 15.207 (Revised as of August 20, 2002) Limit

Frequency of Emission (MHz)	Conducted Limit (dBµV)			
	Quasi-Peak	Average		
0.15 - 0.5	66 to 56*	56 to 46*		
0.5 - 5	56	46		
5 - 30	60	50		
* Decreases with logarithm of the frequency				

ANALYZER SETTINGS: RBW = 10KHz

VBW = 10KHz

Page 52 (59)

RECEIVER SPURIOUS RADIATION

§ 15.209

Limits

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

NOTE:

The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 18 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.

Page 57 (59)

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancillary	Туре	Manufacturer	Serial No.
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	826880/010
03	Signal Generator	SMY02	Rohde & Schwarz	836878/011
04	Power-Meter	NRVD	Rohde & Schwarz	0857.8008.02
05	Power Amlifier	250W1000	Amplifier Research	300031
06	Biconilog Antenna	3141	EMCO	0005-1186
07	Horn Antenna	SAS-200/571	AH Systems	325
08	Power Splitter	11667B	Hewlett Packard	645348
09	Climatic Chamber	VT4004	Votch	G1115
10	Pre-Amplifier	JS4-00102600	Miteq	00616
11	Power Sensor	URV5-Z2	Rohde & Schwarz	DE30807
12	Digital Radio Comm. Tester	CMD-55	Rohde & Schwarz	847958/008

Page 58 (59)

BLOCK DIAGRAMS Conducted Testing

Page 59 (59)

Radiated Testing

ANECHOIC CHAMBER

Spectrum Analyzer