Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point . exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned . under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. .
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. .
- . SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DAONIN	DAOX(0	1/10.0
DASY Version	DASY6	V16.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.6 ± 6 %	6.11 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	29.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	292 W/kg ± 24.7 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAB measured	100 mW input power	5.42 W/kg

SAR measured	100 mW input power	5.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.8 W/kg ± 24.4 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4 Ω - 1.9 jΩ	
Return Loss	- 26.8 dB	

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	292 W/m ²
APD measured	normalized to 1W	2920 W/m ² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	132 W/m ²
APD measured	normalized to 1W	1320 W/m ² ± 28.9 % (k=2)

General Antenna Parameters and Design

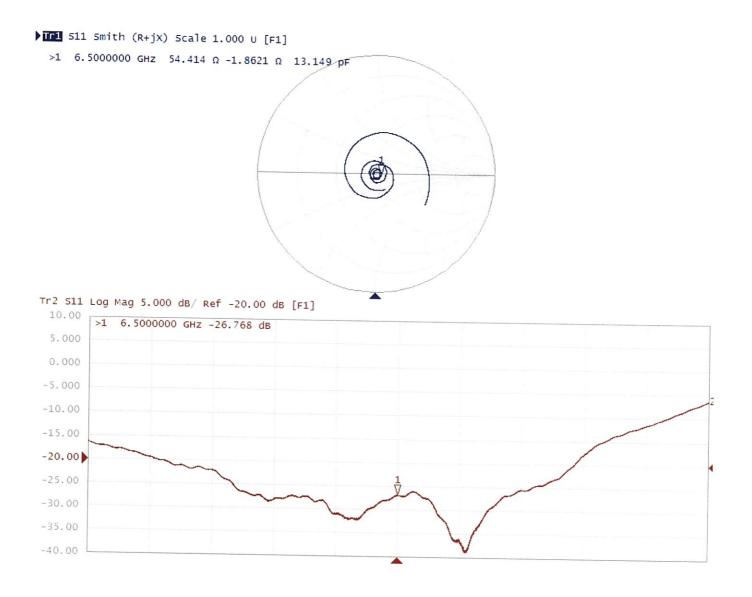
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured by	JEAG


DASY6 Validation Report for Head TSL

Measurement Report for D6.5GHz-1003, UID 0 -, Channel 6500 (6500.0MHz)

Device under Te							
Name, Manufae	cturer	Dimensions [mm] I	IMEI	DUT Typ	e	
D6.5GHz		16.0 x 6.0 x 3	800.0	SN: 1003	-		
Exposure Condi	itions						
Phantom Section, TSL	Position, Te Distance [mm]	st Band	Group, UID	Frequency [MHz]	Conversion Factor	TSL Cond. [S/m]	TSL Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.75	6.11	33.6
Hardware Setu Phantom	р	TSL		Probe, Cali	bration Date	DAE, Calik	pration Date
MFP V8.0 Cente	er - 1182	HBBL600-10	000V6	EX3DV4 - S	N7405, 2020-12-30	DAE4 Sn9	08, 2021-06-24
Scan Setup				Measurem	ent Results		_
			Zoom Sca	an			Zoom Scan
Grid Extents [r	mm]		22.0 x 22.0 x 22				2021-09-24, 9:30
Grid Steps [mr	m]		3.4 x 3.4 x 1	.4 psSAR1g [W/Kg]		29.4
Sensor Surface	e [mm]		1	4 psSAR10g	[W/Kg]		5.42
Graded Grid			Y	es Power Dri	ft [dB]		-0.02
Grading Ratio			1	4 Power Sca	aling		Disabled
MAIA			N,	A Scaling Fa	ctor [dB]		
Surface Detec	tion		VMS + 6	6p TSL Corre	ction		No correction
Scan Method			Measure	ed M2/M1 [9	6]		55.6
				Dist 3dB F	Peak [mm]		4.6

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: 5G-Veri10-1020_Jan21

CALIBRATION CERTIFICATE

Object	5G Verification Source 10 GHz - SN: 1020				
Calibration procedure(s)	QA CAL-45.v3 Calibration procedure for sources in air above 6 GHz				
Calibration date:	January 18, 2021				
The measurements and the uncerta	ainties with confidence pro	nal standards, which realize the physical units of obability are given on the following pages and are r facility: environment temperature (22 ± 3)°C and	e part of the certificate.		
Calibration Equipment used (M&TE			a numary < 70%.		
Primary Standards	D #	Cal Date (Certificate No.)	Scheduled Calibration		
Reference Probe EummWV3	SN: 9374	30-Dec-20 (No. EUmmWV3-9374 Dec20)	Dec-21		
DAE4ip	SN: 1602	11-Aug-20 (No. DAE4ip-1602_Aug20)	Aug-21		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check		
Calibrated by:	Name Michael Weber	Function Laboratory Technician	Signature		
			M.NOSC		
Approved by:	Katja Pokovic	Technical Manager	MARC		
This calibration certificate shall not	be reproduced except in t	full without written approval of the laboratory.	Issued: January 25, 2021		

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

S

С

Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45-5G sources
- IEC TR 63170 ED1, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz", January 2018

Methods Applied and Interpretation of Parameters

- *Coordinate System:* z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The forward power to the horn antenna is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide • source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- *E- field distribution:* E field is measured in two x-y-plane (10mm, 10mm + $\lambda/4$) with a • vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn.
- *Field polarization:* Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

Local peak E-field (V/m) and average of peak spatial components of the poynting vector • (W/m^2) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	cDASY6 Module mmWave	V2.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
XY Scan Resolution	dx, dy = 7.5 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	ann an Padar
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture	Prad ¹	Max E-field	Uncertainty	Avg Power Density		Uncertainty
to Measured Plane	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
				(W/m ²)		
				1 cm ²	4 cm ²	
10 mm	74.0	134	1.27 dB	45.1	42.2	1.28 dB

Square Averaging

Distance Horn Aperture	Prad ¹	Max E-field	Uncertainty	Avg Power Density		Uncertainty
to Measured Plane	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
				(W/m ²)		
				1 cm ²	4 cm ²	
10 mm	74.0	134	1.27 dB	45.1	42.1	1.28 dB

¹ Assessed ohmic and mismatch loss: 0.45 dB

MAIA

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm	n]	IMEI	DUT Type	
5G Verification Source 10 G	Hz 100.0 x 100.0 x 1	172.0	SN: 1020		
Exposure Conditions					
Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0
Hardware Setup					
Phantom	Medium		Probe, Calil	bration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air		EUmmWV3 2020-12-30	5 - SN9374_F1-78GHz,)	DAE4ip Sn1602, 2020-08-11
Scan Setup			Measure	ment Results	
		5G 9	Scan		5G Scan
Grid Extents [mm]		120.0 x 1	20.0 Date		2021-01-18, 14:59
Grid Steps [lambda]		0.25 x	0.25 Avg. Area	[cm ²]	1.00
Sensor Surface [mm]			10.0 psPDn+ [V	N/m²]	44.9

MAIA not used

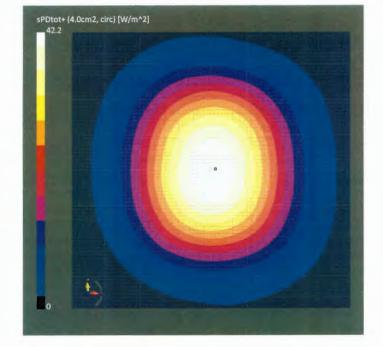
psPDtot+ [W/m²] psPDmod+ [W/m²]

Power Drift [dB]

E_{max} [V/m]

45.0 45.3

134

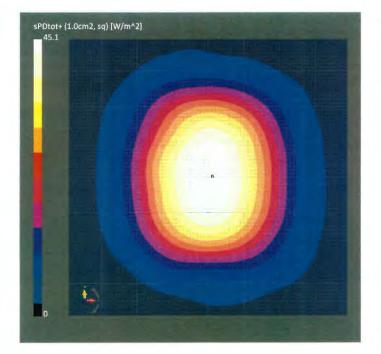

0.06

<text>

Certificate No: 5G-Veri10-1020_Jan21

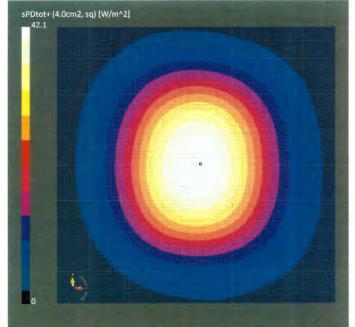
Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type	
5G Verification Source 10 G	Hz 100.0 x 100.0 x 1	.72.0	SN: 1020	-	
Exposure Conditions					
Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0 <i>,</i> 10000	1.0
Hardware Setup					
Phantom	Medium		Probe, Calib	ration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air		EUmmWV3 - 2020-12-30	- SN9374_F1-78GHz,	DAE4ip Sn1602, 2020-08-11
Scan Setup			Measuren	nent Results	
		5G Sc	an		5G Scar
Grid Extents [mm]		120.0 x 120			2021-01-18, 14:59
Grid Steps [lambda]		0.25 x 0.		-	4.00
Sensor Surface [mm]			0.0 psPDn+ [W		42.0
MAIA		MAIA not us	here to the second		42.3
			psPDmod+	[w/m²]	. 42.3
			E _{max} [V/m] Power Drift		0.00


Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm	n]	IMEI	DUT Type	
5G Verification Source 10 G	Hz 100.0 x 100.0 x 1	172.0	SN: 1020	-	
Exposure Conditions					
Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0
Hardware Setup Phantom	Medium		Probe, Calib	ration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air			- SN9374_F1-78GHz,	DAE4ip Sn1602, 2020-08-11
Scan Setup				nent Results	5G Scan
Grid Extents [mm]		120.0 x 1	ican 20.0 Date		2021-01-18, 14:59
Grid Stens [lambda]		0.25 v 1		cm ²]	1 00


Grid Steps [lambda] Sensor Surface [mm] MAIA 5G Scan 120.0 x 120.0 0.25 x 0.25 10.0 MAIA not used Date Avg. Area [cm²] psPDn+ [W/m²] psPDtot+ [W/m²] psPDmod+ [W/m²] E_{max} [V/m] Power Drift [dB]

5G Scan 2021-01-18, 14:59 1.00 45.0 45.1 45.3 134 0.06

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Pro Name, Manufacturer 5G Verification Source 10 G	Dimensions [mm	•	MEI N: 1020	DUT Type	
Exposure Conditions					
Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency (MHz), Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0
Hardware Setup	Medium		Probe, Calibration	Data	DAE Coliburation Date
mmWave Phantom - 1002	Air		EUmmWV3 - SN93 2020-12-30		DAE, Calibration Date DAE4ip Sn1602, 2020-08-11
Scan Setup			Measurement	Results	
Culd Extends from 1		5G Sca			5G Scan
Grid Extents [mm] Grid Steps [lambda]		120.0 x 120 0.25 x 0.2			2021-01-18, 14:59 4.00
Sensor Surface [mm]		10	U		42.0
MAIA		MAIA not use	ed psPDtot+ [W/m ²]		42.1
			psPDmod+ [W/m	2]	42.3
			E _{max} [V/m]		134
			Power Drift [dB]		0.06

Certificate No: 5G-Veri10-1020_Jan21

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: DAE4-656_Jan21

Accreditation No.: SCS 0108

S

CALIBRATION CERTIFICATE

Object	DAE4 - SD 000 D04 BJ - SN: 656					
Calibration procedure(s)	QA CAL-06.v30 Calibration proced	dure for the data acquisition electror	nics (DAE)			
Calibration date:	January 22, 2021					
The measurements and the uncerta	ainties with confidence pro	nal standards, which realize the physical units of obability are given on the following pages and are facility: environment temperature (22 ± 3)°C and	part of the certificate.			
Calibration Equipment used (M&TE	critical for calibration)					
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
Keithley Multimeter Type 2001	SN: 0810278	07-Sep-20 (No:28647)	Sep-21			
Secondary Standards	ID #	Check Date (in house)	Scheduled Check			
Auto DAE Calibration Unit		07-Jan-21 (in house check)	In house check: Jan-22			
Calibrator Box V2.1		07-Jan-21 (in house check)	In house check: Jan-22			
	Name	Function	Signature			
Calibrated by:	Eric Hainfeld	Laboratory Technician	S			
Approved by:	Sven Kühn	Deputy Manager	IN.BRUMU			
This calibration certificate shall not	be reproduced except in f	ull without written approval of the laboratory.	Issued: January 22, 2021			
The substation softhouts shall not	20 roproduced except in th	an material inflict approval of the laboratory.				

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range:1LSB =6.1μV ,full range =-100...+300 mVLow Range:1LSB =61nV ,full range =-1.....+3mVDASY measurement parameters: Auto Zero Time: 3 sec;Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.150 ± 0.02% (k=2)	404.655 ± 0.02% (k=2)	404.927 ± 0.02% (k=2)
Low Range	3.96332 ± 1.50% (k=2)	3.97862 ± 1.50% (k=2)	3.96584 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	314.0 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

High Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	200025.45	-11.75	-0.01
Channel X	+ Input	20005.58	0.41	0.00
Channel X	- Input	-20002.69	3.14	-0.02
Channel Y	+ Input	200029.78	-1.77	-0.00
Channel Y	+ Input	20005.26	0.22	0.00
Channel Y	- Input	-20005.93	0.11	-0.00
Channel Z	+ Input	200031.01	-0.60	-0.00
Channel Z	+ Input	20003.53	-1.47	-0.01
Channel Z	- Input	-20005.88	0.20	-0.00

1. DC Voltage Linearity

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.95	-0.14	-0.01
Channel X	+ Input	200.60	-0.39	-0.19
Channel X	- Input	-199.89	-0.90	0.45
Channel Y	+ Input	2000.47	-0.51	-0.03
Channel Y	+ Input	200.07	-0.77	-0.38
Channel Y	- Input	-199.71	-0.62	0.31
Channel Z	+ Input	2000.98	0.13	0.01
Channel Z	+ Input	200.59	-0.28	-0.14
Channel Z	- Input	-199.96	-0.85	0.43

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-0.30	-1.62
	- 200	1.54	0.25
Channel Y	200	-0.89	-1.05
	- 200	-0.82	-0.94
Channel Z	200	4.66	4.99
	- 200	-6.70	-6.97

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Υ (μV)	Channel Z (μV)
Channel X	200	-	-2.76	-1.63
Channel Y	200	6.27	-	-0.26
Channel Z	200	6.72	4.96	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15639	16543
Channel Y	15866	16737
Channel Z	15670	15868

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	1.17	-0.07	2.72	0.57
Channel Y	-0.26	-1.23	1.04	0.53
Channel Z	-0.41	-2.13	1.11	0.57

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Client :

Auden

Certificate No: Z20-60488

CALIBRATION CERTIFICATE Object DAE4 - SN: 917 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: December 22, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 16-Jun-20 (CTTL, No.J20X04342) Jun-21 Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 24, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Res	olution nomin	nal			
High Range:	1LSB =	6.1μV ,	full range =	-100+300 mV	
Low Range:	1LSB =	61nV ,	full range =	-1+3mV	
DASY measurement	parameters:	Auto Zero ⁻	Time: 3 sec; Measu	uring time: 3 sec	

X	Y	Z
404.236 ± 0.15% (k=2)	404.238 ± 0.15% (k=2)	 404.249 ± 0.15% (k=2)
0.00070	100500	3.99341 ± 0.7% (k=2)
	0.00070	3 96973 + 0 7% (k=0)

Connector Angle

Γ

Comment of the second s	
Connector Angle to be used in DASY system	
	34° ± 1 °

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-3642_Apr21

Multilateral Agreement for the recognition of calibration certificates

Client Sporton

CALIBRATION CERTIFICATE			
Object	EX3DV4 - SN:3642		
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes		
Calibration date:	April 26, 2021		
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.		
All calibrations have been con	ducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.		

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 660	23-Dec-20 (No. DAE4-660_Dec20)	Dec-21
Reference Probe ES3DV2	SN: 3013	30-Dec-20 (No. ES3-3013_Dec20)	Dec-21
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	File
Approved by:	Katja Pokovic	Technical Manager	Al AS
This collibration cortificate	shall not be reproduced event in fu	I without written ennrovel of the leborators	Issued: May 4, 2021
I his calibration certificate	snall not be reproduced except in ful	Il without written approval of the laboratory	1.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3642_Apr21

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3642

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm $(\mu V/(V/m)^2)^A$	0.31	0.31	0.37	± 10.1 %	
DCP (mV) ^B	97.4	104.8	101.7		

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	150.4	± 3.3 %	± 4.7 %
		Y	0.00	0.00	1.00		158.3	1	
		Z	0.00	0.00	1.00	1	144.2		
10352-	Pulse Waveform (200Hz, 10%)	X	2.45	65.10	10.98	10.00	60.0	± 3.3 %	± 9.6 %
AAA		Y	20.00	89.91	19.54	1	60.0		
		Z	7.48	77.90	16.05	1	60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	2.14	67.08	10.63	6.99	80.0	± 2.2 %	± 9.6 %
AAA	 and spinors. Suppose an extension and second structure and second s	Y	20.00	92.77	19.76		80.0		
		Z	20.00	89.67	18.40	1	80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	1.59	68.33	9.93	3.98	95.0	± 1.0 %	± 9.6 %
AAA		Y	20.00	100.66	22.20		95.0		
		Z	20.00	92.33	18.18		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	4.24	76.81	11.53	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Y	20.00	111.57	26.00		120.0		
		Z	20.00	96.83	19.11	1	120.0	1	
10387-	QPSK Waveform, 1 MHz	X	1.66	68.45	15.68	1.00	150.0	± 2.2 %	± 9.6 %
AAA	refeite este al understandigen automatication and an an	Y	1.64	65.69	14.79		150.0		
		Z	1.56	65.04	14.16	1	150.0		
10388-	QPSK Waveform, 10 MHz	X	2.14	68.46	16.16	0.00	150.0	± 1.0 %	± 9.6 %
AAA	· · · · · · · · · · · · · · · · · · ·	Y	2.15	67.22	15.43	1	150.0	1	
		Z	2.05	66.49	14.87	1	150.0	1	
10396-	64-QAM Waveform, 100 kHz	X	2.31	67.84	17.66	3.01	150.0	± 0.8 %	± 9.6 %
AAA		Y	2.59	69.10	18.09	1	150.0		
		Z	2.63	69.10	17.97	1	150.0	1	
10399-	64-QAM Waveform, 40 MHz	X	3.48	67.39	16.05	0.00	150.0	± 0.7 %	± 9.6 %
AAA		Y	3.48	66.83	15.64	1	150.0		
		Z	3.43	66.62	15.40	1	150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.74	65.93	15.80	0.00	150.0	± 1.9 %	± 9.6 %
AAA		Y	4.84	65.55	15.47	1	150.0		
		Z	4.81	65.55	15.37	1	150.0]	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^e Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^B Numerical linearization parameter: uncertainty not required.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3642

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V⁻¹	Т6
Х	32.1	242.85	36.45	5.04	0.68	4.97	0.75	0.17	1.00
Y	42.9	315.70	34.70	8.49	0.00	5.03	1.73	0.04	1.00
Z	40.9	300.50	34.45	6.44	0.37	4.99	1.53	0.09	1.01

Other Probe Parameters

Triangular
-69.5
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
1.4 mm
-

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.