

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
	•	•	·		•		•
					131979	1710.7	14.7
			6	0	132322	1745.0	14.7
					132665	1779.3	14.4
					131979	1710.7	14.1
			3	1	132322	1745.0	14.3
		4 4 5 411-			132665	1779.3	14.3
		1.4 IVIHZ			131979	1710.7	14.0
			1	0	132322	1745.0	14.4
					132665	1779.3	14.0
					131979	1710.7	14.3
			1	5	132322	1745.0	14.2
					132665	1779.3	14.3
					131987	1711.5	14.5
			15	0	132322	1745.0	14.0
					132657	1778.5	14.0
					131987	1711.5	14.2
			8	3	3 132322	1745.0	14.2
66	OPSK	3 MHz			132657	1778.5	14.1
00	QPSK				131987	1711.5	14.4
			1	0	132322	1745.0	14.6
					132657	1778.5	14.1
					131987	1711.5	14.7
			1	14	132322	1745.0	14.4
					132657	1778.5	14.7
					131997	1712.5	14.1
			25	0	132322	1745.0	14.7
					132647	1777.5	14.5
					131997	1712.5	14.3
			12	6	132322	1745.0	14.5
		5 MH7			132647	1777.5	14.0
		5 1011 12			131997	1712.5	14.0
			1	0	132322	1745.0	14.5
					132647	1777.5	14.0
					131997	1712.5	14.4
			1	24	132322	1745.0	14.6
					132647	1777.5	14.4

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					132022	1715.0	14.5
			50	0	132322	1745.0	14.5
					132622	1775.0	14.5
					132022	1715.0	14.6
			25	12	132322	1745.0	14.6
		10 1415			132622	1775.0	14.5
		10 MHZ			132022	1715.0	14.4
			1	0	132322	1745.0	14.2
					132622	1775.0	14.0
					132022	1715.0	14.0
			1	24	132322	1745.0	14.4
					132622	1775.0	14.5
				132047	1717.5	14.3	
		15 MHz	75	0	132322	1745.0	14.3
					132597	1772.5	14.4
					132047	1717.5	14.5
			36	19	132322	1745.0	14.3
66	ODSK				132597	1772.5	14.6
00	QF3K				132047	1717.5	14.5
			1	0	132322	1745.0	14.2
					132597	1772.5	14.1
					132047	1717.5	14.6
			1	74	132322	1745.0	14.1
					132597	1772.5	14.0
					132072	1720.0	14.5
			100	0	132322	1745.0	14.2
					132572	1770.0	14.4
					132072	1720.0	14.1
			50	25	132322	1745.0	14.0
		20 МН7			132572	1770.0	14.4
		20 101112			132072	1720.0	14.1
			1	49	132322	1745.0	14.5
					132572	1770.0	14.5
					132072	1720.0	14.3
			1	99	132322	1745.0	14.4
					132572	1770.0	14.4

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					131979	1710.7	14.6
			6	0	132322	1745.0	14.7
					132665	1779.3	14.3
					131979	1710.7	14.6
			3	1	132322	1745.0	14.2
		1 4 5411-			132665	1779.3	14.6
		1.4 IVITIZ			131979	1710.7	14.6
			1	0	132322	1745.0	14.0
					132665	1779.3	14.1
					131979	1710.7	14.7
			1	5	132322	1745.0	14.4
					132665	1779.3	14.3
					131987	1711.5	14.4
			15	0	132322	1745.0	14.5
					132657	1778.5	14.0
					131987	1711.5	14.2
			8	3	132322	1745.0	14.4
66	16QAM	3 MHz			132657	1778.5	14.6
00					131987	1711.5	14.2
			1	0	132322	1745.0	14.6
					132657	1778.5	14.2
					131987	1711.5	14.5
			1	14	132322	1745.0	14.1
					132657	1778.5	14.4
					131997	1712.5	14.2
			25	0	132322	1745.0	14.6
					132647	1777.5	14.1
					131997	1712.5	14.2
			12	6	132322	1745.0	14.4
					132647	1777.5	14.2
					131997	1712.5	14.1
			1	0	132322	1745.0	14.3
					132647	1777.5	14.0
					131997	1712.5	14.7
			1	24	132322	1745.0	14.1
					132647	1777.5	14.5

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					132022	1715.0	14.4
			50	0	132322	1745.0	14.3
					132622	1775.0	14.3
					132022	1715.0	14.2
			25	12	132322	1745.0	14.5
		10 1415			132622	1775.0	14.2
					132022	1715.0	14.5
			1	0	132322	1745.0	14.6
					132622	1775.0	14.0
					132022	1715.0	14.2
			1	24	132322	1745.0	14.1
					132622	1775.0	14.5
					132047	1717.5	14.6
			75	0	132322	1745.0	14.5
		15 MHz			132597	1772.5	14.2
					132047	1717.5	14.4
			36	19	132322	1745.0	14.5
66	16QAM				132597	1772.5	14.3
00					132047	1717.5	14.6
			1	0	132322	1745.0	14.5
					132597	1772.5	14.4
					132047	1717.5	14.1
			1	74	132322	1745.0	14.1
					132597	1772.5	14.1
					132072	1720.0	14.6
			100	0	132322	1745.0	14.3
					132572	1770.0	14.1
					132072	1720.0	14.2
			50	25	132322	1745.0	14.2
					132572	1770.0	14.6
					132072	1720.0	14.4
			1	0	132322	1745.0	14.1
					132572	1770.0	14.1
					132072	1720.0	14.3
			1	99	132322	1745.0	14.1
					132572	1770.0	14.4

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					37775	2572.5	17.1
			25	0	38000	2595.0	17.1
					38225	2617.5	16.8
					37775	2572.5	17.0
	ODEK	5 MHz	12	6	38000	2595.0	17.1
20					38225	2617.5	17.0
38	QPSK			0	37775	2572.5	16.9
			1		38000	2595.0	16.6
					38225	2617.5	17.2
					37775	2572.5	16.8
			1	24	38000	2595.0	17.0
					38225	2617.5	17.0

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					37800	2575.0	16.7
			50	0	38000	2595.0	16.6
					38200	2615.0	16.8
					37800	2575.0	16.7
			25	12	38000	2595.0	16.6
		10 141-			38200	2615.0	16.8
					37800	2575.0	16.6
			1	0	38000	2595.0	16.7
					38200	2615.0	16.7
					37800	2575.0	16.6
			1	24	38000	2595.0	16.8
					38200	2615.0	17.0
					37825	2577.5	16.6
			75	0	38000	2595.0	16.8
					38175	2612.5	16.9
					37825	2577.5	16.6
			36	19	38000	2595.0	16.8
20	QPSK	15 MHz			38175	2612.5	16.8
20					37825	2577.5	17.1
			1	0	38000	2595.0	16.9
					38175	2612.5	16.9
					37825	2577.5	17.1
			1	74	38000	2595.0	16.8
					38175	2612.5	16.9
					37850	2580.0	16.5
			100	0	38000	2595.0	17.0
					38150	2610.0	17.0
					37850	2580.0	17.0
			50	25	38000	2595.0	16.7
		20 МН7			38150	2610.0	17.0
		20 10112			37850	2580.0	17.0
			1	0	38000	2595.0	16.7
					38150	2610.0	16.9
					37850	2580.0	16.9
			1	99	38000	2595.0	17.1
					38150	2610.0	16.6

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					37775	2572.5	16.8
			25	0	38000	2595.0	17.1
					38225	2617.5	16.5
					37775	2572.5	16.7
	100404	5 MHz	12	6	38000	2595.0	16.7
20					38225	2617.5	16.7
38	IOQAIVI				37775	2572.5	17.1
			1	0	38000	2595.0	16.7
					38225	2617.5	16.6
					37775	2572.5	16.7
			1	24	38000	2595.0	16.6
					38225	2617.5	16.8

Band	Modulation	Bandwidth	RB Size	RB Offset	Channel	Frequency	Power
					37800	2575.0	17.2
			50	0	38000	2595.0	16.7
					38200	2615.0	16.8
					37800	2575.0	17.0
			25	12	38000	2595.0	16.9
					38200	2615.0	17.1
					37800	2575.0	16.6
			1	0	38000	2595.0	16.9
					38200	2615.0	16.9
					37800	2575.0	17.0
			1	24	38000	2595.0	16.5
					38200	2615.0	16.8
		15 MHz			37825	2577.5	16.7
			75	0	38000	2595.0	16.7
					38175	2612.5	16.7
					37825	2577.5	17.1
			36	19	38000	2595.0	17.1
20	16QAM				38175	2612.5	17.1
50					37825	2577.5	17.2
			1	0	38000	2595.0	16.6
					38175	2612.5	17.0
					37825	2577.5	16.9
			1	74	38000	2595.0	16.8
					38175	2612.5	16.8
					37850	2580.0	16.6
			100	0	38000	2595.0	16.9
					38150	2610.0	16.9
					37850	2580.0	17.1
			50	25	38000	2595.0	16.9
		20 MHz			38150	2610.0	16.6
		20 10112			37850	2580.0	16.7
			1	0	38000	2595.0	17.2
					38150	2610.0	17.1
					37850	2580.0	16.7
			1	99	38000	2595.0	16.7
					38150	2610.0	16.8

Band/		Poquirod			DR	DR	Tostod/
Ballu/	Side	T	Bandwidth	Modulation			
Frequency (MHz)		Test Channel			Allocation	Offset	Reduced
		18700					Reduced ⁷
		18900			50	0	Tested
		19100					Reduced ⁷
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		OPSK			Reduced ¹
		18700		di ort			Reduced ⁷
		18900				49	Tested
		19100			1		Reduced ⁷
		18700					Reduced ²
		18900				99	Reduced ²
		19100	20 MHz				Reduced ²
	Back	18700			50		Reduced ³
		18900	-			25	Reduced ³
		19100					Reduced ³
		18700					Reduced
		18900			100	0	Reduced
		19100		16QAM			Reduced
		18700		TOGAN	1	0	Reduced ⁺
		18900				0	Reduced ⁴
		19100					Reduced ⁴
		18700				00	Reduced ⁴
		10900				99	Reduced Reduced ⁴
		19100 All Io	wer bandwidths (15	MHz 10 MHz 5 MHz	3 MHz 1 / MHz)		Reduced ⁵
Band 2		18700			, 5 Wi 12, 1.4 Wi 12)	25	Reduced ⁷
1850-1910 MHz		18900			50		Tested
		10300					Reduced ⁷
		19100			100	0	Reduced ¹
		18900					Reduced ¹
		19100				Ũ	Reduced ¹
		18700		QPSK		-	Reduced ⁷
		18900				0	Tested
		19100				-	Reduced ⁷
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100					Reduced ²
	Top	18700	20 MHz				Reduced ³
		18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		400.004			Reduced ¹
		18700		16QAM			Reduced ⁴
		18900				0	Reduced ⁴
		19100	1				Reduced ⁴
		18700			1		Reduced ⁴
		18900				99	Reduced ⁴
		<u>19</u> 100	-			99	Reduced ⁴
		All lo	wer bandwidths (15	MHz, 10 MHz, 5 MHz	, 3 MHz, 1.4 MHz)		Reduced ⁵
			All rema	ining sides			Reduced ⁶

Table 10.5.2 Test Reduction Table – I TE

Reduced¹ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) Å) I) page 4. Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5. Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See

below for calculations.

Reduced7- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/ Erequency (MHz)	Side	Required	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		18700			Anocation	Onset	Reduced ⁷
		18900			50	0	Tested
		19100			00	0	Reduced ⁷
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100					Reduced ¹
		18700		QPSK		49	Reduced ⁷
		18900					Tested
	Right	19100			1		Reduced ⁷
		18700	20 MHz				Reduced ²
		18900				99	Reduced ²
		19100					Reduced ²
Band 2		18700	20 MHZ				Reduced ³
1850-1910 MHz		18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		1604M			Reduced ¹
		18700		TOQAIN			Reduced ⁴
		18900				0	Reduced ⁴
		19100			1		Reduced ⁴
_		18700			1		Reduced ⁴
		18900				99	Reduced ⁴
		19100					Reduced ⁴
		All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz)					
			All rema	iining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced² - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	0.1	Required	Den het ki	Manhalation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		26140					Reduced ⁷
		26365			50	0	Tested
		26590					Reduced ⁷
		26140					Reduced ¹
		26365			100	0	Reduced ¹
		26590		OPSK			Reduced ¹
		26140		QI OIX			Reduced ⁷
		26365				49	Tested
		26590			1		Reduced ⁷
		26140	-				Reduced ²
		26365				99	Reduced ²
	Deals	26590	20 MHz				Reduced ²
	васк	26140			50	05	Reduced ³
		20300	-		50	20	Reduced ³
		20090				0	Reduced ¹
		20140			100		Reduced Reduced ¹
		26590			100	0	Reduced ¹
		26140		16QAM			Reduced ⁴
		26365			1	0	Reduced ⁴
		26590				Ŭ	Reduced ⁴
		26140					Reduced ⁴
Band 25		26365				99	Reduced ⁴
		26590					Reduced ⁴
	All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz)						
Band 25		26140		QPSK -			Reduced ⁷
1650-1915 MHZ		26365			50	25	Tested
		26590					Reduced ⁷
		26140			100	0	Reduced ¹
		26365					Reduced ¹
		26590					Reduced ¹
		26140					Reduced ⁷
		26365				0	Tested
		26590			1		Reduced ⁷
		26140					Reduced ²
		26365				99	Reduced ²
	Tan	26590	20 MHz				Reduced ²
	тор	20140			50	25	Reduced ³
		26590			50	25	Reduced ³
		20330					Reduced ¹
		26365			100	0	Reduced ¹
		26590			100	0	Reduced ¹
		26140		16QAM			Reduced ⁴
		26365				0	Reduced ⁴
		26590				-	Reduced ⁴
		26140			1		Reduced ⁴
		26365				99	Reduced ⁴
		26590					Reduced ⁴
		All lo	wer bandwidths (15	MHz, 10 MHz, 5 MHz,	, 3 MHz, 1.4 MHz)		Reduced ⁵
			All rema	ining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	Side	Required	Dondwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel26140	Bandwidth	wodulation	Allocation	Offset	Reduced
		26140					Reduced ⁷
		26365			50	0	Tested
		26590		-			Reduced ⁷
		26140				0	Reduced ¹
	Right	26365			100		Reduced ¹
		26590		ODSK			Reduced ¹
		26140		QFSK			Reduced ⁷
		26365			1	49	Tested
		26590	20 MHz				Reduced ⁷
		26140					Reduced ²
		26365				99	Reduced ²
		26590					Reduced ²
Band 25		26140			50		Reduced ³
1850-1915 MHz		26365				25	Reduced ³
		26590					Reduced ³
		26140					Reduced ¹
		26365			100	0	Reduced ¹
		26590		160AM			Reduced ¹
		26140		1000/101			Reduced ⁴
		26365				0	Reduced ⁴
		26590			1		Reduced ⁴
_		26140					Reduced ⁴
		26365				99	Reduced ⁴
		26590					Reduced ⁴
		All Io	Reduced ⁵				
			All rema	ining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	0.1	Required	Description in the	Mar haladan	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		18700					Reduced ⁷
		18900			50	25	Tested
		19100					Reduced ⁷
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		OPSK			Reduced ¹
		18700		QFSK			Reduced ⁷
		18900				49	Tested
		19100			1		Reduced ⁷
		18700			I		Reduced ²
		18900				99	Reduced ²
		19100	20 MHz				Reduced ²
	Back	18700	20 1011 12				Reduced ³
		18900		-	50	25	Reduced ³
		19100	-				Reduced ³
		18700				_	Reduced ¹
		18900			100	0	Reduced ¹
		19100		16QAM			Reduced ¹
		18700		TOQAINI		40	Reduced ⁴
		18900			1	49	Reduced ⁴
		19100					Reduced ⁴
		18700	-				Reduced ⁴
		18900				99	Reduced ⁴
		19100					Reduced ⁴
Band 4		All 10	wer bandwidths (15	MHZ, 10 MHZ, 5 MHZ	, 3 MHZ, 1.4 MHZ)		Reduced ³
1710-1755 MHz		18700		-	50	25	Tested
		10100				20	Tested Deduced ⁷
		19100			100	0	Reduced ¹
		18000					Tostod
		10100					Poducod ¹
		19100		QPSK			Tested
		18900				0	Tested
		19100				0	Tested
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100					Reduced ²
	Тор	18700	20 MHz				Reduced ³
		18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		400.444			Reduced ¹
		18700		16QAM			Reduced ⁴
		18900				0	Reduced ⁴
		19100	1		4		Reduced ⁴
		18700	1		1		Reduced ⁴
		18900	1			99	Reduced ⁴
		19100	1				Reduced ⁴
		All lo	wer bandwidths (15	MHz, 10 MHz, 5 MHz	, 3 MHz, 1.4 MHz)		Reduced⁵
			All rema	iining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		18700					Reduced ⁷
		18900			50	25	Tested
		19100					Reduced ⁷
		18700					Reduced ¹
		18900	-		100	0	Reduced ¹
		19100		ODOK			Reduced ¹
		18700		QPSK	1		Reduced ⁷
		18900				49	Tested
		19100					Reduced ⁷
	Right	18700	20 MHz				Reduced ²
		18900				99	Reduced ²
		19100					Reduced ²
Band 4		18700					Reduced ³
1710-1755 MHz		18900			50	25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		160AM			Reduced ¹
		18700		1000/101			Reduced ⁴
		18900				49	Reduced ⁴
		19100			1		Reduced ⁴
_		18700					Reduced ⁴
		18900	-			99	Reduced ⁴
		19100					Reduced ⁴
		All lo	Reduced ⁵				
			All rema	ining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	0.1	Required	Description in the	Mar haladan	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		132072					Reduced ⁷
		132322			50	25	Tested
		132572					Reduced ⁷
		132072					Reduced ¹
		132322			100	0	Reduced ¹
		132572		OPSK			Reduced ¹
		132072		QFON			Reduced ⁷
		132322				49	Tested
		132572			1		Reduced ⁷
		132072	-		I		Reduced ²
		132322				99	Reduced ²
		132572	20 MHz				Reduced ²
	Back	132072			50	05	Reduced
		132322	-		50	25	Reduced ³
		132572					Reduced [®]
		132072			400	0	Reduced ¹
		132322			100	0	Reduced ¹
		132372		16QAM			Reduced ⁴
		132072			1	10	Reduced Reduced ⁴
		132572				49	Reduced ⁴
		132072	-				Reduced ⁴
		132322				aa	Reduced ⁴
		132572				55	Reduced ⁴
		All lo	wer bandwidths (15	MHz. 10 MHz. 5 MHz	. 3 MHz. 1.4 MHz)		Reduced ⁵
Band 66		132072		QPSK -	, • · · · · _, · · · · · · · _,		Reduced ⁷
1710-1780 MHz	-	132322			50	25	Tested
		132572					Reduced ⁷
		132072			100	0	Reduced ¹
		132322					Tested
		132572	-				Reduced ¹
		132072					Tested
		132322				0	Tested
		132572			1		Tested
		132072			I		Reduced ²
		132322				99	Reduced ²
		132572	20 MHz				Reduced ²
	Тор	132072	202				Reduced ³
		132322			50	25	Reduced ³
		132572					Reduced ³
		132072			400		Reduced
		132322			100	0	Reduced ¹
		132572		16QAM			Reduced'
		132072	1			0	Reduced ⁴
		132522	1			U	Reduced ⁴
		132072	1		1		Reduced ⁴
		132072	1			ga	Reduced ⁴
		132572	1			33	Reduced ⁴
			wer bandwidths (15	Reduced ⁵			
		1		ining sides	, •		Reduced ⁶
Deduced ¹ If the CAD		50% DD to sting is loss t					1.000000

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/ Erequency (MHz)	Side	Required	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
Trequency (MTZ)		132072			Anocation	Onset	Reduced ⁷
		132322			50	25	Tested
		132572			50	20	Reduced ⁷
		132072				-	Reduced ¹
		132322	-		100	0	Reduced ¹
		132572				Ŭ	Reduced ¹
		132072		QPSK			Reduced ⁷
		132322			1	49	Tested
	Right	132572				-	Reduced ⁷
		132072	20 MHz				Reduced ²
		132322				99	Reduced ²
		132572					Reduced ²
Band 66		132072	20 MHz				Reduced ³
1710-1780 MHz		132322			50	25	Reduced ³
		132572					Reduced ³
		132072					Reduced ¹
		132322			100	0	Reduced ¹
		132572		1604M			Reduced ¹
		132072		TOQAIN			Reduced ⁴
		132322				49	Reduced ⁴
		132572			1		Reduced ⁴
		132072			1		Reduced ⁴
		132322				99	Reduced ⁴
		132572					Reduced ⁴
		All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz)					
			All rema	iining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	z) Side	Required	Dansdusidth	Madulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		26740					Reduced ⁷
		26865			25	12	Tested
		26990					Reduced ⁷
		26740					Reduced ¹
		26865			50	0	Reduced ¹
		26990		OPSK			Reduced ¹
		26740					Reduced ⁷
		26865				0	Tested
		26990			1		Reduced ⁷
	5 -	26740			I		Reduced ²
		26865				24	Reduced ²
		26990	15 MHz				Reduced
	Back	26740			05	10	Reduced
		26865	_		25	12	Reduced ³
		26990					Reduced ^e
		26740			50	0	Reduced ¹
		26865			50	0	Reduced ¹
		26990		16QAM		12 0 0 24 12 0	Reduced ⁴
		20740				0	Reduced ⁴
		20000			1	12 0 0 24 12 0	Reduced ⁴
		20330	_				Reduced Reduced ⁴
Band 26		26865				24	Reduced ⁴
		20003				24	Reduced ⁴
		20330	All lowe	er bandwidths (5 MHz)			Reduced ⁵
		26740	Airiowe	QPSK -			Reduced ⁷
814-849 MHz	-	26865			25	12	Tested
		26990					Reduced ⁷
		26740			50	0	Reduced ¹
		26865					Reduced ¹
		26990					Reduced ¹
		26740					Reduced ⁷
		26865				0	Tested
		26990			4		Reduced ⁷
		26740			1		Reduced ²
		26865				24	Reduced ²
		26990					Reduced ²
	Тор	26740					Reduced ³
		26865			25	12	Reduced ³
		26990					Reduced ³
		26740					Reduced ¹
		26865			50	0	Reduced ¹
		26990		160AM			Reduced ¹
		26740		1000/1111			Reduced ⁴
		26865				0	Reduced ⁴
		26990			1		Reduced ⁴
		26740			•		Reduced ⁴
		26865				24	Reduced ⁴
		26990					Reduced ⁴
			Reduced ³				
Deduced Keth CAD	undern for de	FOO(DD to sting is !	All rema	ining sides			Keaucea'
Reduced - If the SAR	value in the	SOM RE testing is less t	nan 1.45 w/kg, the 1	100% KB testing is rec	luced per KDB94122	co uuo 3) A) I) pa	ige 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	Side	Required	Bandwidth	Modulation	RB Allocation	RB Offsot	Tested/ Reduced
Trequency (WITZ)					Anocation	Unset	
		26740			25	10	Tested
		20800			20	12	Tested Deduced ⁷
		20990					Reduced Reduced
		20740	-		50	0	Reduced Reduced1
		20003				0	Reduced Reduced ¹
		20330		QPSK			Reduced Reduced ⁷
		20740			1	0	Tostod
		20003				0	Reduced ⁷
		26740	-				Reduced ²
		26865				24	Reduced ²
		26990				27	Reduced ²
Band 26	Right	26740	15 MHz				Reduced ³
814-849 MHz		26865			25	12	Reduced ³
		26990			_0		Reduced ³
		26740			50		Reduced ¹
		26865				0	Reduced ¹
		26990				-	Reduced ¹
		26740		16QAM			Reduced ⁴
		26865				0	Reduced ⁴
		26990				-	Reduced ⁴
		26740			1		Reduced ⁴
		26865				24	Reduced ⁴
		26990	1				Reduced ⁴
			Reduced ⁵				
		•	All rema	ining sides			Reduced ⁷

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

page 5. Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	0:46	Required	Densderstalth	Madulation	RB	RB	Tested/	
Frequency (MHz)	Side	Test Channel	Bandwidth	wodulation	Allocation	Offset	Reduced	
		23230			25	12	Tested	
		23230		ODSK	50	0	Reduced ¹	
		23230		QPSN	4	0	Tested	
		23230			I	24	Reduced ²	
	Back	23230			25	12	Reduced ³	
		23230		1604M	50	0	Reduced ¹	
		23230		TOQAIVI	1	0	Reduced ⁴	
		23230			1	24	Reduced ⁴	
			Reduced ⁵					
		23230			25	12	Tested	
		23230		ODSK	50	0	Reduced ¹	
		23230	10 MHz	QFSK	1	0	Tested	
		23230			1	24	Reduced ²	
Band 13	Тор	23230			25	12	Reduced ³	
777-787 MHz		23230		16QAM	50	0	Reduced ¹	
		23230			1	0	Reduced ⁴	
		23230			1	24	Reduced ⁴	
		23230			25	12	Tested	
		23230		OPSK	50	0	Reduced ²	
		23230		QFON	1	0	Tested	
		23230	10 MHz		I	24	Reduced ²	
	Right	23230			25	12	Reduced ³	
		23230		160AM	50	0	Reduced ¹	
		23230		IOQAIVI	1	0	Reduced ⁴	
		23230			1	24	Reduced ⁴	
			All lower bandwidths (5 MHz)					
			All rema	aining sides			Reduced ⁷	

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	Cide	Required	Donalusialth	Medulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	wodulation	Allocation	Offset	Reduced
		23330			25	12	Tested
		23330		ODSK	50	0	Reduced ¹
		23330		QFON	1	0	Tested
		23330			1	24	Reduced ²
	Back	23330			25	12	Reduced ³
		23330	-	1604M	50	0	Reduced ¹
		23330		TOQAIVI	1	0	Reduced ⁴
		23330			1	24	Reduced ⁴
			Reduced ⁵				
		23330			25	12	Tested
		23330		ODCK	50	0	Reduced ¹
		23330	10 MHz	QF3N	4	0	Tested
		23330			I	24	Reduced ²
Band 14	Тор	23330			25	12	Reduced ³
788-798 MHz		23330		16QAM	50	0	Reduced ¹
		23330			4	0	Reduced ⁴
		23330			I	24	Reduced ⁴
		23330			25	12	Tested
		23330		ODCK	50	0	Tested
		23330		QPSK	4	0	Tested
		23330			I	24	Reduced ²
	Right	23330			25	12	Reduced ³
		23330		160AM	50	0	Reduced ¹
		23330		TOQAIVI	1	0	Reduced ⁴
		23330	1		1	24	Reduced ⁴
			All lower bandwidths (5 MHz)				
			All rema	ining sides			Reduced ⁷
Deduced ¹ If the C		n the EOU/ DD testing	is less than 1 1E	W///cg the 1000/ DI) tooting is reduce	d nor KDD011	225 D05 2)

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	0.1	Required	Deve best kit	Manhalation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		23060					Reduced ⁶
		23095			25	12	Tested
		23129			-		Reduced ⁶
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		ODEK			Reduced ¹
		23060		QPSK			Reduced ⁶
		23095				12	Tested
		23129			1		Reduced ⁶
		23060	-		1		Reduced ¹
		23095				24	Reduced ²
		23129	10 MHz				Reduced ²
	Back	23060	10 10112				Reduced ³
		23095			25	12	Reduced ³
		23129					Reduced ³
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		16QAM			Reduced ¹
		23060					Reduced ⁴
		23095			1	0	Reduced ⁴
		23129	-				Reduced ⁴
Band 12		23060					Reduced ⁴
		23095				24	Reduced ⁴
		23129	A 11 Januar	n h a n shuidth a (C MILL-)			Reduced ⁺
		00000	All lowe	er dandwidths (5 MHZ)			Reduced ^o
699-716 MHz		23060		QPSK -	05	10	Reduced ²
		23095			25	12	Peduced ⁶
		23129			50	0	Reduced ²
		23000					Tostod
		23095					Reduced ¹
		23060					
		23000				24	Tested
		23035				24	Reduced ⁶
		23060			1		Reduced ¹
		23095				49	Reduced ²
		23129				10	Reduced ²
	Top	23060	10 MHz				Reduced ³
	. op	23095			25	12	Reduced ³
		23129			-		Reduced ³
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		400.444			Reduced ¹
		23060		16QAM			Reduced ⁴
		23095	1			0	Reduced ⁴
		23129	1		A		Reduced ⁴
		23060]		1		Reduced ⁴
		23095]			24	Reduced ⁴
		23129					Reduced ⁴
		All lower bandwidths (5 MHz)					
			All rema	ining sides			Reduced ⁷
Poducod ¹ If the SAP	volue in the	EOV BB testing is loss t	hop 1 15 W/kg the	0.00/ DB teating is rec	lugad par KDP0412		

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I)

page 5. Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/ Erequency (MHz)	Side	Required	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23060			Anocation	Unset	Reduced ⁶
		23000			25	12	Tested
		23129			20	12	Reduced ⁶
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129	-			Ŭ	Reduced ¹
		23060		QPSK			Reduced ⁶
		23095			1	12	Tested
		23129					Reduced ⁶
		23060					Reduced ¹
		23095	10 MHz			24	Reduced ²
	Right	23129					Reduced ²
Band 12		23060					Reduced ³
699-716 MHz		23095			25	12	Reduced ³
		23129					Reduced ³
		23060					Reduced ¹
		23095			50	0	Reduced ¹
		23129		160AM			Reduced ¹
		23060		1000/101			Reduced ⁴
		23095				0	Reduced ⁴
		23129			1		Reduced ⁴
_		23060					Reduced ⁴
		23095				24	Reduced ⁴
		23129					Reduced ⁴
			All lowe	er bandwidths (5 MHz)			Reduced ⁵
			All rema	ining sides			Reduced ⁷

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

page 5. Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	0:44	Required	Dansdusialth	Madulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	wodulation	Allocation	Offset	Reduced
		27710			25	12	Tested
		27710		ODCK	50	0	Reduced ¹
		27710		QPSK	4	0	Tested
		27710			I	24	Reduced ²
	Back	27710			25	12	Reduced ³
		27710		1604M	50	0	Reduced ¹
		27710		TOQAIVI	1	0	Reduced ⁴
		27710			1	24	Reduced ⁴
		All lower bandwidths (5 MHz)					Reduced ⁵
		27710			25	12	Tested
		27710		ODSK	50	0	Tested
		27710	10 MHz	QF SN	1	0	Tested
		27710			I	24	Reduced ²
Band 30	Тор	27710			25	12	Reduced ³
2305-2315 MHz		27710		16QAM	50	0	Reduced ¹
		27710			1	0	Reduced ⁴
		27710			1	24	Reduced ⁴
		27710			25	12	Tested
		27710		OPSK	50	0	Reduced ¹
		27710		QFON	1	0	Tested
		27710	10 MH-7		I	24	Reduced ²
	Right	27710	10 10112		25	12	Reduced ³
		27710		160AM	50	0	Reduced ¹
		27710		TOQAIVI	1	0	Reduced ⁴
		27710			1	24	Reduced ⁴
			All lower	r bandwidths (5 MH	lz)		Reduced ⁵
			All rema	ining sides			Reduced ⁷

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Report Number: SAR.20190603

Band/	0:44	Required	Dansdassialth	Madulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	wodulation	Allocation	Offset	Reduced
		20850					Reduced ⁷
		21100			50	0	Tested
		21350					Reduced ⁷
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		OPSK			Reduced ¹
		20850		QFSK			Reduced ⁷
		21100				49	Tested
		21350			1		Reduced ⁷
		20850			I		Reduced ²
		21100				99	Reduced ²
		21350	20 MHz				Reduced ²
	Back	20850	20 11112				Reduced ³
		21100	-		50	25	Reduced ³
		21350					Reduced ³
		20850			100		Reduced
		21100			100	0	Reduced
		21350		16QAM			Reduced ¹
		20850				40	Reduced ⁴
		21100				49 99	Reduced ⁴
		21350	-		1		Reduced ⁴
		20030				99	Reduced ⁴
	-	21100				33	Reduced ⁴
		All In	Reduced ⁵				
Band 7		20850		QPSK	, 5 10112, 1.4 10112)		Tested
2500-2570 MHz		21100			50	25	Tested
		21350				-	Tested
		20850			100	0	Reduced ¹
		21100					Tested
		21350					Reduced ¹
		20850					Reduced ⁷
		21100				49	Tested
		21350			4		Reduced ⁷
		20850			1		Reduced ²
		21100				99	Reduced ²
		21350	20 MHz				Reduced ²
	Тор	20850	20 10112				Reduced ³
		21100			50	25	Reduced ³
		21350					Reduced ³
		20850				_	Reduced ¹
		21100			100	0	Reduced ¹
		21350		16QAM			Reduced
		20850				45	Reduced ⁴
		21100				49	Reduced ⁴
		21350			1		Reduced ⁴
		20850				00	Reduced*
		21100				99	Reduced*
		21350	lower handwidthe (45 M				Reduced ⁻
		All IO		ivinz, i u iviHz, 5 IVIHz	, s ivinz, i.4 ivinz)		Reduced
			Airrema	ining sides			Reduced-

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

page 5. Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷ – If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Report Number: SAR.20190603

Band/	Cide	Required	Developidate	Medulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20850					Reduced ⁷
		21100			50	0	Tested
		21350					Reduced ⁷
		20850				0	Reduced ¹
		21100		QPSK	100		Reduced ¹
		21350					Reduced ¹
		20850					Reduced ⁷
		21100	20 MHz		1	49	Tested
		21350					Reduced ⁷
		20850					Reduced ²
		21100				99	Reduced ²
		21350					Reduced ²
Band 7	Right	20850					Reduced ³
2500-2570 MHz		21100			50	25	Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		160AM			Reduced ¹
		20850		IUQAIN			Reduced ⁴
		21100				49	Reduced ⁴
		21350			1		Reduced ⁴
		20850					Reduced ⁴
		21100				99	Reduced ⁴
		21350					Reduced ⁴
		All lo		Reduced ⁵			
			All rema	ining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

page 5. Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷ – If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	0.1	Required	Deve best tit	Markelation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	wodulation	Allocation	Offset	Reduced
		39750					Reduced ⁷
		40135					Reduced ⁷
		40620			50	0	Tested
		41105					Reduced ⁷
		41490					Reduced ⁷
		39750					Reduced ¹
		40135					Reduced ¹
		40620		QPSK	100	0	Reduced ¹
		41105					Reduced ¹
		41490					Reduced ¹
		39750					Reduced ⁷
		40135			1		Reduced ⁷
		40620				49	Tested
		41105					Reduced ⁷
		41490					Reduced ⁷
		39750					Reduced ²
		40135					Reduced ²
		40620				99	Reduced ²
		41105					Reduced ²
		41490	20 MHz				Reduced ²
Band 41	Back	39750	20				Reduced ³
2496-2690 MHz		40135			50		Reduced ³
		40620				25	Reduced ³
		41105					Reduced
		41490					Reduced
		39750					Reduced
		40135			100		Reduced
		40620			100	0	Reduced
		41105					Reduced
		41490		16QAM			Reduced
		39750					Reduced
		40135				10	Reduced
		40620				49	Reduced ⁺
		41105					Reduced ⁴
		41490			1		Reduced ¹
		39750					Reduced'
		40135				00	Reduced'
		40620				99	Reduced ⁴
		41100					Reduced ⁴
		41490	wor bondwidths (15		2 MU- 1 4 MU-)		Reduced ⁵
		All IO		ivinz, 10 ivinz, 3 MHZ	, 3 IVIAZ, 1.4 IVIAZ)		Reduced ⁶
	1		All rema	uning sides			Reduced

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

page 5. Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷ – If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	0.1	Required	Deve best tit	Markelation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		39750					Reduced ⁷
		40135					Reduced ⁷
		40620			50	0	Tested
		41105					Reduced ⁷
		41490					Reduced ⁷
		39750					Reduced ¹
		40135					Reduced ¹
		40620		QPSK	100	0	Tested
		41105					Reduced ¹
		41490					Reduced ¹
		39750					Tested
		40135			1		Tested
		40620				49	Tested
		41105					Tested
		41490					Tested
		39750					Reduced ²
		40135					Reduced ²
		40620				99	Reduced ²
David 44		41105	20 MHz				Reduced ²
	-	41490					Reduced ²
Band 41	Тор	39750					Reduced ³
2496-2690 MHZ		40135			50	25	Reduced ³
		40620					Reduced ³
		41105					Reduced ^a
		41490					Reduced ³
		39750					Reduced ¹
		40133			100	0	Reduced Reduced ¹
		40020			100	0	Reduced ¹
		41100					Reduced ¹
		30750		16QAM			Reduced ⁴
		40135					Reduced ⁴
		40620				10	Reduced ⁴
		41105				45	Reduced ⁴
		41490					Reduced ⁴
		39750			1		Reduced ⁴
		40135					Reduced ⁴
		40620				99	Reduced ⁴
		41105				55	Reduced ⁴
		41490					Reduced ⁴
		All In	wer bandwidths (15	MHz. 10 MHz. 5 MHz	3 MHz, 1,4 MHz)	Reduced ⁵	
			All rema	ining sides	, , · - /		Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced² - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

page 5. Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷ – If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Report Number: SAR.20190603

Frequency (MHz) Side Test Channel Bandwidth Modulation Allocation Offset Re 39750 40135 40620 50 0 Re 41105 41105 89750 8 8 39750 9 8 8	educed ⁷ educed ⁷ Tested educed ⁷ educed ⁷ educed ¹ educed ¹
39750 R 40135 R 40620 50 0 41105 R R 41490 R R 39750 0 0	educed ⁷ educed ⁷ Tested educed ⁷ educed ¹ educed ¹
40135 R 40620 50 0 41105 R R 41490 R R 30750 P P	educed ⁷ Tested educed ⁷ educed ⁷ educed ¹ educed ¹
40620 50 0 41105 R 41490 R 39750 P	Tested educed ⁷ educed ¹ educed ¹
41105 41490 30750	educed ⁷ educed ⁷ educed ¹ educed ¹
41490 R 30750 P	educed ⁷ educed ¹ educed ¹
30750	educed ¹
N	educed ¹
40135 R	
<u>40620</u> 100 0 <u>R</u>	educed ¹
41105 R	educed ¹
41490 OPSK R	educed ¹
	educed ⁷
40135 <u>R</u>	educed ⁷
40620 49	Tested
41105 R	educed'
<u>41490</u> 1	educed'
39750 R	educed ²
40135 R	educed ²
40620 99 R	educed ²
41105 R	educed ²
41490 20 MHz R	educed ²
Band 41 Right <u>39750</u> R	educed
2496-2690 MHz 40135	educed
40620 50 25 R	educed
41105 R	educed
41490 R	educed
33/50 R	educed
40135	educed
40020 100 0 R	educed
41100	educed ¹
41490 16QAM	educed ⁴
33/30 P	educed
40133 R 4020	educed ⁴
4020 43 N	educed
41100 P	educed
	educed ⁴
33730 N	
	educed ⁴
41105 R	educed ⁴
41490 R	educed ⁴
All lower bandwidths (15 MHz 10 MHz 5 MHz 14 MHz)	educed ⁵
All remaining sides R	educed ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷ – If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Band/	Side	Required	Bondwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Banuwiuth	wouldtion	Allocation	Offset	Reduced
		37850					Reduced ⁷
		38000			50	0	Tested
		38150					Reduced ⁷
		37850			100		Reduced ¹
		38000			100	0	Reduced
		38150		QPSK			Reduced ¹
		37850				40	Reduced ²
		38150				49	Reduced ⁷
		37850			1		Reduced ²
		38000				99	Reduced ²
		38150				00	Reduced ²
	Back	37850	20 MHz				Reduced ³
		38000			50	25	Reduced ³
		38150					Reduced ³
		37850					Reduced ¹
		38000	-	16QAM	100	0	Reduced ¹
		38150					Reduced ¹
		37850					Reduced ⁴
		38000				49	Reduced ⁴
		38150			1		Reduced ⁴
		37850				00	Reduced ⁴
Band 38		38000				99	Reduced ⁴
			wer handwidths (15	MHz 10 MHz 5 MHz	3 MHz 1 / MHz)		Reduced ⁵
		37850			5 WI 12, 1.4 WI 12)		Reduced ⁷
2570-2620 MHz		38000	-		50	0	Tested
		38150				Ŭ	Reduced ⁷
		37850				0	Reduced ¹
		38000					Reduced ¹
		38150					Reduced ¹
		37850		QPSK			Reduced ⁷
		38000				49	Tested
		38150			1		Reduced ⁷
		37850			1		Reduced ²
		38000				99	Reduced ²
	-	38150	20 MHz				Reduced ²
	Гор	37850			50	05	Reduced ³
		38000			50	25	Reduced ³
		38150					Reduced ³
		38000			100	0	Reduced ¹
		38150			100	0	Reduced ¹
		37850		16QAM			Reduced ⁴
		38000				49	Reduced ⁴
		38150			,		Reduced ⁴
		37850			1		Reduced ⁴
		38000				99	Reduced ⁴
		38150					Reduced ⁴
		All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz)					
			All rema	ining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷ – If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

Report Number: SAR.20190603

Band/	Cide	Required	Dendusidth	Medulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		37850					Reduced ⁷
		38000			50	0	Tested
		38150					Reduced ⁷
		37850					Reduced ¹
		38000		QPSK	100	0	Reduced ¹
		38150					Reduced ¹
		37850	20 MHz				Reduced ⁷
		38000			1	49	Tested
		38150					Reduced ⁷
		37850					Reduced ²
		38000				99	Reduced ²
		38150					Reduced ²
Band 38	Right	37850			50		Reduced ³
2570-2620 MHz		38000				25	Reduced ³
		38150					Reduced ³
		37850					Reduced ¹
		38000			100	0	Reduced ¹
		38150		1604M			Reduced ¹
		37850		TOQAIM			Reduced ⁴
		38000				49	Reduced ⁴
		38150			1		Reduced ⁴
		37850			1		Reduced ⁴
		38000				99	Reduced ⁴
		38150					Reduced ⁴
		All lo		Reduced ⁵			
			All rema	ining sides			Reduced ⁶

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

page 5. Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced⁷ – If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Closest Distance to Left: 212.0 mm Closest Distance to Bottom: 201 mm

SAR Data Summary – 750 MHz Body – LTE Band 12

MEASUREMENT RESULTS

	1		1			1		1			-
Gap	Plot	Position	Frequ	uency	BW/ Modulation	RB	RB Offect	MPR Target	End Power	Measured	Reported
			MHz	Ch.	Modulation	Size	Unser	Target	(dBm)	SAR (W/Kg)	SAR (W/Kg)
		Back	707.5	23095	10 MHz/QPSK	1	0	0	18.6	0.254	0.28
		Dack	707.5	23095	10 MHz/QPSK	25	12	0	18.2	0.166	0.20
		Top	707.5	23095	10 MHz/QPSK	1	0	0	18.6	0.431	0.47
		төр	707.5	23095	10 MHz/QPSK	25	12	0	18.2	0.282	0.34
	1	Diaht	707.5	23095	10 MHz/QPSK	1	0	0	18.6	0.705	0.77
0		Right	707.5	23095	10 MHz/QPSK	25	0	0	18.2	0.405	0.49
mm		Back w/Brown Case	711.0	23129	10 MHz/QPSK	1	0	0	18.6	0.107	0.12
		Back w/Gray Case	711.0	23129	10 MHz/QPSK	1	0	0	18.6	0.143	0.16
		Back w/Gray Case Laptop	711.0	23129	10 MHz/QPSK	1	0	0	22.7	0.0863	0.12

Body 1.6 W/kg (mW/g) averaged over 1 gram

1. SAR Measurement Phantom Configuration Left Head SAR Configuration Head

- 2. Test Signal Call Mode Test Code
- 3. Test Configuration With Belt Clip
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

Eli4

Right Head

Body Base Station Simulator

Without Belt Clip N/A

SAR Data Summary – 750 MHz Body – LTE Band 13

MEASUREMENT RESULTS

									End		
Gap	Plot	Position	Frequ	uency	BW/ Modulation	RB	RB Offect	MPR Target	Power	Measured	Reported
			MHz	Ch.	wouldtion	Size	Unser	Target	(dBm)	SAR (W/Kg)	SAR (W/Kg)
		Back	782.0	23230	10 MHz/QPSK	1	0	0	19.1	0.282	0.31
		Dack	782.0	23230	10 MHz/QPSK	25	12	0	18.5	0.206	0.26
		Top	782.0	23230	10 MHz/QPSK	1	0	0	19.1	0.411	0.45
		төр	782.0	23230	10 MHz/QPSK	25	12	0	18.5	0.241	0.30
	2	Diabt	782.0	23230	10 MHz/QPSK	1	0	0	19.1	0.606	0.66
0		Right	782.0	23230	10 MHz/QPSK	25	0	0	18.5	0.427	0.54
mm		Back w/Brown Case	782.0	23230	10 MHz/QPSK	1	0	0	19.1	0.136	0.15
		Back w/Gray Case	782.0	23230	10 MHz/QPSK	1	0	0	19.1	0.170	0.19
		Back w/Gray Case Laptop	782.0	23230	10 MHz/QPSK	1	0	0	23.2	0.0922	0.11

Body 1.6 W/kg (mW/g) averaged over 1 gram

1. SAR Measurement Phantom Configuration Left Head SAR Configuration Head

- 2. Test Signal Call Mode Test Code
- 3. Test Configuration With Belt Clip
- 4. Tissue Depth is at least 15.0 cm

Eli4 Body Right Head

Base Station Simulator

Without Belt Clip N/A

Jay M. Moulton Vice President

Body 1.6 W/kg (mW/g) averaged over 1 gram

SAR Data Summary – 750 MHz Body – LTE Band 14

MEASUREMENT RESULTS

Gap	Plot	Position	Frequ	uency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported
			MHz	Ch.	modulation	OILO	onoor	Target	(dBm)	ern (m/ng)	oran (mag)
		Back	793.0	23330	10 MHz/QPSK	1	0	0	21.2	0.417	0.45
		Dack	793.0	23330	10 MHz/QPSK	25	12	0	21.2	0.320	0.34
		Top	793.0	23330	10 MHz/QPSK	1	0	0	21.2	0.677	0.73
		rop	793.0	23330	10 MHz/QPSK	25	12	0	21.2	0.533	0.57
	3		793.0	23330	10 MHz/QPSK	1	0	0	21.2	0.817	0.88
		Right	793.0	23330	10 MHz/QPSK	25	12	0	21.2	0.648	0.69
0		-	793.0	23330	10 MHz/QPSK	50	0	0	21.0	0.611	0.69
mm		Back w/Brown Case	793.0	23330	10 MHz/QPSK	1	0	0	21.2	0.122	0.13
		Back w/Gray Case	793.0	23330	10 MHz/QPSK	1	0	0	21.2	0.158	0.17
		Back w/Gray Case Laptop	793.0	23330	10 MHz/QPSK	1	0	0	23.2	0.0816	0.10
		Repeated	793.0	23330	10 MHz/QPSK	1	0	0	21.2	0.796	0.85

- 1. SAR Measurement Phantom Configuration Left Head SAR Configuration Head
- 2. Test Signal Call Mode Test Code
- 3. Test Configuration With Belt Clip
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

⊠Eli4		Right Head
\boxtimes Body		-
Base St	ation Simul	ator
Withou	t Belt Clip	\mathbb{N}/A

SAR Data Summary – 835 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Frequ	ency	Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR
-		MHz	Ch.			(dBm)		-	(W/kg)	(W/kg)
		836.6	4183	WCDMA	Back	17.42	12.2 kbps	Test Loop 1	0.712	0.81
		826.4	4132	WCDMA		17.25	12.2 kbps	Test Loop 1	0.859	1.02
	4	836.6	4183	WCDMA	Тор	17.42	12.2 kbps	Test Loop 1	0.923	1.06
		846.6	4233	WCDMA		17.39	12.2 kbps	Test Loop 1	0.847	0.98
		836.6	4183	WCDMA	Right	17.42	12.2 kbps	Test Loop 1	0.647	0.74
0 mm		836.6	4183	WCDMA	Back w/Brown Case	17.42	12.2 kbps	Test Loop 1	0.493	0.56
		836.6	4183	WCDMA	Back w/Gray Case	17.42	12.2 kbps	Test Loop 1	0.641	0.73
-		836.6	4183	WCDMA	Back w/Gray Case Laptop	23.92	12.2 kbps	Test Loop 1	0.136	0.04
		836.6	4183	WCDMA	Repeat	17.42	12.2 kbps	Test Loop 1	0.905	1.03

1. SAR Measurement Phantom Configuration SAR Configuration

Left Head

With Belt Clip

- Head Test Code
- 2. Test Signal Call Mode
- 3. Test Configuration
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

Eli4

 \boxtimes Eli4 \boxtimes Body Right Head

Base Station Simulator

Body 1.6 W/kg (mW/g) averaged over 1 gram

SAR Data Summary – 835 MHz Body – LTE Bands 26

MEASUREMENT RESULTS

ot Position	Frequency		BW/ Modulation	RB Size	RB	MPR Torget	End Power	Measured SAR	Reported SAR
	MHz	Ch.	Modulation	Size	Unset	Target	(dBm)	(W/kg)	(W/kg)
- Book	831.5	26865	10 MHz/QPSK	1	0	0	20.0	0.622	0.70
- Daux	831.5	26865	10 MHz/QPSK	25	0	0	19.5	0.402	0.51
- Ton	831.5	26865	10 MHz/QPSK	1	0	0	20.0	0.693	0.78
- 100	831.5	26865	10 MHz/QPSK	25	0	0	19.5	0.463	0.58
-	819.0	26740	10 MHz/QPSK	1	0	0	19.7	0.683	0.82
Diaht	831.5	26865	10 MHz/QPSK	1	0	0	20.0	0.750	0.84
- Right	844.0	26990	10 MHz/QPSK	1	0	0	19.5	0.657	0.83
-	831.5	26865	10 MHz/QPSK	25	0	0	19.5	0.503	0.63
Back w/Brown Case	831.5	26865	10 MHz/QPSK	1	0	0	20.0	0.193	0.22
Back w/Gray Case	831.5	26865	10 MHz/QPSK	1	0	0	20.0	0.187	0.21
Back w/Gray Case Laptop	831.5	26865	10 MHz/QPSK	1	0	0	22.8	0.0628	0.08
- Repeated	831.5	26865	10 MHz/QPSK	1	0	0	20.0	0.732	0.82
	Back w/Brown Back w/Brown Back w/Brown Case Back w/Gray Back w/Gray Case Laptop Repeated	Position MHz Back 831.5 Back 831.5	MHz Ch. Back 831.5 26865 Back w/Brown Case 831.5 26865 Back w/Gray Case 831.5 26865 Back w/Gray Case 831.5 26865 Back w/Gray Case Laptop 831.5 26865 Back w/Gray 831.5 26865	Meta Ch. Modulation Back 831.5 26865 10 MHz/QPSK Back 831.5 26865 10 MHz/QPSK Top 831.5 26865 10 MHz/QPSK Top 831.5 26865 10 MHz/QPSK Right 831.5 26865 10 MHz/QPSK Right 831.5 26865 10 MHz/QPSK Back w/Brown 831.5 26865 10 MHz/QPSK Back w/Brown 831.5 26865 10 MHz/QPSK Back w/Gray 831.5 26865 10 MHz/QPSK Back	MHz Ch. Modulation Size Back 831.5 26865 10 MHz/QPSK 1 Back 831.5 26865 10 MHz/QPSK 1 Top 831.5 26865 10 MHz/QPSK 1 Right 831.5 26865 10 MHz/QPSK 1 Right 831.5 26865 10 MHz/QPSK 1 831.5 26865 10 MHz/QPSK 1 1 Back w/Brown Case 831.5 26865 10 MHz/QPSK 1 Back w/Gray Case 831.5 26865 10 MHz/QPSK 1 Back w/Gray Case Laptop 831.5 26865 10 MHz/QPSK 1	MHz Ch. Modulation Size Offset Back 831.5 26865 10 MHz/QPSK 1 0 Back 831.5 26865 10 MHz/QPSK 25 0 Top 831.5 26865 10 MHz/QPSK 1 0 Top 831.5 26865 10 MHz/QPSK 1 0 Top 831.5 26865 10 MHz/QPSK 1 0 Right 819.0 26740 10 MHz/QPSK 1 0 Right 831.5 26865 10 MHz/QPSK 1 0 Right 831.5 26865 10 MHz/QPSK 1 0 Right 831.5 26865 10 MHz/QPSK 1 0 Back w/Brown Case 831.5 26865 10 MHz/QPSK 1 0 Back w/Gray Case 831.5 26865 10 MHz/QPSK 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Modulation Size Offset Target (dBm) Back 831.5 26865 10 MHz/QPSK 1 0 0 20.0 Top 831.5 26865 10 MHz/QPSK 25 0 0 19.5 Top 831.5 26865 10 MHz/QPSK 25 0 0 19.5 Top 831.5 26865 10 MHz/QPSK 25 0 0 19.5 Right 831.5 26865 10 MHz/QPSK 1 0 0 20.0 Right 831.5 26865 10 MHz/QPSK 1 0 0 19.7 831.5 26865 10 MHz/QPSK 1 0 0 19.7 831.5 26865 10 MHz/QPSK 1 0 0 19.5 Back w/Brown 831.5 26865 10 MHz/QPSK 1 0 0 20.0 Back w/Gray 831.5 26865 10 MHz/QPSK 1 0 0 2	Modulation Size Offset Target Gamma (dBm) SAR (W/kg) Back 831.5 26865 10 MHz/QPSK 1 0 0 20.0 0.622 Back 831.5 26865 10 MHz/QPSK 25 0 0 19.5 0.402 Top 831.5 26865 10 MHz/QPSK 1 0 0 20.0 0.622 Top 831.5 26865 10 MHz/QPSK 1 0 0 20.0 0.693 831.5 26865 10 MHz/QPSK 1 0 0 19.5 0.463 831.5 26865 10 MHz/QPSK 1 0 0 19.7 0.683 831.5 26865 10 MHz/QPSK 1 0 0 19.7 0.683 831.5 26865 10 MHz/QPSK 1 0 0 19.5 0.657 831.5 26865 10 MHz/QPSK 1 0 0 20.0 0.193 <t< td=""></t<>

Body

1.6 W/kg (mW/g) averaged over 1 gram

- 1. SAR Measurement Phantom Configuration SAR Configuration
- Left Head Head

2. Test Signal Call Mode 3. Test Configuration

4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

Eli4

Right Head

Body Base Station Simulator

N/A Without Belt Clip

© 2019 RF Exposure Lab, LLC Page 165 of 359 This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.

Test Code With Belt Clip

SAR Data Summary – 1750 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Frequency		Rev Level/ Modulation	Position	End			Measured	Reported
						Power (dBm)	RMC	Test Set Up	SAR (W/ka)	SAR (W/ka)
0 mm		1712.4	1312	WCDMA	Back	14.18	12.2 kbps	Test Loop 1	0.647	0.98
		1732.6	1413	WCDMA		14.39	12.2 kbps	Test Loop 1	0.680	0.99
		1752.6	1513	WCDMA		14.12	12.2 kbps	Test Loop 1	0.671	1.03
		1712.4	1312	WCDMA	Тор	14.18	12.2 kbps	Test Loop 1	0.647	0.98
	6	1732.6	1413	WCDMA		14.39	12.2 kbps	Test Loop 1	0.711	1.03
		1752.6	1513	WCDMA		14.12	12.2 kbps	Test Loop 1	0.635	0.98
		1712.4	1312	WCDMA	Right	14.39	12.2 kbps	Test Loop 1	0.221	0.32
		1732.6	1413	WCDMA	Back w/Brown Case	14.39	12.2 kbps	Test Loop 1	0.547	0.79
		1732.6	1413	WCDMA	Back w/Gray Case	14.39	12.2 kbps	Test Loop 1	0.582	0.84
		1732.6	1413	WCDMA	Back w/Gray Case Laptop	24.72	12.2 kbps	Test Loop 1	0.113	0.12
		1732.6	1413	WCDMA	Repeat	14.39	12.2 kbps	Test Loop 1	0.698	1.01

Body 1.6 W/kg (mW/g) averaged over 1 gram

1. SAR Measurement Phantom Configuration **SAR** Configuration

Left Head

Head Test Code

With Belt Clip

Right Head \boxtimes Eli4 \boxtimes Body Base Station Simulator Without Belt Clip $\square N/A$

2. Test Signal Call Mode

3. Test Configuration

4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President
SAR Data Summary – 1750 MHz Body – LTE Band 4 & 66

MEASUREMENT RESULTS

											-
Gap	Plot	Position	Freq	uency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAR (W/kg)
				Cn.		4		-	(abm)	0.005	0.00
		Back	1732.5	20175	20 MHZ/QPSK	1	0	0	15.2	0.295	0.36
			1/32.5	20175	20 MHZ/QPSK	50	0	0	15.1	0.287	0.35
			1/20.0	20050	20 MHz/QPSK	1	0	0	15.2	0.741	0.89
		Тор	1732.5	20175	20 MHz/QPSK	1	0	0	15.2	0.783	0.94
			1745.0	20300	20 MHz/QPSK	1	0	0	15.5	0.759	0.85
			1732.5	20175	20 MHz/QPSK	50	0	0	15.1	0.739	0.91
		Right	1732.5	20175	20 MHz/QPSK	1	0	0	15.2	0.123	0.15
		Right	1732.5	20175	20 MHz/QPSK	50	0	0	15.1	0.119	0.15
		Back w/Brown Case	1732.5	20175	20 MHz/QPSK	1	0	0	15.2	0.108	0.13
		Back w/Gray Case	1732.5	20175	20 MHz/QPSK	1	0	0	15.2	0.106	0.13
0		Back w/Gray Case Laptop	1732.5	20175	20 MHz/QPSK	1	0	0	23.6	0.0952	0.12
mm		Back	1745.0	132322	20 MHz/QPSK	1	0	0	14.5	0.306	0.34
		Dack	1745.0	132322	20 MHz/QPSK	50	0	0	14.0	0.300	0.38
			1720.0	132072	20 MHz/QPSK	1	0	0	14.1	0.762	0.94
	7	T	1745.0	132322	20 MHz/QPSK	1	0	0	14.5	0.858	0.96
		тор	1770.0	132571	20 MHz/QPSK	1	0	0	14.5	0.746	0.84
			1745.0	132322	20 MHz/QPSK	50	0	0	14.2	0.763	0.92
		District	1745.0	132322	20 MHz/QPSK	1	0	0	14.5	0.138	0.15
		Right	1745.0	132322	20 MHz/QPSK	50	0	0	14.0	0.127	0.16
		Back w/Brown Case	1745.0	132322	20 MHz/QPSK	1	0	0	14.5	0.117	0.13
-		Back w/Gray Case	1745.0	132322	20 MHz/QPSK	1	0	0	14.5	0.114	0.13
		Back w/Gray Case Laptop	1745.0	132322	20 MHz/QPSK	1	0	0	23.5	0.0976	0.12
		Repeated	1745.0	132322	20 MHz/QPSK	1	0	0	14.5	0.834	0.94

Body

1.6 W/kg (mW/g) averaged over 1 gram

- 1. SAR Measurement Phantom Configuration SAR Configuration
- Left Head
- Head Test Code
- Test Signal Call Mode
 Test Configuration
 - ation With Belt Clip
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

Eli4

Right Head

⊠Body ⊠Base Station Simulator □Without Belt Clip ⊠N/A

SAR Data Summary – 1900 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Freque	ency	Rev Level/	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR
		MHz	Ch.	Wouldtion		(dBm)			(W/kg)	(W/kg)
		1880.0	9400	WCDMA	Back	14.97	12.2 kbps	Test Loop 1	0.683	0.87
		1852.4	9262	WCDMA		14.92	12.2 kbps	Test Loop 1	0.832	1.07
	8	1880.0	9400	WCDMA	Тор	14.97	12.2 kbps	Test Loop 1	0.886	1.12
		1907.6	9538	WCDMA		14.95	12.2 kbps	Test Loop 1	0.811	1.03
		1880.0	9400	WCDMA	Right	14.97	12.2 kbps	Test Loop 1	0.204	0.26
0 mm		1880.0	9400	WCDMA	Back w/Brown Case	14.97	12.2 kbps	Test Loop 1	0.435	0.55
		1880.0	9400	WCDMA	Back w/Gray Case	14.97	12.2 kbps	Test Loop 1	0.457	0.58
		1880.0	9400	WCDMA	Back w/Gray Case Laptop	24.03	12.2 kbps	Test Loop 1	0.182	0.20
		1880.0	9400	WCDMA	Repeat	14.97	12.2 kbps	Test Loop 1	0.864	1.10

1. SAR Measurement Phantom Configuration SAR Configuration

Left Head

With Belt Clip

Head Test Code

- 2. Test Signal Call Mode
- 3. Test Configuration
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

Eli4

Right Head

Body 1.6 W/kg (mW/g) averaged over 1 gram

 \boxtimes Body Base Station Simulator Without Belt Clip $\square N/A$

© 2019 RF Exposure Lab, LLC Page 168 of 359 This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.

SAR Data Summary – 1900 MHz Body – LTE Band 2 & 25

MEASUREMENT RESULTS

	•		•					•	i		
Gap	Plot	Position	Frequ	lency	BW/	RB	RB	MPR	End Power	Measured SAR	Reported SAR
•			MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)
		Dook	1880.0	18900	20 MHz/QPSK	1	0	0	16.1	0.235	0.26
		Dack	1880.0	18900	20 MHz/QPSK	50	0	0	16.0	0.346	0.39
		Tan	1880.0	18900	20 MHz/QPSK	1	0	0	16.1	0.572	0.63
		тор	1880.0	18900	20 MHz/QPSK	50	0	0	16.0	0.566	0.64
		Diaht	1880.0	18900	20 MHz/QPSK	1	0	0	16.1	0.108	0.12
		Right	1880.0	18900	20 MHz/QPSK	50	0	0	16.0	0.101	0.11
		Back w/Brown Case	1880.0	18900	20 MHz/QPSK	1	0	0	16.1	0.102	0.11
		Back w/Gray Case	1880.0	18900	20 MHz/QPSK	1	0	0	16.1	0.111	0.12
0		Back w/Gray Case Laptop	1880.0	18900	20 MHz/QPSK	1	0	0	22.5	0.0956	0.14
mm		Pook	26365	1882.5	20 MHz/QPSK	1	0	0	15.4	0.221	0.25
		DACK	26365	1882.5	20 MHz/QPSK	50	0	0	15.0	0.388	0.49
	9	Ton	26365	1882.5	20 MHz/QPSK	1	0	0	15.4	0.616	0.71
		тор	26365	1882.5	20 MHz/QPSK	50	0	0	15.0	0.548	0.69
		Pight	26365	1882.5	20 MHz/QPSK	1	0	0	15.4	0.102	0.12
		Kight	26365	1882.5	20 MHz/QPSK	50	0	0	15.0	0.0943	0.12
		Back w/Brown Case	26365	1882.5	20 MHz/QPSK	1	0	0	15.4	0.109	0.13
		Back w/Gray Case	26365	1882.5	20 MHz/QPSK	1	0	0	15.4	0.117	0.13
		Back w/Gray Case Laptop	26365	1882.5	20 MHz/QPSK	1	0	0	22.8	0.0946	0.13

Body 1.6 W/kg (mW/g) averaged over 1 gram

1. SAR Measurement Phantom Configuration SAR Configuration

Left Head	
Head	
Test Code	

- Test Signal Call Mode
 Test Configuration
- Test Configuration With Belt Clip
 Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

Eli4

Right Head

Body Base Station Simulator Without Belt Clip

SAR Data Summary – 2300 MHz Body – LTE Band 30

MEASUREMENT RESULTS

						-	-				
Gap	Plot	Position	Frequ	uency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured	Reported
			MHz	Ch.	Wouldton	5120	Unset	Target	(dBm)	SAN (W/Ng)	SAN (W/Ng)
		Back	2310	27710	10 MHz/QPSK	1	0	0	12.7	0.525	0.63
		Dack	2310	27710	10 MHz/QPSK	25	12	0	12.8	0.420	0.49
	10		2310	27710	10 MHz/QPSK	1	0	0	12.7	0.992	1.19
		Тор	2310	27710	10 MHz/QPSK	25	12	0	12.8	0.809	0.95
			2310	27710	10 MHz/QPSK	50	0	0	12.6	0.769	0.95
		Diabt	2310	27710	10 MHz/QPSK	1	0	0	12.7	0.147	0.18
0		Right	2310	27710	10 MHz/QPSK	25	12	0	12.8	0.159	0.19
mm		Back w/Brown Case	2310	27710	10 MHz/QPSK	1	0	0	12.7	0.236	0.28
		Back w/Gray Case	2310	27710	10 MHz/QPSK	1	0	0	12.7	0.229	0.28
		Back w/Gray Case Laptop	2310	27710	10 MHz/QPSK	1	0	0	22.0	0.104	0.13
		Repeat	2310	27710	10 MHz/QPSK	1	0	0	12.7	0.975	1.17

Body 1.6 W/kg (mW/g) averaged over 1 gram

- 1. SAR Measurement Phantom Configuration Left Head SAR Configuration Head
- 2. Test Signal Call Mode Test Code
- 3. Test Configuration With Belt Clip
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

X	Eli4
$\overline{\checkmark}$	Rod

Right Head

- Body
- Base Station Simulator
- _____without Ben Chp

SAR Data Summary – 2500 MHz Body – LTE Band 7

MEASUREMENT RESULTS

Gap	Plot	Position	Frequ	uency	BW/	RB	RB	MPR	End Power	Measured SAR	Reported SAR
-			MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)
		Pook	2535.0	21100	20 MHz/QPSK	1	0	0	13.4	0.505	0.58
		Dack	2535.0	21100	20 MHz/QPSK	50	0	0	13.6	0.398	0.44
			2507.5	20850	20 MHz/QPSK	1	0	0	13.7	0.796	0.85
	11	Тор	2535.0	21100	20 MHz/QPSK	1	0	0	13.4	0.849	0.98
			2562.5	21350	20 MHz/QPSK	1	0	0	13.6	0.821	0.90
			2535.0	21100	20 MHz/QPSK	50	0	0	13.6	0.679	0.75
			2535.0	21100	20 MHz/QPSK	100	0	0	13.3	0.602	0.71
0		Pight	2535.0	21100	20 MHz/QPSK	1	0	0	13.4	0.563	0.65
mm		Right	2535.0	21100	20 MHz/QPSK	50	0	0	13.6	0.448	0.49
		Back w/Brown Case	2535.0	21100	20 MHz/QPSK	1	0	0	13.4	0.146	0.17
		Back w/Gray Case	2535.0	21100	20 MHz/QPSK	1	0	0	13.4	0.195	0.22
		Back w/Gray Case Laptop	2535.0	21100	20 MHz/QPSK	1	0	0	23.9	0.0866	0.10
		Repeat	2535.0	21100	20 MHz/QPSK	1	0	0	13.4	0.822	0.94

Body 1.6 W/kg (mW/g) averaged over 1 gram

- 1. SAR Measurement Phantom Configuration
 - 1 Left Head
 - Head Test Code
- SAR Configuration 2. Test Signal Call Mode
- 3. Test Configuration With Belt Clip
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

⊠Eli4 ⊠Body Right Head

- \boxtimes Body \boxtimes Base Station Simulator
- \Box Without Belt Clip \Box N/A

SAR Data Summary –LTE Bands 38 & 41

MEASUREMENT RESULTS

		[]								1	
Gap	Plot	Position	Frequ	ency	BW/ Medulation	RB	RB	MPR Torract	End Power	Measured SAR	Reported SAR
			MHz	Ch.	Modulation	Size	Unset	Target	(dBm)	(W/kg)	(W/kg)
		Pook	2595	38000	20 MHz/QPSK	1	0	0	16.7	0.321	0.39
		Dack	2595	38000	20 MHz/QPSK	50	24	0	16.7	0.336	0.40
		Top	2595	38000	20 MHz/QPSK	1	0	0	16.7	0.737	0.89
		төр	2595	38000	20 MHz/QPSK	50	24	0	16.7	0.642	0.77
		Diabt	2595	38000	20 MHz/QPSK	1	0	0	16.7	0.359	0.43
		Right	2595	38000	20 MHz/QPSK	50	24	0	16.7	0.372	0.45
		Back w/Brown Case	2595	38000	20 MHz/QPSK	1	0	0	16.7	0.0973	0.12
		Back w/Gray Case	2595	38000	20 MHz/QPSK	1	0	0	16.7	0.106	0.13
		Back w/Gray Case Laptop	2595	38000	20 MHz/QPSK	1	0	0	22.6	0.0371	0.05
		Pook	2593	40620	20 MHz/QPSK	1	0	0	14.6	0.460	0.57
		Dack	2593	40620	20 MHz/QPSK	50	24	0	14.8	0.467	0.55
0 mm			2506	39750	20 MHz/QPSK	1	0	0	14.7	0.806	0.97
0 mm			2549.5	40185	20 MHz/QPSK	1	0	0	14.5	0.796	1.00
	12		2593	40620	20 MHz/QPSK	1	0	0	14.6	0.811	1.00
		Тор	2636.5	41055	20 MHz/QPSK	1	0	0	14.9	0.782	0.90
			2680	41490	20 MHz/QPSK	1	0	0	15.2	0.793	0.85
			2593	40620	20 MHz/QPSK	50	24	0	14.8	0.711	0.84
			2593	40620	20 MHz/QPSK	100	0	0	14.5	0.673	0.85
		Pight	2593	40620	20 MHz/QPSK	1	0	0	14.6	0.424	0.52
		Right	2593	40620	20 MHz/QPSK	50	24	0	14.8	0.474	0.56
		Back w/Brown Case	2593	40620	20 MHz/QPSK	1	0	0	14.6	0.103	0.13
		Back w/Gray Case	2593	40620	20 MHz/QPSK	1	0	0	14.6	0.126	0.16
·		Back w/Gray Case Laptop	2593	40620	20 MHz/QPSK	1	0	0	22.8	0.0452	0.06
		Repeated	2593	40620	20 MHz/QPSK	1	0	0	14.6	0.796	0.98

Body 1.6 W/kg (mW/g) averaged over 1 gram

N/A

Right Head

- 1. SAR Measurement Phantom Configuration SAR Configuration
- □Left Head □Head

Test Code

- 2. Test Signal Call Mode
- Test Signal Call Mode
 Test Configuration
 - figuration With Belt Clip
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05 v02r05 clause 5.4. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05 v02r05. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4. A duty cycle of 1:1.58 is the highest duty cycle achievable which was used for testing Band 41.

Eli4

Body

Base Station Simulator

Without Belt Clip

SAR Data Summary – 2450 MHz Body 802.11b & BT

MEASUREMENT RESULTS

Plat	Con	Antonno	Position	Frequ	ency	Modulation	Antonno	End Power	Measured	Reported		
FIOL	Gap	Antenna	FUSICION	MHz	Ch.	Wouldton	Antenna	(dBm)	(W/kg)	(W/kg)		
				2437	6	DSSS	Main	17.00	0.567	0.57		
		Book	2462	11	DSSS	IVIAIIT	17.00	0.522	0.52			
13			Back	2437	6	DSSS	Διιχ	17.00	0.923	0.92		
				2462	11	DSSS	Aux	17.00	0.839	0.84		
			Top	2437	6	DSSS	Main	17.00	0.163	0.16		
	0		Тор	2437	6	DSSS	Aux	17.00	0.354	0.35		
	0	Inpaq	Back	2440	39	GFSK	Aux	11.47	0.109	0.11		
			Тор	2440	39	GFSK	Aux	11.47	0.0587	0.06		
			Back w/Brn	2437	6	DSSS	Main	17.00	0.175	0.18		
					Case	2437	6	DSSS	Aux	17.00	0.210	0.21
		Back w/Gry	2437	6	DSSS	Main	17.00	0.236	0.24			
			Case	2437	6	DSSS	Aux	17.00	0.357	0.36		
			Repeated	2437	6	DSSS	Aux	17.00	0.904	0.90		

Body 1.6 W/kg (mW/g) averaged over 1 gram

Base Station Simulator Without Belt Clip $\square N/A$

1. Battery is fully charged for all tests. Conducted Power Measured ERP EIRP 2. SAR Measurement Right Head Phantom Configuration Left Head \boxtimes Eli4 \boxtimes Body

SAR Configuration 3. Test Signal Call Mode

4. Test Configuration

Head

Test Code

With Belt Clip

5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

SAR Data Summary – 5250 MHz Body 802.11a

MEASUREMENT RESULTS

Plot	Gan	Antonna	Position	Frequ	ency	Modulation	Antonna	End Power	Measured	Reported		
	Oap	Antenna	rosition	MHz	Ch.	Modulation	Antenna	(dBm)	(W/kg)	(W/kg)		
				5300	60	OFDM	Main	17.00	0.346	0.35		
14			Back	5280	56	OFDM	Διιχ	17.00	0.951	0.95		
				5300	60	OFDM	Aux	17.00	0.914	0.91		
				5300	60	OFDM	Main	17.00	0.372	0.37		
	0		Тор	5280	56	OFDM	Διιχ	17.00	0.443	0.44		
	0	Inpaq		5300	60	OFDM	Aux	17.00	0.457	0.46		
	111111				Back w/Brn	5300	60	OFDM	Main	17.00	0.133	0.13
			Case	5300	60	OFDM	Aux	17.00	0.201	0.20		
			Back w/Gry	5300	60	OFDM	Main	17.00	0.124	0.12		
			Case	5300	60	OFDM	Aux	17.00	0.298	0.30		
			Repeated	5280	56	OFDM	Aux	17.00	0.934	0.93		

Body 1.6 W/kg (mW/g) averaged over 1 gram	

EIRP

- 1. Battery is fully charged for all tests. Power Measured
- SAR Measurement Phantom Configuration SAR Configuration
 Test Signal Call Mode

4. Test Configuration

- Left Head
- Test Code
- With Belt Clip
- Eli4 Right Head Body Base Station Simulator

ERP

5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

SAR Data Summary – 5600 MHz Body 802.11a

MEASUREMENT RESULTS

Plot	Gap	Antenna	Position	Frequ	ency	Modulation	Antenna	End Power	Measured SAR	Reported SAR
				MHz	Ch.			(dBm)	(W/kg)	(W/kg)
				5620	124	OFDM	Main	17.00	0.331	0.33
			Back	5580	116	OFDM	Aux	17.00	0.478	0.48
				5620	124	OFDM	Aux	17.00	0.502	0.50
			5580	116	OFDM	Main	17.00	0.471	0.47	
	0	Inpaq	Top	5620	124	OFDM	FDM Main 17.0	17.00	0.531	0.53
	0		төр	5580	116	OFDM Aux 1	17.00	0.575	0.58	
15				5620	124	OFDM	Aux	17.00	0.579	0.58
			Back w/Brn	5620	124	OFDM	Main	17.00	0.0879	0.09
			Case	5620	124	OFDM	Aux	17.00	0.102	0.10
			Back w/Gry	5620	124	OFDM	Main	17.00	0.0726	0.07
			Case	5620	124	OFDM	Aux	17.00	0.105	0.11
							1	Body I.6 W/kg (mW averaged over 1 gra	//g) am	

 Battery is fully charged for all tests. Power Measured ⊠Conducted

2. SAR Measurement Phantom Configuration SAR Configuration

Left Head

- ∐Head ⊠Test Code
- With Belt Clip

Eli4 Body Base Station Simulator Without Belt Clip

ERP

EIRP

Right Head

N/A

Test Signal Call Mode
 Test Configuration

5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

SAR Data Summary – 5800 MHz Body 802.11a

MEASUREMENT RESULTS

Plot	Con	Antonno	Desition	Frequency		Madulation	Antonno	End Power	Measured	Reported
	Gap	Antenna	FUSILION	MHz	Ch.	wouldtion	Antenna	(dBm)	(W/kg)	(W/kg)
				5785	157	OFDM	Main	17.00	0.464	0.46
			Dook	5825	165	OFDM	wam	17.00	0.488	0.49
			Dack	5785	157	OFDM	Διιχ	17.00	0.464	0.46
16				5825	165	OFDM	Aux	17.00	0.510	0.51
				5785	157	OFDM	Main	17.00	0.498	0.50
	0	Innog	Tan	5825	165	OFDM		17.00	0.489	0.49
	mm	inpaq	төр	5785	157	OFDM	Aux	17.00	0.491	0.49
				5825	165	OFDM		17.00	0.480	0.48
			Back w/Brn	5785	157	OFDM	Main	17.00	0.133	0.13
			Case	5785	157	OFDM	Aux	17.00	0.0503	0.05
			Back w/Gry	5785	157	OFDM	Main	17.00	0.123	0.12
			Case	5785	157	OFDM	Aux	17.00	0.0920	0.09

Base Station Simulator

Without Belt Clip $\square N/A$

EIRP

Right Head

ERP

 \boxtimes Eli4

 \boxtimes Body

- 1. Battery is fully charged for all tests. Conducted Power Measured
- 2. SAR Measurement

Phantom Configuration

- Left Head
- Head
- SAR Configuration 3. Test Signal Call Mode Test Code 4. Test Configuration
 - With Belt Clip
- 5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

SAR Data Summary – Simultaneous Evaluation

MEASUREMENT RESULTS – WWAN-WiFi (Main)								
Frequency		Modulation	Frequency		Modulation	SAR	SAR	SAR Total
MHz	Ch.	wouldton	MHz	Ch.	woodation		UAI12	OAN IOLAI
2437	6	DSSS	2310	27710	QPSK	0.57	1.19	1.76
						Bo 1.6 W/k averaged	ody g (mW/g) over 1 gram	

The WWAN and main hotspots are a minimum of 56 mm apart. Using the highest reported SAR to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.04 which meets the requirements of KDB 447498 section 4.3.2 3) on page 13. The calculation is shown below.

Simultaneous Separation Ratio Calculation

 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits

 $(0.57 + 1.19)^{1.5}/56 = 0.04$

MEASUREMENT RESULTS – WWAN-WiFi (Aux)								
Frequency		Modulation	Frequency		Modulation	SAR.	SAR.	SAR Total
MHz	Ch.	modulation	MHz	Ch.	wouldton		UAIX2	Unit I Utal
5280	56	OFDM	782.0	23230	QPSK	0.95	1.19	2.14
						Bo 1.6 W/k averaged	ody g (mW/g) over 1 gram	

The WWAN and aux antennas are a minimum of 116 mm apart. Using the highest reported SAR to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.03 which meets the requirements of KDB 447498 section 4.3.2 3) on page 13. The calculation is shown below.

Simultaneous Separation Ratio Calculation

 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits

 $(0.95 + 1.19)^{1.5}/116 = 0.03$

MEASUREMENT RESULTS – BT								
Frequency		Modulation	Frequency		Modulation	SAP.	SAP.	SAR Total
MHz	Ch.	Modulation	MHz	Ch.	modulation	0, 11	URIN2	OAR Iotal
2437	6	DSSS	2440	39	GFSK	0.57	0.11	0.68
5300	60	OFDM	2440	39	GFSK	0.37	0.11	0.48
5620	124	OFDM	2440	39	GFSK	0.53	0.11	0.64
5785	157	OFDM	2440	39	GFSK	0.50	0.11	0.61
						Bo 1.6 W/k averaged	ody g (mW/g) over 1 gram	

The sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v06 section 4.3.2 page 11.

MEASUREMENT RESULTS – MIMO (No BT)								
Frequency		Modulation	Frequency		Modulation	SAP.	SAP.	
MHz	Ch.	modulation	MHz	Ch.	modulation	0, 111	UAIX2	Unit Total
2437	6	DSSS	2437	6	DSSS	0.57	0.92	1.49
5300	60	OFDM	5280	56	OFDM	0.37	0.95	1.32
5620	124	OFDM	5620	124	OFDM	0.53	0.58	1.11
5785	157	OFDM	5825	165	OFDM	0.50	0.51	1.01
						B 1.6 W/k averaged	ody (g (mW/g) over 1 gram	

The sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v06 section 4.3.2 page 11.

MEASUREMENT RESULTS – MIMO (With BT)								
Frequency		Modulation	Frequency		Modulation	SAR		SAR Total
MHz	Ch.	modulution	MHz	Ch.	modulation	OAN	URINZ I DI	OAR IOU
5300	60	OFDM	5280	56	OFDM	0.37	1.06	1.43
5620	124	OFDM	5620	124	OFDM	0.53	0.69	1.22
5785	157	OFDM	5825	165	OFDM	0.50	0.62	1.12
						Bo 1.6 W/k averaged	ody g (mW/g) over 1 gram	

The sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v06 section 4.3.2 page 11.

11. Test Equipment List

Туре	Calibration Due Date	Calibration Done Date	Serial Number
Staubli Robot TX60L	N/A	N/A	F07/55M6A1/A/01
Measurement Controller CS8c	N/A	N/A	1012
ELI4 Flat Phantom	N/A	N/A	1065
Device Holder	N/A	N/A	N/A
Data Acquisition Electronics 4	08/10/2019	08/10/2018	759
Data Acquisition Electronics 4	04/16/2020	04/16/2019	1416
SPEAG E-Field Probe EX3DV4	04/24/2020	04/24/2019	3662
SPEAG E-Field Probe EX3DV4	08/27/2019	08/27/2018	3693
Speag Validation Dipole D750V2	07/13/2019	07/13/2018	1016
Speag Validation Dipole D835V2	07/13/2019	07/13/2018	4d089
Speag Validation Dipole D1750V2	07/20/2019	07/20/2018	1018
Speag Validation Dipole D1900V2	07/13/2019	07/13/2018	5d116
Speag Validation Dipole D2300V2	08/20/2019	08/20/2018	1060
Speag Validation Dipole D2550V2	07/12/2019	07/12/2018	1003
Speag Validation Dipole D2450V2	07/12/2019	07/12/2018	829
Speag Validation Dipole D5GHzV2	07/19/2019	07/19/2018	1085
Agilent N1911A Power Meter	04/27/2020	04/27/2019	GB45100254
Agilent N1922A Power Sensor	04/27/2020	04/27/2019	MY45240464
Advantest R3261A Spectrum Analyzer	03/25/2020	03/25/2019	31720068
Agilent (HP) 8350B Signal Generator	03/20/2020	03/20/2019	2749A10226
Agilent (HP) 83525A RF Plug-In	03/20/2020	03/20/2019	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/20/2020	03/20/2019	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/20/2020	03/20/2019	2904A00595
Agilent (HP) 8960 Base Station Sim.	03/19/2020	03/19/2019	MY48360364
Anritsu MT8820C	01/26/2020	01/26/2019	6201176199
Aprel Dielectric Probe Assembly	N/A	N/A	0011
Body Equivalent Matter (750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (835 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1900 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2300 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2550 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2450 MHz)	N/A	N/A	N/A
Body Equivalent Matter (5 GHz)	N/A	N/A	N/A

12. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

13. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996

[2] ANSI/IEEE C95.1 – 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.

[3] ANSI/IEEE C95.3 – 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 1992.

[4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.

[5] IEEE Standard 1528 – 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.

[6] Industry Canada, RSS – 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015.

[7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

Test Result for UIM Dielectric Parameter Wed 29/May/2019							
Freq Freque	ncy(GHz)	_				
FCC_eB Limits	for Bo	dy Epsi	llon				
FCC_sB Limits	for Bo	dy Sign	na				
Test_e Epsilo	n of	UIM					
Test_s Sigma 🛛	of UIM						
* * * * * * * * * * * * *	* * * * * * *	******	* * * * * * *	* * * * * * * * * * * * * * * * * * * *			
Freq	FCC_eB	FCC_sB	Test_e	Test_s			
0.7000	55.73	0.96	55.60	0.95			
0.7040	55.714	0.96	55.588	0.954*			
0.7075	55.70	0.96	55.578	0.958*			
0.7100	55.69	0.96	55.57	0.96			
0.7110	55.686	0.96	55.567	0.96*			
0.7200	55.65	0.96	55.54	0.96			
0.7300	55.61	0.96	55.51	0.97			
0.7400	55.57	0.96	55.48	0.97			
0.7500	55.53	0.96	55.45	0.97			
0.7600	55.49	0.96	55.42	0.98			
0.7700	55.45	0.96	55.38	0.98			
0.7800	55.41	0.97	55.32	0.98			
0.7820	55.404	0.97	55.316	0.982*			
0.7900	55.38	0.97	55.30	0.99			
0.7930	55.368	0.97	55.288	0.99*			
0.8000	55.34	0.97	55.26	0.99			

Test Result for UIM Dielectric Parameter Tue 28/May/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 55.32 0.97 54.58 0.95 55.28 0.97 54.53 0.96 Freq 0.8050 0.8150 0.8190 55.264 0.97 54.51 0.964* 55.24 0.97 54.48 0.97 0.8250 * value interpolated **** Test Result for UIM Dielectric Parameter Fri 31/May/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM *****
 Freq
 FCC_eB FCC_sB Test_e Test_s

 1.7100
 53.53
 1.47
 53.34
 1.47
 1.7124 53.525 1.47 53.333 1.472* 1.7200 53.51 1.47 53.31 1.48 53.48 1.48 53.27 1.49 1.7326 53.475 1.48 53.265 1.493* 1.7400 53.461.4853.251.5053.4451.48553.231.505*53.431.4953.211.5153.4251.4953.2051.513* 1.7500 1.7526 1.760053.411.4953.191.521.770053.381.5053.161.531.780053.351.5153.121.54 1.7600

Test Result for UIM Dielectric Parameter Thu 30/May/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FreqFCC_eB FCC_sB Test_e Test_s1.840053.301.5252.661.541.850053.301.5252.681.54 53.30 1.52 52.682 1.542* 1.8524 1.8600 53.30 1.52 52.69 1.55 1.860053.301.5252.691.551.870053.301.5252.711.561.880053.301.5252.731.571.882553.301.5252.7351.57*1.890053.301.5252.751.571.900053.301.5252.771.571.905053.301.5252.7751.575*1.907653.301.5252.781.578*1.910053.301.5252.781.581.920053.301.5252.801.58 * value interpolated Test Result for UIM Dielectric Parameter Mon 03/Jun/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FreqFCC_eB FCC_sB Test_e Test_s2.290052.911.8052.361.812.300052.901.8152.341.822.310052.891.8252.321.83 2.320052.871.8352.301.842.330052.861.8452.291.852.340052.851.8452.271.862.350052.831.8552.251.88

***** Test Result for UIM Dielectric Parameter Mon 03/Jun/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

 Freq
 FCC_eB FCC_sB Test_e Test_s

 2.4900
 52.65
 2.01
 51.91
 2.04

 2.5000
 52.628
 2.032
 51.89
 2.05

 2.5060
 52.628
 2.032
 51.872
 2.056*

 2.5100
 52.62
 2.04
 51.86
 2.06

 2.5200
 52.61
 2.05
 51.83
 2.07

 2.5300
 52.595
 2.07
 51.805
 2.085*

 2.5400
 52.59
 2.08
 51.80
 2.09

 2.5495
 52.571
 2.09
 51.781
 2.109*

 2.5500
 52.57
 2.09
 51.781
 2.109*

 2.5500
 52.57
 2.09
 51.781
 2.109*

 2.5500
 52.57
 2.09
 51.781
 2.109*

 2.5500
 52.52
 2.15
 51.70
 2.16

 2.5900
 52.52
 2.15
 51.70
 2.16

 2.5900
 52.51
 2.16
 51.69
 2.17

 2.6100
 52.50
 2.18
 51.66
 2.19

 2.6200
 52.48
 2.19
 5 FreqFCC_eB FCC_sB Test_e Test_s2.490052.65 2.01 51.91 2.042.500052.64 2.02 51.89 2.05

***** Test Result for UIM Dielectric Parameter Fri 08/May/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FCC_eB FCC_sB Test_e Test_s 49.15 5.18 49.22 5.10 49.12 5.21 49.19 5.12 Freq

 5.1000
 49.15
 5.18
 49.22
 5.10

 5.1200
 49.12
 5.21
 49.19
 5.12

 5.1400
 49.07
 5.25
 49.13
 5.16

 5.1800
 49.07
 5.22
 49.13
 5.16

 5.1800
 49.04
 5.28
 49.10
 5.19

 5.2000
 49.01
 5.30
 49.07
 5.21

 5.2100
 48.99
 5.32
 49.04
 5.23

 5.2200
 48.99
 5.32
 49.04
 5.25

 5.2400
 48.945
 5.36
 48.995
 5.265*

 5.2600
 48.93
 5.37
 48.98
 5.28

 5.2800
 48.91
 5.39
 48.95
 5.32*

 5.300
 48.89
 5.405
 48.93
 5.32*

 5.300
 48.85
 5.44
 48.89
 5.36

 5.3400
 48.82
 5.46
 48.86
 5.38

 5.400
 48.63
 5.63
 48.62
 5.55

 5.000
 48.61
 5.65
 48.62
 5.58

 5.400
 48.63
 5. 5.1000 5.1200 5.1400 49.10 5.23 49.16 5.14

Plot 1

DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN: 1016

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used: f = 750 MHz; σ = 0.97 S/m; ϵ_r = 55.45; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/29/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.55, 9.55, 9.55); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.06 W/kg

750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.487 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.36 W/kg PIN=100 mW **SAR(1 g) = 0.869 W/kg; SAR(10 g) = 0.571 W/kg**

Maximum value of SAR (measured) = 1.11 W/kg

Report Number: SAR.20190603

Plot 2

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN: 4d089

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used: f = 835 MHz; σ = 0.98 S/m; ϵ_r = 54.44; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/28/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(9.34, 9.34, 9.34); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

835 MHz Body/Verification/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.27 W/kg

835 MHz Body/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.539 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.52 W/kg PIN=100 mW SAR(1 g) = 0.959 W/kg; SAR(10 g) = 0.634 W/kg Maximum value of SAR (measured) = 1.31 W/kg

Report Number: SAR.20190603

Plot 3

DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN: 1018

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1750 MHz; σ = 1.51 S/m; ϵ_r = 53.21; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/31/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.95, 7.95, 7.95); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.29 W/kg

1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.296 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 6.81 W/kg PIN=100 mW SAR(1 g) = 3.71 W/kg; SAR(10 g) = 2.01 W/kg

Maximum value of SAR (measured) = 5.46 W/kg

Report Number: SAR.20190603

Plot 4

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN: 5d116

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz; σ = 1.57 S/m; ϵ_r = 52.77; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/30/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.69, 7.69, 7.69); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1900 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.61 W/kg

1900 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.721 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 6.73 W/kg PIN=100 mW **SAR(1 g) = 4.02 W/kg; SAR(10 g) = 1.94 W/kg** Maximum value of SAR (measured) = 5.64 W/kg

Report Number: SAR.20190603

Plot 5

DUT: Dipole 2300 MHz D2300V2; Type: D2300V2; Serial: D2300V2 - SN: 1060

Communication System: CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: MSL2300; Medium parameters used: f = 2300 MHz; σ = 1.82 S/m; ϵ_r = 52.34; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/3/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.43, 7.43, 7.43); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Body Verification/2300 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.87 W/kg

Body Verification/2300 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.954 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.06 W/kg Pin= 100 mW SAR(1 g) = 4.79 W/kg; SAR(10 g) = 2.21 W/kg

Maximum value of SAR (measured) = 8.95 W/kg

Report Number: SAR.20190603

Plot 6

DUT: Dipole 2550 MHz D2550V2; Type: D2550V2; Serial: D2550V2 - SN: 1003

Communication System: CW; Frequency: 2550 MHz; Duty Cycle: 1:1 Medium: MSL2600; Medium parameters used: f = 2550 MHz; σ = 2.11 S/m; ϵ_r = 51.78; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/3/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.12, 7.12, 7.12); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

2550 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.12 W/kg

2550 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.627 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 11.4 W/kg PIN=100 mW SAR(1 g) = 5.37 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 9.16 W/kg

Report Number: SAR.20190603

Plot 7

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 829

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used: f = 2450 MHz; σ = 1.96 S/m; ϵ_r = 52.64; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/8/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(7.29, 7.29, 7.29); Calibrated: 8/27/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Body Verification/2450 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.68 W/kg

Body Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.751 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 10.7 W/kg Pin=100 mW SAR(1 g) = 5.22 W/kg; SAR(10 g) = 2.41 W/kg

Maximum value of SAR (measured) = 5.91 W/kg

Report Number: SAR.20190603

Plot 8

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5250 MHz; σ = 5.265 S/m; ϵ_r = 48.995; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/3/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(4.96, 4.96, 4.96); Calibrated: 8/27/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 1/10/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Body Verification/5250 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.58 W/kg

Body Verification/5250 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.705 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.75 W/kg PIN=10 mW SAR(1 g) = 0.783 W/kg; SAR(10 g) = 0.231 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.65 W/kg

Report Number: SAR.20190603

Plot 9

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5600 MHz; σ = 5.73 S/m; ϵ_r = 48.47; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/3/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(4.77, 4.77, 4.77); Calibrated: 8/27/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 1/10/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Body Verification/5600 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (measured) = 1.64 W/kg

Body Verification/5600 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.892 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.63 W/kg PIN=10 mW SAR(1 g) = 0.806 W/kg; SAR(10 g) = 0.236 W/kg

Maximum value of SAR (measured) = 1.70 W/kg

Report Number: SAR.20190603

Plot 10

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5750 MHz; σ = 5.925 S/m; ϵ_r = 48.245; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/3/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(4.67, 4.67, 4.67); Calibrated: 8/27/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 1/10/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Body Verification/5750 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.56 W/kg

Body Verification/5750 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.621 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.47 W/kg PIN=10 mW SAR(1 g) = 0.779 W/kg; SAR(10 g) = 0.228 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.63 W/kg

Report Number: SAR.20190603

Appendix B – SAR Test Data Plots

Plot 1

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 707.5 MHz; σ = 0.958 S/m; ϵ_r = 55.578; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/29/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.57, 9.57, 9.57); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz B12 LTE/Right Mid 1 RB 24 Offset/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.04 W/kg

750 MHz B12 LTE/Right Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.37 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 0.705 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.75 W/kg

Plot 2

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 782 MHz; σ = 0.982 S/m; ϵ_r = 55.316; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/29/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.57, 9.57, 9.57); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz B13 LTE/Right Mid 1 RB 24 Offset/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.944 W/kg

750 MHz B13 LTE/Right Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.053 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.53 W/kg SAR(1 g) = 0.606 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.36 W/kg

Plot 3

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 793 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 793 MHz; σ = 0.99 S/m; ϵ_r = 55.288; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/29/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.57, 9.57, 9.57); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz B14 LTE/Right Mid 1 RB 24 Offset/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.85 W/kg

750 MHz B14 LTE/Right Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.42 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.32 W/kg SAR(1 g) = 0.817 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.86 W/kg

Plot 4

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.982 S/m; ϵ_r = 54.432; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/28/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.34, 9.34, 9.34); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

835 MHz WCDMA/Top Mid/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.998 W/kg

835 MHz WCDMA/Top Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.39 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.923 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.04 W/kg

Plot 5

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 831.5 MHz; σ = 0.977 S/m; ϵ_r = 54.454; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/28/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.34, 9.34, 9.34); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

835 MHz B26 LTE/Right Mid 1 RB 24 Offset/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.55 W/kg

835 MHz B26 LTE/Right Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.56 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.84 W/kg SAR(1 g) = 0.750 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.53 W/kg

Plot 6

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: UMTS (WCDMA); Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 1732.6 MHz; σ = 1.493 S/m; ϵ_r = 53.265; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/31/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.95, 7.95, 7.95); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1750 MHz WCDMA/Top Mid/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.22 W/kg

1750 MHz WCDMA/Top Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.369 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.74 W/kg SAR(1 g) = 0.711 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.34 W/kg

Plot 7

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used (interpolated): f = 1745 MHz; σ = 1.505 S/m; ϵ_r = 53.23; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/1/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.95, 7.95, 7.95); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1750 MHz B66 LTE/Top Mid 1 RB 49 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.05 W/kg

1750 MHz B66 LTE/Top Mid 1 RB 49 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.240 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.88 W/kg SAR(1 g) = 0.858 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.44 W/kg

Plot 8

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: UMTS (WCDMA); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1880 MHz; σ = 1.57 S/m; ϵ_r = 52.73; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/31/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.69, 7.69, 7.69); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1900 MHz WCDMA/Top Mid/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.06 W/kg

1900 MHz WCDMA/Top Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.896 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.40 W/kg **SAR(1 g) = 0.886 W/kg** Maximum value of SAR (measured) = 1.13 W/kg

Plot 9

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used (interpolated): f = 1882.5 MHz; σ = 1.57 S/m; ϵ_r = 52.735; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/30/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.69, 7.69, 7.69); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1900 MHz B25 LTE/Top Mid 1 RB 49 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.875 W/kg

1900 MHz B25 LTE/Top Mid 1 RB 49 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.7130 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.34 W/kg SAR(1 g) = 0.616 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.03 W/kg

Plot 10

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: MSL2300; Medium parameters used: f = 2310 MHz; σ = 1.83 S/m; ϵ_r = 52.32; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/3/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.43, 7.43, 7.43); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

2300 MHz B30 LTE/Top Mid 1 RB 24 Offset/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.13 W/kg

2300 MHz B30 LTE/Top Mid 1 RB 24 Offset/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 2.24 W/kg SAR(1 g) = 0.992 W/kg Maximum value of SAR (measured) = 1.61 W/kg

Plot 11

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: MSL2550; Medium parameters used (interpolated): f = 2535 MHz; σ = 2.085 S/m; ϵ_r = 51.805; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/3/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.12, 7.12, 7.12); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

2600 MHz B7 LTE/Top Mid 1 RB 49 Offset/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.44 W/kg

2600 MHz B7 LTE/Top Mid 1 RB 49 Offset/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 0.849 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Plot 12

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2593 MHz; Duty Cycle: 1:1 Medium: MSL2550; Medium parameters used (extrapolated): f = 2593 MHz; σ = 2.163 S/m; ϵ_r = 51.697; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 6/4/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.12, 7.12, 7.12); Calibrated: 4/24/2019; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/16/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

2500 MHz B41 LTE/Top Mid 1 RB 49 Offset/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm

Info: Extrapolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.31 W/kg

2500 MHz B41 LTE/Top Mid 1 RB 49 Offset/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.63 W/kg SAR(1 g) = 0.811 W/kg

Info: Extrapolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.31 W/kg

Plot 13

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11b (DSSS, 1 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used (interpolated): f = 2437 MHz; σ = 1.947 S/m; ϵ_r = 52.666; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/8/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(7.26, 7.26, 7.26); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

2450 MHz Inpaq NA/Tablet Back Tx2 Mid/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.72 W/kg

2450 MHz Inpaq NA/Tablet Back Tx2 Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.202 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.04 W/kg SAR(1 g) = 0.923 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.72 W/kg

Plot 14

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5280 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5280 MHz; σ = 5.31 S/m; ϵ_r = 48.95; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/3/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(4.46, 4.46, 4.46); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

5200 MHz Inpaq NA/Tablet Back Tx2 56/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.93 W/kg

5200 MHz Inpaq NA/Tablet Back Tx2 56/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 4.337 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 4.08 W/kg SAR(1 g) = 0.951 W/kg

Plot 15

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5620 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5620 MHz; σ = 5.75 S/m; ϵ_r = 48.44; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/7/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(4, 4, 4); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

5600 MHz Inpaq NA/Tablet Top Tx2 124/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.08 W/kg

5600 MHz Inpaq NA/Tablet Top Tx2 124/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.620 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.20 W/kg SAR(1 g) = 0.579 W/kg Maximum value of SAR (measured) = 1.14 W/kg

Plot 16

DUT: HSN-C04C; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5825 MHz; σ = 6.025 S/m; ϵ_r = 48.133; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 5/6/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3693; ConvF(4.21, 4.21, 4.21); Calibrated: 8/18/2017; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/20/2018 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

5800 MHz Inpaq NA/Tablet Back Tx2 165/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.747 W/kg

5800 MHz Inpaq NA/Tablet Back Tx2 165/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0.1940 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.89 W/kg SAR(1 g) = 0.510 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.33 W/kg

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С

Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RF Exposure Lab Client

Certificate No: EX3-3662_Apr19

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3662
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	April 24, 2019
This calibration certificate docume The measurements and the uncert	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	
			V S
Approved by:	Katja Pokovic	Technical Manager	20101
			Issued: April 25, 2019
This calibration certificate	shall not be reproduced except in	full without written approval of the labo	pratory.

Certificate No: EX3-3662_Apr19

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- *NORMx*, *y*, *z*: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.43	0.45	0.50	± 10.1 %
DCP (mV) ^B	100.7	100.3	97.0	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc [±] (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	157.7	±1.9 %	± 4.7 %
		Y	0.0	0.0	1.0		152.9		
		Y	0.0	0.0	1.0		153.2		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
^B Numerical linearization parameter: uncertainty not required.
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-22.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.57	9.57	9.57	0.49	0.80	± 12.0 %
900	41.5	0.97	9.12	9.12	9.12	0.51	0.80	± 12.0 %
1750	40.1	1.37	8.23	8.23	8.23	0.38	0.85	± 12.0 %
1900	40.0	1.40	7.90	7.90	7.90	0.37	0.85	± 12.0 %
2300	39.5	1.67	7.50	7.50	7.50	0.39	0.85	± 12.0 %
2450	39.2	1.80	7.33	7.33	7.33	0.41	0.84	± 12.0 %
2600	39.0	1.96	7.21	7.21	7.21	0.42	0.85	± 12.0 %
3500	37.9	2.91	7.07	7.07	7.07	0.30	1.20	± 13.1 %
3700	37.7	3.12	6.92	6.92	6.92	0.35	1.25	± 13.1 %
5250	35.9	4.71	5.05	5.05	5.05	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.81	4.81	4.81	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.90	4.90	4.90	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.55	9.55	9.55	0.47	0.80	± 12.0 %
900	55.0	1.05	9.34	9.34	9.34	0.45	0.80	± 12.0 %
1750	53.4	1.49	7.95	7.95	7.95	0.40	0.85	± 12.0 %
1900	53.3	1.52	7.69	7.69	7.69	0.43	0.84	± 12.0 %
2300	52.9	1.81	7.43	7.43	7.43	0.40	0.86	± 12.0 %
2450	52.7	1.95	7.36	7.36	7.36	0.40	0.85	± 12.0 %
2600	52.5	2.16	7.12	7.12	7.12	0.22	0.97	± 12.0 %
3500	51.3	3.31	6.83	6.83	6.83	0.30	1.25	± 13.1 %
3700	51.0	3.55	6.52	6.52	6.52	0.35	1.25	± 13.1 %
5250	48.9	5.36	4.30	4.30	4.30	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.87	3.87	3.87	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.07	4.07	4.07	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

April 24, 2019

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

April 24, 2019

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-3693_Aug18

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3693			
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes			
Calibration date:	August 27, 2018			
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.				

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	CH/2
Approved by:	Katja Pokovic	Technical Manager	PIA
			Issued: August 30, 2018
This calibration certificate	e shall not be reproduced except i	in full without written approval of the labo	pratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3693

Manufactured: April 22, 2009

Calibrated: August 27, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)
Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.39	0.30	0.35	± 10.1 %
DCP (mV) ^B	96.9	97.3	107.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊧] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	133.1	±1.7 %
		Y	0.0	0.0	1.0		130.6	
		Z	0.0	0.0	1.0		133.5	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V⁻¹	T3 ms	T4 V⁻²	T5 V⁻¹	Т6
Х	32.78	256.2	38.66	10.42	1.187	5.061	0.000	0.479	1.010
Y	38.15	291.7	37.34	12.40	1.152	4.996	0.986	0.358	1.004
Z	26.99	197.7	34.43	5.333	0.521	5.037	0.437	0.333	1.004

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.64	9.64	9.64	0.55	0.84	± 12.0 %
835	41.5	0.90	9.37	9.37	9.37	0.37	0.97	± 12.0 %
900	41.5	0.97	9.16	9.16	9.16	0.53	0.80	± 12.0 %
1750	40.1	1.37	8.10	8 10	8 10	0.31	0.86	+ 12 0 %
1900	40.0	1 40	7 78	7 78	7 78	0.28	0.90	+ 12 0 %
2300	39.5	1.40	7.42	7.42	7.10	0.20	0.00	+ 12.0 %
2450	30.2	1.07	6.05	6.05	6.05	0.32	0.92	+ 12.0 %
2400	20.0	1.00	6.00	6.00	6.00	0.35	0.92	± 12.0 %
2000	39.0	1.90	6.90	6.90	6.90	0.30	0.99	± 12.0 %
5250	35.9	4./1	4.96	4.96	4.96	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.77	4.77	4.77	0.40	1.80	<u>± 13.1 %</u>
5750	35.4	5.22	4.67	4.67	4.67	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.77	9.77	9.77	0.46	0.85	± 12.0 %
835	55.2	0.97	9.40	9.40	9.40	0.43	0.89	± 12.0 %
900	55.0	1.05	9.25	9.25	9.25	0.39	0.93	± 12.0 %
1750	53.4	1.49	7,77	7.77	7.77	0.32	0.89	± 12.0 %
1900	53.3	1.52	7.44	7.44	7.44	0.40	0.93	± 12.0 %
2300	52.9	1.81	7.43	7.43	7.43	0.40	0.90	± 12.0 %
2450	52.7	1.95	7.29	7.29	7.29	0.31	0.95	± 12.0 %
2600	52.5	2.16	7.13	7.13	7.13	0.29	1.05	± 12.0 %
5250	48.9	5.36	4.46	4.46	4.46	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.91	3.91	3.91	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.05	4.05	4.05	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

August 27, 2018

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	105.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A	B	С	D	VR	Max Uno ^E
			aв	αeγμν		ав	IIIV	(k=2)
0	CW	Х	0.00	0.00	1.00	0.00	133.1	± 1.7 %
		Y	0.00	0.00	1.00		130.6	
		Z	0.00	0.00	1.00	40.00	133.5	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	2.51	65.57	10.47	10.00	20.0	± 9.6 %
		Y	2.40	65.09	10.16		20.0	
····		Z	1.89	63.20	8.39		20.0	
10011- CAB	UMTS-FDD (WCDMA)	X	0.91	68.37	14.94	0.00	150.0	± 9.6 %
		Y	1.35	74.07	18.63		150.0	
		Z	0.82	66.98	14.05		150.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.06	64.24	15.41	0.41	150.0	± 9.6 %
		Y	1.17	65.38	16.46		150.0	
		Z	1.03	63.69	14.73	4.40	150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	4.62	66.97	17.24	1.46	150.0	± 9.6 %
		Y	4.73	66.91	17.24		150.0	
		Z	4.44	66.96	16.86	0.00	150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	X	100.00	113.69	27.59	9.39	50.0	± 9.6 %
		Y	15.92	88.65	20.46		50.0	
		Z	100.00	107.55	24.08	0.57	50.0	100%
10023- DAC	GPRS-FDD (IDMA, GMSK, IN 0)	X	100.00	113.26	27.45	9.57	50.0	± 9.6 %
		<u>Y</u>	10.59	83.36	18.82		50.0	
10001		Z	35.50	95.64	21.13	0.50	50.0	100%
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	110.83	25.00	6.56	60.0	± 9.6 %
		Y	100.00	107.89	23.67		60.0	
40005		Z	100.00	105.51	21.87	40.57	60.0	
10025- DAC	EDGE-FDD (1DMA, 8PSK, 1N 0)	X	3.94	66.80	23.64	12.57	50.0	± 9.6 %
		Y	4.42	70.18	25.25		50.0	
10000			3.29	03.00	21.01	0.56	<u> </u>	+96%
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-T)		0.10	00.70	01.20	9.50	00.0	± 3 .0 %
		Y	8.90	90.14	31.40		60.0	
40007	CDDC FDD (TDMA, CMCK, TNO 1.2)		5.79	82.38	28.74	1 80	80.0	+96%
DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)		100.00	109.25	23.40	4.00	00.0	1 3.0 %
		Y J	100.00	106.54	22.28		80.0	
10028-	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	104.71	20.86	3.55	100.0	± 9.6 %
		Y	100.00	106.10	21.41		100.0	
		Ż	100.00	103.48	19.41		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	5.40	80.16	26.89	7.80	80.0	± 9.6 %
		Y	5.81	81.12	26.89		80.0	
		Z	3.99	74.82	24.51		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	107.75	23.04	5.30	70.0	± 9.6 %
		Y	100.00	105.38	22.04		70.0	
		Z	100.00	102.15	19.84		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	0.32	60.24	5.01	1.88	100.0	± 9.6 %
		Y	100.00	98.91	17.16		100.0	
		Z	0.21	60.00	4.08		100.0	

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	49.70	283.71	16.38	1.17	100.0	± 9.6 %
CAA			100.00	04.00	11.55			
			21.30	94.28	14.55		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	10.55	88.91	21.86	5.30	70.0	± 9.6 %
		Y	7.04	83.33	20.28		70.0	
		Z	5.31	79.96	17.86		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	1.97	70.15	12.93	1.88	100.0	± 9.6 %
		<u>Y</u>	3.62	77.97	16.97	ļ	100.0	
10025			1.05	64.71	9.63		100.0	
CAA	DH5)		1.21	66.21	10.77	1.17	100.0	± 9.6 %
		7	2.71	75.92	16.05		100.0	
10036-	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	16.37	95.16	23.78	5 30	70.0	+96%
CAA			9.05	87.03	21.55	0.00	70.0	± 9.0 %
		Z	7 29	84 15	19.32	·	70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	1.77	69.16	12.52	1.88	100.0	± 9.6 %
		Y	3.14	76.38	16.39		100.0	· · · · · · · · · · · · · · · · · · ·
10000		Z	0.98	64.10	9.34		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	1.24	66.70	11.11	1.17	100.0	± 9.6 %
		Y	2.88	76.97	16.58		100.0	
10039-			0.76	62.89	8.45	0.00	100.0	
CAB			0.64	62.07	7.96	0.00	150.0	± 9.6 %
		Y 7	4.76	84.60	18.89		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DOPSK, Halfrate)	X	100.00	108.14	24.10	7.78	<u>150.0</u> 50.0	± 9.6 %
		Y	8.20	80.05	16.33		50.0	
		Z	9.72	81.12	15.57		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	65.80	22.18	0.00	150.0	± 9.6 %
		Y	0.05	126.22	5.06		150.0	
10040		Z	0.16	126.88	0.43		150.0	
CAA	Slot, 24)	X	10.50	80.73	19.78	13.80	25.0	± 9.6 %
			6.27	73.47	16.77		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	13.23	86.11	20.42	10.79	40.0	± 9.6 %
		Y	6.76	76.65	16.75		40.0	
		Z	6.92	76.03	15.42		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	12.01	87.16	22.22	9.03	50.0	± 9.6 %
		Y	8.86	82.28	20.46		50.0	
10059		Z	10.91	84.91	20.22		50.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	4.26	75.92	24.41	6.55	100.0	± 9.6 %
		Y 7	4.53	76.62	24.38	•	100.0	
10059-	IEEE 802,11b WiFi 2.4 GHz (DSSS 2	X	0.20 1 12	65.70	22.33	0.61	110.0	+0.00
CAB	Mbps)		1.12	66.02	10.10	0.01	110.0	± 9.0 %
		7	1.24	64.56	17.14		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	134.39	33.58	1.30	110.0	± 9.6 %
	F = /	Y	100.00	136.71	34.87	· ····	110.0	
		Z	12.40	108.39	28.07		110.0	

1

10061-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	X	4.70	89.70	25.19	2.04	110.0	± 9.6 %
CAB		†γ †	4.44	87.85	24.54		110.0	
		Z	2.03	77.34	20.69		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.38	66.79	16.57	0.49	100.0	± 9.6 %
		Y	4.54	66.95	16.76		100.0	
		Z	4.22	66.86	16.25		100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.41	66.93	16.69	0.72	100.0	± 9.6 %
		Y	4.56	67.04	16.83		100.0	
		Z	4.24	66.98	16.36	0.00	100.0	100%
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.64	67.13	16.89	0.86	100.0	± 9.6 %
		Y 7	4.80	67.21	17.01		100.0	
10065-	IEEE 802 11a/b W/iEi 5 GHz (OEDM 18	2 X	4.45	67.14	16.99	1 21	100.0	+96%
CAC	Mbps)		4.00	67.08	17.07	1.21	100.0	20.0 /0
	····· APRI-		4.00	66.96	16.60		100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24	X	4.55	67.05	17.17	1.46	100.0	± 9.6 %
		Y	4.69	67.08	17.21		100.0	
		Z	4.34	66.93	16.73		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	4.86	67.41	17.69	2.04	100.0	± 9.6 %
		Y	4.98	67.30	17.64		100.0	
40000		Z	4.60	67.16	17.18	0.55	100.0	+06%
10068- CAC	Mbps)		4.91	07.37	17.00	2.55	100.0	± 9.0 %
		Y 7	5.01	67.22	17.78		100.0	
10069-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54	X	4.98	67.41	18.07	2.67	100.0	± 9.6 %
		Y	5.09	67.26	17.97		100.0	
		z	4.70	67.15	17.55		100.0	1
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	4.74	67.09	17.56	1.99	100.0	± 9.6 %
		Y	4.83	66.96	17.50		100.0	
		Z	4.54	67.04	17.16		100.0	0.0.0
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.71	67.40	17.79	2.30	100.0	± 9.6 %
		Y	4.80	67.26	17.69		100.0	
10073-	IEEE 802.11g WiFi 2.4 GHz	Z X	4.48	67.21 67.70	17.32	2.83	100.0	± 9.6 %
	(DSSS/OFDM, 18 Mbps)		4.07	07.45	10.00		100.0	
		Y 7	4.87	67.45	17.00		100.0	
10074-	IEEE 802.11g WiFi 2.4 GHz	X	4.84	67.73	18.37	3.30	100.0	± 9.6 %
		Y	4.88	67.39	18.13		100.0	
		Z	4.59	67.52	17.89		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	4.89	67.79	18.64	3.82	90.0	± 9.6 %
		Y	4.92	67.45	18.38		90.0	
		Z	4.63	67.54	18.14		90.0	100%
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	4.95	67.71	18.84	4.15	90.0	± 9.6 %
		<u> </u>	4.96	67.32	18.54		90.0	
10077			4.68	67.94	18.31	1 30	90.0	+96%
CAB	(DSSS/OFDM, 54 Mbps)		4.99	07.04	10.90	4.30	00.0	1 3.0 %
		Y 7	5.00	67.54	18.65	+	90.0	
1	1	L L	T. 1 C	1 07.04	1 10.77	1	1 00.0	1

10081-	CDMA2000 (1xRTT, RC3)	X	0.35	60.00	5.91	0.00	150.0	± 9.6 %
CAB	·	+ v	0.93	68.99	12.63		150.0	
		+ -	0.30	60.00	5 31		150.0	+
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DOPSK_Eultrate)	X	0.74	60.00	4.42	4.77	80.0	± 9.6 %
0/10		Y	0.78	60.00	4.54		80.0	
		Z	0.63	60.00	3.21		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	110.96	25.08	6.56	60.0	± 9.6 %
		Y	100.00	107.95	23.71		60.0	
		Z	100.00	105.61	21.93		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	1.73	68.88	15.45	0.00	150.0	± 9.6 %
		Y	2.11	71.60	17.53		150.0	
		Z	1.64	68.63	14.86		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1.69	68.83	15.43	0.00	150.0	± 9.6 %
		Y	2.06	71.60	17.53		150.0	
		Z	1.60	68.55	14.84		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	8.15	88.80	31.31	9.56	60.0	± 9.6 %
		Y	8.95	90.21	31.41		60.0	
10/00		Z	5.83	82.50	28.78		60.0	
10100- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	2.86	70.20	16.73	0.00	150.0	± 9.6 %
		Y	3.31	72.31	17.94		150.0	
40404		Z	2.70	69.79	16.38		150.0	
10101- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	2.97	67.29	15.87	0.00	150.0	± 9.6 %
		Y	3.22	68.29	16.58		150.0	
10.100		Z	2.86	67.20	15.57		150.0	
10102- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.08	67.33	16.00	0.00	150.0	± 9.6 %
	·····	Y	3.32	68.25	16.66		150.0	
		Z	2.97	67.28	15.71		150.0	
10103- CAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	5.99	75.93	20.73	3.98	65.0	± 9.6 %
		Y	6.07	75.29	20.20		65.0	
		Z	4.92	73.90	19.72		65.0	
10104- CAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	5.78	73.18	20.28	3.98	65.0	± 9.6 %
		Y	6.05	73.33	20.14		65.0	
		Z	4.95	71.50	19.26		65.0	
10105- CAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	5.44	71.81	19.96	3.98	65.0	± 9.6 %
		Y	5.66	71.91	19.81		65.0	
		Z	4.62	69.93	18.84		65.0	
10108- CAF	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.46	69.75	16.61	0.00	150.0	±9.6 %
		Y	2.87	71.83	17.90		150.0	
		Z	2.29	69.26	16.18		150.0	
10109- CAF	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.61	67.38	15.71	0.00	150.0	± 9.6 %
·····		Y	2.88	68.51	16.60		150.0	
40440			2.50	67.30	15.35		150.0	
10110- CAF	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	1.94	69.06	15.97	0.00	150.0	± 9.6 %
		Y	2.36	71.54	17.68		150.0	
		Z	1.77	68.41	15.33		150.0	
10111- CAF	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.37	68.86	15.85	0.00	150.0	± 9.6 %
		Y	2.75	70.67	17.33		150.0	
		Z	2.26	68.83	15.37		150.0	

10112-	LTE-FDD (SC-FDMA, 100% RB, 10	X	2.74	67.47	15.80	0.00	150.0	± 9.6 %
		Y	3.01	68.49	16.64		150.0	
		Z	2.63	67.46	15.47		150.0	
10113- CAF	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.52	69.06	16.02	0.00	150.0	± 9.6 %
		Y	2.90	70.76	17.42		150.0	
		Z	2.40	69.05	15.53		150.0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	4.85	67.10	16.54	0.00	150.0	± 9.6 %
		Y	5.01	67.40	16.77		150.0	
10115			4.69	67.08	16.26	0.00	150.0	
10115- CAC	IEEE 802.11h (HT Greenfield, 81 Mbps, 16-QAM)	X	5.09	67.17	16.57	0.00	150.0	±9.6 %
		Y Z	5.27	67.46	16.79		150.0	
10116-	IEEE 802 11n (HT Greenfield, 135 Mbps		4.91	67.15	16.27	0.00	150.0	+96%
CAC	64-QAM)		5 11	67.62	16.90		150.0	± 0.0 %
		7	4 75	67.02	16.00		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	4.82	66.96	16.49	0.00	150.0	± 9.6 %
		Y	5.00	67.35	16.76		150.0	
		Z	4.67	66.99	16.23		150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.18	67.44	16.71	0.00	150.0	± 9.6 %
		Y	5.35	67.70	16.92		150.0	
		Z	4.97	67.29	16.35		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	4.93	67.30	16.57	0.00	150.0	± 9.6 %
		Y	5.10	67.61	16.81		150.0	
10140	LTE EDD (SC EDMA 100% PR 15		4.76	67.2/	16.28	0.00	150.0	+96%
CAE	MHz, 16-QAM)		2.09	69.25	10.09	0.00	150.0	1 9.0 %
			<u> </u>	67.20	15.60		150.0	
10141- CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz 64-OAM)	X	3.22	67.55	16.12	0.00	150.0	± 9.6 %
		Y	3.47	68.39	16.75		150.0	
		Z	3.11	67.58	15.86		150.0	
10142- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.65	68.54	14.75	0.00	150.0	± 9.6 %
		Y	2.23	72.50	17.47		150.0	
		Z	1.45	67.51	13.76		150.0	
10143- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.04	68.18	14.12	0.00	150.0	± 9.6 %
		Y	2.77	72.39	17.05		150.0	
40444			1.79	67.15	12.96	0.00	150.0	+96%
10144- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)		1.08	04.77	11.04	0.00	150.0	± 9.0 %
		Y 7	2.17	63.78	14.28		150.0	
10145-	1 TE-EDD (SC-EDMA, 100% RB, 1.4	X	0.57	60.00	5.87	0.00	150.0	± 9.6 %
CAF	MHz, QPSK)		0.86	62.73	9.11		150.0	
		Z	0.48	60.00	5.03		150.0	
10146- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	0.85	60.00	5.89	0.00	150.0	± 9.6 %
		Y	1.15	61.47	7.56		150.0	
		Z	0.69	60.00	4.71		150.0	
10147- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	0.86	60.00	5.95	0.00	150.0	± 9.6 %
		Y	1.22	62.00	7.94	ļ	150.0	
		Z	0.70	60.00	4.76		<u> </u>	

10149- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-OAM)	X	2.62	67.46	15.77	0.00	150.0	± 9.6 %
0,12		Y	2 89	68 60	16.66	t	150.0	
		z	2.51	67.39	15.41		150.0	
10150- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	×	2.75	67.54	15.86	0.00	150.0	± 9.6 %
		Y	3.02	68.57	16.69		150.0	
		Z	2.64	67.55	15.53		150.0	
10151- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	6.60	79.47	22.11	3.98	65.0	± 9.6 %
		Y	6.59	78.37	21.43		65.0	
		Z	5.32	77.23	21.01		65.0	
10152- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	5.33	73.23	19.77	3.98	65.0	± 9.6 %
		Y	5.58	73.27	19.68		65.0	
		Z	4.46	71.33	18.57		65.0	
10153- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	5.80	74.65	20.79	3.98	65.0	± 9.6 %
		Y	6.01	74.50	20.60		65.0	
		Z	4.89	72.87	19.68		65.0	
10154- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	1.99	69.55	16.25	0.00	150.0	± 9.6 %
		Y	2.44	72.19	18.04		150.0	
		Z	1.82	68.87	15.60		150.0	
10155- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.38	68.92	15.90	0.00	150.0	± 9.6 %
		Y	2.75	70.72	17.36		150.0	
		Z	2.27	68.91	15.43		150.0	
10156- CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	1.40	67.46	13.55	0.00	150.0	± 9.6 %
		Y	2.14	73.17	17.29		150.0	
		Z	1.18	66.04	12.26		150.0	
10157- CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	1.42	64.20	10.93	0.00	150.0	± 9.6 %
		Y	2.05	68.56	14.27		150.0	1
		Z	1.16	62.82	9.46		150.0	
10158- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.53	69.18	16.09	0.00	150.0	± 9.6 %
		Y	2.91	70.88	17.49		150.0	
		Z	2.41	69.20	15.62		150.0	1
10159- CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	1.47	64.37	11.06	0.00	150.0	± 9.6 %
		Y	2.17	69.13	14.58		150.0	
		Z	1.20	62.92	9.54		150.0	
10160- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.54	69.31	16.47	0.00	150.0	± 9.6 %
		Y	2.87	70.85	17.58		150.0	
		Z	2.32	68.65	15.89		150.0	
10161- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	2.63	67.51	15.68	0.00	150.0	± 9.6 %
		Y	2.92	68.64	16.63		150.0	
		Z	2.51	67.49	15.29		150.0	
10162- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	2.75	67.78	15.85	0.00	150.0	± 9.6 %
		Y	3.03	68.85	16.76		150.0	
		Z	2.62	67.80	15.48		150.0	
10166- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	3.17	69.88	19.75	3.01	150.0	± 9.6 %
		Y	3.43	70.48	19.76		150.0	
		Z	2.81	68.26	18.43		150.0	
10167- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	3.81	72.89	20.15	3.01	150.0	± 9.6 %
		Y	4,38	74.23	20.42		150.0	1
		Z	3.25	70.82	18.68		150.0	

10168-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-04M)	X	4.50	76.69	22.26	3.01	150.0	± 9.6 %
		Y	5.20	77.95	22.40		150.0	
		Z	3.82	74.38	20.74		150.0	
10169- CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	2.60	68.07	18.92	3.01	150.0	± 9.6 %
		Y	2.86	69.54	19.35		150.0	
		Z	2.42	66.98	17.74		150.0	
10170- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	3.49	74.33	21.57	3.01	150.0	± 9.6 %
		Y	4.36	77.73	22.58		150.0	
		Z	3.17	72.75	20.22		150.0	
10171- AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	2.78	69.40	18.22	3.01	150.0	± 9.6 %
		Y	3.30	71.79	18.96		150.0	
10172			2.51	68.00	16.90	6.02	150.0	+06%
CAF	QPSK)		0.00	00.07	27.02	0.02	05.0	± 9.0 %
		Y Z	0.32	86.01	20.10		65.0	
10173-			3.09	08 55	22.00	6.02	65.0	+96%
CAF	16-QAM)		40.00	02.00	20.40	0.02	65.0	1 3.0 %
		7	5.66	93.60	20.39		65.0	
10174-	LTE-TDD (SC-EDMA_1 RB_20 MHz	X	8.21	89.21	25.92	6.02	65.0	+9.6 %
CAF	64-QAM)		7.07	95.69	23.40		65.0	//
		7	2 30	75.61	20.33		65.0	
10175-	LTE-EDD (SC-EDMA_1 RB_10 MHz	X	2.59	67.73	18 64	3.01	150.0	±9.6 %
CAF	QPSK)		2.00		10.01	0.01	150.0	20.0 //
		Y	2.82	69.16	19.06		150.0	
10176		<u> ∠</u>	2.39	00.05 74.25	17.46	2.01	150.0	+96%
CAF	16-QAM)		3.50	74.33	21.59	5.01	150.0	1 9.0 %
		Y 7	4.37	70.70	22.59		150.0	
10177-	LTE-EDD (SC-EDMA_1 RB_5 MHz	X	2.58	67.87	18 72	3.01	150.0	+96%
САН	QPSK)		2.00	60.33	10.12		150.0	
		7	2.00	66 77	17.53		150.0	
10178-	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-	X	3.47	74.17	21.48	3.01	150.0	± 9.6 %
		Y	4.32	77.50	22.46		150.0	
		Z	3.15	72.62	20.14		150.0	
10179- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	3.09	71.68	19.74	3.01	150.0	± 9.6 %
		Y	3.76	74.51	20.58		150.0	
		Z	2.79	70.11	18.36		150.0	
10180- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	2.78	69.36	18.19	3.01	150.0	± 9.6 %
		<u>Y</u>	3.29	71.72	18.91		150.0	
40404		Z	2.51	67.97	16.87	2.04	150.0	+0.0%
10181- CAE	QPSK)	×	2.58	07.85	18.72	3.01	150.0	I 9.0 %
		<u>Y</u>	2.84	69.31	19.15		150.0	
10190			2.40	7/ 1/	21 47	3.01	150.0	+96%
10182- CAE	16-QAM)	^	3.40	74.14	21.47	3.01	150.0	± 9.0 %
		Y	4.31	11.41	22.45		150.0	
10183-	LTE-FDD (SC-FDMA, 1 RB, 15 MHz,	X	2.77	69.34	18.18	3.01	150.0	± 9.6 %
AAD	04-QAM)	Y	3.28	71.69	18.90		150.0	
		z	2.51	67.95	16.86		150.0	

10184-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz,	X	2.59	67.89	18.74	3.01	150.0	± 9.6 %
	QPSK)		2.85	60.35	10.17		150.0	
		7	2.00	66 79	17.55		150.0	
10185- CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	3.48	74.22	21.51	3.01	150.0	± 9.6 %
		Y	4.33	77.57	22.50		150.0	<u>+</u>
		Z	3.16	72.68	20.17	· · · ·	150.0	
10186- AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	Х	2.79	69.40	18.21	3.01	150.0	± 9.6 %
		Y	3.30	71.77	18.93		150.0	
		Z	2.52	68.00	16.89		150.0	
10187- CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	2.60	67.99	18.84	3.01	150.0	± 9.6 %
		Y	2.87	69.44	19.26		150.0	
10100		Z	2.42	66.90	17.66		150.0	
CAF	16-QAM)	X	3.60	/4.96	21.95	3.01	150.0	± 9.6 %
		Y	4.53	78.50	22.98		150.0	
10190			3.27	73.38	20.59		150.0	
AAF	64-QAM)	×	2.85	69.84	18.51	3.01	150.0	± 9.6 %
		ĻΥ -	3.39	72.31	19.27		150.0	
10103	IEEE 802 11p (HT Croopfold 6 5 Mbps		2.57	68.39	17.17	0.00	150.0	
CAC	BPSK)		4.22	66.74	16.16	0.00	150.0	± 9.6 %
		Y 7	4.41	67.05	16.50		150.0	
10194-	IEEE 802 11n (HT Greenfield 39 Mbns	X	4.10	66.05	15.94	0.00	150.0	
CAC	16-QAM)		4.50	00.95	10.30	0.00	150.0	± 9.6 %
		Y 7	4.56	67.31	16.63		150.0	
10195-	IEEE 802 11n (HT Groopfield 65 Mbps		4.22	67.13	16.07	0.00	150.0	
CAC	64-QAM)		4.39	00.90	10.31	0.00	150.0	± 9.6 %
			4.60	67.33	16.65		150.0	
10196-	IEEE 802 11n (HT Mixed 6 5 Mbos		4.24	66.70	16.06	0.00	150.0	
CAC	BPSK)		4.20	00.72	10.14	0.00	150.0	± 9.6 %
		7	4.40	66.02	16.50		150.0	
10197-	IEEE 802 11n (HT Mixed 39 Mbns 16-		4.00	66.05	16.21	- 0.00	150.0	
CAC	QAM)		4.50	67.00	10.51	0.00	150.0	± 9.6 %
		7	4.57	67.12	16.04		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.38	66.95	16.31	0.00	150.0	± 9.6 %
		Y	4.60	67.33	16.65	••	150.0	
		Z	4.23	67.09	16.06		150.0	·
10219- CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.16	66.77	16.11	0.00	150.0	± 9.6 %
		Y	4.36	67.12	16.48		150.0	
		Ζ	4.04	67.00	15.89		150.0	
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.36	66.91	16.29	0.00	150.0	± 9.6 %
		Y	4.56	67.28	16.62		150.0	
1000		Z	4.21	67.08	16.06		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	4.40	66.90	16.30	0.00	150.0	± 9.6 %
		Y	4.61	67.26	16.63		150.0	
10000		Z	4.25	67.06	16.06		150.0	
10222- CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	4.80	66.97	16.48	0.00	150.0	±9.6 %
		Y	4.97	67.32	16.74		150.0	
		Z	4.65	66.99	16.22		150.0	

10223-	IEEE 802.11n (HT Mixed, 90 Mbps, 16-	X	5.04	67.12	16.56	0.00	150.0	± 9.6 %
070			5 26	67.55	16.86		150.0	
		z	4,85	67.05	16.24		150.0	
10224- CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	4.84	67.10	16.47	0.00	150.0	± 9.6 %
0,10		Y	5.01	67.44	16.72		150.0	
		Z	4.69	67.14	16.22		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	2.48	66.09	14.60	0.00	150.0	± 9.6 %
		Y	2.74	67.15	15.74		150.0	
		Z	2.35	66.01	13.97	0.00	150.0	1000
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	14.63	100.77	30.27	6.02	65.0	± 9.6 %
			13.50	95.53	27.22		65.0	
10227			1/1 28	00.10	24.79	6.02	65.0	+96%
CAA	64-QAM)		12.07	02.19	20.00	0.02	65.0	10.0 %
		Ϋ́	5 79	92.10	23.30		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, OPSK)	X	7.72	92.84	29.85	6.02	65.0	± 9.6 %
0/11		Y	8.40	91.70	28.18		65.0	
		Z	3.85	80.05	24.56		65.0	
10229- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	13.19	98.68	29.54	6.02	65.0	± 9.6 %
		Y	12.39	93.91	26.64		65.0	
		Z	5.71	84.67	24.19	0.00	65.0	
10230- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	12.76	96.74	28.27	6.02	65.0	± 9.6 %
		Y	11.09	90.72	24.97		65.0	
10001			5.35	82.75	22.86	6.02	65.0	+96%
CAC	QPSK)		7.20	91.45	29.29	0.02	65.0	1 9.0 %
		7	7.93	90.49 70.12	27.09		65.0	
10232-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-	X	13.17	98.65	29.53	6.02	65.0	± 9.6 %
		Y	12.38	93.90	26.63		65.0	
		Z	5.70	84.65	24.18		65.0	
10233- CAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	12.71	96.69	28.26	6.02	65.0	± 9.6 %
		Y	11.07	90.70	24.96		65.0	
		Z	5.33	82.71	22.85	0.00	65.0	100%
10234- CAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	6.94	90.39	28.79	6.02	65.0	± 9.6 %
		<u> </u>	1.56	89.42	27.20		65.0	
10225		$\frac{2}{\sqrt{2}}$	3.57	08 72	29.56	6.02	65.0	+96%
CAE	16-QAM)		10.20	03.05	29.00	0.02	65.0	- 0.0 %
		7	5 70	84.66	20.00		65.0	
10236- CAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	12.89	96.88	28.31	6.02	65.0	± 9.6 %
		Y	11.19	90.84	25.00		65.0	
		Z	5.38	82.84	22.89		65.0	
10237- CAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	7.27	91.51	29.31	6.02	65.0	± 9.6 %
		Y	7.94	90.56	27.72		65.0	
		Z	3.68	79.11	24.10		65.0	100%
10238- CAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	13.14	98.63	29.53	6.02	65.0	± 9.6 %
		Y	12.35	93.88	26.62	<u> </u>	65.0	<u> </u>
		Z	5.68	84.62	24.17		65.0	

10239- CAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-OAM)	X	12.66	96.64	28.25	6.02	65.0	± 9.6 %
0/12		Y	11.03	90.67	24.95		65.0	1
		Z	5.31	82.67	22.84		65.0	
10240- CAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	7.25	91.49	29.30	6.02	65.0	± 9.6 %
		Y	7.92	90.52	27.70		65.0	
		Z	3.67	79.11	24.10		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	8.07	83.66	26.60	6.98	65.0	± 9.6 %
		Y	8.23	82.37	25.42		65.0	
40040		Z	6.15	79.65	24.57		65.0	
10242- CAA	64-QAM)	X	7.13	81.10	25.49	6.98	65.0	± 9.6 %
		Y	7.19	79.66	24.27		65.0	
10243-		X	5.10	75.21	23.08	6.00	65.0	
CAA	QPSK)		5.70	77.00	24.75	0.98	05.0	± 9.0 %
		Y 7	5.79	70.18	23.77		65.0	
10244-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz,	X	3.90	69.73	14.28	3.98	65.0	± 9.6 %
0.40		V	4 14	60 75	1/ /3		65.0	
		z	2.32	64.19	10.29		65.0	
10245- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	3.76	68.99	13.88	3.98	65.0	± 9.6 %
		Y	4.05	69.22	14.14		65.0	
		Z	2.29	63.87	10.07		65.0	
10246- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	3.54	71.57	15.31	3.98	65.0	± 9.6 %
		Y	4.20	73.49	16.58		65.0	
10047		Z	2.19	66.68	12.21		65.0	
10247- CAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	3.93	70.34	15.60	3.98	65.0	± 9.6 %
		Y	4.37	71.41	16.50		65.0	
10248		<u> </u>	2.89	67.23	13.31	0.00	65.0	
CAE	64-QAM)		3.04	09.01	15.25	3.98	65.0	± 9.6 %
		Y Z	4.32	70.82	16.23	· · · ·	65.0	
10249-	LTE-TOD (SC-EDMA 50% RB 5 MHz		6 16	80.46	12.98	2.00	65.0	
CAE	QPSK)		6.19	70.91	20.00	5.50	05.0	± 9.0 %
		7	3.97	75.01	20.33		65.0	
10250- CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	5.62	76.39	20.75	3.98	65.0	± 9.6 %
		Y	5.74	75.93	20.59		65.0	
		Z	4.58	74.22	19.36		65.0	
10251- CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	5.03	73.18	18.92	3.98	65.0	± 9.6 %
	·	Y	5.31	73.34	19.08		65.0	
40050		Z	4.06	70.93	17.39		65.0	
10252- CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	7.24	83.33	23.20	3.98	65.0	± 9.6 %
		Y	6.94	81.44	22.37		65.0	
10253			5.41	79.92	21.58		65.0	
CAE	16-QAM)	×	5.26	/2.84	19.45	3.98	65.0	± 9.6 %
		⊢ <u>Y</u>	5.49	72.84	19.41		65.0	
10254-			4.40	/1.02	18.22	2.00	65.0	
CAE	64-QAM)		0.00	74.03	20.30	3.98	65.0	± 9.6 %
			5.87	73.92	20.21		65.0	-
	1		4.70	12.20	I 19.12		000	1

10255-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	6.29	78.80	21.96	3.98	65.0	± 9.6 %
CAE	QPSK)		6 30	77 70	21 37		65.0	
		7	5.06	76.49	20.76		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz 16-OAM)	X	2.61	64.47	10.42	3.98	65.0	± 9.6 %
0///		Y	2.96	65.33	11.13		65.0	
		Ζ	1.66	61.09	7.28		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	2.56	63.97	10.05	3.98	65.0	± 9.6 %
		Y	2.92	64.89	10.82		65.0	
		Z	1.65	60.87	7.05		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	2.21	64.99	10.99	3.98	65.0	± 9.6 %
		Y	2.77	67.33	12.75		65.0	
		Z	1.46	61.94	8.37		65.0	
10259- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	4.60	72.78	17.56	3.98	65.0	± 9.6 %
		Y	4.92	73.23	18.04		65.0	
		Z	3.51	69.91	15.55		65.0	
10260- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	4.59	72.39	17.37	3.98	65.0	± 9.6 %
		Y	4.92	72.90	17.90		65.0	
		Z	3.52	69.59	15.38		65.0	100%
10261- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	6.31	80.89	21.20	3.98	65.0	± 9.6 %
		Y Y	6.19	79.71	20.87		65.0	
40000		Z	4.43	76.66	19.01	0.00	65.0	
10262- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	×	5.59	/6.2/	20.67	3.98	65.0	± 9.6 %
		Y	5.72	75.84	20.52		65.0	
40000			4.55	72.40	19.27	2.00	65.0	+06%
10263- CAE	64-QAM) 64-QAM	X	5.02	73.16	18.92	3.98	05.0	± 9.0 %
		Y	5.30	73.32	19.07	1	65.0	
40004			4.06	70.92	17.39	2.00	65.0	+06%
10264- CAE	QPSK)		7.12	83.00	23.05	3.90	05.0	± 9.0 %
		Y	6.85	81.18	22.25		65.0	
40005	1 TE TOD (00 EDMA 400% DD 40		5.32	79.60	21.43	2.00	65.0	+06%
10265- CAE	MHz, 16-QAM)		5.33	73.24	19.78	3.90	05.0	± 9.0 %
		Y -7	5.58	73.28	19.69		65.0	
10266-	LTE-TDD (SC-FDMA, 100% RB, 10	X	4.46 5.79	71.34 74.63	20.77	3.98	65.0	± 9.6 %
			6.01	74 49	20.59		65.0	
			4.89	72.85	19.66	1	65.0	
10267- CAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, OPSK)	X	6.58	79.40	22.08	3.98	65.0	± 9.6 %
		Y	6.57	78.32	21.41		65.0	1
		Z	5.30	77.16	20.98		65.0	
10268- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	5.96	73.22	20.37	3.98	65.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	6.21	73.29	20.22		65.0	
		Z	5.14	71.69	19.40		65.0	
10269- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	5.96	72.84	20.22	3.98	65.0	± 9.6 %
		Y	6.20	72.91	20.10		65.0	
		Z	5.18	71.41	19.28		65.0	
10270- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	6.23	76.00	20.96	3.98	65.0	± 9.6 %
		Y	6.35	75.47	20.49		65.0	
		Z	5.32	74.55	20.15		65.0	

10274-	UMTS-FDD (HSUPA, Subtest 5, 3GPP	X	2.34	66.81	14.69	0.00	150.0	± 9.6 %
CAB	Rel8.10)		2.62	69.02	15.00		150.0	
			2.02	66.68	15.92		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	x	1.44	68.53	15.18	0.00	150.0	± 9.6 %
		Y	1.86	72.07	17.62		150.0	
40077		Z	1.32	67.78	14.48		150.0	
10277- CAA	PHS (QPSK)	X	2.18	61.09	6.72	9.03	50.0	± 9.6 %
			2.24	61.20	6.85		50.0	
10278-	PHS (OPSK_BW 884MHz_Bolloff ().5)	X	3.31	65 77	4.04	9.03	50.0	+96%
CAA					11.00	0.00	00.0	20.0 //
			3.43	66.36	11.86		50.0	
10279-	PHS (OPSK_BW 884MHz_Bolloff 0.38)		3.36	65.01	0.79	9.03	50.0	+96%
CAA			0.00	00.01	11.47	5.00	50.0	1 0.0 %
		Y	3.51	66.55	12.01		50.0	
10200	CDMA2000 RC1 SO55 Full Pata		2.51	63.19	8.90	0.00	50.0	
AAB			0.55	00.70	0.09	0.00	150.0	± 9.0 %
		Y	1.57	71.17	13.79		150.0	
10201	CDMA2000 RC3 SO55 Full Pata		0.43	60.00	5.78	0.00	150.0	
AAB	CDIMA2000, RC3, SO35, Full Rate	^	0.55	60.00	5.69	0.00	150.0	±9.6 %
		Y	0.88	68.42	12.36		150.0	
40000			0.31	60.00	5.29		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	0.34	60.13	6.21	0.00	150.0	±9.6 %
		Y	32.57	110.87	25.46		150.0	
10000			0.30	60.00	5.55	0.00	150.0	
AAB	CDMA2000, RC3, SO3, Full Rate	^	0.47	02.79	8.10	0.00	150.0	±9.6%
		Y	100.00	129.73	30.90		150.0	
40005		Z	0.34	60.84	6.50		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	21.80	94.03	24.61	9.03	50.0	± 9.6 %
		Y Z	10.29	83.42	21.60		50.0	
10297-	LTE-FDD (SC-FDMA, 50% RB, 20 MHz,	X	2.48	69.89	16.70	0.00	150.0	± 9.6 %
AAD	QPSK)		0.00	74.00	10.00			
		Y 7	2.90	/1.99	18.00		150.0	
10298- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, OPSK)	X	0.80	62.04	8.74	0.00	150.0	± 9.6 %
		Y	1.54	69.24	13.91		150.0	
		Z	0.63	60.57	7.13		150.0	
10299- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	1.28	62.79	8.90	0.00	150.0	± 9.6 %
		Y	1.89	66.17	11.32		150.0	
10300-			0.83	59.79	5.92	0.00	150.0	+0.6.0/
AAD	64-QAM)		1.04	00.40	0.07	0.00	150.0	±9.0 %
		Y	1.40	62.36	8.64		150.0	
10301-	IEEE 802,16e WiMAX (29:18, 5ms		U./1 4 74	58.57 67.13	4.53 17.88	<u> </u>	150.0 50.0	+96%
AAA	10MHz, QPSK, PUSC)		4.00	66.45	47.00	7.17	50.0	± 0.0 /0
		7	4.69 4.10	65.82	16.92		50.0	
10302-	IEEE 802.16e WiMAX (29:18, 5ms,	x	5.21	67.89	18.77	4.96	50.0	± 9.6 %
/ / / /		Y	5.09	66.62	18 38		50.0	
		Ż	4.70	66.71	17 77		50.0	

10303-	IEEE 802.16e WiMAX (31:15, 5ms,	X	5.02	67.85	18.70	4.96	50.0	±9.6 %
		Y	4 86	66.33	18.21		50.0	
		Ż	4.51	66.60	17.64		50.0	
10304- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	4.62	66.40	17.42	4.17	50.0	± 9.6 %
		Y	4.67	66.23	17.75		50.0	
		Z	4.22	65.74	16.72		50.0	
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	5.39	72.72	20.66	6.02	35.0	± 9.6 %
		Y	4.79	70.33	20.43		35.0	
		Z	4.15	68.57	18.14		35.0	
10306- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	5.13	69.90	19.93	6.02	35.0	± 9.6 %
		Y	4.84	68.23	19.72		35.0	
10207	LEEE 802 160 W/MAX (20:18, 10mg		4.30	70.20	10.21	6.02	35.0	+96%
AAA	10MHz, QPSK, PUSC, 18 symbols)		4.77	69.50	19.92	0.02	25.0	1 9.0 78
		ř 7	4.11	67.50	19.72		35.0	
10308-	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 160AM, PUSC)	X	5.12	70.64	20.16	6.02	35.0	±9.6 %
~~~		Y	4.77	68.84	19.93		35.0	
		Z	4.25	67.77	18.27		35.0	· · · · ·
10309- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	5.14	69.95	20.02	6.02	35.0	± 9.6 %
		Y	4.87	68.35	19.83		35.0	
		Ζ	4.35	67.48	18.29		35.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	5.13	70.13	19.99	6.02	35.0	± 9.6 %
		Y	4.81	68.40	19.75		35.0	
		Z	4.32	67.59	18.24	0.00	35.0	100%
10311- AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	2.83	68.90	16.32	0.00	150.0	± 9.6 %
		Y 7	3.26	70.86	17.40		150.0	
10212	IDEN 1.3	X	2.00	72 20	15.97	6.99	70.0	+96%
AAA			2.00	71.05	14.03		70.0	
		7	3.23 2.47	70.33	14.93		70.0	
10314-	iDEN 1:6	X	7.46	85.19	22.96	10.00	30.0	± 9.6 %
		Y	5.21	79.23	20.77		30.0	
		Z	8.81	89.37	24.10		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	0.97	64.18	15.35	0.17	150.0	± 9.6 %
		Y	1.09	65.56	16.62	ļ	150.0	
		Z	0.95	63.77	14.73	0.47	150.0	+0.0%
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.27	66.73	16.30	0.17	150.0	± 9.6 %
		<u> </u>	4.44	66.97	16.55		150.0	
40247			4.11	66.73	16.00	0.17	150.0	+96%
AAC	Mbps, 96pc duty cycle)		4.21	00.73	10.00	0.17	150.0	± 0.0 %
		Y   7	4.44 / 11	66.81	16.00		150.0	
10400-	IEEE 802.11ac WiFi (20MHz, 64-QAM,	X	4.31	66.93	16.26	0.00	150.0	± 9.6 %
		+ Y	4.53	67.33	16.61		150.0	
		Ż	4.13	66.97	15.96		150.0	
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	4.97	66.63	16.27	0.00	150.0	± 9.6 %
		Y	5.22	67.18	16.63		150.0	
		Z	4.86	66.85	16.09		150.0	

10402-	IEEE 802.11ac WiFi (80MHz, 64-QAM,	X	5.35	67.25	16.49	0.00	150.0	± 9.6 %
AAD	99pc duty cycle)		5.50	07.50	40.70		450.0	
			5.52	67.33	16.72		150.0	<u> </u>
10403-	CDMA2000 (1xEV-DO, Rev. 0)	X	0.55	60.70	6.89	0.00	115.0	+96%
AAB			0.00	00.10	0.00	0.00	110.0	1 2 0.0 /0
		Y	1.57	71.17	13.79		115.0	
		Z	0.43	60.00	5.78		115.0	
10404-	CDMA2000 (1xEV-DO, Rev. A)	X	0.55	60.70	6.89	0.00	115.0	± 9.6 %
AAB			4.57	74.47	40.70		445.0	
		7	0.43	60.00	5.79		115.0	·
10406-	CDMA2000 RC3 SO32 SCH0 Full	X	100.00	121 47	29.36	0.00	100.0	+96%
AAB	Rate				20.00	0.00	100.0	10.0 %
		Y	100.00	116.93	27.68		100.0	-
		Z	100.00	111.07	24.20		100.0	
10410- AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	X	100.00	127.60	32.19	3.23	80.0	± 9.6 %
_		Y	47.53	108.69	25.78	-	80.0	
		Z	7.51	90.42	21.34		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	0.89	63.20	14.69	0.00	150.0	± 9.6 %
		Y	1.01	64.66	16.11		150.0	
40440		Z	0.90	63.14	14.25		150.0	
AAA	OFDM, 6 Mbps, 99pc duty cycle)	X	4.21	66.70	16.23	0.00	150.0	± 9.6 %
		Y	4.41	67.06	16.58		150.0	
10417		Z	4.08	66.88	15.99		150.0	
AAB	Mbps, 99pc duty cycle)	×	4.21	66.70	16.23	0.00	150.0	± 9.6 %
		Y -7	4.41	67.06	16.58		150.0	
10/18			4.08	66.88	15.99	0.00	150.0	100%
AAA	OFDM, 6 Mbps, 99pc duty cycle, Long preambule)		4.21	00.94	16.30	0.00	150.0	±9.6 %
		Y	4.41	67.28	16.64		150.0	
40440		Z	4.08	67.11	16.07		150.0	
AAA	OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.23	66.86	16.28	0.00	150.0	± 9.6 %
~ .		Y	4.43	67.20	16.62		150.0	
40400		Z	4.09	67.03	16.04		150.0	
AAB	BPSK)	X	4.33	66.82	16.29	0.00	150.0	± 9.6 %
		Y	4.53	67.16	16.62		150.0	
10422	IEEE 902 11p (HT Croopfield 42.2		4.19	66.99	16.05	0.00	150.0	
AAB	Mbps, 16-QAM)	^	4.45	67.07	16.37	0.00	150.0	± 9.6 %
		Y 7	4.67	67.43	16.71		150.0	
10424-	IEEE 802 11n (HT Greenfield 72 2		4.29	67.01	16.12	0.00	150.0	100%
AAB	Mbps, 64-QAM)		4.00	07.01	10.30	0.00	150.0	± 9.6 %
		Y 7	4.60	67.39	16.69		150.0	
10425-	IEEE 802.11n (HT Greenfield 15 Mbps	X	<u>4.22</u> 5.04	67.22	16.0	0.00	150.0	+060/
AAB	BPSK)		5.04	07.22	10.00	0.00	100.0	± 9.0 %
		<b>7</b>	5.22 4.94	67.55	16.84	·	150.0	
10426-	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-OAM)	X	4.04 5.08	67.41	16.68	0.00	150.0	± 9.6 %
			5.25	67 69	16.00		150.0	
	· · · · · · · · · · · · · · · · · · ·	z	4.88	67.29	16.34		150.0	
						L		1

10427-	IEEE 802.11n (HT Greenfield, 150 Mbps,	X	5.02	67.08	16.52	0.00	150.0	± 9.6 %
AAR	04-QAM)	Y	5.21	67.45	16.78		150.0	
		Z	4.85	67.10	16.25		150.0	
10430- AAC	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.34	73.60	18.73	0.00	150.0	± 9.6 %
		Y	4.67	74.31	19.65		150.0	
10101		Z	4.56	75.21	18.83	0.00	150.0	
10431- AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	3.81	67.34	16.02	0.00	150.0	± 9.6 %
		Y -	4.07	67.85	16.58		150.0	
10/22			3.64	67.45	15.00	0.00	150.0	+96%
AAC			4.14	07.10	10.20	0.00	150.0	1 3.0 %
			4.37	67.55	16.66		150.0	
10/33-			3.98	67.05	10.90	0.00	150.0	+96%
AAC			4.04	07.00	40.74	0.00	150.0	20.0 %
		Y 7	4.61	67.43	16.13		150.0	
10434-	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.25	74.13	18.22	0.00	150.0	± 9.6 %
AAA			5.02	75.91	19 74		150.0	
		z	4.48	75.04	17.90		150.0	
10435- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2.3.4,7,8,9)	X	100.00	127.28	32.04	3.23	80.0	± 9.6 %
		Y	37.77	105.68	25.00		80.0	
		Z	6.65	88.77	20.79		80.0	
10447- AAC	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	2.99	66.80	14.43	0.00	150.0	± 9.6 %
		Y	3.36	68.04	15.68		150.0	
		Z	2.75	66.44	13.65		150.0	10.0.0/
10448- AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	3.68	67.14	15.90	0.00	150.0	± 9.6 %
		Y	3.93	67.65	16.46		150.0	
10440		<u>  ∠</u>	3.53	67.26	15.55	0.00	150.0	+96%
AAC	Cliping 44%)		1.00	00.30	10.10	0.00	150.0	1 3.0 %
		Y 7	4.20	67.40	15.89		150.0	
10450-	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1,	X	4.21	66.83	16.23	0.00	150.0	± 9.6 %
AAC		Y	4.41	67.22	16.58		150.0	
		Z	4.07	66.98	15.98		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	2.72	66.13	13.34	0.00	150.0	± 9.6 %
		Y	3.20	67.97	15.02		150.0	
		Z	2.40	65.33	12.26		150.0	100%
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.02	67.79	16.78	0.00	150.0	± 9.6 %
		<u> </u>	6.18	68.16	17.02		150.0	
40457			6.18	68.79	17.02	0.00	150.0	+96%
AAA		<b>^</b>	3.58	05.49	10.90	0.00	130.0	1 3.0 %
			3.73	65.74	16.31	+	150.0	
10459		2 X	3.33	70.08	15.60	0.00	150.0	+96%
AAA	carriers)		4.05	74.00	10.00	0.00	150.0	_ 0.0 /0
		Y   7	4.35	67.81	13.63		150.0	
10459-	CDMA2000 (1xEV-DO, Rev. B, 3	×	4.80	69.70	17.95	0.00	150.0	± 9.6 %
AAA	carriers)	V V	5 15	70.28	18.81		150.0	
		Ż	4.66	69.99	17.32		150.0	

10460-	UMTS-FDD (WCDMA, AMR)	X	0.87	70.93	16.52	0.00	150.0	± 9.6 %
AAA								
		<u> </u>	1.46	79.26	21.40	-	150.0	
10464			0.76	68.76	15.32	<u> </u>	150.0	
AAA	QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	133.64	34.98	3.29	80.0	± 9.6 %
		Y	100.00	121.27	29.54		80.0	
10.000		Z	11.51	98.13	24.42		80.0	
10462- 	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.56	66.37	11.18	3.23	80.0	± 9.6 %
		Y	0.87	60.00	7.45		80.0	
		Z	0.67	60.00	6.91		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	0.80	60.00	7.65	3.23	80.0	± 9.6 %
		Y	0.89	60.00	6.91		80.0	
		Z	0.69	60.00	6.22		80.0	
10464- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	130.01	33.13	3.23	80.0	± 9.6 %
		Y	30.66	103.77	24.63		80.0	
		Z	3.86	82.95	19.21		80.0	
10465- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	1.24	64.19	10.21	3.23	80.0	± 9.6 %
		Y	0.87	60.00	7.39		80.0	
		Z	0.67	60.00	6.85		80.0	
10466- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.80	60.00	7.60	3.23	80.0	± 9.6 %
		Y	0.90	60.00	6.88		80.0	
		Z	0.69	60.00	6.19		80.0	· · · ·
10467- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	130.52	33.35	3.23	80.0	± 9.6 %
		Y	47.97	109.22	25.94		80.0	
		Z	4.78	85.69	20.10		80.0	
10468- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	1.33	64.86	10.52	3.23	80.0	± 9.6 %
		Y	0.87	60.00	7.41		80.0	· · · · · · · · · · · · · · · · · · ·
		Z	0.67	60.00	6.88		80.0	
10469- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.80	60.00	7.61	3.23	80.0	± 9.6 %
		Y	0.89	60.00	6.87		80.0	
		Ζ	0.69	60.00	6.19		80.0	
10470- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	130.55	33.36	3.23	80.0	± 9.6 %
		Y	49.35	109.54	26.00		80.0	
		Z	4.82	85.81	20.13		80.0	
10471- 	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	1.31	64.74	10.46	3.23	80.0	± 9.6 %
		Y	0.87	60.00	7.39		80.0	
		Z	0.66	60.00	6.86		80.0	
10472- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.80	60.00	7.59	3.23	80.0	± 9.6 %
		Y	0.89	60.00	6.86		80.0	
		Ζ	0.69	60.00	6.17		80.0	
10473- AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	130.51	33.34	3.23	80.0	± 9.6 %
		Y	48.03	109.20	25.91		80.0	
		Z	4.74	85.60	20.06		80.0	
10474- AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	1.30	64.69	10.43	3.23	80.0	± 9.6 %
		Y	0.87	60.00	7.39		80.0	
		Z	0.66	60.00	6.86	·	80.0	
10475- AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.80	60.00	7.59	3.23	80.0	±9.6 %
		Y	0.89	60.00	6.86		80.0	<u> </u>
		Z	0.69	60.00	6.17		80.0	

-								
10477- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM_UL_Subframe=2.3.4.7.8.9)	X	1.23	64.18	10.18	3.23	80.0	± 9.6 %
<u>,,,,</u>		Y	0.87	60.00	7.37		80.0	
		Z	0.66	60.00	6.83		80.0	
10478- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2.3.4.7.8.9)	Х	0.80	60.00	7.58	3.23	80.0	± 9.6 %
		Y	0.89	60.00	6.85		80.0	
		Z	0.69	60.00	6.16		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2.3,4,7,8,9)	X	100.00	126.80	33.24	3.23	80.0	± 9.6 %
		Y	16.83	96.78	24.93		80.0	
		Z	17.83	99.90	25.23		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.98	25.88	3.23	80.0	± 9.6 %
		Y	4.24	73.22	15.24		80.0	
		Z	1.74	65.87	11.40	0.00	80.0	100%
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	16.05	88.37	19.67	3.23	80.0	± 9.6 %
		Y	2.80	68.08	12.86		80.0	
40400			1.19	64.75	9.13	2.22	80.0	+96%
10482- AAB	QPSK, UL Subframe=2,3,4,7,8,9)		1.57	04.75	11.05	2.23	00.0	± 9.0 %
			2.36	69.10	14.35		80.0	
40402			0.89	64.54	0.42	2.23	80.0	+96%
AAB	16-QAM, UL Subframe=2,3,4,7,8,9)		2.03	04.04	44.50	2.20	80.0	1 0.0 %
			2.19	64.68	7 47		80.0	
10484-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-OAM LIL Subframe=2.3.4.7.8.9)	X	1.14	63.58	10.68	2.23	80.0	± 9.6 %
AAD	04-QAM, OE Subiranie-2,3,4,7,8,9)	Y	2 12	64.08	11.29		80.0	
		z	1.17	60.00	7.46		80.0	
10485- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, OPSK, UL Subframe=2.3.4.7.8.9)	X	3.45	74.98	17.66	2.23	80.0	± 9.6 %
		Y	3.58	75.04	18.20		80.0	
		Z	1.95	68.57	14.43		80.0	
10486- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.25	65.84	12.95	2.23	80.0	± 9.6 %
		Y	2.80	68.12	14.63		80.0	_
		Z	1.49	62.13	10.33		80.0	
10487- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.22	65.29	12.67	2.23	80.0	± 9.6 %
		Y	2.76	67.57	14.36		80.0	
		Z	1.49	61.80	10.12	0.00	80.0	
10488- AAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.71	75.02	19.43	2.23	80.0	± 9.6 %
		Y	3.72	74.14	19.13		80.0	
		Z	2.67	71.23	17.54	0.00	80.0	+06%
10489- AAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.33	70.04	17.15	2.23	80.0	± 9.0 %
		Y 7	3.44	69.00	16.70		80.0	+
10400			2.12	60.09	17.01	2.22	80.0	+96%
AAD	64-QAM, UL Subframe=2,3,4,7,8,9)		0.00	60.54	47.40	2.25	20.0	2 0.0 %
		Y 7	3.50	67.83	17.12		80.0	+
10491-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	3.67	72.22	18.70	2.23	80.0	± 9.6 %
AAD	QFON, UL SUDITAILE-2,3,4,7,0,8)	V	3 79	71 87	18.50	+	80.0	-
		7	2.91	69.73	17.36		80.0	
10492-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-OAM LIL Subframe=2 3.4.7.8.9)	X	3.59	68.89	17.30	2.23	80.0	± 9.6 %
		Υ	3.72	68.74	17.28		80.0	1
		Z	3.08	67.54	16.30		80.0	

10493-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	3.63	68.68	17.20	2.23	80.0	± 9.6 %
AAD	64-QAM, UL Subframe=2,3,4,7,8,9)	V	3 77	68 57	17.21		80.0	
	· · · · · · · · · · · · · · · · · · ·	7	3.12	67.39	16.21	+	80.0	
10494- AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	4.02	73.80	19.26	2.23	80.0	± 9.6 %
		Y	4.14	73.43	19.01		80.0	
		Z	3.12	70.94	17.86		80.0	
10495- AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	3.62	69.18	17.57	2.23	80.0	± 9.6 %
		Y	3.76	69.07	17.51		80.0	
		Z	3.11	67.77	16.60		80.0	
AAE	64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.69	68.89	17.47	2.23	80.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·		3.82	68.78	17.42		80.0	
10497-	LTE-TOD (SC-EDMA 100% PB 14		3.19	60.00	16.55	0.00	80.0	
AAA	MHz, QPSK, UL Subframe=2,3,4,7,8,9)		0.90	00.00	7.00	2.23	80.0	± 9.6 %
		7	1.21	61.40	9.41		80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.17	60.00	6.48	2.23	80.0	± 9.6 %
		Y	1.25	60.00	7.54		80.0	
		Z	1.13	60.00	5.14		80.0	· · ·
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.19	60.00	6.32	2.23	80.0	± 9.6 %
		Y	<u>1</u> .26	60.00	7.39		80.0	
40500		Z	1.19	60.00	4.94		80.0	
AAB	QPSK, UL Subframe=2,3,4,7,8,9)	X	3.61	75.28	18.49	2.23	80.0	± 9.6 %
		Y -	3.60	74.56	18.55		80.0	
10501-			2.31	70.18	15.90	0.00	80.0	
AAB	16-QAM, UL Subframe=2,3,4,7,8,9)		2.00	00.30	14.92	2.23	80.0	± 9.6 %
		7	2.10	65.03	10.83		80.0	
10502- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.81	67.87	14.64	2.23	80.0	± 9.6 %
		Y	3.17	68.94	15.62		80.0	
10500		Z	2.02	64.68	12.43		80.0	
10503- AAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.64	74.69	19.28	2.23	80.0	± 9.6 %
		Y I	3.66	73.87	19.00		80.0	
10504			2.62	70.94	17.40		80.0	
AAD	16-QAM, UL Subframe=2,3,4,7,8,9)		3.30	69.88	17.06	2.23	80.0	± 9.6 %
			3.41	69.63	17.15		80.0	
10505-	LTE-TDD (SC-EDMA 100% BB 5 MHz		2.09	60.57	15.70	0.00	80.0	
AAD	64-QAM, UL Subframe=2,3,4,7,8,9)		2.00	60.20	10.93	2.23	80.0	± 9.6 %
		7	2 7/	67 60	15.57		80.0	
10506-	LTE-TDD (SC-FDMA, 100% RB, 10	X	3.97	73.59	19.07	2.22	80.0	+0.6.0/
AAD	MHz, QPSK, UL Subframe=2,3,4,7,8,9)	v	4 10	73 25	19.00	2.20	00.0	19.0 %
			3.08	70.76	17 76		80.0	
10507-	LTE-TDD (SC-FDMA, 100% RB, 10		3.61	69.10	17.52	2 23	80.0	+96%
AAD	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)					2.20	00.0	± 3.0 %
		Y	3.74	68.99	17.47		80.0	
		Z	3.10	67.69	16.55		80.0	

10508-	LTE-TDD (SC-FDMA, 100% RB, 10	X	3.67	68.79	17.42	2.23	80.0	± 9.6 %
AAD	MHz, 64-QAM, UL							
	Subframe=2.3.4.7.8.9)							
		Y	3.81	68.69	17.37		80.0	
		Z	3.18	67.50	16.48		80.0	
10509-	1 TE-TDD (SC-EDMA, 100% RB, 15	Х	4.19	71.63	18.46	2.23	80.0	± 9.6 %
AAD	MHz, QPSK, UL Subframe=2,3,4,7,8,9)							
		Y	4.34	71.54	18.29		80.0	
		Z	3.49	69.77	17.46		80.0	
10510-	LTE-TDD (SC-FDMA, 100% RB, 15	X	4.02	68.41	17.47	2.23	80.0	± 9.6 %
AAD	MHz, 16-QAM, UL							
	Subframe=2,3,4,7,8,9)							
		Y	4.18	68.47	17.43		80.0	
		Z	3.54	67.28	16.67		80.0	
10511-	LTE-TDD (SC-FDMA, 100% RB, 15	X	4.08	68.19	17.41	2.23	80.0	± 9.6 %
AAD	MHz, 64-QAM, UL							
	Subframe=2,3,4,7,8,9)							
		Y	4.24	68.23	17.36		80.0	
		Z	3.62	67.16	16.64		80.0	
10512-	LTE-TDD (SC-FDMA, 100% RB, 20	X	4.39	73.11	18.91	2.23	80.0	± 9.6 %
AAE	MHz, QPSK, UL Subframe=2,3,4,7,8,9)							
		Y	4.57	73.09	18.76		80.0	
		Z	3.55	70.80	17.76		80.0	
10513-	LTE-TDD (SC-FDMA, 100% RB, 20	X	3.92	68.58	17.57	2.23	80.0	± 9.6 %
AAE	MHz, 16-QAM, UL			1				
	Subframe=2,3,4,7,8,9)							
		Y	4.08	68.69	17.52		80.0	
		Z	3.44	67.34	16.73		80.0	
10514-	LTE-TDD (SC-FDMA, 100% RB, 20	X	3.95	68.18	17.44	2.23	80.0	± 9.6 %
AAE	MHz, 64-QAM, UL							
	Subframe=2,3,4,7,8,9)							
		Y	4.10	68.28	17.40		80.0	
		Z	3.50	67.06	16.65		80.0	
10515-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2	X	0.85	63.44	14.76	0.00	150.0	± 9.6 %
AAA	Mbps, 99pc duty cycle)				40.00		450.0	
		Y	0.97	65.05	16.30	<u> </u>	150.0	
			0.86	63.31	14.29	0.00	150.0	
10516-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5	X	1.00	82.07	20.52	0.00	150.0	± 9.6 %
AAA	Mbps, 99pc duty cycle)		0.50		04.05		450.0	
		Y 7	6.58	117.44	34.05		150.0	
			0.52	/1.82	16.88	0.00	150.0	100%
10517-	IEEE 802.11b WIFI 2.4 GHz (DSSS, 11	X	0.71	65.99	15.57	0.00	150.0	± 9.0 %
AAA	Mbps, 99pc duty cycle)	- <u>-</u>	0.00	00.00	40.00		450.0	
		Y	0.90	69.36	18.20		150.0	·
			0.69	65.04	14.76	0.00	150.0	100%
10518-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9	X	4.21	66.82	16.23	0.00	150.0	± 9.0 %
AAB	Nipps, 99pc auty cycle)		4.40	67.47	16 57	+	150.0	
		<u> </u>	4.40	67.02	10.07		150.0	
40540		+	4.07	66.00	10.99	0.00	150.0	+06%
10519-	Mbps Oppo duty cyclo		4.34	00.98	10.31	0.00	130.0	1 5.0 %
AND			1 56	67.34	16.66		150.0	+
		+	/ 10	67.14	16.00	+	150.0	
10500			4.13	66.01	16.00	0.00	150.0	+96%
		^	4.20	00.91	10.20	0.00		
		v	4 12	67 30	16 59	1	150.0	1
		7	4.06	67.06	15 98		150.0	
10521	IEEE 802 11a/b WiEi 5 CHz (OEDM 24	Y Y	4.00	66.86	16 20	0.00	150.0	+96%
ΔΔP		^	7.13	00.00	10.20	0.00	100.0	1 20.0 /0
		V	4 35	67.28	16.58	1	150.0	
		+ +	3 00	66.98	15.00	1	150.0	1
10522-	IEEE 802 11a/b WiEi 5 GHz (OEDM 36	× ×	4 17	66.96	16.28	0.00	150.0	±9.6 %
AAR	Mbps 99pc duty cycle)		1 7.17	00.00		0.00		
		Y	4 4 1	67.42	16 68		150.0	
		7	4 01	67.01	15.97		150.0	
1	1	<u> </u>	<u> </u>			- L		

10523-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	4.12	67.05	16.25	0.00	150.0	± 9.6 %
AAB	Mbps, 99pc duty cycle)		4.00	07.40	40.50		1	
		Y 7	4.33	67.40	16.59	i	150.0	
10524			3.99	67.23	16.03		150.0	
AAB	Mbps, 99pc duty cycle)	X	4.13	66.97	16.30	0.00	150.0	± 9.6 %
		Ý	4.35	67.37	16.67		150.0	
		Z	3.98	67.09	16.04		150.0	
10525-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	4.18	66.09	15.94	0.00	150.0	± 9.6 %
7010			4 30	66.46	16.00		150.0	
			4.39	66.20	10.20		150.0	
10526			4.00	66.29	10.72	0.00	150.0	1000
AAB	99pc duty cycle)		4.29	00.34	16.05	0.00	150.0	± 9.6 %
		Y	4.52	66.77	16.40		150.0	
		Z	4.14	66.48	15.80		150.0	
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.23	66.32	15.98	0.00	150.0	± 9.6 %
		Y	4.45	66.75	16.35		150.0	
		Z	4.08	66.48	15.75		150.0	
10528-	IEEE 802,11ac WiFi (20MHz, MCS3,	X	4.24	66.33	16.02	0.00	150.0	+96%
AAB	99pc duty cycle)			00.00	10.02	0.00	100.0	1 0.0 %
		Y	4.46	66.76	16.38		150.0	
10500		Z	4.09	66.47	15.77		150.0	
10529- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.24	66.33	16.02	0.00	150.0	±9.6 %
		Y	4.46	66.76	16.38		150.0	
		Z	4.09	66.47	15.77		150.0	
10531- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.20	66.33	15.98	0.00	150.0	±9.6 %
		Y	4.44	66.81	16.38		150.0	
		Z	4.04	66.44	15.72		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.09	66.19	15.91	0.00	150.0	± 9.6 %
70.8			1 31	66 68	16.22		150.0	
		- <u>-</u>	3.05	66.32	15.67		150.0	
10533-	IEEE 802 11ac WiEi (20MHz_MCS8		4.25	66.42	16.02	0.00	150.0	
AAB	99pc duty cycle)		4.20	00.42	10.02	0.00	150.0	± 9.0 %
		Y	4.47	66.85	16.39		150.0	
		Z	4.09	66.58	15.79		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	4.82	66.28	16.10	0.00	150.0	± 9.6 %
		Y	5.01	66.66	16.38		150.0	
		Z	4.67	66.35	15.86		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	4.86	66.40	16.17	0.00	150.0	±9.6 %
		Y	5.07	66.83	16 46		150.0	
		z	4.69	66.42	15.91		150.0	
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	4.75	66.37	16.13	0.00	150.0	± 9.6 %
			4 96	66.84	16.44		150.0	
		7	4.50	66.44	15.90		150.0	
10537-	IEEE 802 11ac WiEi (40MHz, MCS3	X	4.00	66.47	16.19	0.00	150.0	
AAB	99pc duty cycle)		4.04	00.47	10.10	0.00	150.0	±9.0 %
		<u> </u>	5.01	66.80	16.43		150.0	
40500		2	4.68	66.51	15.93		150.0	
AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	4.88	66.35	16.16	0.00	150.0	±9.6 %
		Y	5.08	66.76	16.45		150.0	
		Z	4.71	66.38	15.90	· · · ·	150.0	
10540- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	4.81	66.30	16.16	0.00	150.0	± 9.6 %
		Y	5.01	66 72	16.45		150.0	
		z †	4.65	66.34	15.90		150.0	
	l with the second se			00.04	10.00		100.0	

10541-	IEEE 802.11ac WiFi (40MHz, MCS7,	X	4.80	66.22	16.09	0.00	150.0	± 9.6 %
AAB	99pc duty cycle)		4.00	66.61	16.27		150.0	
		7	4.99	66.32	15.87		150.0	
10542- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	4.95	66.33	16.17	0.00	150.0	±9.6 %
		Y	5.14	66.71	16.44		150.0	
		Z	4.79	66.39	15.92		150.0	
10543- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.05	66.50	16.28	0.00	150.0	± 9.6 %
		Y	5.22	66.78	16.50		150.0	
40544		Z	4.85	66.47	15.99	0.00	150.0	1000
10544- AAB	99pc duty cycle)	X	5.18	66.28	16.07	0.00	150.0	±9.0 %
			5.35	66.36	15.85		150.0	
10545- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.38	66.85	16.32	0.00	150.0	± 9.6 %
		Y	5.55	67.20	16.55		150.0	
		Z	5.18	66.73	16.00		150.0	
10546- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.21	66.40	16.10	0.00	150.0	± 9.6 %
		Y	5.39	66.83	16.38		150.0	
40547		Z	5.06	66.45	15.86	0.00	150.0	1069/
10547- AAB	99pc duty cycle)	×	5.34	66.70	16.25	0.00	150.0	± 9.0 %
w		Y 7	5.47	66.95	16.43		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4,	X	5.46	67.25	16.50	0.00	150.0	± 9.6 %
////		Y	5.68	67.76	16.81		150.0	
		Z	5.19	66.93	16.08		150.0	
10550- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.33	66.84	16.34	0.00	150.0	± 9.6 %
		<u>Y</u>	5.46	67.06	16.50		150.0	
40554			5.15	66.78	16.05	0.00	150.0	+06%
10551- AAB	99pc duty cycle)		5.19	66.91	16.04	0.00	150.0	± 9.0 %
		7	5.04	66.38	15.81		150.0	
10552- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.18	66.41	16.08	0.00	150.0	± 9.6 %
		Y	5.36	66.79	16.33		150.0	
		Z	5.05	66.52	15.87		150.0	
10553- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.23	66.33	16.07	0.00	150.0	± 9.6 %
		<u>Y</u>	5.41	66.74	16.34		150.0	
40554		2	5.09	66.62	15.85	0.00	150.0	+96%
10554- AAC	99pc duty cycle)		5.62	00.02	10.10	0.00	150.0	1 9.0 %
		7	5.// 5./9	66.65	15.40		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	5.71	66.86	16.26	0.00	150.0	± 9.6 %
<u> </u>		Y	5.88	67.28	16.52		150.0	
		Z	5.54	66.80	15.97		150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	5.78	67.06	16.35	0.00	150.0	± 9.6 %
		<u> </u>	5.92	67.39	16.56		150.0	
40557			5.59	66.96	16.04	0.00	150.0	+060/
AAC	99pc duty cycle)		5.70	00.01	10.20	0.00	150.0	1 3.0 %
		Υ 7	5.87	66.82	15.50		150.0	
1		L L	1 0.04	1 00.02	1 10.00	1		1

10558-	IEEE 802.11ac WiFi (160MHz, MCS4,	X	5.68	66.79	16.25	0.00	150.0	± 9.6 %
AAC	99pc duty cycle)							
		Y	5.89	67.32	16.56		150.0	
		Z	5.51	66.77	15.98		150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	5.71	66.77	16.28	0.00	150.0	± 9.6 %
		Y	5.89	67.21	16.54	1	150.0	
		Z	5.55	66.76	16.02		150.0	
10561- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	5.66	66.78	16.32	0.00	150.0	± 9.6 %
		Y	5.83	67.22	16.58		150.0	
		Z	5.49	66.74	16.03	-	150.0	
10562- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	5.69	66.89	16.37	0.00	150.0	± 9.6 %
		Y	5.89	67.40	16.67		150.0	· · · · · · · · · · · · · · · · · · ·
		Z	5.52	66.86	16.09		150.0	
10563- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	5.83	67.00	16.39	0.00	150.0	± 9.6 %
		Y	5.99	67.36	16.62		150.0	
		Z	5.66	66.99	16.13		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	4.52	66.80	16.34	0.46	150.0	± 9.6 %
		Y	4.71	67.11	16.64		150.0	
		Z	4.37	66.94	16.08		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	4.71	67.24	16.68	0.46	150.0	± 9.6 %
		Y	4.92	67.55	16.97		150.0	
		Z	4.55	67.39	16.44		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	4.55	67.03	16.47	0.46	150.0	± 9.6 %
		Y	4.75	67.36	16.77		150.0	
		Z	4.39	67.14	16.20		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	4.59	67.50	16.90	0.46	150.0	± 9.6 %
		Y	4.80	67.84	17.20		150.0	
		Z	4.45	67.67	16.67		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	4.43	66.68	16.15	0.46	150.0	± 9.6 %
		Y	4.65	67.08	16.49		150.0	
		Z	4.24	66.65	15.80		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	4.60	67.82	17.09	0.46	150.0	± 9.6 %
		Y	4.78	68.07	17.33		150.0	
		Z	4.46	68.04	16.90		150.0	
10570- _AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	4.58	67.53	16.94	0.46	150.0	± 9.6 %
		Y	4.79	67.84	17.22		150.0	
		Z	4.42	67.66	16.69		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.05	64.80	15.67	0.46	130.0	± 9.6 %
		Y	1.17	65.98	16.71		130.0	
10570		Z	1.00	63.98	14.85		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)		1.07	65.55	16.13	0.46	130.0	± 9.6 %
		Y	1.19	66.83	17.22		130.0	
10570		Z	1.01	64.59	15.26		130.0	
10573- AAA	Mbps, 90pc duty cycle)	X	45.90	133.30	34.49	0.46	130.0	± 9.6 %
		Y	100.00	153.39	40.97		130.0	
		Z	1.58	84.66	22.16		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.35	74.48	20.46	0.46	130.0	± 9.6 %
- · · · · · · · · · · · · · · · · · · ·		Y	1.66	77.75	22.43		130.0	
		Z	1.11	71.01	18.64		130.0	

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.32	66.63	16.40	0.46	130.0	± 9.6 %
AAA		Y	4.48	66.85	16.63	ļ	130.0	
		Z	4.16	66.71	16.08		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.35	66.88	16.51	0.46	130.0	±9.6 %
		Y	4.52	67.08	16.73		130.0	
40577		Z	4.19	66.99	16.21	0.40	130.0	+0.0.9/
10577- AAA	OFDM, 12 Mbps, 90pc duty cycle)	X	4.50	67.10	16.65	0.46	130.0	± 9.6 %
		Y 7	4.69	67.32	16.88		130.0	
10578- ۵۵۵	IEEE 802.11g WiFi 2.4 GHz (DSSS- OEDM 18 Mbps 90pc duty cycle)	X	4.42	67.29	16.79	0.46	130.0	± 9.6 %
/ 0 0 (		Y	4.60	67.52	17.02		130.0	
		Z	4.26	67.40	16.51		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.15	66.32	15.93	0.46	130.0	± 9.6 %
		Y	4.34	66.61	16.20		130.0	
10500			3.97	66.27	15.55	0.46	130.0	+96%
AAA	OFDM, 36 Mbps, 90pc duty cycle)		4.18	00.30	10.93	0.40	120.0	I 9.0 %
		Y 7	4.38	66.21	15.22		130.0	· · ·
10581-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.34	67.41	16.79	0.46	130.0	± 9.6 %
AAA	OFDM, 48 Mbps, 90pc duty cycle)		4 51	67.61	16.00		120.0	
		ř 7	4.51	67.53	16.55		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OEDM, 54 Mbps, 90pc duty cycle)	X	4.07	66.06	15.68	0.46	130.0	± 9.6 %
7001		Y	4.26	66.35	15.96		130.0	
		Z	3.88	65.96	15.27		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.32	66.63	16.40	0.46	130.0	± 9.6 %
		Y	4.48	66.85	16.63		130.0	
10584-			4.10 4 35	66.88	16.08	0.46	130.0	+96%
AAB	Mbps, 90pc duty cycle)		4.50	67.02	16.73		130.0	
		Z	4.19	66.99	16.21		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.50	67.10	16.65	0.46	130.0	± 9.6 %
		Y	4.69	67.32	16.88		130.0	
		Z	4.33	67.20	16.35		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.42	67.29	16.79	0.46	130.0	± 9.6 %
		Y -	4.60	67.52	17.02		130.0	
10597			4.26	66 32	15.07	0.46	130.0	+96%
AAB	Mbps, 90pc duty cycle)		4.10	66.04	16.00	0.40	120.0	- 0.0 /0
		Y 7	4.34	66 27	15.20		130.0	
10588- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.18	66.36	15.93	0.46	130.0	± 9.6 %
		Y	4.38	66.67	16.22		130.0	
		Z	3.97	66.21	15.49		130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	×	4.34	67.41	16.79	0.46	130.0	± 9.6 %
		<u>Y</u>	4.51	67.61	16.99		130.0	
10590-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54	X	4.18 4.07	67.53	16.51 15.68	0.46	130.0	± 9.6 %
AAB	mops, supc auty cycle)	Y	4.26	66.35	15.96		130.0	1
• • •	· · · · · · · · · · · · · · · · · · ·	Ż	3.88	65.96	15.27		130.0	

10591-	IEEE 802.11n (HT Mixed, 20MHz,	X	4.48	66.74	16.55	0.46	130.0	± 9.6 %
AAB	MCS0, 90pc duty cycle)							
		Y 7	4.64	66.92	16.75		130.0	
10592-	IFFE 802 11n (HT Mixed 20MHz		4.33	67.00	16.26	0.40	130.0	
AAB	MCS1, 90pc duty cycle)		4.50	07.02	10.07	0.46	130.0	± 9.6 %
		Y	4.77	67.23	16.87		130.0	
		Z	4.41	67.10	16.37		130.0	
10593-	IEEE 802.11n (HT Mixed, 20MHz,	X	4.50	66.88	16.51	0.46	130.0	± 9.6 %
AAB	MCS2, 90pc duty cycle)		1.00	07.44	+ 10 70	ļ		
		7	4.68	67.11	16.73		130.0	
10594-	IEEE 802 11n (HT Mixed 20MHz		4.33	67.09	16.20		130.0	
AAB	MCS3, 90pc duty cycle)		4.50	07.08	16.70	0.46	130.0	± 9.6 %
		Y	4.74	67.30	16.91		130.0	1
		Z	4.39	67.16	16.40		130.0	
10595- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4_90pc duty cycle)	X	4.53	67.07	16.60	0.46	130.0	± 9.6 %
		Y	471	67.27	16.81		130.0	<u> </u>
		Ż	4.35	67.13	16.30	· · · · · · · · · · · · · · · · · · ·	130.0	
10596-	IEEE 802.11n (HT Mixed, 20MHz.		4.45	67.00	16.58	0.46	130.0	+96%
AAB	MCS5, 90pc duty cycle)			01.00	10.00	0.40	130.0	1 9.0 %
		Y	4.64	67.24	16.80		130.0	
10507			4.27	67.01	16.25		130.0	
AAB	MCS6, 90pc duty cycle)	X	4.40	66.85	16.41	0.46	130.0	± 9.6 %
	-	Y	4.59	67.11	16.65		130.0	
		Z	4.23	66.87	16.08	<u> </u>	130.0	· · · · · · · · · · · · · · · · · · ·
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	х	4.41	67.15	16.73	0.46	130.0	± 9.6 %
		Y	4.59	67.39	16.96		130.0	· · · · · · · · · · · · · · · · · · ·
		Z	4.26	67.25	16.45		130.0	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.20	67.26	16.87	0.46	130.0	± 9.6 %
		Y	5.33	67.39	16.08	<u> </u>	120.0	
		7	5.07	67.39	16.64		130.0	
10600-	IEEE 802.11n (HT Mixed, 40MHz,	X	5.34	67.77	17.10	0.46	130.0	+96%
AAB	MCS1, 90pc duty cycle)		<u> </u>	07.00			100.0	1 3.0 %
·		Y 7	<u> </u>	67.86	17.18		130.0	
10601-	IFEE 802 11p (HT Mixed 40MHz		5.05	67.37	16.59		130.0	
AAB	MCS2, 90pc duty cycle)	^	5.22	67.48	16.98	0.46	130.0	± 9.6 %
		Y	5.34	67.55	17.05		130.0	
40000		Z	5.03	67.40	16.63		130.0	
AAB	MCS3, 90pc duty cycle)	X	5.31	67.47	16.88	0.46	130.0	± 9.6 %
		Y	5.47	67.70	17.03		130.0	
		Z	5.04	67.16	16.42		130.0	
10603- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.34	67.68	17.13	0.46	130.0	± 9.6 %
		Y	5.55	68.04	17.35		130.0	
		Z	5.07	67.36	16.68	······	130.0	
10604- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.19	67.13	16.83	0.46	130.0	±9.6 %
		-+ <del>-</del> +	5 43	67.67	17 14		120.0	
		z	4.98	67.00	16.46		130.0	
10605- AAB	IEEE 802.11n (HT Mixed, 40MHz,	X	5.28	67.45	16.99	0.46	130.0	±9.6 %
			5 4 4	67.60	17 4 4		100.0	
·		7	5.02	67.15	16.54		130.0	
10606-	IEEE 802.11n (HT Mixed, 40MHz	$\frac{2}{x}$	5.02	66.06	16.54	0.46	130.0	
AAB	MCS7, 90pc duty cycle)		0.00	00.90	10.59	0.40	130.0	± 9.6 %
		-   <u>Y</u>	5.20	67.02	16.66		130.0	
			4.89	66.84	16.22		130.0	

10607-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	4.33	66.11	16.21	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)	v	4 50	66.32	16.42		130.0	
		z	4.18	66.24	15.93		130.0	
10608- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.46	66.41	16.34	0.46	130.0	± 9.6 %
		Y	4.65	66.67	16.57		130.0	
		Z	4.28	66.49	16.05		130.0	
10609- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.35	66.23	16.15	0.46	130.0	± 9.6 %
		Y	4.54	66.50	16.39		130.0	
10610-	IEEE 802 11ac WiEi (20MHz, MCS3		4.18	66.44	15.84	0.46	130.0	+96%
AAB	90pc duty cycle)		4.41	00.44	10.04	0.40	150.0	1 3.0 %
		Y	4.59	66.68	16.57		130.0	
10611		Z	4.24	66.51	16.05	0.46	130.0	+0.6.9/
AAB	90pc duty cycle)		4.32	00.20	10.17	0.40	130.0	± 9.0 %
		7	4.51	66.25	15.86		130.0	
10612- AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.30	66.31	16.19	0.46	130.0	± 9.6 %
		Y	4.50	66.61	16.44		130.0	
		Z	4.10	66.27	15.84		130.0	
10613- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	4.29	66.09	16.01	0.46	130.0	± 9.6 %
		Y	4.49	66.41	16.28		130.0	
10614-	IEEE 802.11ac WiFi (20MHz, MCS7,	X	4.10	66.40	15.67 16.32	0.46	130.0	± 9.6 %
		Y	4.47	66.69	16.57		130.0	
		Z	4.11	66.46	16.02		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	×	4.30	66.00	15.89	0.46	130.0	± 9.6 %
		Y	4.49	66.26	16.14		130.0	
10616			4.11	66.01	15.56	0.46	130.0	+96%
AAB	90pc duty cycle)		5 14	66 59	16.56	0.40	130.0	1 3.0 %
		Z	4.81	66.34	16.11		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	×	5.02	66.47	16.44	0.46	130.0	± 9.6 %
		Y	5.20	66.77	16.63		130.0	
		Z	4.82	66.38	16.11		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	4.92	66.49	16.47	0.46	130.0	± 9.6 %
		Y 7	5.11	66.84	16.68		130.0	
10619-	IEEE 802.11ac WiFi (40MHz, MCS3,	X	4.99	66.47	16.38	0.46	130.0	± 9.6 %
		Y	5.12	66.62	16.50	· · · ·	130.0	
		Z	4.78	66.37	16.04		130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.02	66.35	16.37	0.46	130.0	± 9.6 %
		Y	5.19	66.61	16.54		130.0	
10601		Z	4.81	66.23	16.02	0.46	130.0	+06%
AAB	90pc duty cycle)		5.02	00.40	10.00	0.40	130.0	I 9.0 %
		- Y 7	2.19	66.48	16.74	1	130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.02	66.56	16.61	0.46	130.0	± 9.6 %
		Y	5.19	66.85	16.79		130.0	
		Z	4.84	66.54	16.31		130.0	

10623-	IEEE 802.11ac WiFi (40MHz, MCS7,	X	4.91	66.09	16.22	0.46	130.0	± 9.6 %
ААВ			5.06	66 33	16.38		120.0	
		7	4 74	66 10	15.92		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.10	66.37	16.43	0.46	130.0	± 9.6 %
		Y	5 27	66.61	16.59		130.0	
		Z	4.91	66.33	16.00		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.22	66.63	16.63	0.46	130.0	± 9.6 %
		Y	5.38	66.84	16.77		130.0	
		Ż	5.00	66.51	16.28		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.32	66.29	16.33	0.46	130.0	± 9.6 %
		Y	5.46	66.57	16.48		130.0	
		Z	5.17	66.30	16.05		130.0	
10627- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.60	67.10	16.71	0.46	130.0	± 9.6 %
		Y	5.73	67.29	16.81		130.0	
		Z	5.36	66.86	16.31		130.0	
10628- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.31	66.25	16.20	0.46	130.0	± 9.6 %
		Y	5.46	66.55	16.37		130.0	
		Z	5.14	66.21	15.90		130.0	
10629- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	×	5.49	66.72	16.44	0.46	130.0	± 9.6 %
		Y	5.57	66.76	16.47		130.0	
		Z	5.29	66.59	16.09		130.0	
10630- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	5.68	67.51	16.83	0.46	130.0	± 9.6 %
		Y	5.90	67.96	17.07		130.0	
		Z	5.34	66.93	16.27		130.0	
10631- AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	5.63	67.48	17.02	0.46	130.0	± 9.6 %
		Y	5.82	67.86	17.23		130.0	
		Z	5.40	67.29	16.67		130.0	
10632- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.65	67.46	17.04	0.46	130.0	± 9.6 %
		Y	5.72	67.47	17.05		130.0	
		Z	5.44	67.32	16.69		130.0	
10633- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.32	66.30	16.27	0.46	130.0	± 9.6 %
		Y	5.51	66.72	16.50		130.0	
10001		Z	5.15	66.30	15.99		130.0	
10634- AAB	90pc duty cycle)	X	5.36	66.54	16.45	0.46	130.0	± 9.6 %
		<u> </u>	5.51	66.83	16.61		130.0	
40005		Z	5.20	66.59	16.19		130.0	
10635- AAB	90pc duty cycle)	X	5.20	65.70	15.73	0.46	130.0	± 9.6 %
		<u> </u>	5.36	66.01	15.90		130.0	
10000			5.03	65.65	15.41		130.0	
AAC	90pc duty cycle)	X	5.78	66.65	16.42	0.46	130.0	± 9.6 %
		+ <u>Y</u>	5.90	66.91	16.56		130.0	
10627			5.61	07.00	16.12	0.15	130.0	
AAC	90pc duty cycle)		5.90	67.00	16.58	0.46	130.0	± 9.6 %
		<u> </u>	6.04	67.28	16.73		130.0	
10600			5.69	66.82	16.22		130.0	
AAC	90pc duty cycle)	X	5.94	67.10	16.61	0.46	130.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	6.05	67.30	16.71		130.0	
		Z	5.75	66.99	16.28		130.0	

10639-	IEEE 802.11ac WiFi (160MHz, MCS3,	X	5.87	66.88	16.54	0.46	130.0	± 9.6 %
740		Y	6.00	67 17	16.69		130.0	
		Ż	5.69	66.82	16.24		130.0	
10640- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	5.79	66.67	16.37	0.46	130.0	± 9.6 %
		Y	5.97	67.09	16.59		130.0	
		Z	5.60	66.55	16.04		130.0	
10641- AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	5.95	66.94	16.53	0.46	130.0	± 9.6 %
		Y	6.07	67.17	16.65		130.0	
10642- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	5.72	67.02	16.14 16.75	0.46	130.0	± 9.6 %
,,,,,		Y	6.09	67.36	16.93		130.0	
		Z	5.75	66.97	16.45		130.0	
10643- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	5.79	66.72	16.48	0.46	130.0	± 9.6 %
		Y	5.94	67.06	16.66		130.0	
40044		Z	5.59	66.57	16.12	0.40	130.0	
10644- AAC	90pc duty cycle)	X	5.83	66.84	16.56	0.46	130.0	± 9.6 %
			6.00	67.25	16.78		130.0	
10645-	IEEE 802 11ac WiEi (160MHz MCS9	$\frac{2}{x}$	<u> </u>	67.07	16.23	0.46	130.0	+96%
AAC	90pc duty cycle)		0.00	07.07	10.04	0.40	100.0	1 0.0 %
		Y 7	6.21 5.77	66.96	16.89		130.0	
10646-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz,	X	10.86	99.58	34.54	9.30	60.0	± 9.6 %
AAE			12 75	100.34	33 52		60.0	
		z	5.31	84.82	28.77		60.0	
10647- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2.7)	X	9.54	97.33	33.94	9.30	60.0	± 9.6 %
		Y	11.34	98.50	33.07		60.0	
		Z	4.72	82.70	28.08		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.33	60.00	5.33	0.00	150.0	± 9.6 %
		Y	0.54	62.99	9.08		150.0	+
10650			0.29	60.00	4.72	2.22	150.0	+06%
AAC	Clipping 44%)		3.41	07.40	10.30	2.23	80.0	19.0 %
		7	3.07	66 68	15.53		80.0	
10653- AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	3.91	66.47	16.67	2.23	80.0	± 9.6 %
		Y	4.05	66.58	16.80		80.0	
		Z	3.59	65.97	16.06		80.0	
10654- AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	3.92	66.00	16.72	2.23	80.0	± 9.6 %
		Y	4.05	66.15	16.82		80.0	
10055			3.64	65.53	16.15	2.02	80.0	+060/
AAD	Clipping 44%)		4.00	00.80	10.74	2.23	80.0	± 9.0 %
		7	4.12	65.37	16.04		80.0	
10658- AAA	Pulse Waveform (200Hz, 10%)	X	8.11	79.21	17.64	10.00	50.0	± 9.6 %
		Y	5.18	73.01	14.95		50.0	
		Z	4.63	71.52	13.37		50.0	
10659- AAA	Pulse Waveform (200Hz, 20%)	X	100.00	107.57	23.76	6.99	60.0	± 9.6 %
		Y	5.94	76.36	14.90		60.0	
1		17	5.07	74.93	13.37	1	60.0	1

10660- AAA	Pulse Waveform (200Hz, 40%)	X	100.00	102.40	19.98	3.98	80.0	± 9.6 %
		Y	100.00	101.57	19.73		80.0	
		Z	9.47	80.34	13.09		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	0.90	65.14	7.58	2.22	100.0	± 9.6 %
		Y	100.00	98.16	17.19		100.0	
		Z	0.28	60.00	4.46		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	X	42.12	60.80	1.47	0.97	120.0	± 9.6 %
		Y	0.19	60.00	4.14		120.0	
		Z	1.43	244.46	28.28		120.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ī

.