
Appendix A. Plots of System Verification

The plots for system verification are shown as follows.

Plots of System Verification

Measurement S01 Svstem C	t Report heck_H2450_2	30524					
	Test Properties						
Model, Manufa	-	Dimensions [m	m] IMI	EI	DUT	ype	
Dipole,		10.0 x 10.0 x 3	00.0				
Exposure Cor	nditions						
Phantom	Position, Test	Band	Group,	Frequency	Conversion	TSL	TSL Permittivity
Section, TSL	Distance [mm]	l	UID	[MHz], Channel Numb	Factor er	Conductivity [S/m]	
Flat,	,		CW,	2450.000,	8.26	1.84	41.3
			0	0			
Hardware Set Phantom	tup	TSL, Measured	Data	Probe, Calibi	ration Data	DAE, Calibra	tion Data
Twin-SAM V8.0	20dog probo	H06T27N4 , 2			3971, 2023-01-20		7, 2023-01-24
tilt) - 1987	(source brone	HUU127N4 ,2	2025-1v1ay-24	EX3DV4 - 3N	5971, 2025-01-20	DAE4 SHIZ7	, 2023-01-24
Scan Setup				Measuren	nent Results		
		Area Scan	Zoom Scan			Area Scan	Zoom Scan
Grid Extents [n	nm]	40.0 x 96.0	30.0 x 30.0 x 30.0	Date		2023-05-	2023-05-24
Grid Steps [mn	n]	10.0 x 12.0	5.0 x 5.0 x 1.5			24	
Sensor Surface	2	3.0	1.4	psSAR1g [V	V/kg]	2.59	2.65
[mm]				psSAR10g [W/kg]	1.19	1.26
				Power Drift	:[dB]	0.00	0.00

Appendix B. Plots of Measurement

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination are shown as follows.

Plots of Measurement

0.035

-0.12

78.3

9.1

0.030

0.17

Measurement Report

[mm]

P01 BT_BR/EDR_Left Ear_0mm_Ch0

Test Properties						
turer	Dimensions [mr	n] II	MEI	DUT T	ype	
3050200,	65.0 x 65.0 x 22	2.0				
ditions						
Position, Test	Band	Group, UID	Frequency [MHz], Channel Numb	Conversion Factor er	TSL Conductivity [S/m]	TSL Permittivity
Left Ear 0.00	ISM 2.4 GHz Band	Bluetooth, 10032-CAA	2402.0, 0	8.26	1.80	41.4
up	TSI Measured	Date	Prohe Calib	ration Date	DAE Calibra	tion Date
	•		•			7, 2023-01-24
	Area Scan	Zoom Sca		nent Results	Area Scan	Zoom Scan
ım]	96.0 x 96.0				2023-05-	2023-05-24
ı]	12.0 x 12.0				24	
-	3.0	1	.4 psSAR1g [V	V/kg]	0.066	0.072
	turer 3050200, ditions Position, Test Distance [mm] Left Ear 0.00 up 30deg probe	3050200, 65.0 x 65.0 x 22 ditions Position, Test Band Distance [mm] Left Ear ISM 2.4 0.00 GHz Band up TSL, Measured 30deg probe H06T27N4 , 2 Area Scan m] 96.0 x 96.0] 12.0 x 12.0	turer Dimensions [mm] II 3050200, 65.0 x 65.0 x 22.0 ditions Position, Test Band Group, Distance [mm] UID Left Ear ISM 2.4 Bluetooth, 0.00 GHz Band 10032-CAA up TSL, Measured Date 30deg probe H06T27N4 2023-May-24 Area Scan Zoom Sca m] 96.0 x 96.0 30.0 x 30.0 x 30] 12.0 x 12.0 5.0 x 5.0 x 1	turer Dimensions [mm] IMEI 3050200, 65.0 x 65.0 x 22.0 ditions Position, Test Band Group, [MHz], Distance [mm] UID [MHz], Channel Numb Left Ear ISM 2.4 Bluetooth, 2402.0, 0.00 GHz Band 10032-CAA 0 up TSL, Measured Date Probe, Calibo 30deg probe H06T27N4 , 2023-May-24 EX3DV4 - SN Measurem M] 96.0 x 96.0 30.0 x 30.0 x 30.0] 12.0 x 12.0 5.0 x 5.0 x 1.5	turerDimensions [mm]IMEIDUT T3050200,65.0 x 65.0 x 22.065.0 x 65.0 x 22.00ditions Position, Test Distance [mm]Band UIDGroup, [MHz], Factor Channel NumberLeft Ear 0.00ISM 2.4Bluetooth, 10032-CAA2402.0, 08.26up TSL, Measured DateProbe, Calibration DateBodeg probeH06T27N4 120 X 12.0Probe, Calibration DateMeasurement ResultsMeasurement ResultsMeasurement ResultsDate	turer Dimensions [mm] IMEI DUT Type 3050200, 65.0 x 65.0 x 22.0 65.0 x 65.0 x 22.0 TSL ditions Position, Test Distance [mm] Band Group, UID Frequency Conversion (MHz], Factor TSL Conductivity (S/m) Left Ear 0.00 ISM 2.4 Bluetooth, 2402.0, 8.26 1.80 1.80 up TSL, Measured Date Probe, Calibration Date DAE, Calibra 30deg probe H06T27N4 2023-May-24 EX3DV4 - SN3971, 2023-01-20 DAE4 Sn1277 Main 1 96.0 x 96.0 30.0 x 30.0 x 30.0 30.0 Measurement Results Area Scan ml 96.0 x 96.0 30.0 x 30.0 x 30.0 30.0 <t< td=""></t<>

psSAR10g [W/kg]

Power Drift [dB]

Dist 3dB Peak [mm]

M2/M1 [%]

|--|--|--|

Appendix Z. Calibration Certificate for Probe and Dipole

The SPEAG calibration certificates are shown as follows.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **B.V. ADT**

Certificate No: D2450V2-737 Feb23

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:73	7	
	QA CAL-05.v12 Calibration Procec	lure for SAR Validation Sources bet	ween 0.7-3 GHz
Calibration date:	February 20, 2023		
	•	nal standards, which realize the physical units of r bability are given on the following pages and are	
All calibrations have been conducted	d in the closed laboratory	facility: environment temperature (22 \pm 3)°C and	humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23

Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Paulo Pina	Laboratory Technician	tetet)
			1 TIO
Approved by:	Niels Kuster	Quality Manager	1 des
			Issued: February 20, 2023
		e n - n - n - n - e n - n - n	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-737_Feb23

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

0.0000	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled • phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	50.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.97 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8 Ω + 4.9 jΩ
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.161 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

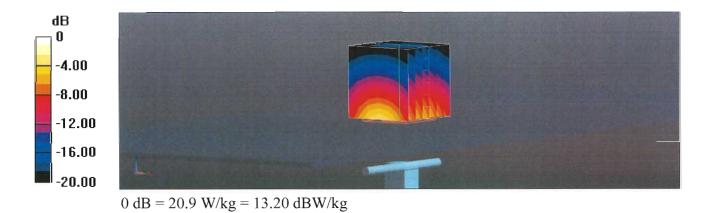
Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

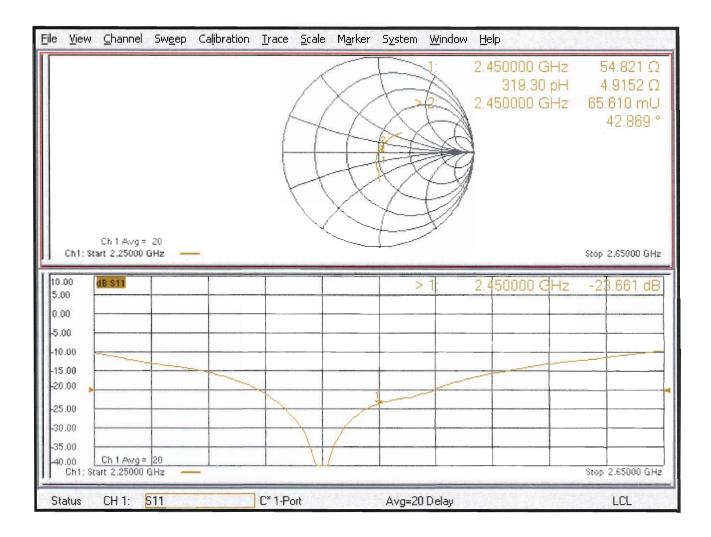
Date: 20.02.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:737


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 39.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 112.6 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 25.0 W/kg **SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.97 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.9% Maximum value of SAR (measured) = 20.9 W/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

B.V. ADT (Auden)

Certificate No

EX-3971_Jan23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3971
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	January 20, 2023
This calibration certificate docum	nents the traceability to national standards, which realize the physical units of measurements (SI).

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) $^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	10-Oct-22 (No. DAE4-660_Oct22)	Oct-23
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeton Kastrati	Laboratory Technician	= M
Approved by	Sven Kühn	Technical Manager	S. L
This calibration certificate sh	all not be reproduced except in full	without written approval of the labor	Issued: February 01, 2023 atory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization $arphi$	arphi rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- · Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k = 2)$
Norm $(\mu V/(V/m)^2)^A$	0.37	0.51	0.48	±10.1%
DCP (mV) ^B	96.4	99.7	100.3	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		Α	В	С	D	VR	Max	Max
			dB	dBõV		dB	mV	dev.	Unc ^E
									k = 2
0	CW	X	0.00	0.00	1.00	0.00	143.8	±3.3%	±4.7%
		Y	0.00	0.00	1.00		143.0		
		Z	0.00	0.00	1.00		145.8	1	
10352	Pulse Waveform (200Hz, 10%)	X	4.61	71.49	12.69	10.00	60.0	±2.9%	±9.6%
		Y	82.00	104.00	23.00		60.0	1	
		Z	20.00	88.24	18.84		60.0	1	
10353	Pulse Waveform (200Hz, 20%)	X	20.00	85.68	15.98	6.99	80.0	±1.7%	±9.6%
		Y	20.00	91.36	19.21]	80.0		
		Z	20.00	89.10	18.22	1	80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	86.62	15.13	3.98	95.0	±1.0%	±9.6%
		Y	20.00	94.31	19.14	1	95.0		
		Z	20.00	91.57	18.17	1	95.0	1	
10355	Pulse Waveform (200Hz, 60%)	Х	20.00	87.34	14.36	2.22	120.0	±1.0%	±9.6%
		Y	20.00	94.69	17.98	1	120.0	1	
		Z	20.00	94.14	18.21	1	120.0	1	
10387	QPSK Waveform, 1 MHz	X	1.65	69.23	15.78	1.00	150.0	±2.8%	±9.6%
		Y	1.45	64.20	13.53	1	150.0	1	
		Z	1.56	65.47	14.34	1	150.0	1	
10388	QPSK Waveform, 10 MHz	X	2.09	68.76	16.16	0.00	150.0	±1.0%	±9.6%
		Y	1.93	65.77	14.32	1	150.0		
		Z	2.08	67.08	15.15	1	150.0	1	
10396	64-QAM Waveform, 100 kHz	X	2.57	70.67	18.84	3.01	150.0	±0.8%	±9.6%
		Y	2.77	69.96	18.36	1	150.0	1	
		Z	2.86	70.58	18.82	1	150.0	1	
10399	64-QAM Waveform, 40 MHz	X	3.39	67.44	15.93	0.00	150.0	±2.1%	±9.6%
		Y	3.29	66.05	15.03	1	150.0	1	
		Z	3.41	66.72	15.48	1	150.0	1	
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.62	65.97	15.66	0.00	150.0	±4.0%	±9.6%
		Y	4.69	65.09	15.10	1	150.0	1	
		Z	4.77	65.49	15.39	1	150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	29.8	215.94	33.80	9.67	0.04	5.03	1.49	0.02	1.00
У	43.0	319.99	35.18	9.66	0.08	5.08	1.64	0.14	1.01
Z	41.7	310.30	35.26	14.45	0.00	5.06	1.45	0.16	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-108.1°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

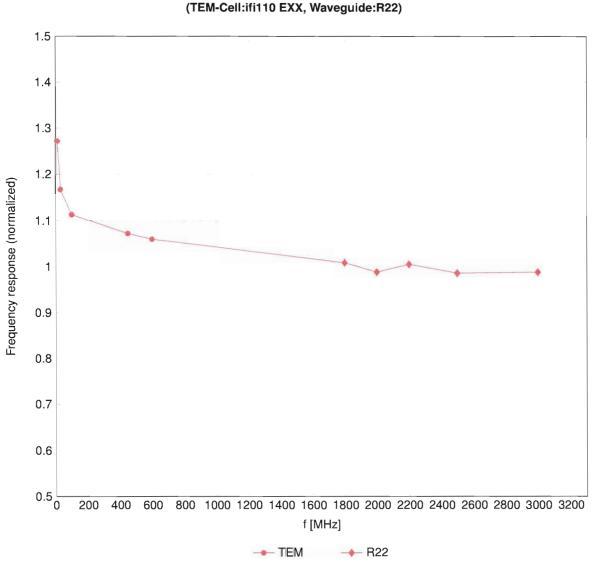
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
750	41.9	0.89	10.55	10.55	10.55	0.41	1.01	±12.0%
835	41.5	0.90	10.36	10.36	10.36	0.41	0.91	±12.0%
1450	40.5	1.20	9.14	9.14	9.14	0.40	0.80	±12.0%
1750	40.1	1.37	8.86	8.86	8.86	0.38	0.86	±12.0%
1900	40.0	1.40	8.44	8.44	8.44	0.42	0.86	±12.0%
2000	40.0	1.40	8.38	8.38	8.38	0.43	0.86	±12.0%
2300	39.5	1.67	8.35	8.35	8.35	0.37	0.90	±12.0%
2450	39.2	1.80	8.26	8.26	8.26	0.15	0.90	±12.0%
2600	39.0	1.96	7.83	7.83	7.83	0.36	0.90	±12.0%
3300	38.2	2.71	7.44	7.44	7.44	0.35	1.30	±14.0%
3500	37.9	2.91	6.99	6.99	6.99	0.35	1.30	±14.0%
3700	37.7	3.12	6.93	6.93	6.93	0.40	1.35	±14.0%
3900	37.5	3.32	6.90	6.90	6.90	0.40	1.60	±14.0%
4100	37.2	3.53	6.44	6.44	6.44	0.40	1.60	±14.0%
4200	37.1	3.63	6.42	6.42	6.42	0.40	1.70	±14.0%
4400	36.9	3.84	6.36	6.36	6.36	0.40	1.70	±14.0%
4600	36.7	4.04	6.32	6.32	6.32	0.40	1.70	±14.0%
4800	36.4	4.25	6.28	6.28	6.28	0.40	1.70	±14.0%
4950	36.3	4.40	5.97	5.97	5.97	0.40	1.80	±14.0%
5250	35.9	4.71	5.24	5.24	5.24	0.40	1.80	±14.0%
5600	35.5	5.07	4.95	4.95	4.95	0.40	1.80	±14.0%
5800	35.3	5.27	4.91	4.91	4.91	0.40	1.80	±14.0%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

For both the control action of the control

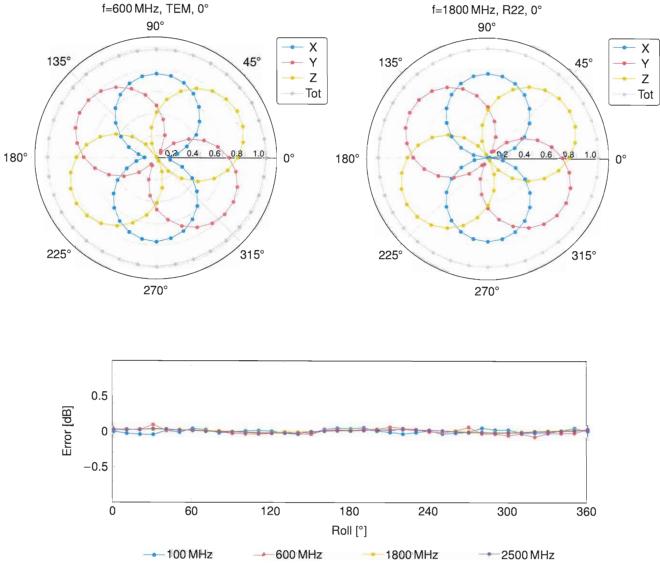
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.


Calibration Parameter Determined in Head Tissue Simulating Media

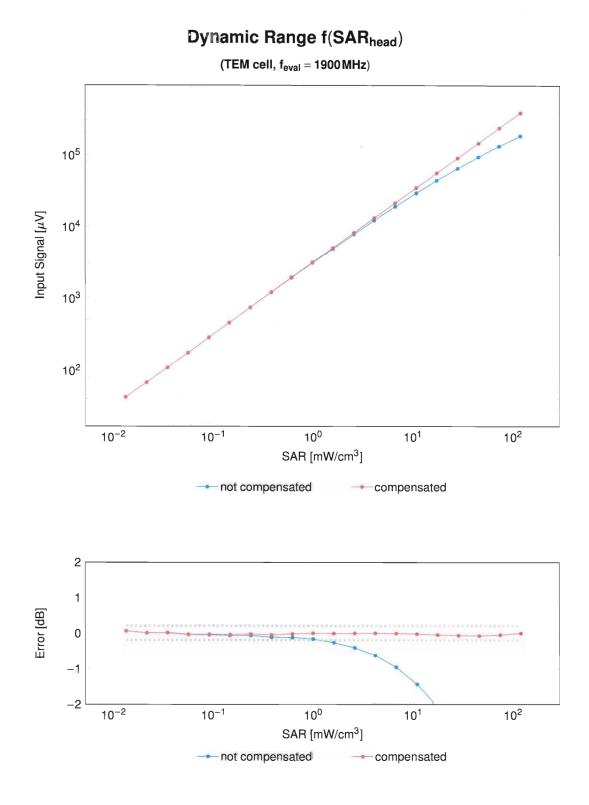
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
6500	34.5	6.07	5.65	5.65	5.65	0.20	2.50	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±10% from the target values (typically better than ±6%)

and are valid for TSL with deviations of up to $\pm 10\%.$


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

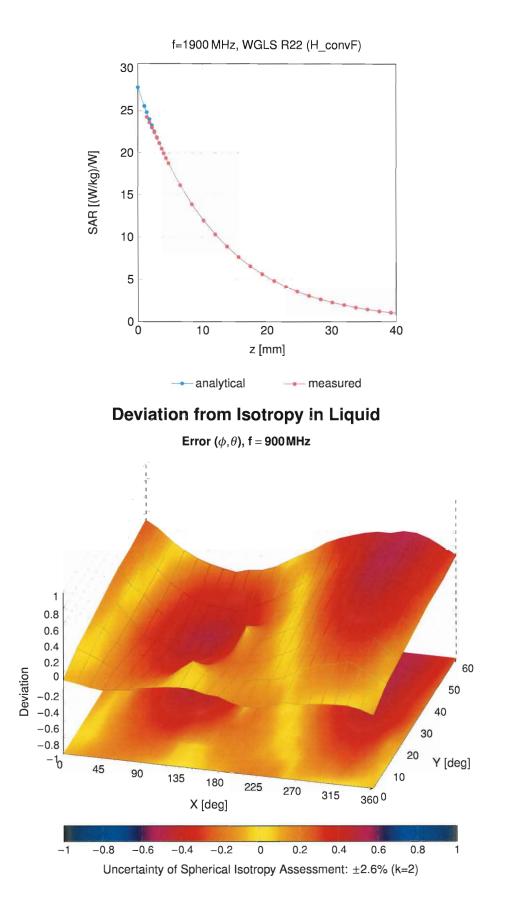
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Receiving Pattern (ϕ **),** $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)



Uncertainty of Linearity Assessment: ±0.6% (k=2)

Certificate No: EX-3971_Jan23

Page 9 of 22

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
0		CW	CW	0.00	±4.7
10010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10024	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	
10020	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM		±9.6
10027	-			4.80	±9.6
	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD		WLAN		
		IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)		10.24	±9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	CAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10103	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10104	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	±9.6
10103	CAH	LTE-FDD (SC-FDMA, 100% RB, 20MHz, QPSK)	LTE-FDD	5.80	±9.6
10108	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10109	CAH		LTE-FDD		
10110	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)		5.75	±9.6
	I CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAD	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAD	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAD	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAD	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAF CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143 10144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD LTE-FDD	6.35 6.65	±9.6 ±9.6
10144	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10171	AAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
10173 10174	CAH CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	9.48	±9.6 ±9.6
10174	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAJ	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6
10182	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	AAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10185	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186	AAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	AAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193	CAD	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	CAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195	CAD	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196	CAD	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
10197	CAD	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
10198	CAD	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219	CAD CAD	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN WLAN	8.03	±9.6 ±9.6
10220	CAD	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
10221		IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.06	±9.6
10222	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6
10223	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6
10224				0.00	10.0

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10225	CAC	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231 10232	CAE CAH	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.19	±9.6
10232	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 10-QAM)	LTE-TDD	9.48	±9.6
10233	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	10.25 9.21	±9.6 ±9.6
10235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAE CAH	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.30	±9.6
10247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	10.09	±9.6 ±9.6
10243	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.29	±9.6
10251	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10258	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6
10260	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAH CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	9.83	±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	10.16 9.23	±9.6 ±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10275	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10277	CAA	PHS (QPSK)	PHS	11.81	±9.6
10278	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAA	PHS (QPSK, BW 884 MHz, Rolioff 0.38)	PHS	12.18	±9.6
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292 10293	AAB AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000 CDMA2000	3.39	±9.6 ±9.6
10293	AAB	CDMA2000, RC3, SO3, Full Rate CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10295	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10301	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	WiMAX	12.03	±9.6
10302	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	WiMAX	12.57	±9.6
10303	AAA	IEEE 802.16e WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	12.52	±9.6
10304	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	11.86	±9.6
10305	AAA	IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols)	WIMAX	15.24	±9.6
10306	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC, 18 symbols)	WiMAX	14.67	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10307	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols)	WIMAX	14.49	±9.6
10308	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WilMAX	14.46	±9.6
10309	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols)	WiMAX	14.58	±9.6
10310	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols)	WiMAX	14.57	±9.6
10311	AAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAA	iDEN 1:3	iden	10.51	±9.6
10314	AAA	iDEN 1:6	iDEN	13.48	±9.6
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10317	AAD	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAE	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±9.6
10401	AAE	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6
10402	AAE	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	<u>±9</u> .6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10417	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	±9.6
10422	AAC	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAC	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAC	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAC	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAC	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
10431	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAB	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10447	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6
10449	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.51	±9.6
10450	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAB	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
10453	AAE	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
10456	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	±9.6
10457	AAB	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6
10460	AAB	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	±9.6
10463	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10465	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
4.0.1	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10466		LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10467	AAG				
10467 10468	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10467 10468 10469	AAG AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10467 10468	AAG				

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10473	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10474	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10475	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10477	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10478	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10480	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6
10481	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10482	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	±9.6
10483	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	<u>±</u> 9.6
10484	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	±9.6
10485	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	±9.6
10486	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6
10487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	±9.6
10488	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.70	<u>±9.6</u>
10489	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10490	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10494	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	±9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10497	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10498	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	±9.6
10500	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	±9.6
10502	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	±9.6
10503	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	±9.6
10504	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10505	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	±9.6 ±9.6
10507	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6
10514	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10518	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10519	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	±9.6
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	±9.6
10521	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	±9.6
10522	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	±9.6
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.6
10526	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.42	±9.6
10527	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.6
10528	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.36	±9.6
10529	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.36	±9.6
10531	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.43	±9.6
10532	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10533	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.38	±9.6
10534	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6
10535	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6
10536	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.32	±9.6
10537	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
10538	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle)	WLAN WLAN	8.54 8.39	±9.6 ±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10541	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6
10542	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6
10544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.47	±9.6
10545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.6
10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6
10552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6
10553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6
10554	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6
10555	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
10556	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6
10557	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.52	±9.6
10558	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.61	±9.6
10560	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.73	±9.6
10561	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.56	±9.6
10562	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.69	±9.6
10563	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.77	±9.6
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	±9.6
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	±9.6
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	±9.6
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	±9.6
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	±9.6
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.30	±9.6
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10583	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10584	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10585	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10586	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10587	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10588	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10589	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10590	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10591	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle)	WLAN	8.63	±9.6
10592	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10593	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle)	WLAN	8.64	±9.6
10594	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10595	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6
10596	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.6
10597	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle)	WLAN	8.72	±9.6
10598	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle)	WLAN	8.50	±9.6
10599	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6
10600	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10601	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle)	WLAN	8.82	±9.6
10602	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.6
10603	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle)	WLAN	9.03	±9.6
10604	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN	8.76	±9.6
10605	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9.6
10606	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
4 * * * * *		IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle)	WLAN	8.64	±9.6
10607 10608	AAC AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle)	WLAN	8.77	±9.6

1968 AC IEEE 80.21 tas WIF (20 MHz, MSS, Spoe duy gele) WLAN 8.78 155. 1061 AC IEEE 80.21 tas WIF (20 MHz, MSS, Spoe duy gele) WLAN 8.77 156. 1061 AC IEEE 80.21 tas WIF (20 MHz, MSS, Spoe duy gele) WLAN 8.77 156. 1061 AC IEEE 80.21 tas WIF (20 MHz, MSS, Spoe duy gele) WLAN 8.59 1.66. 1061 AC IEEE 80.21 tas WIF (20 MHz, MSS, Spoe duy gele) WLAN 8.59 1.66. 1061 AC IEEE 80.21 tas WIF (20 MHz, MSS, Spoe duy gele) WLAN 8.58 1.65. 1061 AC IEEE 80.21 tas WIF (40 MHz, MSS, Spoe duy gele) WLAN 8.58 +5.6 1062 AC IEEE 80.21 tas WIF (40 MHz, MSS, Spoe duy gele) WLAN 8.56 +5.6 1062 AC IEEE 80.21 tas WIF (40 MHz, MSS, Spoe duy gele) WLAN 8.56 +5.6 1062 AC IEEE 80.21 tas WIF (40 MHz, MSS, Spoe duy gele) WLAN 8.56 +5.6 1063 AC IEEE 80.21 tas WIF (40 MHz, MSS, Spoe duy gele)	UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10611 ACC EEE 80.21 tac Wiff (20 MHz, MSS, 90pc day grole) WLAN 8.77 15.65 10612 ACC EEE 80.21 tac Wiff (20 MHz, MSS, 90pc day grole) WLAN 8.59 15.65 10613 ACC EEE 80.21 tac Wiff (20 MHz, MSS, 90pc day grole) WLAN 8.59 15.66 10614 ACC EEE 80.21 tac Wiff (20 MHz, MSS, 90pc day grole) WLAN 8.82 45.66 10616 ACC EEE 80.21 tac Wiff (40 MHz, MSS, 90pc day grole) WLAN 8.82 45.6 10617 ACC EEE 80.21 tac Wiff (40 MHz, MSS, 90pc day grole) WLAN 8.82 45.6 10618 ACC EEE 80.21 tac Wiff (40 MHz, MSS, 90pc day grole) WLAN 8.87 45.6 10621 ACC IEEE 80.21 tac Wiff (40 MHz, MSS, 90pc day grole) WLAN 8.88 45.6 10622 ACC IEEE 80.21 tac Wiff (40 MHz, MSS, 90pc day grole) WLAN 8.82 2.85 10624 ACC IEEE 80.21 tac Wiff (40 MHz, MSS, 90pc day grole) WLAN 8.82 2.85 10626 ACC IEEE 80.21 tac Wiff (4	10609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	WLAN		
10912 ACC EFE 802.11 Bac WFI (20 MFL MOSS, 90ge dury greb) WLAN 8.91 ±9.67 10913 ACC IEEE 802.11 Bac WFI (20 MFL MOSS, 90ge dury greb) WLAN 8.82 ±9.65 10914 ACC IEEE 802.11 Bac WFI (20 MFL MOSS, 90ge dury greb) WLAN 8.82 ±9.65 10915 ACC IEEE 802.11 Bac WFI (40 MFL MOSS, 90ge dury greb) WLAN 8.82 ±9.65 10916 ACC IEEE 802.11 Bac WFI (40 MFL MOSS, 90ge dury greb) WLAN 8.81 ±9.65 10917 ACC IEEE 802.11 Bac WFI (40 MFL MOSS, 90ge dury greb) WLAN 8.84 ±9.65 10918 ACC IEEE 802.11 Bac WFI (40 MFL MOSS, 90ge dury greb) WLAN 8.86 ±9.65 10821 ACC IEEE 802.11 Bac WFI (40 MFL MOSS, 90ge dury greb) WLAN 8.86 ±9.65 10823 ACC IEEE 802.11 Bac WFI (40 MFL MOSS, 90ge dury greb) WLAN 8.86 ±9.66 10843 ACC IEEE 802.11 Bac WFI (40 MFL MOSS, 90ge dury greb) WLAN 8.86 ±9.66 10855 ACC IEEE 802.1	10610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6
19813 ACC IEEE 80.211ae WFF (20MHz, MCSR, 90pc dury cycle) WLAN 8.94 986 19814 ACC IEEE 80.211ae WFF (20MHz, MCSR, 90pc dury cycle) WLAN 8.82 286 19815 ACC IEEE 80.211ae WFF (20MHz, MCSR, 90pc dury cycle) WLAN 8.82 286 19816 ACC IEEE 80.211ae WFF (40MHz, MCSR, 90pc dury cycle) WLAN 8.83 296 19817 ACC IEEE 80.211ae WFF (40MHz, MCSR, 90pc dury cycle) WLAN 8.84 296 19820 ACC IEEE 80.211ae WFF (40MHz, MCSR, 90pc dury cycle) WLAN 8.87 296 19821 ACC IEEE 80.211ae WFF (40MHz, MCSR, 90pc dury cycle) WLAN 8.87 296 19822 ACC IEEE 80.211ae WFF (40MHz, MCSR, 90pc dury cycle) WLAN 8.86 286 19824 ACC IEEE 80.211ae WFF (40MHz, MCSR, 90pc dury cycle) WLAN 8.86 286 19826 ACC IEEE 80.211ae WFF (40MHz, MCSR, 90pc dury cycle) WLAN 8.87 286 19826 ACC IEEE 80.211ae WFF (40MHz, MCSR, 90pc du	10611	AAC		WLAN	8.70	±9.6
10814 ACC IEEE 80.21 tax WFI (20 MHz, MCS7, 90on dury cycle) WLAN 8.29 = 56. 10815 ACC IEEE 80.21 tax WFI (20 MHz, MCS9, 90on dury cycle) WLAN 8.82 ± 96. 10815 ACC IEEE 80.21 tax WFI (20 MHz, MCS9, 90on dury cycle) WLAN 8.81 ± 96. 10816 ACC IEEE 80.21 tax WFI (20 MHz, MCS9, 90on dury cycle) WLAN 8.84 ± 95. 10818 ACC IEEE 80.21 tax WFI (20 MHz, MCS8, 90on dury cycle) WLAN 8.87 ± 95. 10821 ACC IEEE 80.21 tax WFI (40 MHz, MCS8, 90on dury cycle) WLAN 8.87 ± 95. 10822 ACC IEEE 80.21 tax WFI (40 MHz, MCS8, 90op dury cycle) WLAN 8.82 ± 95. 10823 ACC IEEE 80.21 tax WFI (40 MHz, MCS8, 90p dury cycle) WLAN 8.82 ± 85. 10824 ACC IEEE 80.21 tax WFI (40 MHz, MCS8, 90p dury cycle) WLAN 8.83 ± 86. 10825 ACC IEEE 80.21 tax WFI (40 MHz, MCS8, 90p dury cycle) WLAN 8.83 ± 86. 10826 ACC IE	10612	AAC		WLAN	8.77	±9.6
19616 ACC IEEE 60.211ae WFI (20.MHz, MCSB, 9000 duty cycle) WLAN 8.82 ±96 19617 ACC IEEE 60.211ae WFI (40.MHz, MCSB, 9000 duty cycle) WLAN 8.81 ±96 19618 ACC IEEE 60.211ae WFI (40.MHz, MCSB, 9000 duty cycle) WLAN 8.84 ±96 19618 ACC IEEE 60.211ae WFI (40.MHz, MCSB, 9000 duty cycle) WLAN 8.87 ±95 19629 ACC IEEE 60.211ae WFI (40.MHz, MCSB, 9000 duty cycle) WLAN 8.87 ±95 19621 ACC IEEE 60.211ae WFI (40.MHz, MCSB, 9000 duty cycle) WLAN 8.86 ±96 19622 ACC IEEE 60.211ae WFI (40.MHz, MCSB, 9000 duty cycle) WLAN 8.86 ±96 19624 ACC IEEE 60.211ae WFI (40.MHz, MCSB, 9000 duty cycle) WLAN 8.83 ±96 19628 ACC IEEE 60.211ae WFI (60.MHz, MCSB, 9000 duty cycle) WLAN 8.83 ±96 19628 ACC IEEE 60.211ae WFI (60.MHz, MCSB, 9000 duty cycle) WLAN 8.83 ±96 19628 ACC IEEE 60.211ae WFI (60.MHz, MC	10613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.94	±9.6
TORIE AAC IEEE B02 11ae WFF (40 MHz, MCSD, 90po dury cycle) WLAN 8.81 +9.65 TORIE AAC IEEE B02 11ae WFF (40 MHz, MCSD, 90po dury cycle) WLAN 8.81 +9.65 TORIE AAC IEEE B02 11ae WFF (40 MHz, MCSB, 90po dury cycle) WLAN 8.84 +9.65 TORIE AAC IEEE B02 11ae WFF (40 MHz, MCSB, 90po dury cycle) WLAN 8.87 +9.65 TORIE AAC IEEE B02 11ae WFF (40 MHz, MCSB, 90po dury cycle) WLAN 8.77 +9.65 T0522 AAC IEEE B02 11ae WFF (40 MHz, MCSB, 90po dury cycle) WLAN 8.87 +9.65 T0522 AAC IEEE B02 11ae WFF (40 MHz, MCSB, 90po dury cycle) WLAN 8.88 +9.65 T0524 AAC IEEE B02 11ae WFF (60 MHz, MCSB, 90po dury cycle) WLAN 8.83 +9.65 T0525 AAC IEEE B02 11ae WFF (60 MHz, MCSB, 90po dury cycle) WLAN 8.84 +9.65 T0526 AAC IEEE B02 11ae WFF (60 MHz, MCSB, 90po dury cycle) WLAN 8.83 +9.65 T0528 AAC IEEE B02	10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.59	±9.6
10817 ACC IEEE 60.211ae WiF (40 MHz, MCS1; 9000 dury cycle) WLAN 8.81 -9.86 10818 ACC IEEE 60.211ae WiF (40 MHz, MCS3; 9000 dury cycle) WLAN 8.86 95.6 10829 ACC IEEE 60.211ae WiF (40 MHz, MCS3; 9000 dury cycle) WLAN 8.87 95.6 10821 ACC IEEE 60.211ae WiF (40 MHz, MCS3; 9000 dury cycle) WLAN 8.87 95.6 10822 ACC IEEE 60.211ae WiF (40 MHz, MCS3; 9000 dury cycle) WLAN 8.66 95.6 10824 ACC IEEE 60.211ae WiF (40 MHz, MCS3; 9000 dury cycle) WLAN 8.66 95.6 10824 ACC IEEE 60.211ae WiF (40 MHz, MCS3; 9000 dury cycle) WLAN 8.86 25.6 10828 ACC IEEE 60.211ae WiF (60 MHz, MCS3; 9000 dury cycle) WLAN 8.83 25.6 10828 ACC IEEE 60.211ae WiF (60 MHz, MCS3; 9000 dury cycle) WLAN 8.87 25.6 10828 ACC IEEE 60.211ae WiF (60 MHz, MCS3; 9000 dury cycle) WLAN 8.7 25.6 10858 ACC IEEE 60.211ae WiF (10615	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10581 AAC IEEE B02.11ae Wiri (40 MHz, WCS3, Sope.dury cycle) WLAN 8.58 9.59 10582 AAC IEEE B02.11ae Wiri (40 MHz, WCS4, Sope.dury cycle) WLAN 8.87 9.58 10582 AAC IEEE B02.11ae Wiri (40 MHz, WCS5, Sope.dury cycle) WLAN 8.67 9.58 10582 AAC IEEE B02.11ae Wiri (40 MHz, WCS5, Sope.dury cycle) WLAN 8.68 9.58 10582 AAC IEEE B02.11ae Wiri (40 MHz, WCS5, Sope.dury cycle) WLAN 8.96 9.58 10582 AAC IEEE B02.11ae Wiri (40 MHz, WCS5, Sope.dury cycle) WLAN 8.96 9.58 10582 AAC IEEE B02.11ae Wiri (80 MHz, WCS5, Sope.dury cycle) WLAN 8.88 9.58 10582 AAC IEEE B02.11ae Wiri (80 MHz, WCS5, Sope.dury cycle) WLAN 8.85 9.56 10582 AAC IEEE B02.11ae Wiri (80 MHz, WCS5, Sope.dury cycle) WLAN 8.85 9.56 10582 AAC IEEE B02.11ae Wiri (80 MHz, WCS5, Sope.dury cycle) WLAN 8.81 9.56 10583 AAC IEEE B02.	10616	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6
10619 AAC IEEE 80211a WiF (40MHz, MCS3, 80pc duty cycle) WLAN 8.86 19.82 10821 AAC IEEE 80211a WiF (40MHz, MCS5, 80pc duty cycle) WLAN 8.87 19.86 10822 AAC IEEE 80211a WiF (40MHz, MCS5, 80pc duty cycle) WLAN 8.86 19.86 10822 AAC IEEE 80211a WiF (40MHz, MCS5, 80pc duty cycle) WLAN 8.86 19.86 10824 AAC IEEE 80211a WiF (40MHz, MCS5, 80pc duty cycle) WLAN 8.86 19.85 10826 AAC IEEE 80211a WiF (40MHz, MCS5, 80pc duty cycle) WLAN 8.86 19.85 10828 AAC IEEE 80211a WiF (80MHz, MCS5, 80pc duty cycle) WLAN 8.86 19.85 10828 AAC IEEE 80211a WiF (80MHz, MCS5, 80pc duty cycle) WLAN 8.81 19.85 10828 AAC IEEE 80211a WiF (80MHz, MCS5, 80pc duty cycle) WLAN 8.81 19.85 10829 AAC IEEE 80211a WiF (80MHz, MCS5, 80pc duty cycle) WLAN 8.81 19.85 10829 AAC IEEE 80211a WiF (80MHz, MCS5, 80pc duty		AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.81	±9.6
10620 AAC IEEE 82.11 as WFI (40MHz, WCS4, Sopc.dury cycle) WLAN 8.77 9.56 10521 AAC IEEE 80.211 as WFI (40MHz, WCS8, Sopc.dury cycle) WLAN 8.68 9.65 10522 AAC IEEE 80.211 as WFI (40MHz, WCS8, Sopc.dury cycle) WLAN 8.68 9.65 10524 AAC IEEE 80.211 as WFI (40MHz, WCS8, Sopc.dury cycle) WLAN 8.66 9.66 10525 AAC IEEE 80.211 as WFI (40MHz, WCS8, Sopc.dury cycle) WLAN 8.86 9.66 10526 AAC IEEE 80.211 as WFI (80MHz, WCS5, Sopc.dury cycle) WLAN 8.86 9.65 10526 AAC IEEE 80.211 as WFI (80MHz, WCS5, Sopc.dury cycle) WLAN 8.71 9.65 10582 AAC IEEE 80.211 as WFI (80MHz, WCS5, Sopc.dury cycle) WLAN 8.71 9.65 10583 AAC IEEE 80.211 as WFI (80MHz, WCS5, Sopc.dury cycle) WLAN 8.74 9.85 10583 AAC IEEE 80.211 as WFI (80MHz, WCS5, Sopc.dury cycle) WLAN 8.74 9.85 10583 AAC IEEE 80.211 as WFI (10618	AAC		WLAN	8.58	±9.6
ID621 AAC IEEE B02.11ac WiFi (40 MHz, WCSS, Sopc.du/y cycle) WLAN 8.68 ::56.5 ID622 AAC IEEE B02.11ac WiFi (40 MHz, WCS3, Sopc.du/y cycle) WLAN 8.82 ::56.5 ID624 AAC IEEE B02.11ac WiFi (40 MHz, WCS3, Sopc.du/y cycle) WLAN 8.86 ::56.5 ID624 AAC IEEE B02.11ac WiFi (40 MHz, WCS3, Sopc.du/y cycle) WLAN 8.86 ::56.5 ID626 AAC IEEE B02.11ac WiFi (20 MHz, WCS3, Sopc.du/y cycle) WLAN 8.86 ::56.5 ID628 AAC IEEE B02.11ac WiFi (20 MHz, WCS3, Sopc.du/y cycle) WLAN 8.86 :56.5 ID628 AAC IEEE B02.11ac WiFi (20 MHz, WCS3, Sopc.du/y cycle) WLAN 8.81 :56.5 ID630 AAC IEEE B02.11ac WiFi (20 MHz, WCS3, Sopc.du/y cycle) WLAN 8.81 :56.5 ID632 AAC IEEE B02.11ac WiFi (20 MHz, WCS3, Sopc.du/y cycle) WLAN 8.81 :56.5 ID633 AAC IEEE B02.11ac WiFi (20 MHz, WCS3, Sopc.du/y cycle) WLAN 8.81 :56.5 ID634 AAC	10619	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6
Index2 AAC IEEE 802 11ae Wirl (60 MHz, MCS8, 90pc duty cycle) WLAN 8.68 +9.6 Index1 AAC IEEE 802 11ae Wirl (60 MHz, MCS8, 90pc duty cycle) WLAN 8.96 +9.6 Index1 AAC IEEE 802 11ae Wirl (60 MHz, MCS8, 90pc duty cycle) WLAN 8.96 +9.6 Index2 AAC IEEE 802 11ae Wirl (80 MHz, MCS8, 90pc duty cycle) WLAN 8.88 +9.6 Index2 AAC IEEE 802 11ae Wirl (80 MHz, MCS8, 90pc duty cycle) WLAN 8.88 +9.6 Index2 AAC IEEE 802 11ae Wirl (80 MHz, MCS8, 90pc duty cycle) WLAN 8.85 +9.6 Index3 AAC IEEE 802 11ae Wirl (80 MHz, MCS8, 90pc duty cycle) WLAN 8.74 +9.6 Index3 AAC IEEE 802 11ae Wirl (80 MHz, MCS8, 90pc duty cycle) WLAN 8.81 +9.6 Index3 AAC IEEE 802 11ae Wirl (80 MHz, MCS8, 90pc duty cycle) WLAN 8.81 +9.6 Index4 IEEE 802 11ae Wirl (80 MHz, MCS8, 90pc duty cycle) WLAN 8.83 +9.6 Index5 AAC IEEE 802 11ae Wirl	10620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6
ToRE2 AAC IEEE 802.1 tac WiFI (60 MHz, MCSR, 90pc dity cycle) WLAN 8.82 1.96 TOR24 AAC IEEE 802.1 tac WiFI (60 MHz, MCSR, 90pc dity cycle) WLAN 8.96 4.96 TOR25 AAC IEEE 802.1 tac WiFI (60 MHz, MCSR, 90pc dity cycle) WLAN 8.88 4.95 TOR27 AAC IEEE 802.1 tac WiFI (80 MHz, MCSR, 90pc dity cycle) WLAN 8.78 4.95 TOR37 AAC IEEE 802.1 tac WiFI (80 MHz, MCSR, 90pc dity cycle) WLAN 8.78 4.96 TOR37 AAC IEEE 802.1 tac WiFI (80 MHz, MCSR, 90pc dity cycle) WLAN 8.72 4.95 TOR37 AAC IEEE 802.1 tac WiFI (80 MHz, MCSR, 90pc dity cycle) WLAN 8.74 4.95 TOR38 AAC IEEE 802.1 tac WiFI (80 MHz, MCSR, 90pc dity cycle) WLAN 8.81 1.95 TOR83 AAC IEEE 802.1 tac WiFI (80 MHz, MCSR, 90pc dity cycle) WLAN 8.83 1.95 TOR83 AAC IEEE 802.1 tac WiFI (80 MHz, MCSR, 90pc dity cycle) WLAN 8.81 1.96 TOR83 AAC <td< td=""><td>10621</td><td>AAC</td><td>IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle)</td><td>WLAN</td><td>8.77</td><td>±9.6</td></td<>	10621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10624 AAC IEEE 802 11ac WFI (40MHz, MCS8, 90pc duty cycle) WLAN 8.96 = 9.6 10625 AAC IEEE 802 11ac WFI (80 MHz, MCS0, 90pc duty cycle) WLAN 8.83 = 9.6 10626 AAC IEEE 802 11ac WFI (80 MHz, MCS1, 80pc duty cycle) WLAN 8.83 = 9.6 10627 AAC IEEE 802 11ac WFI (80 MHz, MCS1, 80pc duty cycle) WLAN 8.83 = 9.6 10628 AAC IEEE 802 11ac WFI (80 MHz, MCS1, 80pc duty cycle) WLAN 8.71 = 9.6 10630 AAC IEEE 802 11ac WFI (80 MHz, MCS3, 80pc duty cycle) WLAN 8.72 = 9.6 10631 AAC IEEE 802 11ac WFI (80 MHz, MCS3, 90pc duty cycle) WLAN 8.74 = 9.6 10632 AAC IEEE 802 11ac WFI (80 MHz, MCS3, 90pc duty cycle) WLAN 8.83 = 9.6 10633 AAC IEEE 802 11ac WFI (80 MHz, MCS3, 90pc duty cycle) WLAN 8.83 = 9.6 10634 AAC IEEE 802 11ac WFI (80 MHz, MCS3, 90pc duty cycle) WLAN 8.83 = 9.6 10634 AAD IEEE 802 1	10622	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6
10625 AAC IEEE 802.11ee VIII (40 MHz, MCS8, 90pc duty cycle) VULAN 8.96 1.96 10027 AAC IEEE 802.11ee VIII (80 MHz, MCS1, 90pc duty cycle) VULAN 8.83 ±9.6 10028 AAC IEEE 802.11ee VIII (80 MHz, MCS3, 90pc duty cycle) VULAN 8.71 ±9.6 10629 AAC IEEE 802.11ee VIII (80 MHz, MCS3, 90pc duty cycle) VULAN 8.72 ±9.6 10629 AAC IEEE 802.11ee VIII (80 MHz, MCS3, 90pc duty cycle) VULAN 8.72 ±9.6 10630 AAC IEEE 802.11ee VIII (80 MHz, MCS5, 80pc duty cycle) VULAN 8.72 ±9.6 10631 AAC IEEE 802.11ee VIII (80 MHz, MCS5, 80pc duty cycle) VULAN 8.74 ±9.6 10632 AAC IEEE 802.11ee VIII (80 MHz, MCS3, 90pc duty cycle) VULAN 8.81 ±9.6 10635 AAC IEEE 802.11ee VIII (80 MHz, MCS3, 90pc duty cycle) VULAN 8.81 ±9.6 10636 AAD IEEE 802.11ee VIII (80 MHz, MCS3, 90pc duty cycle) VULAN 8.83 ±9.6 10645 AAD <td< td=""><td></td><td></td><td>IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)</td><td>WLAN</td><td>8.82</td><td>±9.6</td></td<>			IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10682 AAC IEEE 802:11ac WiFi (80 MHz, MCS3, 90c duty cycle) WLAN 8.83 ±9.6 10627 AAC IEEE 802:11ac WiFi (80 MHz, MCS3, 90c duty cycle) WLAN 8.71 ±9.6 10629 AAC IEEE 802:11ac WiFi (80 MHz, MCS3, 90c duty cycle) WLAN 8.72 ±9.6 10621 AAC IEEE 802:11ac WiFi (80 MHz, MCS3, 90c duty cycle) WLAN 8.71 ±9.6 10622 AAC IEEE 802:11ac WiFi (80 MHz, MCS3, 90c duty cycle) WLAN 8.71 ±9.6 10624 AAC IEEE 802:11ac WiFi (80 MHz, MCS3, 90c duty cycle) WLAN 8.71 ±9.6 10634 AAC IEEE 802:11ac WiFi (80 MHz, MCS3, 90c duty cycle) WLAN 8.81 ±9.6 10635 AAC IEEE 802:11ac WiFi (80 MHz, MCS3, 90c duty cycle) WLAN 8.81 ±9.6 10636 AAD IEEE 802:11ac WiFi (100 MHz, MCS3, 90c duty cycle) WLAN 8.81 ±9.6 10637 AAD IEEE 802:11ac WiFi (100 MHz, MCS3, 90c duty cycle) WLAN 8.85 ±9.6 10643 AAD IEEE 802:11ac WiF				WLAN	8.96	±9.6
10627 AAC IEEE 802.11ac WiF (80 MHz, MCS2, 90pc duty cycle) WLAN 8.88 19.6 10828 AAC IEEE 802.11ac WiF (80 MHz, MCS3, 90pc duty cycle) WLAN 8.71 19.6 10829 AAC IEEE 802.11ac WiF (80 MHz, MCS3, 90pc duty cycle) WLAN 8.72 19.6 10831 AAC IEEE 802.11ac WiF (80 MHz, MCS3, 90pc duty cycle) WLAN 8.74 19.6 10832 AAC IEEE 802.11ac WiF (80 MHz, MCS3, 90pc duty cycle) WLAN 8.74 19.6 10833 AAC IEEE 802.11ac WiF (80 MHz, MCS9, 90pc duty cycle) WLAN 8.83 19.6 10835 AAC IEEE 802.11ac WiF (160 MHz, MCS9, 90pc duty cycle) WLAN 8.83 19.6 10835 AAD IEEE 802.11ac WiF (160 MHz, MCS9, 90pc duty cycle) WLAN 8.84 19.6 10833 AAD IEEE 802.11ac WiF (160 MHz, MCS9, 90pc duty cycle) WLAN 8.85 19.6 10833 AAD IEEE 802.11ac WiF (160 MHz, MCS9, 90pc duty cycle) WLAN 8.86 19.6 10843 AAD IEEE 802.11ac W	10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
10628 AAC IEEE 802.11ac WIF (80 MHz, MCS2, 90pc duty cycle) WLAN 8.71 ±9.6 10829 AAC IEEE 802.11ac WIF (80 MHz, MCS3, 90pc duty cycle) WLAN 8.85 ±9.6 10820 AAC IEEE 802.11ac WIF (80 MHz, MCS3, 90pc duty cycle) WLAN 8.72 ±9.6 10831 AAC IEEE 802.11ac WIF (80 MHz, MCS3, 90pc duty cycle) WLAN 8.71 ±9.6 10832 AAC IEEE 802.11ac WIF (80 MHz, MCS3, 90pc duty cycle) WLAN 8.83 ±9.6 10834 AAC IEEE 802.11ac WIF (80 MHz, MCS3, 90pc duty cycle) WLAN 8.81 ±9.6 10835 AAC IEEE 802.11ac WIF (100 MHz, MCS3, 90pc duty cycle) WLAN 8.81 ±9.6 10836 AAD IEEE 802.11ac WIF (100 MHz, MCS3, 90pc duty cycle) WLAN 8.86 ±9.6 10837 AAD IEEE 802.11ac WIF (100 MHz, MCS3, 90pc duty cycle) WLAN 8.85 ±9.6 10838 AAD IEEE 802.11ac WIF (100 MHz, MCS3, 90pc duty cycle) WLAN 8.85 ±9.6 10843 AAD IEEE 802.11ac W				WLAN	8.83	±9.6
TORED AAC LEEE 802.11ac WFF (80MHz, MCS3, 90pc duty cycle) WLAN 8.85			IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)		8.88	±9.6
IO680 AAC IEEE 802.11ac WIF (80 MHz, MCS4, 90 pc duty cycle) WLAN 8.72 19.6 IO681 AAC IEEE 802.11ac WIF (80 MHz, MCS5, 90 pc duty cycle) WLAN 8.74 ±9.6 IO683 AAC IEEE 802.11ac WIF (80 MHz, MCS5, 90 pc duty cycle) WLAN 8.83 ±9.6 IO684 AAC IEEE 802.11ac WIF (80 MHz, MCS5, 90 pc duty cycle) WLAN 8.83 ±9.6 IO683 AAC IEEE 802.11ac WIF (80 MHz, MCS5, 90 pc duty cycle) WLAN 8.81 ±9.6 IO683 AAD IEEE 802.11ac WIF (160 MHz, MCS3, 90 pc duty cycle) WLAN 8.83 ±9.6 IO683 AAD IEEE 802.11ac WIF (160 MHz, MCS3, 90 pc duty cycle) WLAN 8.85 ±9.6 IO683 AAD IEEE 802.11ac WIF (160 MHz, MCS3, 90 pc duty cycle) WLAN 8.85 ±9.6 IO644 AAD IEEE 802.11ac WIF (160 MHz, MCS3, 90 pc duty cycle) WLAN 8.86 ±9.6 IO644 AAD IEEE 802.11ac WIF (160 MHz, MCS3, 90 pc duty cycle) WLAN 9.06 ±9.6 IO644 AAD IEEE						±9.6
1083 AAC IEEE 802.11ac WIFI (80 MHz, MCSS, 90pc duty cycle) WLAN 8.97 1.95 10832 AAC IEEE 802.11ac WIFI (80 MHz, MCSS, 90pc duty cycle) WLAN 8.87 1.96 10833 AAC IEEE 802.11ac WIFI (80 MHz, MCSS, 90pc duty cycle) WLAN 8.83 1.96 10833 AAC IEEE 802.11ac WIFI (80 MHz, MCSS, 90pc duty cycle) WLAN 8.81 1.96 10833 AAD IEEE 802.11ac WIFI (160 MHz, MCSS, 90pc duty cycle) WLAN 8.83 1.96 10833 AAD IEEE 802.11ac WIFI (160 MHz, MCSS, 90pc duty cycle) WLAN 8.83 1.96 10833 AAD IEEE 802.11ac WIFI (160 MHz, MCSS, 90pc duty cycle) WLAN 8.86 1.96 10843 AAD IEEE 802.11ac WIFI (160 MHz, MCSS, 90pc duty cycle) WLAN 8.86 1.96 10844 AAD IEEE 802.11ac WIFI (160 MHz, MCSS, 90pc duty cycle) WLAN 9.06 1.96 10844 AAD IEEE 802.11ac WIFI (160 MHz, MCSS, 90pc duty cycle) WLAN 9.05 1.96 10844 AAD IEEE						±9.6
10822 AAC IEEE 802.11ac WIF (80 MHz, MCSR, 30pc duty cycle) WLAN 8.74 =9.6 10833 AAC IEEE 802.11ac WIF (80 MHz, MCSR, 30pc duty cycle) WLAN 8.83 =9.6 10834 AAC IEEE 802.11ac WIF (80 MHz, MCSR, 30pc duty cycle) WLAN 8.83 =9.6 10835 AAC IEEE 802.11ac WIF (160 MHz, MCSR, 30pc duty cycle) WLAN 8.81 =9.6 10838 AAD IEEE 802.11ac WIF (160 MHz, MCSR, 30pc duty cycle) WLAN 8.83 =9.6 10838 AAD IEEE 802.11ac WIF (160 MHz, MCSR, 30pc duty cycle) WLAN 8.85 =9.6 10838 AAD IEEE 802.11ac WIF (160 MHz, MCSS, 30pc duty cycle) WLAN 8.85 =9.6 10841 AAD IEEE 802.11ac WIF (160 MHz, MCSS, 30pc duty cycle) WLAN 8.85 =9.6 10844 AAD IEEE 802.11ac WIF (160 MHz, MCSS, 30pc duty cycle) WLAN 8.85 =9.6 10844 AAD IEEE 802.11ac WIF (160 MHz, MCSS, 30pc duty cycle) WLAN 9.05 =9.6 10844 AAD IEEE 802.11a						
10633 AAC IEEE 802.11ac WiFi (80 MHz, MCSR, 90pc duty cycle) WLAN 8.83 19.6 10634 AAC IEEE 802.11ac WiFi (80 MHz, MCSR, 90pc duty cycle) WLAN 8.81 19.6 10635 AAC IEEE 802.11ac WiFi (80 MHz, MCSR, 90pc duty cycle) WLAN 8.81 19.6 10636 AAD IEEE 802.11ac WiFi (160 MHz, MCSR, 90pc duty cycle) WLAN 8.83 19.6 10637 AAD IEEE 802.11ac WiFi (160 MHz, MCSR, 90pc duty cycle) WLAN 8.86 19.6 10638 AAD IEEE 802.11ac WiFi (160 MHz, MCSR, 90pc duty cycle) WLAN 8.86 19.6 10640 AAD IEEE 802.11ac WiFi (160 MHz, MCSR, 90pc duty cycle) WLAN 8.84 19.6 10644 AAD IEEE 802.11ac WiFi (160 MHz, MCSR, 90pc duty cycle) WLAN 9.06 19.6 10644 AAD IEEE 802.11ac WiFi (160 MHz, MCSR, 90pc duty cycle) WLAN 9.06 19.6 10644 AAD IEEE 802.11ac WiFi (160 MHz, MCSR, 90pc duty cycle) WLAN 9.05 19.6 10645 AAD IE						
10834 AAC IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle) WLAN 8.80 1.96 10835 AAA IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle) WLAN 8.81 .19.6 10836 AAD IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle) WLAN 8.83 .19.6 10837 AAD IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle) WLAN 8.86 .19.6 10838 AAD IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle) WLAN 8.85 .19.6 10839 AAD IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle) WLAN 8.85 .19.6 10841 AAD IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle) WLAN 9.06 .19.6 10842 AAD IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle) WLAN 8.89 .19.6 10843 AAD IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle) WLAN 9.05 .19.6 10844 AAD IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle) WLAN 9.05 .19.6 10845 AAA						
10835 AAC IEEE 802.11ac WiFI (160 MHz, MCS9, 90pc duty cycle) WLAN 8.81 ±9.6 10836 AAD IEEE 802.11ac WiFI (160 MHz, MCS9, 90pc duty cycle) WLAN 8.83 ±9.6 10837 AAD IEEE 802.11ac WiFI (160 MHz, MCS9, 90pc duty cycle) WLAN 8.85 ±9.6 10838 AAD IEEE 802.11ac WiFI (160 MHz, MCS9, 90pc duty cycle) WLAN 8.85 ±9.6 10640 AAD IEEE 802.11ac WiFI (160 MHz, MCS4, 90pc duty cycle) WLAN 8.85 ±9.6 10641 AAD IEEE 802.11ac WiFI (160 MHz, MCS4, 90pc duty cycle) WLAN 8.98 ±9.6 10642 AAD IEEE 802.11ac WiFI (160 MHz, MCS4, 90pc duty cycle) WLAN 9.06 ±9.6 10644 AAD IEEE 802.11ac WiFI (160 MHz, MCS7, 90pc duty cycle) WLAN 9.11 ±9.6 10644 AAD IEEE 802.11ac WiFI (160 MHz, MCS9, 90pc duty cycle) WLAN 9.11 ±9.6 10644 AAD IEEE 802.11ac WiFI (160 MHz, MCS9, 90pc duty cycle) WLAN 9.11 ±9.6 10645 AAF <td< td=""><td></td><td></td><td></td><td></td><td></td><td>±9.6</td></td<>						±9.6
10636 AD LEEE 802.11ac WFI (160 MHz, MCS0, 90pc duty cycle) WLAN 8.83 ±9.6 10637 AD LEEE 802.11ac WFI (160 MHz, MCS1, 90pc duty cycle) WLAN 8.79 ±9.6 10638 AAD LEEE 802.11ac WFI (160 MHz, MCS3, 90pc duty cycle) WLAN 8.85 ±9.6 10639 AAD LEEE 802.11ac WFI (160 MHz, MCS3, 90pc duty cycle) WLAN 8.85 ±9.6 10641 AAD LEEE 802.11ac WFI (160 MHz, MCS3, 90pc duty cycle) WLAN 8.98 ±9.6 10642 AAD LEEE 802.11ac WFI (160 MHz, MCS3, 90pc duty cycle) WLAN 9.06 ±9.6 10644 AAD LEEE 802.11ac WFI (160 MHz, MCS3, 90pc duty cycle) WLAN 9.05 ±9.6 10644 AAD LEEE 802.11ac WFI (160 MHz, MCS3, 90pc duty cycle) WLAN 9.05 ±9.6 10646 AAH LEEE 802.11ac WFI (160 MHz, MCS3, 90pc duty cycle) WLAN 9.05 ±9.6 10646 AAH LEE 102 LTac WFI (160 MHz, MCS3, 90pc duty cycle) WLAN 9.11 ±9.6 10647 AAG LEE 102 LTac						
10637 AD IEEE 802:11ac WFI (160 MHz, MCS1; 90pc duty cycle) WLAN 8.79 ±9.6 10638 AD IEEE 802:11ac WFI (160 MHz, MCS2; 90pc duty cycle) WLAN 8.86 ±9.6 10641 AD IEEE 802:11ac WFI (160 MHz, MCS3; 90pc duty cycle) WLAN 8.85 ±9.6 10642 AD IEEE 802:11ac WFI (160 MHz, MCS5; 90pc duty cycle) WLAN 8.98 ±9.6 10642 AD IEEE 802:11ac WFI (160 MHz, MCS5; 90pc duty cycle) WLAN 9.06 ±9.6 10643 AD IEEE 802:11ac WFI (160 MHz, MCS5; 90pc duty cycle) WLAN 8.89 ±9.6 10644 AD IEEE 802:11ac WFI (160 MHz, MCS3; 90pc duty cycle) WLAN 9.05 ±9.6 10644 AAD IEEE 802:11ac WFI (160 MHz, MCS3; 90pc duty cycle) WLAN 9.16 ±9.6 10644 AAD IEEE 802:11ac WFI (160 MHz, MCS3; 90pc duty cycle) WLAN 9.16 ±9.6 10644 AAD IEEE 802:11ac WFI (160 MHz, MCS3; 90pc duty cycle) WLAN 9.19.6 ±9.6 10647 AAG IEE TOD (SC-FD						
10638 AAD LEEE 802.11ac WiFI (160 MHz, MCS2, 90pc duty cycle) WLAN 8.86 ±9.6 10639 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 90pc duty cycle) WLAN 8.85 ±9.6 10640 AAD IEEE 802.11ac WiFI (160 MHz, MCS5, 90pc duty cycle) WLAN 9.06 ±9.6 10641 AAD IEEE 802.11ac WiFI (160 MHz, MCS5, 90pc duty cycle) WLAN 9.06 ±9.6 10642 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 90pc duty cycle) WLAN 9.05 ±9.6 10644 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 90pc duty cycle) WLAN 9.05 ±9.6 10645 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 90pc duty cycle) WLAN 9.15 ±9.6 10646 AAH LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK, UL Subframe=2.7) LTE-TDD 11.96 ±9.6 10647 AAG LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2.7) LTE-TDD 1.96 ±9.6 10652 AAF LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10655 AAF						
10639 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 90pc duty cycle) WLAN 8.85 ±9.6 10640 AAD IEEE 802.11ac WiFI (160 MHz, MCS3, 90pc duty cycle) WLAN 8.98 ±9.6 10641 AAD IEEE 802.11ac WiFI (160 MHz, MCS5, 90pc duty cycle) WLAN 9.06 ±9.6 10642 AAD IEEE 802.11ac WiFI (160 MHz, MCS5, 90pc duty cycle) WLAN 8.89 ±9.6 10643 AAD IEEE 802.11ac WiFI (160 MHz, MCS5, 90pc duty cycle) WLAN 9.05 ±9.6 10644 AAD IEEE 802.11ac WiFI (160 MHz, MCS9, 90pc duty cycle) WLAN 9.11 ±9.6 10645 AAD IEEE 802.11ac WiFI (160 MHz, MCS9, 90pc duty cycle) WLAN 9.11 ±9.6 10644 AAA CDMA2000 (1x Advanced) CDMA2000 3.45 ±9.6 10645 AAF ITE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) ITE-TDD 7.42 ±9.6 10655 AAF ITE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) ITE-TDD 7.21 ±9.6 10655 AAF ITE-TDD (OFDMA, 10 MHz, E-						
10640 AAD IEEE 802.11ac WiFI (160 MHz, MCS4, 90pc duty cycle) WLAN 8.98 ±9.6 10641 AAD IEEE 802.11ac WiFI (160 MHz, MCS5, 90pc duty cycle) WLAN 9.06 ±9.6 10642 AAD IEEE 802.11ac WiFI (160 MHz, MCS7, 90pc duty cycle) WLAN 9.06 ±9.6 10643 AAD IEEE 802.11ac WiFI (160 MHz, MCS7, 90pc duty cycle) WLAN 9.05 ±9.6 10644 AAD IEEE 802.11ac WiFI (160 MHz, MCS9, 90pc duty cycle) WLAN 9.05 ±9.6 10646 AAH ITE=TDD (SC-FDMA, 1 RB, 5MHz, QPSK, UL Subframe=2.7) ITE-TDD 11.96 ±9.6 10647 AAG ITE=TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2.7) ITE-TDD 1.96 ±9.6 10658 AAF ITE-TDD (OFDMA, 5MHz, E-TM 3.1, Clipping 44%) ITE-TDD 7.42 ±9.6 10654 AAE ITE-TDD (OFDMA, 10 Hz, E-TM 3.1, Clipping 44%) ITE-TDD 7.21 ±9.6 10655 AAF ITE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) ITE-TDD 7.21 ±9.6 10659 AAB						
10641 AAD IEEE 802.11ac WIFI (160 MHz, MCS5, 90pc duty cycle) WLAN 9.06 ±9.6 10642 AAD IEEE 802.11ac WIFI (160 MHz, MCS6, 90pc duty cycle) WLAN 9.06 ±9.6 10643 AAD IEEE 802.11ac WIFI (160 MHz, MCS8, 90pc duty cycle) WLAN 9.05 ±9.6 10644 AAD IEEE 802.11ac WIFI (160 MHz, MCS8, 90pc duty cycle) WLAN 9.05 ±9.6 10646 AAD IEEE 802.11ac WIFI (160 MHz, MCS8, 90pc duty cycle) WLAN 9.11 ±9.6 10646 AAD IEEE 700.11ac WIFI (160 MHz, MCS8, 90pc duty cycle) WLAN 9.11 ±9.6 10647 AAG IET=7DD (SC-FDMA, 1 RB, 50Hz, QFSK, UL Subframe=2.7) LTE-TDD 11.96 ±9.6 10655 AAF IET=7DD (OFDMA, 15MLz, E-TM 3.1, Clipping 44%) LTE-TDD 6.91 ±9.6 10655 AAF ITE-TDD (OFDMA, 15MLz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10655 AAF UTE-TDD (OFDMA, 15MLz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10655 AAF						
10642 AAD IEEE 802.11ac WIF (160 MHz, MCS6, 90pc duly cycle) WLAN 9.06 ±9.6 10643 AAD IEEE 802.11ac WIF (160 MHz, MCS7, 90pc duly cycle) WLAN 8.89 ±9.6 10644 AAD IEEE 802.11ac WIF (160 MHz, MCS7, 90pc duly cycle) WLAN 9.05 ±9.6 10645 AAD IEEE 802.11ac WIF (160 MHz, MCS9, 90pc duly cycle) WLAN 9.11 ±9.6 10646 AAH LTE-TDD (SC-FDMA, 1 BR, 20MHz, QPSK, UL Subframe=2.7) LTE-TDD 11.96 ±9.6 10647 AAA CDMA2000 (1x Advanced) CDMA2000 3.45 ±9.6 10653 AAF LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10654 AAE LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10658 AAF LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10658 AAB Pulse Waveform (200Hz, 10%) Test 0.00 ±9.6 10658 AAB Pulse Waveform (200Hz, 20%) Test<						
10643 AAD IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle) WLAN 8.89 ±9.6 10644 AAD IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle) WLAN 9.05 ±9.6 10644 AAD IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle) WLAN 9.11 ±9.6 10646 AAH LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK, UL Subframe=2,7) LTE-TDD 11.96 ±9.6 10647 AAG LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) LTE-TDD 11.96 ±9.6 10648 AAA CDMA2000 (1x Advanced) CDMA2000 3.45 ±9.6 10653 AAF LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10655 AAF LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10655 AAF LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10655 AAF LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10656 AAB Pulse Waveform (
10644 AAD IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle) WLAN 9.05 ±9.6 10645 AAD IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle) WLAN 9.11 ±9.6 10646 AAH LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK, UL Subframe=2,7) LTE-TDD 11.96 ±9.6 10647 AAA LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) LTE-TDD 11.96 ±9.6 10648 AAA CDMA2000 (1x Advanced) CDMA2000 3.45 ±9.6 10653 AAF LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10654 AAE LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10655 AAF LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10658 AAB Pulse Waveform (200Hz, 10%) Test 0.99 ±9.6 10659 AAB Pulse Waveform (200Hz, 40%) Test 0.97 ±9.6 10661 AAB Pulse Waveform (200Hz, 80%) Test						
10645 AAD IEEE 802.11ac WiFI (160 MHz, MCS9, 90pc duty cycle) WLAN 9.11 ±9.6 10646 AAH LTE-TDD (SC-FDMA, 1 RB, SMHz, QPSK, UL Subframe=2,7) LTE-TDD 11.96 ±9.6 10647 AAG LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) LTE-TDD 11.96 ±9.6 10648 AAA CDMA2000 (1x Advanced) CDMA2000 3.45 ±9.6 10653 AAF LTE-TDD (OFDMA, 5MHz, E-TM 3.1, Clipping 44%) LTE-TDD 6.91 ±9.6 10654 AAF LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10655 AAF LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10658 AAF LTE-TDD (OFDMA, 16 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10658 AAF Pulse Waveform (200Hz, 10%) Test 0.90 ±9.6 10659 AAB Pulse Waveform (200Hz, 60%) Test 0.97 ±9.6 10661 AAB Pulse Waveform (200Hz, 80%) Test <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
10646 AAH LTE-TDD SMHz, QPSK, UL Subframe=2,7) LTE-TDD 11.96 ±9.6 10647 AAG LTE-TDD (SC-FDMA, 1 RB, 20MHz, QPSK, UL Subframe=2,7) LTE-TDD 11.96 ±9.6 10648 AAA CDMA2000 (1x Advanced) CDMA2000 3.45 ±9.6 10652 AAF LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 6.91 ±9.6 10653 AAF LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10654 AAE LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10655 AAF LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10658 AAB Pulse Waveform (200Hz, 10%) Test 0.90 ±9.6 10659 AB Pulse Waveform (200Hz, 40%) Test 3.98 ±9.6 10660 AAB Pulse Waveform (200Hz, 60%) Test 0.97 ±9.6 10661 AAB Pulse Waveform (200Hz, 80%) Test 0.97 ±						
10647 AAG LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) LTE-TDD 11.96 ±9.6 10648 AAA CDMA2000 (1x Advanced) CDMA2000 (1x Advanced) CDMA2000 (1x Advanced) LTE-TDD 6.91 ±9.6 10652 AAF LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10654 AAE LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10655 AAF LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10656 AAF LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10656 AAF Pulse Waveform (200Hz, 10%) Test 6.99 ±9.6 10657 AAB Pulse Waveform (200Hz, 40%) Test 0.97 ±9.6 10660 AAB Pulse Waveform (200Hz, 80%) Test 0.97 ±9.6 10667 AAA Bluetooth Low Energy Bluetooth 2.19 ±9.6 10667 AAA Bluetooth Low Energy Blu						
10648 AAA CDMA2000 3.45 ±9.6 10652 AAF LTE-TDD (OFDMA, 5MHz, E-TM 3.1, Clipping 44%) LTE-TDD 6.91 ±9.6 10653 AAF LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 6.91 ±9.6 10654 AAE LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 6.96 ±9.6 10655 AAF LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10658 AAB Pulse Waveform (200Hz, 10%) Test 0.99 ±9.6 10659 AAB Pulse Waveform (200Hz, 40%) Test 3.98 ±9.6 10661 AAB Pulse Waveform (200Hz, 60%) Test 0.97 ±9.6 10661 AAB Pulse Waveform (200Hz, 80%) Test 0.97 ±9.6 10662 AAB Pulse Waveform (200Hz, 80%) Test 0.97 ±9.6 10671 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 9.09 ±9.6 10673 AAC <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
10652 AAF LTE-TDD (OFDMA, 5MHz, E-TM 3.1, Clipping 44%) LTE-TDD 6.91 ±9.6 10653 AAF LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10654 AAE LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10655 AAF LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10658 AAB Pulse Waveform (200Hz, 10%) Test 10.00 ±9.6 10659 AAB Pulse Waveform (200Hz, 20%) Test 3.98 ±9.6 10661 AAB Pulse Waveform (200Hz, 60%) Test 2.22 ±9.6 10662 AAB Pulse Waveform (200Hz, 60%) Test 0.97 ±9.6 10670 AAA Bluetooth Low Energy Bluetooth 2.19 ±9.6 10671 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.57 ±9.6 10672 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.78 ±9.6 <		_				
10653 AAF LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.42 ±9.6 10654 AAE LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 6.96 ±9.6 10655 AAF LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10655 AAB Pulse Waveform (200Hz, 10%) Test 10.00 ±9.6 10656 AAB Pulse Waveform (200Hz, 20%) Test 6.99 ±9.6 10660 AAB Pulse Waveform (200Hz, 60%) Test 2.22 ±9.6 10661 AAB Pulse Waveform (200Hz, 80%) Test 0.97 ±9.6 10662 AAB Pulse Waveform (20Hz, 80%) Test 0.97 ±9.6 10671 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 9.09 ±9.6 10672 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.77 ±9.6 10673 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
10654 AAE LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 6.96 ±9.6 10655 AAF LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-TDD 7.21 ±9.6 10658 AAB Pulse Waveform (200Hz, 10%) Test 10.00 ±9.6 10650 AAB Pulse Waveform (200Hz, 20%) Test 6.99 ±9.6 10660 AAB Pulse Waveform (200Hz, 20%) Test 3.98 ±9.6 10661 AAB Pulse Waveform (200Hz, 60%) Test 2.22 ±9.6 10662 AAB Pulse Waveform (200Hz, 80%) Test 0.97 ±9.6 10671 AAC IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) WLAN 9.09 ±9.6 10672 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.57 ±9.6 10673 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) WLAN 8.77 ±9.6						
10655 AAF LTE-TDD 7.21 ±9.6 10655 AAB Pulse Waveform (200Hz, 10%) Test 10.00 ±9.6 10659 AAB Pulse Waveform (200Hz, 20%) Test 6.99 ±9.6 10660 AAB Pulse Waveform (200Hz, 40%) Test 3.98 ±9.6 10661 AAB Pulse Waveform (200Hz, 60%) Test 2.22 ±9.6 10662 AAB Pulse Waveform (200Hz, 80%) Test 0.97 ±9.6 10662 AAB Pulse Waveform (200Hz, 80%) Test 0.97 ±9.6 10670 AAA Bluetooth Low Energy Bluetooth 2.19 ±9.6 10671 AAC IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) WLAN 8.57 ±9.6 10672 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.78 ±9.6 10674 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10675 AAC IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle)						
10658 AAB Pulse Waveform (200Hz, 10%) Test 10.00 ±9.6 10659 AAB Pulse Waveform (200Hz, 20%) Test 6.99 ±9.6 10660 AAB Pulse Waveform (200Hz, 20%) Test 3.98 ±9.6 10661 AAB Pulse Waveform (200Hz, 40%) Test 3.92 ±9.6 10662 AAB Pulse Waveform (200Hz, 40%) Test 2.22 ±9.6 10662 AAB Buletooth Low Energy Bluetooth 2.19 ±9.6 10671 AAC IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) WLAN 9.09 ±9.6 10672 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.57 ±9.6 10674 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.78 ±9.6 10675 AAC IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) WLAN 8.77 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.73 ±9.6 10677 <						
10659 AAB Pulse Waveform (200Hz, 20%) Test 6.99 ±9.6 10660 AAB Pulse Waveform (200Hz, 40%) Test 3.98 ±9.6 10661 AAB Pulse Waveform (200Hz, 60%) Test 2.22 ±9.6 10662 AAB Pulse Waveform (200Hz, 60%) Test 0.97 ±9.6 10670 AAA Bluetooth Low Energy Bluetooth 2.19 ±9.6 10671 AAC IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) WLAN 9.09 ±9.6 10672 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.77 ±9.6 10673 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10674 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.77 ±9.6 10675 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.77 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.73 ±9.6 106						
10660 AAB Pulse Waveform (200Hz, 40%) Test 3.98 ±9.6 10661 AAB Pulse Waveform (200Hz, 60%) Test 2.22 ±9.6 10662 AAB Pulse Waveform (200Hz, 80%) Test 0.97 ±9.6 10670 AAA Bluetooth Low Energy Bluetooth 2.19 ±9.6 10671 AAC IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) WLAN 9.09 ±9.6 10672 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.57 ±9.6 10673 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10674 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10675 AAC IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) WLAN 8.77 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.73 ±9.6 10677 AAC IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) WLAN 8.73 ±9.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
10661 AAB Pulse Waveform (200Hz, 60%) Test 2.22 ±9.6 10662 AAB Pulse Waveform (200Hz, 80%) Test 0.97 ±9.6 10670 AAA Bluetooth Low Energy Bluetooth 2.19 ±9.6 10671 AAC IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) WLAN 9.09 ±9.6 10672 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.57 ±9.6 10673 AAC IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle) WLAN 8.78 ±9.6 10674 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10675 AAC IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) WLAN 8.74 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.77 ±9.6 10677 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.73 ±9.6 10678 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.78 ±9.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10662 AAB Pulse Waveform (200Hz, 80%) Test 0.97 ±9.6 10670 AAA Bluetooth Low Energy Bluetooth 2.19 ±9.6 10671 AAC IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) WLAN 9.09 ±9.6 10672 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.57 ±9.6 10673 AAC IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle) WLAN 8.78 ±9.6 10674 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10675 AAC IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) WLAN 8.77 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.77 ±9.6 10677 AAC IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) WLAN 8.73 ±9.6 10678 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.73 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.89						
10670 AAA Bluetooth Low Energy Bluetooth 2.19 ±9.6 10671 AAC IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) WLAN 9.09 ±9.6 10672 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.57 ±9.6 10673 AAC IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle) WLAN 8.78 ±9.6 10674 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10675 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.77 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.73 ±9.6 10677 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.73 ±9.6 10678 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.89 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN						
10671 AAC IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) WLAN 9.09 ±9.6 10672 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.57 ±9.6 10673 AAC IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle) WLAN 8.78 ±9.6 10673 AAC IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle) WLAN 8.78 ±9.6 10674 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10675 AAC IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) WLAN 8.77 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.77 ±9.6 10677 AAC IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) WLAN 8.73 ±9.6 10678 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.73 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle) WLAN 8.89 ±9.6 10680 AAC IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)						
10672 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.57 ±9.6 10673 AAC IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle) WLAN 8.78 ±9.6 10674 AAC IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle) WLAN 8.74 ±9.6 10674 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10675 AAC IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) WLAN 8.77 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.77 ±9.6 10677 AAC IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) WLAN 8.73 ±9.6 10678 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.78 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.89 ±9.6 10680 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.80 ±9.6 10681 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)			37			
10673 AAC IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle) WLAN 8.78 ±9.6 10674 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10675 AAC IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) WLAN 8.90 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) WLAN 8.77 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.77 ±9.6 10677 AAC IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) WLAN 8.73 ±9.6 10678 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.78 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.89 ±9.6 10680 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.80 ±9.6 10681 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.62 ±9.6 10682 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)						
10674 AAC IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) WLAN 8.74 ±9.6 10675 AAC IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) WLAN 8.90 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.77 ±9.6 10677 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.73 ±9.6 10678 AAC IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) WLAN 8.73 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.78 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.89 ±9.6 10680 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.80 ±9.6 10681 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.82 ±9.6 10682 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.83 ±9.6 10683 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)						
10675 AAC IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) WLAN 8.90 ±9.6 10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.77 ±9.6 10677 AAC IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) WLAN 8.73 ±9.6 10678 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.78 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.78 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.89 ±9.6 10680 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.80 ±9.6 10681 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.82 ±9.6 10682 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.83 ±9.6 10683 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.42 ±9.6 10684 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)						
10676 AAC IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) WLAN 8.77 ±9.6 10677 AAC IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) WLAN 8.73 ±9.6 10678 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.78 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.89 ±9.6 10680 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.80 ±9.6 10681 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.82 ±9.6 10682 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.83 ±9.6 10683 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.83 ±9.6 10683 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.42 ±9.6 10684 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.26 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)						
10677 AAC IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) WLAN 8.73 ±9.6 10678 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.78 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.89 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle) WLAN 8.89 ±9.6 10680 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.80 ±9.6 10681 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.62 ±9.6 10682 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.83 ±9.6 10683 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.83 ±9.6 10684 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.42 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) WLAN 8.26 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)						
10678 AAC IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) WLAN 8.78 ±9.6 10679 AAC IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle) WLAN 8.89 ±9.6 10680 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.89 ±9.6 10680 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.80 ±9.6 10681 AAC IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle) WLAN 8.62 ±9.6 10682 AAC IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle) WLAN 8.83 ±9.6 10683 AAC IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle) WLAN 8.42 ±9.6 10684 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.26 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.26 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle) WLAN 8.33 ±9.6						
10679 AAC IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle) WLAN 8.89 ±9.6 10680 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.80 ±9.6 10681 AAC IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle) WLAN 8.62 ±9.6 10682 AAC IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle) WLAN 8.62 ±9.6 10683 AAC IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle) WLAN 8.83 ±9.6 10683 AAC IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle) WLAN 8.42 ±9.6 10684 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.26 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.26 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle) WLAN 8.33 ±9.6						
10680 AAC IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) WLAN 8.80 ±9.6 10681 AAC IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle) WLAN 8.62 ±9.6 10682 AAC IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle) WLAN 8.83 ±9.6 10683 AAC IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle) WLAN 8.83 ±9.6 10684 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.42 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.26 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.23 ±9.6						
10681 AAC IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle) WLAN 8.62 ±9.6 10682 AAC IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle) WLAN 8.83 ±9.6 10683 AAC IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle) WLAN 8.42 ±9.6 10684 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.26 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.23 ±9.6						
10682 AAC IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle) WLAN 8.83 ±9.6 10683 AAC IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle) WLAN 8.42 ±9.6 10684 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.26 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle) WLAN 8.33 ±9.6						
10683 AAC IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle) WLAN 8.42 ±9.6 10684 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.26 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle) WLAN 8.33 ±9.6						
10684 AAC IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) WLAN 8.26 ±9.6 10685 AAC IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle) WLAN 8.33 ±9.6						
10685 AAC IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle) WLAN 8.33 ±9.6						
	10686	AAC	IEEE 802.11ax (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.6

10688 AAC IEEE 80 10689 AAC IEEE 80 10690 AAC IEEE 80 10691 AAC IEEE 80 10692 AAC IEEE 80 10693 AAC IEEE 80 10694 AAC IEEE 80 10695 AAC IEEE 80 10696 AAC IEEE 80 10697 AAC IEEE 80 10698 AAC IEEE 80 10699 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 <td< th=""><th>2.11ax (20 MHz, MCS4, 99pc duty cycle) 2.11ax (20 MHz, MCS5, 99pc duty cycle) 2.11ax (20 MHz, MCS6, 99pc duty cycle) 2.11ax (20 MHz, MCS7, 99pc duty cycle) 2.11ax (20 MHz, MCS7, 99pc duty cycle) 2.11ax (20 MHz, MCS8, 99pc duty cycle) 2.11ax (20 MHz, MCS9, 99pc duty cycle) 2.11ax (20 MHz, MCS1, 99pc duty cycle) 2.11ax (20 MHz, MCS1, 99pc duty cycle) 2.11ax (40 MHz, MCS1, 99pc duty cycle) 2.11ax (40 MHz, MCS1, 90pc duty cycle) 2.11ax (40 MHz, MCS2, 90pc duty cycle) 2.11ax (40 MHz, MCS3, 90pc duty cycle) 2.11ax (40 MHz, MCS3, 90pc duty cycle) 2.11ax (40 MHz, MCS5, 90pc duty cycle) 2.11ax (40 MHz, MCS6, 90pc duty cycle) 2.11ax (40 MHz, MCS9, 90pc duty cycle) 2.11ax (40 MHz, MCS10, 90pc duty cycle) 2.11ax (40 MHz, MCS11, 90pc duty cycle) 2.11ax (40 MHz, MCS11, 90pc duty cycle) 2.11ax (40 MHz, MCS1, 90pc duty cycle) 2.11ax (40 MHz, MCS1, 90pc duty cycle) 2.11ax (40 MHz, MCS1, 90pc duty cycle) 2.11ax (40 MHz, MCS3, 90pc duty cycle)<th>WLAN</th><th>PAR (dB) 8.45 8.29 8.55 8.29 8.25 8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.55 8.69 8.66 8.32 8.55 8.33 8.29 8.39</th><th>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</th></th></td<>	2.11ax (20 MHz, MCS4, 99pc duty cycle) 2.11ax (20 MHz, MCS5, 99pc duty cycle) 2.11ax (20 MHz, MCS6, 99pc duty cycle) 2.11ax (20 MHz, MCS7, 99pc duty cycle) 2.11ax (20 MHz, MCS7, 99pc duty cycle) 2.11ax (20 MHz, MCS8, 99pc duty cycle) 2.11ax (20 MHz, MCS9, 99pc duty cycle) 2.11ax (20 MHz, MCS1, 99pc duty cycle) 2.11ax (20 MHz, MCS1, 99pc duty cycle) 2.11ax (40 MHz, MCS1, 99pc duty cycle) 2.11ax (40 MHz, MCS1, 90pc duty cycle) 2.11ax (40 MHz, MCS2, 90pc duty cycle) 2.11ax (40 MHz, MCS3, 90pc duty cycle) 2.11ax (40 MHz, MCS3, 90pc duty cycle) 2.11ax (40 MHz, MCS5, 90pc duty cycle) 2.11ax (40 MHz, MCS6, 90pc duty cycle) 2.11ax (40 MHz, MCS9, 90pc duty cycle) 2.11ax (40 MHz, MCS10, 90pc duty cycle) 2.11ax (40 MHz, MCS11, 90pc duty cycle) 2.11ax (40 MHz, MCS11, 90pc duty cycle) 2.11ax (40 MHz, MCS1, 90pc duty cycle) 2.11ax (40 MHz, MCS1, 90pc duty cycle) 2.11ax (40 MHz, MCS1, 90pc duty cycle) 2.11ax (40 MHz, MCS3, 90pc duty cycle) <th>WLAN</th> <th>PAR (dB) 8.45 8.29 8.55 8.29 8.25 8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.55 8.69 8.66 8.32 8.55 8.33 8.29 8.39</th> <th>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</th>	WLAN	PAR (dB) 8.45 8.29 8.55 8.29 8.25 8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.55 8.69 8.66 8.32 8.55 8.33 8.29 8.39	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10689 AAC IEEE 80 10690 AAC IEEE 80 10691 AAC IEEE 80 10692 AAC IEEE 80 10693 AAC IEEE 80 10694 AAC IEEE 80 10695 AAC IEEE 80 10696 AAC IEEE 80 10697 AAC IEEE 80 10698 AAC IEEE 80 10699 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 <td< td=""><td>22.11ax (20 MHz, MCS6, 99pc duty cycle) 22.11ax (20 MHz, MCS7, 99pc duty cycle) 22.11ax (20 MHz, MCS8, 99pc duty cycle) 22.11ax (20 MHz, MCS9, 99pc duty cycle) 22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS8, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.55 8.29 8.25 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td></td<>	22.11ax (20 MHz, MCS6, 99pc duty cycle) 22.11ax (20 MHz, MCS7, 99pc duty cycle) 22.11ax (20 MHz, MCS8, 99pc duty cycle) 22.11ax (20 MHz, MCS9, 99pc duty cycle) 22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS8, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.55 8.29 8.25 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10690 AAC IEEE 80 10691 AAC IEEE 80 10692 AAC IEEE 80 10693 AAC IEEE 80 10694 AAC IEEE 80 10695 AAC IEEE 80 10696 AAC IEEE 80 10697 AAC IEEE 80 10698 AAC IEEE 80 10699 AAC IEEE 80 10699 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 <td< td=""><td>22.11ax (20 MHz, MCS7, 99pc duty cycle) 22.11ax (20 MHz, MCS8, 99pc duty cycle) 22.11ax (20 MHz, MCS9, 99pc duty cycle) 22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.29 8.25 8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td></td<>	22.11ax (20 MHz, MCS7, 99pc duty cycle) 22.11ax (20 MHz, MCS8, 99pc duty cycle) 22.11ax (20 MHz, MCS9, 99pc duty cycle) 22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.29 8.25 8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10691 AAC IEEE 80 10692 AAC IEEE 80 10693 AAC IEEE 80 10694 AAC IEEE 80 10695 AAC IEEE 80 10696 AAC IEEE 80 10697 AAC IEEE 80 10698 AAC IEEE 80 10699 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 <td< td=""><td>22.11ax (20 MHz, MCS8, 99pc duty cycle) 22.11ax (20 MHz, MCS9, 99pc duty cycle) 22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS8, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.25 8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td></td<>	22.11ax (20 MHz, MCS8, 99pc duty cycle) 22.11ax (20 MHz, MCS9, 99pc duty cycle) 22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS8, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.25 8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10692 AAC IEEE 80 10693 AAC IEEE 80 10694 AAC IEEE 80 10695 AAC IEEE 80 10695 AAC IEEE 80 10696 AAC IEEE 80 10697 AAC IEEE 80 10698 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 <td< td=""><td>22.11ax (20 MHz, MCS9, 99pc duty cycle) 22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS8, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 M</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$</td></td<>	22.11ax (20 MHz, MCS9, 99pc duty cycle) 22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS8, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 M	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.29 8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \\$
10693 AAC IEEE 80 10694 AAC IEEE 80 10695 AAC IEEE 80 10696 AAC IEEE 80 10697 AAC IEEE 80 10698 AAC IEEE 80 10699 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10717 AAC IEEE 80 <td< td=""><td>22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS0, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS6, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle) 22.11ax (40 M</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$</td></td<>	22.11ax (20 MHz, MCS10, 99pc duty cycle) 22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS0, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS6, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle) 22.11ax (40 M	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.25 8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10694 AAC IEEE 80 10695 AAC IEEE 80 10696 AAC IEEE 80 10697 AAC IEEE 80 10698 AAC IEEE 80 10699 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 <td< td=""><td>22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS0, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$</td></td<>	22.11ax (20 MHz, MCS11, 99pc duty cycle) 22.11ax (40 MHz, MCS0, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.57 8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10695 AAC IEEE 80 10696 AAC IEEE 80 10697 AAC IEEE 80 10698 AAC IEEE 80 10699 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10718 AAC IEEE 80 10720 AAC IEEE 80 <td< td=""><td>22.11ax (40 MHz, MCS0, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS6, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$</td></td<>	22.11ax (40 MHz, MCS0, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS6, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.78 8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10696 AAC IEEE 80 10697 AAC IEEE 80 10698 AAC IEEE 80 10699 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 <td< td=""><td>92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS2, 90pc duty cycle) 92.11ax (40 MHz, MCS3, 90pc duty cycle) 92.11ax (40 MHz, MCS3, 90pc duty cycle) 92.11ax (40 MHz, MCS4, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS7, 90pc duty cycle) 92.11ax (40 MHz, MCS7, 90pc duty cycle) 92.11ax (40 MHz, MCS9, 90pc duty cycle) 92.11ax (40 MHz, MCS10, 90pc duty cycle) 92.11ax (40 MHz, MCS11, 90pc duty cycle) 92.11ax (40 MHz, MCS11, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS3, 90pc duty cycle) 92.11ax (40 MHz, MCS4, 90pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$</td></td<>	92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS2, 90pc duty cycle) 92.11ax (40 MHz, MCS3, 90pc duty cycle) 92.11ax (40 MHz, MCS3, 90pc duty cycle) 92.11ax (40 MHz, MCS4, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS7, 90pc duty cycle) 92.11ax (40 MHz, MCS7, 90pc duty cycle) 92.11ax (40 MHz, MCS9, 90pc duty cycle) 92.11ax (40 MHz, MCS10, 90pc duty cycle) 92.11ax (40 MHz, MCS11, 90pc duty cycle) 92.11ax (40 MHz, MCS11, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS3, 90pc duty cycle) 92.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.91 8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10697 AAC IEEE 80 10698 AAC IEEE 80 10699 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 <td< td=""><td>92.11ax (40 MHz, MCS2, 90pc duty cycle) 92.11ax (40 MHz, MCS3, 90pc duty cycle) 92.11ax (40 MHz, MCS4, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS6, 90pc duty cycle) 92.11ax (40 MHz, MCS7, 90pc duty cycle) 92.11ax (40 MHz, MCS9, 90pc duty cycle) 92.11ax (40 MHz, MCS9, 90pc duty cycle) 92.11ax (40 MHz, MCS10, 90pc duty cycle) 92.11ax (40 MHz, MCS11, 90pc duty cycle) 92.11ax (40 MHz, MCS11, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS3, 90pc duty cycle) 92.11ax (40 MHz, MCS4, 90pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$</td></td<>	92.11ax (40 MHz, MCS2, 90pc duty cycle) 92.11ax (40 MHz, MCS3, 90pc duty cycle) 92.11ax (40 MHz, MCS4, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS5, 90pc duty cycle) 92.11ax (40 MHz, MCS6, 90pc duty cycle) 92.11ax (40 MHz, MCS7, 90pc duty cycle) 92.11ax (40 MHz, MCS9, 90pc duty cycle) 92.11ax (40 MHz, MCS9, 90pc duty cycle) 92.11ax (40 MHz, MCS10, 90pc duty cycle) 92.11ax (40 MHz, MCS11, 90pc duty cycle) 92.11ax (40 MHz, MCS11, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS1, 90pc duty cycle) 92.11ax (40 MHz, MCS3, 90pc duty cycle) 92.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.61 8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10698 AAC IEEE 80 10699 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 <td< td=""><td>02.11ax (40 MHz, MCS3, 90pc duty cycle) 02.11ax (40 MHz, MCS4, 90pc duty cycle) 02.11ax (40 MHz, MCS5, 90pc duty cycle) 02.11ax (40 MHz, MCS5, 90pc duty cycle) 02.11ax (40 MHz, MCS6, 90pc duty cycle) 02.11ax (40 MHz, MCS7, 90pc duty cycle) 02.11ax (40 MHz, MCS7, 90pc duty cycle) 02.11ax (40 MHz, MCS9, 90pc duty cycle) 02.11ax (40 MHz, MCS9, 90pc duty cycle) 02.11ax (40 MHz, MCS10, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS3, 90pc duty cycle) 02.11ax (40 MHz, MCS4, 90pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$</td></td<>	02.11ax (40 MHz, MCS3, 90pc duty cycle) 02.11ax (40 MHz, MCS4, 90pc duty cycle) 02.11ax (40 MHz, MCS5, 90pc duty cycle) 02.11ax (40 MHz, MCS5, 90pc duty cycle) 02.11ax (40 MHz, MCS6, 90pc duty cycle) 02.11ax (40 MHz, MCS7, 90pc duty cycle) 02.11ax (40 MHz, MCS7, 90pc duty cycle) 02.11ax (40 MHz, MCS9, 90pc duty cycle) 02.11ax (40 MHz, MCS9, 90pc duty cycle) 02.11ax (40 MHz, MCS10, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS3, 90pc duty cycle) 02.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.89 8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10699 AAC IEEE 80 10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10718 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 <td< td=""><td>22.11ax (40 MHz, MCS4, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS8, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$</td></td<>	22.11ax (40 MHz, MCS4, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS8, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.82 8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10700 AAC IEEE 80 10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 <td< td=""><td>22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS6, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS8, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle)</td><td>WLAN WLAN WLAN</td><td>8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$</td></td<>	22.11ax (40 MHz, MCS5, 90pc duty cycle) 22.11ax (40 MHz, MCS6, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS7, 90pc duty cycle) 22.11ax (40 MHz, MCS8, 90pc duty cycle) 22.11ax (40 MHz, MCS9, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS10, 90pc duty cycle) 22.11ax (40 MHz, MCS11, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS1, 90pc duty cycle) 22.11ax (40 MHz, MCS2, 90pc duty cycle) 22.11ax (40 MHz, MCS3, 90pc duty cycle) 22.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN WLAN	8.73 8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10701 AAC IEEE 80 10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 <td< td=""><td>D2.11ax (40 MHz, MCS6, 90pc duty cycle) D2.11ax (40 MHz, MCS7, 90pc duty cycle) D2.11ax (40 MHz, MCS8, 90pc duty cycle) D2.11ax (40 MHz, MCS9, 90pc duty cycle) D2.11ax (40 MHz, MCS10, 90pc duty cycle) D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS1, 90pc duty cycle) D2.11ax (40 MHz, MCS3, 90pc duty cycle) D2.11ax (40 MHz, MCS4, 90pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$</td></td<>	D2.11ax (40 MHz, MCS6, 90pc duty cycle) D2.11ax (40 MHz, MCS7, 90pc duty cycle) D2.11ax (40 MHz, MCS8, 90pc duty cycle) D2.11ax (40 MHz, MCS9, 90pc duty cycle) D2.11ax (40 MHz, MCS10, 90pc duty cycle) D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS1, 90pc duty cycle) D2.11ax (40 MHz, MCS3, 90pc duty cycle) D2.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.86 8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$\begin{array}{c} \pm 9.6 \\ \pm 9.6 \end{array}$
10702 AAC IEEE 80 10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 <td< td=""><td>02.11ax (40 MHz, MCS7, 90pc duty cycle) 02.11ax (40 MHz, MCS8, 90pc duty cycle) 02.11ax (40 MHz, MCS9, 90pc duty cycle) 02.11ax (40 MHz, MCS10, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS2, 90pc duty cycle) 02.11ax (40 MHz, MCS3, 90pc duty cycle) 02.11ax (40 MHz, MCS3, 90pc duty cycle) 02.11ax (40 MHz, MCS3, 90pc duty cycle) 02.11ax (40 MHz, MCS4, 90pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>$\begin{array}{r} \pm 9.6 \\ \pm 9.6 \end{array}$</td></td<>	02.11ax (40 MHz, MCS7, 90pc duty cycle) 02.11ax (40 MHz, MCS8, 90pc duty cycle) 02.11ax (40 MHz, MCS9, 90pc duty cycle) 02.11ax (40 MHz, MCS10, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 90pc duty cycle) 02.11ax (40 MHz, MCS2, 90pc duty cycle) 02.11ax (40 MHz, MCS3, 90pc duty cycle) 02.11ax (40 MHz, MCS3, 90pc duty cycle) 02.11ax (40 MHz, MCS3, 90pc duty cycle) 02.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.70 8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	$ \begin{array}{r} \pm 9.6 \\ \pm 9.6 \end{array} $
10703 AAC IEEE 80 10704 AAC IEEE 80 10705 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 <td< td=""><td>D2.11ax (40 MHz, MCS8, 90pc duty cycle) D2.11ax (40 MHz, MCS9, 90pc duty cycle) D2.11ax (40 MHz, MCS10, 90pc duty cycle) D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS2, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29</td><td>± 9.6 ± 9.6 ± 9.6 ± 9.6 ± 9.6 ± 9.6</td></td<>	D2.11ax (40 MHz, MCS8, 90pc duty cycle) D2.11ax (40 MHz, MCS9, 90pc duty cycle) D2.11ax (40 MHz, MCS10, 90pc duty cycle) D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS2, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.82 8.56 8.69 8.66 8.32 8.55 8.33 8.29	± 9.6 ± 9.6 ± 9.6 ± 9.6 ± 9.6 ± 9.6
10704 AAC IEEE 80 10705 AAC IEEE 80 10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10727 AAC IEEE 80 <td< td=""><td>02.11ax (40 MHz, MCS9, 90pc duty cycle) 02.11ax (40 MHz, MCS10, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 99pc duty cycle) 02.11ax (40 MHz, MCS1, 99pc duty cycle) 02.11ax (40 MHz, MCS2, 99pc duty cycle) 02.11ax (40 MHz, MCS3, 99pc duty cycle) 02.11ax (40 MHz, MCS3, 99pc duty cycle) 02.11ax (40 MHz, MCS3, 99pc duty cycle) 02.11ax (40 MHz, MCS4, 99pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.56 8.69 8.32 8.55 8.33 8.29</td><td>± 9.6</td></td<>	02.11ax (40 MHz, MCS9, 90pc duty cycle) 02.11ax (40 MHz, MCS10, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS11, 90pc duty cycle) 02.11ax (40 MHz, MCS1, 99pc duty cycle) 02.11ax (40 MHz, MCS1, 99pc duty cycle) 02.11ax (40 MHz, MCS2, 99pc duty cycle) 02.11ax (40 MHz, MCS3, 99pc duty cycle) 02.11ax (40 MHz, MCS3, 99pc duty cycle) 02.11ax (40 MHz, MCS3, 99pc duty cycle) 02.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.56 8.69 8.32 8.55 8.33 8.29	$ \pm 9.6 $
10705 AAC IEEE 80 10706 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10728 AAC IEEE 80 <td< td=""><td>D2.11ax (40 MHz, MCS10, 90pc duty cycle) D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS0, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.69 8.66 8.32 8.55 8.33 8.29</td><td>+9.6 +9.6 +9.6 +9.6</td></td<>	D2.11ax (40 MHz, MCS10, 90pc duty cycle) D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS0, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.69 8.66 8.32 8.55 8.33 8.29	+9.6 +9.6 +9.6 +9.6
10706 AAC IEEE 80 10707 AAC IEEE 80 10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10727 AAC IEEE 80 10728 AAC IEEE 80 <td< td=""><td>D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS0, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS2, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN WLAN</td><td>8.66 8.32 8.55 8.33 8.29</td><td>±9.6 ±9.6 ±9.6</td></td<>	D2.11ax (40 MHz, MCS11, 90pc duty cycle) D2.11ax (40 MHz, MCS0, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS2, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN WLAN	8.66 8.32 8.55 8.33 8.29	±9.6 ±9.6 ±9.6
10707 AAC IEEE 80 10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10729 AAC IEEE 80 10730 AAC IEEE 80 <td< td=""><td>D2.11ax (40 MHz, MCS0, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS2, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle)</td><td>WLAN WLAN WLAN WLAN WLAN</td><td>8.32 8.55 8.33 8.29</td><td>±9.6 ±9.6</td></td<>	D2.11ax (40 MHz, MCS0, 99pc duty cycle) D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS2, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN WLAN WLAN WLAN WLAN	8.32 8.55 8.33 8.29	±9.6 ±9.6
10708 AAC IEEE 80 10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10726 AAC IEEE 80 10727 AAC IEEE 80 10728 AAC IEEE 80 10730 AAC IEEE 80 10731 AAC IEEE 80 <td< td=""><td>D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS2, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle)</td><td>WLAN WLAN WLAN WLAN</td><td>8.55 8.33 8.29</td><td>±9.6</td></td<>	D2.11ax (40 MHz, MCS1, 99pc duty cycle) D2.11ax (40 MHz, MCS2, 99pc duty cycle) D2.11ax (40 MHz, MCS3, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle) D2.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN WLAN WLAN WLAN	8.55 8.33 8.29	±9.6
10709 AAC IEEE 80 10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10726 AAC IEEE 80 10727 AAC IEEE 80 10728 AAC IEEE 80 10730 AAC IEEE 80 10731 AAC IEEE 80 10732 AAC IEEE 80 <td< td=""><td>02.11ax (40 MHz, MCS2, 99pc duty cycle) 02.11ax (40 MHz, MCS3, 99pc duty cycle) 02.11ax (40 MHz, MCS4, 99pc duty cycle)</td><td>WLAN WLAN WLAN</td><td>8.33 8.29</td><td></td></td<>	02.11ax (40 MHz, MCS2, 99pc duty cycle) 02.11ax (40 MHz, MCS3, 99pc duty cycle) 02.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN WLAN WLAN	8.33 8.29	
10710 AAC IEEE 80 10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10726 AAC IEEE 80 10727 AAC IEEE 80 10728 AAC IEEE 80 10730 AAC IEEE 80 10731 AAC IEEE 80 10732 AAC IEEE 80 10733 AAC IEEE 80 <td< td=""><td>02.11ax (40 MHz, MCS3, 99pc duty cycle) 02.11ax (40 MHz, MCS4, 99pc duty cycle)</td><td>WLAN WLAN</td><td>8.29</td><td>10.0</td></td<>	02.11ax (40 MHz, MCS3, 99pc duty cycle) 02.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN WLAN	8.29	10.0
10711 AAC IEEE 80 10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10726 AAC IEEE 80 10727 AAC IEEE 80 10728 AAC IEEE 80 10729 AAC IEEE 80 10730 AAC IEEE 80 10731 AAC IEEE 80 10732 AAC IEEE 80 10733 AAC IEEE 80 <td< td=""><td>02.11ax (40 MHz, MCS4, 99pc duty cycle)</td><td>WLAN</td><td></td><td>±9.6</td></td<>	02.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN		±9.6
10712 AAC IEEE 80 10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10710 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10726 AAC IEEE 80 10727 AAC IEEE 80 10728 AAC IEEE 80 10729 AAC IEEE 80 10730 AAC IEEE 80 10731 AAC IEEE 80 10732 AAC IEEE 80 10733 AAC IEEE 80 <td< td=""><td></td><td></td><td>8.39</td><td>±9.6</td></td<>			8.39	±9.6
10713 AAC IEEE 80 10714 AAC IEEE 80 10715 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10726 AAC IEEE 80 10727 AAC IEEE 80 10728 AAC IEEE 80 10729 AAC IEEE 80 10730 AAC IEEE 80 10731 AAC IEEE 80 10732 AAC IEEE 80 10733 AAC IEEE 80 10733 AAC IEEE 80 <td< td=""><td>2.11ax (40 MHz, MCS5, 99pc duty cycle)</td><td>WLAN</td><td></td><td>±9.6</td></td<>	2.11ax (40 MHz, MCS5, 99pc duty cycle)	WLAN		±9.6
10714 AAC IEEE 80 10715 AAC IEEE 80 10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10726 AAC IEEE 80 10727 AAC IEEE 80 10728 AAC IEEE 80 10729 AAC IEEE 80 10730 AAC IEEE 80 10731 AAC IEEE 80 10732 AAC IEEE 80 10733 AAC IEEE 80 10733 AAC IEEE 80 10733 AAC IEEE 80 <td< td=""><td></td><td></td><td>8.67</td><td>±9.6</td></td<>			8.67	±9.6
10715 AAC IEEE 80 10716 AAC IEEE 80 10717 AAC IEEE 80 10717 AAC IEEE 80 10718 AAC IEEE 80 10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10726 AAC IEEE 80 10727 AAC IEEE 80 10728 AAC IEEE 80 10729 AAC IEEE 80 10730 AAC IEEE 80 10731 AAC IEEE 80 10732 AAC IEEE 80 10733 AAC IEEE 80 10733 AAC IEEE 80 10734 AAC IEEE 80 10735 AAC IEEE 80 <td< td=""><td>02.11ax (40 MHz, MCS6, 99pc duty cycle)</td><td>WLAN</td><td>8.33</td><td>±9.6</td></td<>	02.11ax (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.33	±9.6
10716 AAC IEEE 88 10717 AAC IEEE 88 10718 AAC IEEE 88 10719 AAC IEEE 88 10719 AAC IEEE 88 10720 AAC IEEE 88 10721 AAC IEEE 88 10722 AAC IEEE 88 10723 AAC IEEE 88 10724 AAC IEEE 88 10725 AAC IEEE 88 10726 AAC IEEE 88 10727 AAC IEEE 88 10728 AAC IEEE 88 10729 AAC IEEE 88 10730 AAC IEEE 88 10730 AAC IEEE 88 10731 AAC IEEE 88 10732 AAC IEEE 88 10733 AAC IEEE 88 10733 AAC IEEE 88 10734 AAC IEEE 88 10735 AAC IEEE 88 <td< td=""><td>02.11ax (40 MHz, MCS7, 99pc duty cycle)</td><td>WLAN</td><td>8.26</td><td>±9.6</td></td<>	02.11ax (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.26	±9.6
10717 AAC IEEE 8(1) 10718 AAC IEEE 8(1) 10719 AAC IEEE 8(1) 10719 AAC IEEE 8(1) 10720 AAC IEEE 8(1) 10721 AAC IEEE 8(1) 10722 AAC IEEE 8(1) 10723 AAC IEEE 8(1) 10724 AAC IEEE 8(1) 10725 AAC IEEE 8(1) 10726 AAC IEEE 8(1) 10727 AAC IEEE 8(1) 10728 AAC IEEE 8(1) 10729 AAC IEEE 8(1) 10730 AAC IEEE 8(1) 10731 AAC IEEE 8(1) 10732 AAC IEEE 8(1) 10733 AAC IEEE 8(1) 10733 AAC IEEE 8(1) 10734 AAC IEEE 8(1) 10735 AAC IEEE 8(1) 10736 AAC IEEE 8(1) 10737 AAC <td< td=""><td>02.11ax (40 MHz, MCS8, 99pc duty cycle)</td><td>WLAN</td><td>8.45</td><td>±9.6</td></td<>	02.11ax (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.45	±9.6
10718 AAC IEEE 88 10719 AAC IEEE 88 10720 AAC IEEE 88 10721 AAC IEEE 88 10721 AAC IEEE 88 10722 AAC IEEE 88 10723 AAC IEEE 88 10724 AAC IEEE 88 10725 AAC IEEE 88 10726 AAC IEEE 88 10727 AAC IEEE 88 10728 AAC IEEE 88 10729 AAC IEEE 88 10730 AAC IEEE 88 10731 AAC IEEE 88 10732 AAC IEEE 88 10733 AAC IEEE 88 10733 AAC IEEE 88 10733 AAC IEEE 88 10734 AAC IEEE 88 10735 AAC IEEE 88 10736 AAC IEEE 88 10737 AAC IEEE 88	02.11ax (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.6
10719 AAC IEEE 80 10720 AAC IEEE 80 10721 AAC IEEE 80 10721 AAC IEEE 80 10722 AAC IEEE 80 10723 AAC IEEE 80 10724 AAC IEEE 80 10725 AAC IEEE 80 10726 AAC IEEE 80 10727 AAC IEEE 80 10728 AAC IEEE 80 10729 AAC IEEE 80 10730 AAC IEEE 80 10731 AAC IEEE 80 10732 AAC IEEE 80 10731 AAC IEEE 80 10732 AAC IEEE 80 10733 AAC IEEE 80 10733 AAC IEEE 80 10734 AAC IEEE 80 10735 AAC IEEE 80 10736 AAC IEEE 80 10737 AAC IEEE 80	02.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN	8.48	±9.6
10720 AAC IEEE 8(1) 10721 AAC IEEE 8(1) 10722 AAC IEEE 8(1) 10723 AAC IEEE 8(1) 10724 AAC IEEE 8(1) 10725 AAC IEEE 8(1) 10726 AAC IEEE 8(1) 10727 AAC IEEE 8(1) 10728 AAC IEEE 8(1) 10729 AAC IEEE 8(1) 10730 AAC IEEE 8(1) 10731 AAC IEEE 8(1) 10732 AAC IEEE 8(1) 10733 AAC IEEE 8(1) 10734 AAC IEEE 8(1) 10735 AAC IEEE 8(1) 10736 AAC IEEE 8(1) 10737 AAC IEEE 8(1)	02.11ax (40 MHz, MCS11, 99pc duty cycle)	WLAN	8.24	±9.6
10721 AAC IEEE 8 10722 AAC IEEE 8 10723 AAC IEEE 8 10724 AAC IEEE 8 10725 AAC IEEE 8 10726 AAC IEEE 8 10727 AAC IEEE 8 10728 AAC IEEE 8 10729 AAC IEEE 8 10730 AAC IEEE 8 10731 AAC IEEE 8 10733 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10735 AAC IEEE 8 10735 AAC IEEE 8 10735 AAC IEEE 8 10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6
10722 AAC IEEE 8 10723 AAC IEEE 8 10724 AAC IEEE 8 10725 AAC IEEE 8 10726 AAC IEEE 8 10727 AAC IEEE 8 10728 AAC IEEE 8 10729 AAC IEEE 8 10730 AAC IEEE 8 10731 AAC IEEE 8 10732 AAC IEEE 8 10733 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10735 AAC IEEE 8 10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6
10723 AAC IEEE 8 10724 AAC IEEE 8 10725 AAC IEEE 8 10726 AAC IEEE 8 10727 AAC IEEE 8 10728 AAC IEEE 8 10729 AAC IEEE 8 10730 AAC IEEE 8 10731 AAC IEEE 8 10732 AAC IEEE 8 10733 AAC IEEE 8 10733 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10737 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.76	±9.6
10724 AAC IEEE 8 10725 AAC IEEE 8 10726 AAC IEEE 8 10727 AAC IEEE 8 10728 AAC IEEE 8 10729 AAC IEEE 8 10730 AAC IEEE 8 10731 AAC IEEE 8 10732 AAC IEEE 8 10733 AAC IEEE 8 10733 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.55	±9.6
10725 AAC IEEE 8 10726 AAC IEEE 8 10727 AAC IEEE 8 10728 AAC IEEE 8 10729 AAC IEEE 8 10729 AAC IEEE 8 10730 AAC IEEE 8 10731 AAC IEEE 8 10732 AAC IEEE 8 10733 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10726 AAC IEEE 8 10727 AAC IEEE 8 10728 AAC IEEE 8 10729 AAC IEEE 8 10730 AAC IEEE 8 10731 AAC IEEE 8 10732 AAC IEEE 8 10733 AAC IEEE 8 10733 AAC IEEE 8 10733 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.6
10727 AAC IEEE 8 10728 AAC IEEE 8 10729 AAC IEEE 8 10730 AAC IEEE 8 10731 AAC IEEE 8 10732 AAC IEEE 8 10733 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10728 AAC IEEE 8 10729 AAC IEEE 8 10730 AAC IEEE 8 10731 AAC IEEE 8 10732 AAC IEEE 8 10733 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.72	±9.6
10729 AAC IEEE 80 10730 AAC IEEE 80 10731 AAC IEEE 80 10732 AAC IEEE 80 10733 AAC IEEE 80 10734 AAC IEEE 80 10735 AAC IEEE 80 10736 AAC IEEE 80 10737 AAC IEEE 80 10737 AAC IEEE 80	02.11ax (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.66	±9.6
10730 AAC IEEE 8 10731 AAC IEEE 8 10732 AAC IEEE 8 10733 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6
10731 AAC IEEE 8/ 10732 AAC IEEE 8/ 10733 AAC IEEE 8/ 10734 AAC IEEE 8/ 10735 AAC IEEE 8/ 10736 AAC IEEE 8/ 10737 AAC IEEE 8/ 10737 AAC IEEE 8/	02.11ax (80 MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6
10732 AAC IEEE 8 10733 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS11, 90pc duty cycle)	WLAN	8.67	±9.6
10733 AAC IEEE 8 10734 AAC IEEE 8 10735 AAC IEEE 8 10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10734 AAC IEEE 8 10735 AAC IEEE 8 10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.46	±9.6
10735 AAC IEEE 8 10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.40	±9.6
10736 AAC IEEE 8 10737 AAC IEEE 8	02.11ax (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9.6
10737 AAC IEEE 8	02.11ax (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.33	<u>+9.6</u>
	02.11ax (80 MHz, MCS5, 99pc duty cycle) 02.11ax (80 MHz, MCS6, 99pc duty cycle)	WLAN WLAN	8.27	±9.6
I IVISO MAU IEEE 8			8.36	±9.6
		WLAN	8.42	±9.6
	02.11ax (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
	02.11ax (80 MHz, MCS7, 99pc duty cycle) 02.11ax (80 MHz, MCS8, 99pc duty cycle)	WLAN WLAN	8.48	±9.6
	02.11ax (80 MHz, MCS7, 99pc duty cycle) 02.11ax (80 MHz, MCS8, 99pc duty cycle) 02.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.40	±9.6
	D2.11ax (80 MHz, MCS7, 99pc duty cycle) D2.11ax (80 MHz, MCS8, 99pc duty cycle) D2.11ax (80 MHz, MCS9, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle)	WLAN	8.43	±9.6 ±9.6
	D2.11ax (80 MHz, MCS7, 99pc duty cycle) D2.11ax (80 MHz, MCS8, 99pc duty cycle) D2.11ax (80 MHz, MCS9, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS11, 99pc duty cycle)		9.16	±9.6
	D2.11ax (80 MHz, MCS7, 99pc duty cycle) D2.11ax (80 MHz, MCS8, 99pc duty cycle) D2.11ax (80 MHz, MCS9, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS11, 99pc duty cycle) D2.11ax (160 MHz, MCS0, 90pc duty cycle) D2.11ax (160 MHz, MCS0, 90pc duty cycle)		8.93	±9.6
	D2.11ax (80 MHz, MCS7, 99pc duty cycle) D2.11ax (80 MHz, MCS8, 99pc duty cycle) D2.11ax (80 MHz, MCS9, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS11, 99pc duty cycle) D2.11ax (160 MHz, MCS0, 90pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle)	WLAN	9.11	±9.6
	D2.11ax (80 MHz, MCS7, 99pc duty cycle) D2.11ax (80 MHz, MCS8, 99pc duty cycle) D2.11ax (80 MHz, MCS9, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS11, 99pc duty cycle) D2.11ax (160 MHz, MCS11, 99pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS2, 90pc duty cycle)	WLAN		±9.6
	D2.11ax (80 MHz, MCS7, 99pc duty cycle) D2.11ax (80 MHz, MCS8, 99pc duty cycle) D2.11ax (80 MHz, MCS9, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS11, 99pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS3, 90pc duty cycle) D2.11ax (160 MHz, MCS3, 90pc duty cycle) D2.11ax (160 MHz, MCS3, 90pc duty cycle)	WLAN WLAN	0.04	±9.6
	D2.11ax (80 MHz, MCS7, 99pc duty cycle) D2.11ax (80 MHz, MCS8, 99pc duty cycle) D2.11ax (80 MHz, MCS9, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS11, 99pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS2, 90pc duty cycle) D2.11ax (160 MHz, MCS3, 90pc duty cycle) D2.11ax (160 MHz, MCS3, 90pc duty cycle) D2.11ax (160 MHz, MCS3, 90pc duty cycle) D2.11ax (160 MHz, MCS4, 90pc duty cycle)	WLAN WLAN WLAN	9.04	
	D2.11ax (80 MHz, MCS7, 99pc duty cycle) D2.11ax (80 MHz, MCS8, 99pc duty cycle) D2.11ax (80 MHz, MCS9, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS11, 99pc duty cycle) D2.11ax (160 MHz, MCS1, 99pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS3, 90pc duty cycle) D2.11ax (160 MHz, MCS4, 90pc duty cycle) D2.11ax (160 MHz, MCS5, 90pc duty cycle) D2.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN WLAN WLAN WLAN	8.93	±9.6
	D2.11ax (80 MHz, MCS7, 99pc duty cycle) D2.11ax (80 MHz, MCS8, 99pc duty cycle) D2.11ax (80 MHz, MCS9, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS11, 99pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS2, 90pc duty cycle) D2.11ax (160 MHz, MCS3, 90pc duty cycle) D2.11ax (160 MHz, MCS3, 90pc duty cycle) D2.11ax (160 MHz, MCS4, 90pc duty cycle) D2.11ax (160 MHz, MCS5, 90pc duty cycle) D2.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN WLAN WLAN WLAN WLAN	8.93 8.90	
10751 AAC IEEE 8	D2.11ax (80 MHz, MCS7, 99pc duty cycle) D2.11ax (80 MHz, MCS8, 99pc duty cycle) D2.11ax (80 MHz, MCS9, 99pc duty cycle) D2.11ax (80 MHz, MCS10, 99pc duty cycle) D2.11ax (80 MHz, MCS11, 99pc duty cycle) D2.11ax (160 MHz, MCS1, 99pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS1, 90pc duty cycle) D2.11ax (160 MHz, MCS3, 90pc duty cycle) D2.11ax (160 MHz, MCS4, 90pc duty cycle) D2.11ax (160 MHz, MCS5, 90pc duty cycle) D2.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN WLAN WLAN WLAN	8.93	±9.6 ±9.6

10753 AAC IEEE 80.2111x (160 MHz, MCS1). Opc day cycle) WLAN 8.94 4.93 10754 AAC IEEE 80.2111x (160 MHz, MCS1, 99c duby cycle) WLAN 8.94 4.93 10756 AAC IEEE 80.2111x (160 MHz, MCS1, 99c duby cycle) WLAN 8.77 4.99 10767 AAC IEEE 80.2111x (160 MHz, MCS3, 99c duby cycle) WLAN 8.63 4.90 10776 AAC IEEE 80.2111x (160 MHz, MCS3, 99c duby cycle) WLAN 8.64 4.90 10766 AAC IEEE 80.2111x (160 MHz, MCS3, 99c duby cycle) WLAN 8.40 4.90 10776 AAC IEEE 80.2111x (160 MHz, MCS3, 99c duby cycle) WLAN 8.43 4.90 10787 AAC IEEE 80.2111x (160 MHz, MCS3, 99c duby cycle) WLAN 8.44 4.90 10787 AAC IEEE 80.2111x (160 MHz, MCS3, 99c duby cycle) WLAN 8.44 4.90 10787 AAC IEEE 80.211x (160 MHz, MCS3, 99c duby cycle) WLAN 8.44 4.90 10787 AAC IEEE 80.211x (160 MHz, MCS3, 99c duby cycle) <t< th=""><th>UID</th><th>Rev</th><th>Communication System Name</th><th>Group</th><th>PAR (dB)</th><th>$Unc^E k = 2$</th></t<>	UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10755 AAC IEEE Bol 11 at (160 MHz, MCS), 900 cuty cycle) WLAN 9.77 9.89 10757 AAC IEEE Bol 21 at (160 MHz, MCS), 900 cuty cycle) WLAN 8.77 9.9 10758 AAC IEEE Bol 21 at (160 MHz, MCS), 900 cuty cycle) WLAN 8.69 9.9 10758 AAC IEEE Bol 21 at (160 MHz, MCS), 900 cuty cycle) WLAN 8.69 9.9 10760 AAC IEEE Bol 21 at (160 MHz, MCS), 900 cuty cycle) WLAN 8.49 9.9 10761 AAC IEEE Bol 21 at (160 MHz, MCS), 900 cuty cycle) WLAN 8.49 9.9 10762 AAC IEEE Bol 21 at (160 MHz, MCS), 900 cuty cycle) WLAN 8.54 4.9 10764 AAC IEEE Bol 21 at (160 MHz, MCS), 900 cuty cycle) WLAN 8.54 4.9 10765 AAC IEEE Bol 21 at (160 MHz, MCS), 900 cuty cycle) WLAN 8.54 4.9 10766 AAC IEEE Bol 21 at (160 MHz, MCS), 900 cuty cycle) WLAN 8.54 4.9 10776 AAD GN NF (PO CFML NE, SOMHZ, OSN SK, SMHZ) S	10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle)			±9.6
10767 AAC IEEE B021 tar (100 MHz, MCS2, 90pc dury cycle) WLAN 8.77 1.93 10787 AAC IEEE B021 tar (100 MHz, MCS2, 90pc dury cycle) WLAN 8.69 1.93 10789 AAC IEEE B021 tar (100 MHz, MCS3, 90pc dury cycle) WLAN 8.58 1.93 10799 AAC IEEE B021 tar (100 MHz, MCS3, 90pc dury cycle) WLAN 8.58 1.93 10701 AAC IEEE B021 tar (100 MHz, MCS3, 90pc dury cycle) WLAN 8.58 4.90 10781 AAC IEEE 802 tar (150 MHz, MCS3, 90pc dury cycle) WLAN 8.54 9.90 10785 AAC IEEE 802 tar (160 MHz, MCS3, 90pc dury cycle) WLAN 8.54 9.90 10786 AAC IEEE 802 tar (160 MHz, MCS3, 100 pc dury cycle) WLAN 8.54 9.90 10786 AAD ISO NR (PC-PGPM, HE, ISO MLz, OPSK, ISO Hz) SG NR FRI TDD 8.01 4.90 10787 AAC IEEE 802 tar (160 CHAR, MS, S0pc dury cycle) WLAN 8.54 9.90 10787 AAC ISO NR (PC-PGPM, HE, S0Hz, PG SK, ISO Hz)	10754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle)	WLAN	8.94	±9.6
10757 ACC IEEE B02.11 at (160 MHz, MCS3, 99pc duty cycle) WLAN 6.89 197 10758 ACC IEEE B02.11 at (160 MHz, MCS3, 99pc duty cycle) WLAN 6.89 19 10759 ACC IEEE B02.11 at (160 MHz, MCS3, 99pc duty cycle) WLAN 6.49 19 10761 ACC IEEE B02.11 at (160 MHz, MCS3, 99pc duty cycle) WLAN 6.49 19 10781 ACC IEEE B02.11 at (160 MHz, MCS3, 99pc duty cycle) WLAN 6.49 19 10782 ACC IEEE B02.11 at (160 MHz, MCS3, 99pc duty cycle) WLAN 6.54 19 10784 ACC IEEE B02.11 at (160 MHz, MCS3, 99pc duty cycle) WLAN 6.54 19 10785 ACC IEEE B02.11 at (160 MHz, MCS3, 99pc duty cycle) WLAN 6.54 19 10786 ACD IEEE B02.11 at (160 MHz, MCS3, 99pc duty cycle) WLAN 6.51 199 10776 ACD IEEE B02.11 at (160 MHz, MCS3, 98pc duty cycle) WLAN 8.51 199 10776 ADD S0 N R (P-OPCML NB, 80 MHz, OPSK, 15 MHz) <	10755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.64	±9.6
10769 AAC IEEE 80.21 tax (160 MHz, MCS3, 990c dug cycle) WLAN 8.89 9.99 10760 AAC IEEE 80.21 tax (160 MHz, MCS3, 990c dug cycle) WLAN 8.89 9.90 10761 AAC IEEE 80.21 tax (160 MHz, MCS3, 990c dug cycle) WLAN 8.89 9.90 10761 AAC IEEE 80.21 tax (160 MHz, MCS3, 990c dug cycle) WLAN 8.53 9.90 10762 AAC IEEE 80.21 tax (160 MHz, MCS3, 990c dug cycle) WLAN 8.54 9.90 10765 AAC IEEE 80.21 tax (160 MHz, MCS3, 990c dug cycle) WLAN 8.54 9.90 10766 AAC IEEE 80.21 tax (160 MHz, MCS3, 1990c dug cycle) WLAN 8.54 9.90 10767 AAC SG NR (PC OPDM, 18.85 MHz, QPSK, 15442) SG NR FRI TDD 8.01 9.90 10778 AAD SG NR (PC OPDM, 18.85 MHz, QPSK, 15442) SG NR FRI TDD 8.01 9.90 10774 AAD SG NR (PC OPDM, 18.82 MHz, QPSK, 15442) SG NR FRI TDD 8.02 9.90 10774 AAD SG NR (PC OPDM, 99R, 59.444, QPSK, 15442)<	10756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.77	±9.6
10759 AAC IEEE B0211kt (160 MHz, MCSS, 996 duty cycle) WLAN 8.49 19 10760 AAC IEEE B0211kt (160 MHz, MCSS, 996 duty cycle) WLAN 8.49 19 10761 AAC IEEE B0211kt (160 MHz, MCSS, 996 duty cycle) WLAN 8.49 19 10762 AAC IEEE 80211kt (160 MHz, MCSS, 996 duty cycle) WLAN 8.53 19 10764 AAC IEEE 80211kt (160 MHz, MCSS, 996 duty cycle) WLAN 8.54 19 10766 AAC IEEE 80211kt (160 MHz, MCSS), 996 duty cycle) WLAN 8.54 19 107676 AAC IEEE 80211kt (160 MHz, MCSS), 1996 duty cycle) WLAN 8.51 19 10778 AAD S5 NR (CP-OFDM1, TRB, 15MHz, CPSK, 15kHz) 55 NR FRI TDD 8.01 49 10777 AAD S5 NR (CP-OFDM1, TRB, 15MHz, CPSK, 15kHz) 55 NR FRI TDD 8.02 49 10777 AAD S5 NR (CP-OFDM1, TRB, 3MHz, CPSK, 15kHz) 55 NR FRI TDD 8.02 49 10774 AAD S5 NR (CP-OFDM1, TRB, 3MHz, CPSK, 15kHz) 55 NR FRI	10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.77	±9.6
10760 AAC IEEE 802.1118. (160 MHz, MCSS, 9960 cuty cycle) WLAN 8.49 9.90 10761 AAC IEEE 802.1118. (160 MHz, MCSS, 9960 cuty cycle) WLAN 8.54 9.90 10762 AAC IEEE 802.118. (160 MHz, MCSS, 9960 cuty cycle) WLAN 8.53 9.90 10764 AAC IEEE 802.118. (160 MHz, MCSS, 9960 cuty cycle) WLAN 8.54 9.90 10766 AAC IEEE 802.118. (160 MHz, MCSS), 9960 cuty cycle) WLAN 8.54 9.90 10767 AAS IEEE 802.118. (160 MHz, MCSS), 9960 cuty cycle) WLAN 8.54 9.90 10767 AAS SO NR CPO-FDML 788, 150 Http SO NR FRI TDD 8.01 9.90 10767 AAS SO NR CPO-FDML 788, 150 Http SO NR FRI TDD 8.02 9.90 10778 AAD SO NR CPO-FDML 788, 150 Http SO NR FRI TDD 8.02 9.90 10778 AAD SO NR CPO-FDML 788, 20 MHz, CPSK, 154 Http SO NR FRI TDD 8.02 9.90 10778 AAD SO NR CPO-FDML, 788, 30 MHz, CPSK, 154 Http SO NR	10758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.69	±9.6
10761 AAC IEEE Bot 11x (160 MHz, MCSS, 996 outy cycle) WLAN 8.49 -9.9 10762 AAC IEEE Bot 11x (160 MHz, MCSS, 996 outy cycle) WLAN 8.53 -9.9 10764 AAC IEEE Bot 11x (160 MHz, MCSS, 996 outy cycle) WLAN 8.54 -9.9 10765 AAC IEEE Bot 11x (160 MHz, MCSS, 996 outy cycle) WLAN 8.54 -9.9 10766 AAC IEEE Bot 11x (160 MHz, MCSS) 1996 outy cycle) WLAN 8.54 -9.9 10767 AAC IEEE Bot 11x (160 MHz, MCSS) 1996 outy cycle) WLAN 8.51 -9.9 10768 AAC SO NR (CP-OPDML 188, 15MHz, OPSK, 15HHz) SO NR FRI 100 8.01 -9.9 10770 AAD SO NR (CP-OPDML 188, 15MHz, OPSK, 15HHz) SO NR FRI 100 8.02 -9.9 10771 AAD SO NR (CP-OPDML 188, 25MHz, OPSK, 15HHz) SO NR FRI 100 8.02 -9.9 10772 AAD SO NR (CP-OPDML 188, 25MHz, OPSK, 15HHz) SO NR FRI 100 8.03 -9.9 10777 AAD SO NR (CP-OPDML 198, 25MHz, OPSK, 15HHz)	10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.58	±9.6
10702 AAC IEEE B02111x (100 MHz, MCS2, 990 duty cycle) WLAN 8.49 1.9 10763 AAC IEEE B02111x (100 MHz, MCS3, 990 duty cycle) WLAN 8.54 9.9 10764 AAC IEEE B02111x (100 MHz, MCS3), 990 duty cycle) WLAN 8.54 9.9 10765 AAC IEEE B02111x (100 MHz, MCS1), 990 duty cycle) WLAN 8.55 9.9 10766 AAC IEEE B0211x (100 MHz, MCS1), 990 duty cycle) WLAN 8.51 9.9 10767 AAS S6 NR (CP-OFDM 1 HB, 5MLZ, CPSK, 15kH2) S6 NR FRI TDD 6.01 9.9 10776 AAD S6 NR (CP-OFDM 1 HB, 5MLZ, CPSK, 15kH2) S6 NR FRI TDD 8.02 9.9 10777 AAD S6 NR (CP-OFDM 1 HB, 3MLZ, CPSK, 15kH2) S6 NR FRI TDD 8.02 9.9 10777 AAD S6 NR (CP-OFDM 1 HB, 3MLZ, CPSK, 15kH2) S6 NR FRI TDD 8.02 9.9 10777 AAD S6 NR (CP-OFDM 1 HB, 3MLZ, CPSK, 15kH2) S6 NR FRI TDD 8.30 9.9 10776 AAD S6 NR (CP-OFDM 1 HB, 3MLZ, CPSK, 15kH2)	10760	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle)	WLAN	8.49	±9.6
10763 AAC IEEE 80211 kt (160 MHE, NCS9, 99pc duty cycle) WLAN 8.54 59 10764 AAC IEEE 80211 kt (160 MHE, NCS9, 99pc duty cycle) WLAN 8.54 59 10766 AAC IEEE 80211 kt (160 MHE, NCS10, 99pc duty cycle) WLAN 8.51 59 10766 AAC IEEE 80211 kt (160 MHE, NCS11, 99pc duty cycle) WLAN 8.51 59 10767 AAC SO NR (CP-OFDM, 1 RB, 15MHz, OPSK, 15H42) 50 NR FR1 TDD 8.01 59 10776 AAD SO NR (CP-OFDM, 1 RB, 15MHz, OPSK, 15H42) 50 NR FR1 TDD 8.02 59 10777 AAD SO NR (CP-OFDM, 1 RB, 20MHz, OPSK, 15H42) 50 NR FR1 TDD 8.02 59 10772 AAD SO NR (CP-OFDM, 1 RB, 20MHz, OPSK, 15H42) 50 NR FR1 TDD 8.03 59 10777 AAD SO NR (CP-OFDM, 1 RB, 20MHz, OPSK, 15H42) 50 NR FR1 TDD 8.03 59 10777 AAD SO NR (CP-OFDM, 50% RB, 10MHz, OPSK, 15H42) 50 NR FR1 TDD 8.03 59 10778 AAD SO NR (CP-OFDM, 50% RB, 15MHz, OPSK, 15H4	10761	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.58	±9.6
10764 AAC IEEE 802.11ax (160 MHz, MCS9, 09pc duy cycle) WLAN 8.54 -9.5 10765 AAC IEEE 802.11ax (160 MHz, MCS1, 09pc duy cycle) WLAN 8.51 -9.5 10767 AAC IEEE 802.11ax (160 MHz, MCS1, 09pc duy cycle) WLAN 8.51 -9.5 10767 AAC SG NR (CP-OFDM, 188, 15MHz, OPSK, 15MHz) SG NR FR1 TDD 8.61 -9.5 10769 AAD SG NR (CP-OFDM, 188, 15MHz, OPSK, 15MHz) SG NR FR1 TDD 8.02 -9.5 10777 AAD SG NR (CP-OFDM, 188, 20MHz, OPSK, 15MHz) SG NR FR1 TDD 8.02 -9.5 10777 AAD SG NR (CP-OFDM, 188, 20MHz, OPSK, 15MHz) SG NR FR1 TDD 8.02 -9.5 10777 AAD SG NR (CP-OFDM, 188, 30MHz, OPSK, 15MHz) SG NR FR1 TDD 8.02 -9.5 10777 AAD SG NR (CP-OFDM, 188, 30MHz, OPSK, 15MHz) SG NR FR1 TDD 8.30 +9.5 10777 AAD SG NR (CP-OFDM, 50% RB, 30MHz, OPSK, 15MHz) SG NR FR1 TDD 8.30 +9.5 10778 AAD SG NR (CP-OFDM, 50% RB, 30MH	10762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.49	±9.6
TOTES AAC IEEE 802.11 av (160 MHz, MCS10, 199b c.dtry cycle) WLAN 8.51 -9.50 10767 AAE 5G NR (CP-OFDM, 1 R8, 5MHz, OPSK, 15442) 5G NR FR1 TDD 7.99 -9.50 10767 AAE 5G NR (CP-OFDM, 1 R8, 15MHz, OPSK, 15442) 5G NR FR1 TDD 8.01 -9.50 10770 AAD 5G NR (CP-OFDM, 1 R8, 15MHz, OPSK, 15442) 5G NR FR1 TDD 8.02 -9.50 10777 AAD 5G NR (CP-OFDM, 1 R8, 25MHz, OPSK, 15442) 5G NR FR1 TDD 8.02 -9.50 10777 AAD 5G NR (CP-OFDM, 1 R8, 35MHz, OPSK, 15442) 5G NR FR1 TDD 8.02 -9.50 10777 AAD 5G NR (CP-OFDM, 1 R8, 35MHz, OPSK, 15442) 5G NR FR1 TDD 8.02 -9.50 10777 AAD 5G NR (CP-OFDM, 1 R8, 35MHz, OPSK, 15442) 5G NR FR1 TDD 8.33 -9.50 10777 AAD 5G NR (CP-OFDM, 50% R8, 5MHz, OPSK, 15442) 5G NR FR1 TDD 8.33 -9.50 10777 AAD 5G NR (CP-OFDM, 50% R8, 5MHz, OPSK, 15442) 5G NR FR1 TDD 8.33 -9.50 10778 AAD <t< td=""><td>10763</td><td>AAC</td><td>IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle)</td><td>WLAN</td><td>8.53</td><td>±9.6</td></t<>	10763	AAC	IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.53	±9.6
10767 AAC IEEE 802 That (160 MHz MCS11, 99bc duy oycle) WLAN 8.51 -9 10767 AAE SG NR (PC-POFM, 188, 5MHz, OPSK, 154Hz) SG NR FR1 TDD 8.01 4.9 10768 AAD SG NR (PC-POFM, 188, 100 MHz, OPSK, 154Hz) SG NR FR1 TDD 8.01 4.9 10770 AAD SG NR (PC-POFM, 188, 20Hz, OPSK, 154Hz) SG NR FR1 TDD 8.02 4.9 10771 AAD SG NR (PC-POFM, 188, 20Hz, OPSK, 154Hz) SG NR FR1 TDD 8.02 4.9 10772 AAD SG NR (PC-POFM, 188, 20Hz, OPSK, 154Hz) SG NR FR1 TDD 8.02 4.9 10774 AAD SG NR (PC-POFM, 188, 30HHz, OPSK, 154Hz) SG NR FR1 TDD 8.02 4.9 10775 AAD SG NR (PC-POFM, 59% B, 5MHz, OPSK, 154Hz) SG NR FR1 TDD 8.30 4.9 10776 AAD SG NR (PC-POFM, 59% B, 81, 5MHz, OPSK, 154Hz) SG NR FR1 TDD 8.30 4.9 10777 AAC SG NR (PC-POFM, 59% B, 81, 5MHz, OPSK, 154Hz) SG NR FR1 TDD 8.30 4.9 10778 AAD SG NR (PC-POFM, 59% B, 82		AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.54	±9.6
10707 AAE SQ NR (CP-OPDM, 1 B8, 5MHz, OPSK, 15Hz) SQ NR PR TDD 7.99 -9 10708 AAD SG NR (CP-OPDM, 1 B8, 10MHz, OPSK, 15Hz) SG NR PR TDD SG NR PR TDD SG NR CP-OPDM, 1 B8, 20MHz, OPSK, 15Hz) SG NR PR TDD SG NR PR TDD SG NR CP-OPDM, 1 B8, 22MHz, OPSK, 15Hz) SG NR PR TDD SG NR CP-OPDM, 1 B8, 22MHz, OPSK, 15Hz) SG NR PR TDD SG NR CP-OPDM, 1 B8, 22MHz, OPSK, 15Hz) SG NR PR TDD SG NR CP-OPDM, 1 B8, 22MHz, OPSK, 15Hz) SG NR PR TDD SG NR CP-OPDM, 1 B8, 22MHz, OPSK, 15Hz) SG NR PR TDD SG NR CP-OPDM, 1 B8, 22MHz, OPSK, 15Hz) SG NR PR TDD SG NR CP-OPDM, 1 B8, 20MHz, OPSK, 15Hz) SG NR PR TDD SG NR PR TDD<	10765		IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle)	WLAN	8.54	±9.6
10788 AAD 65 NR (CP-OFDM, 1 RB, 10MHz, OPSK, 154Hz) 56 NR FR1 TDD 8.01 -59 10789 AAD 56 NR (CP-OFDM, 1 RB, 15MHz, OPSK, 15Hz) 56 NR FR1 TDD 8.02 49 10771 AAD 56 NR (CP-OFDM, 1 RB, 20MHz, OPSK, 15Hz) 56 NR FR1 TDD 8.22 49 10771 AAD 56 NR (CP-OFDM, 1 RB, 20MHz, OPSK, 15Hz) 56 NR FR1 TDD 8.23 49 10773 AAD 56 NR (CP-OFDM, 1 RB, 20MHz, OPSK, 15Hz) 56 NR FR1 TDD 8.23 49 10774 AAD 56 NR (CP-OFDM, 1 RB, 20MHz, OPSK, 15Hz) 56 NR FR1 TDD 8.31 49 10777 AAD 56 NR (CP-OFDM, 50% RB, 10MHz, OPSK, 15Hz) 56 NR FR1 TDD 8.31 49 10777 AAC 56 NR (CP-OFDM, 50% RB, 10MHz, OPSK, 15Hz) 50 NR FR1 TDD 8.34 49 10777 AAC 56 NR (CP-OFDM, 50% RB, 10MHz, OPSK, 15Hz) 50 NR FR1 TDD 8.34 49 10778 AAD 56 NR (CP-OFDM, 50% RB, 30MHz, OPSK, 15Hz) 50 NR FR1 TDD 8.34 49 10780 AD 56 NR (CP-OFDM, 50% RB, 30MHz,			IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle)	WLAN	8.51	±9.6
10709 AAD 65 N R (CP-OFDM, 1 R8, 30H4z, OPSK, 15 kHz) 56 N R FR 1 TDD 8.01 -9 10771 AAD 65 N R (CP-OFDM, 1 R8, 20H4z, OPSK, 15 kHz) 56 N R FR 1 TDD 8.02 49 10771 AAD 56 N R (CP-OFDM, 1 R8, 20H4z, OPSK, 15 kHz) 56 N R FR 1 TDD 8.02 49 10772 AAD 56 N R (CP-OFDM, 1 R8, 30H4z, OPSK, 15 kHz) 56 N R FR 1 TDD 8.02 49 10774 AAD 56 N R (CP-OFDM, 1 R8, 30H4z, OPSK, 15 kHz) 56 N R FR 1 TDD 8.02 49 10775 AAD 56 N R (CP-OFDM, 55% R8, 10 kHz, OPSK, 15 kHz) 56 N R FR 1 TDD 8.30 49 10777 AAD 56 N R (CP-OFDM, 55% R8, 10 kHz, OPSK, 15 kHz) 50 N R FR 1 TDD 8.30 49 10777 AAD 56 N R (CP-OFDM, 55% R8, 12 kHz, OPSK, 15 kHz) 50 N R FR 1 TDD 8.34 49 10778 AAD 56 N R (CP-OFDM, 55% R8, 15 kHz, OPSK, 15 kHz) 50 N R FR 1 TDD 8.34 49 10780 AAD 56 N R (CP-OFDM, 55% R8, 15 kHz, OPSK, 15 kHz) 50 N R FR 1 TDD 8.34 49 10781	10767	AAE	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	±9.6
10770 AAD 65 NR (CP-OFDM, 1 RB, 20 MHz, OPSK, 15 kHz) 56 NR FRI TDD 8.02 19 10771 AAD 66 NR (CP-OFDM, 1 RB, 20 MHz, OPSK, 15 kHz) 56 NR FRI TDD 8.02 19 10772 AAD 56 NR (CP-OFDM, 1 RB, 20 MHz, OPSK, 15 kHz) 56 NR FRI TDD 8.23 19 10773 AAD 56 NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 15 kHz) 56 NR FRI TDD 8.30 19 10775 AAD 56 NR (CP-OFDM, 50% RB, 50 MHz, OPSK, 15 kHz) 56 NR FRI TDD 8.30 19 10776 AAD 56 NR (CP-OFDM, 50% RB, 75 kHz, OPSK, 15 kHz) 56 NR FRI TDD 8.30 19 10777 AAC 56 NR (CP-OFDM, 50% RB, 75 kHz, OPSK, 15 kHz) 56 NR FRI TDD 8.30 19 10778 AAD 56 NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 15 kHz) 56 NR FRI TDD 8.38 19 10781 AAD 56 NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 15 kHz) 56 NR FRI TDD 8.38 19 10782 AAD 56 NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 15 kHz) 50 NR FRI TDD 8.34 19 10783 AAD <				5G NR FR1 TDD	8.01	±9.6
10777 AAD 5G NR (CP-OFDM, 1 R8, 25MHz, OPSK, 15KHz) 5G NR FR1 TDD 8.02 -9 10772 AAD 5G NR (CP-OFDM, 1 R8, 30MHz, OPSK, 15KHz) 5G NR FR1 TDD 8.02 -9 10773 AAD 5G NR (CP-OFDM, 1 R8, 30MHz, OPSK, 15KHz) 5G NR FR1 TDD 8.03 -9 10774 AAD 5G NR (CP-OFDM, 1 R8, 30MHz, OPSK, 15KHz) 5G NR FR1 TDD 8.03 -9 10777 AAD 5G NR (CP-OFDM, 50% R8, 80MHz, OPSK, 15KHz) 5G NR FR1 TDD 8.30 -9 10777 AAD 5G NR (CP-OFDM, 50% R8, 80MHz, OPSK, 15KHz) 5G NR FR1 TDD 8.30 -9 10778 AAD 5G NR (CP-OFDM, 50% R8, 80MHz, OPSK, 15KHz) 5G NR FR1 TDD 8.34 -9 10778 AAD 5G NR (CP-OFDM, 50% R8, 80MHz, OPSK, 15KHz) 5G NR FR1 TDD 8.43 -9 10781 AAD 5G NR (CP-OFDM, 50% R8, 80MHz, OPSK, 15KHz) 5G NR FR1 TDD 8.38 -9 10782 AAD 5G NR (CP-OFDM, 100% R8, 5MHz, OPSK, 15KHz) 5G NR FR1 TDD 8.40 -9 10784 AAD 5G NR (CP-OFDM, 1		AAD		5G NR FR1 TDD	8.01	±9.6
10772 AAD 6G NR (CP-OFDM, 118, 30MHz, OPSK, 15KHz) 5G NR FRI TDD 8.03 -9 10773 AAD 5G NR (CP-OFDM, 118, 30MHz, OPSK, 15KHz) 5G NR FRI TDD 8.03 -9 10774 AAD 5G NR (CP-OFDM, 118, 30MHz, OPSK, 15KHz) 5G NR FRI TDD 8.03 -9 10775 AAD 5G NR (CP-OFDM, 50%, RB, 15MHz, OPSK, 15KHz) 5G NR FRI TDD 8.30 -9 10777 AAC 5G NR (CP-OFDM, 50%, RB, 15MHz, OPSK, 15KHz) 5G NR FRI TDD 8.34 -9 10777 AAC 5G NR (CP-OFDM, 50%, RB, 25MHz, OPSK, 15KHz) 5G NR FRI TDD 8.42 -9 10780 AAD 5G NR (CP-OFDM, 50%, RB, 25MHz, OPSK, 15KHz) 5G NR FRI TDD 8.43 -9 10781 AAD 5G NR (CP-OFDM, 50%, RB, 25MHz, OPSK, 15KHz) 5G NR FRI TDD 8.43 -9 10782 AAD 5G NR (CP-OFDM, 100%, RB, 10MHz, OPSK, 15KHz) 5G NR FRI TDD 8.43 -9 10784 AAD 5G NR (CP-OFDM, 100%, RB, 20MHz, OPSK, 15KHz) 5G NR FRI TDD 8.43 -9 10787 AAD 5G NR (CP		AAD		5G NR FR1 TDD	8.02	±9.6
10772 AD 5G NR (CP-OFDM, 11 RB, 50 MHz, OPSK, 15 KHz) 5G NR FR1 TDD 8.03 19 10774 AAD 5G NR (CP-OFDM, 10 RB, 50 MHz, OPSK, 15 KHz) 5G NR FR1 TDD 8.11 19 10775 AAD 5G NR (CP-OFDM, 50%, RB, 10 MHz, OPSK, 15 KHz) 5G NR FR1 TDD 8.30 19 10777 AAD 5G NR (CP-OFDM, 50%, RB, 20 MHz, OPSK, 15 KHz) 5G NR FR1 TDD 8.30 19 10777 AAD 5G NR (CP-OFDM, 50%, RB, 20 MHz, OPSK, 15 KHz) 5G NR FR1 TDD 8.34 49 10778 AAD 5G NR (CP-OFDM, 50%, RB, 20 MHz, OPSK, 15 KHz) 5G NR FR1 TDD 8.34 49 10780 AAD 5G NR (CP-OFDM, 50%, RB, 30 MHz, OPSK, 15 KHz) 5G NR FR1 TDD 8.38 19 10781 AAD 5G NR (CP-OFDM, 100%, RB, 50 MHz, OPSK, 15 KHz) 5G NR FR1 TDD 8.34 19 10782 AAD 5G NR (CP-OFDM, 100%, RB, 20 MHz, OPSK, 15 KHz) 5G NR FR1 TDD 8.39 19 10786 AAD 5G NR (CP-OFDM, 100%, RB, 20 MHz, OPSK, 15 KHz) 5G NR FR1 TDD 8.49 19 10786 AA		AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10774 AD 6G NR (CP-OFDM, 198, R3, 5MHz, OPSK, 15Hz) 5G NR FR1 TDD 8.31 ±9 10775 AD 5G NR (CP-OFDM, 50%, R3, SMHz, OPSK, 15Hz) 5G NR FR1 TDD 8.31 ±9 10776 AD 5G NR (CP-OFDM, 50%, R3, ISMHz, OPSK, 15Hz) 5G NR FR1 TDD 8.30 ±9 10777 AAC 5G NR (CP-OFDM, 50%, R3, ISMHz, OPSK, 15Hz) 5G NR FR1 TDD 8.42 ±9 10777 AAC 5G NR (CP-OFDM, 50%, R3, ISMHz, OPSK, 15Hz) 5G NR FR1 TDD 8.42 ±9 10780 AD 5G NR (CP-OFDM, 50%, R3, ISMHz, OPSK, 15Hz) 5G NR FR1 TDD 8.33 ±9 10781 AD 5G NR (CP-OFDM, 50%, R3, ISMHz, OPSK, 15Hz) 5G NR FR1 TDD 8.31 ±9 10782 AD 5G NR (CP-OFDM, 100%, R3, ISMHz, OPSK, 15Hz) 5G NR FR1 TDD 8.31 ±9 10784 AD SG NR (CP-OFDM, 100%, R3, ISMHz, OPSK, 15Hz) 5G NR FR1 TDD 8.31 ±9 10786 AD SG NR (CP-OFDM, 100%, R3, 20MHz, OPSK, 15Hz) 5G NR FR1 TDD 8.39 ±9 10787 AD SG NR (CP-OFDM, 1					8.23	±9.6
10775 AAD SG NR (CP-OFDM, 59% RB, 5MHz, OPSK, 15 KHz) SG NR FRI TDD 8.31 19 10776 AAD SG NR (CP-OFDM, 59% RB, 15 MHz, OPSK, 15 KHz) SG NR FRI TDD 8.30 19 10777 AAD SG NR (CP-OFDM, 59% RB, 20 MHz, OPSK, 15 KHz) SG NR FRI TDD 8.30 19 10778 AAD SG NR (CP-OFDM, 59% RB, 20 MHz, OPSK, 15 KHz) SG NR FRI TDD 8.34 19 10779 AAD SG NR (CP-OFDM, 59% RB, 30 MHz, OPSK, 15 KHz) SG NR FRI TDD 8.38 49 10781 AAD SG NR (CP-OFDM, 59% RB, 30 MHz, OPSK, 15 KHz) SG NR FRI TDD 8.33 19 10782 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 15 KHz) SG NR FRI TDD 8.43 19 10784 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 15 KHz) SG NR FRI TDD 8.40 19 10786 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 15 KHz) SG NR FRI TDD 8.40 19 10786 AAD SG NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 15 KHz) SG NR FRI TDD 8.44 19 10780 AAD						±9.6
10776 AAD SG NR (CP-OFDM, 50% RB, 10MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.30 29 10777 AAD SG NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.30 49 10778 AAD SG NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.42 49 10780 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.38 49 10781 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.38 49 10782 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.31 49 10782 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.31 49 10784 AAD SG NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.30 49 10786 AAD SG NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.39 49 10787 AAD SG NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.39 49 10788 AAD <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10777 AAC SG NR (CP-OFDM, 59% RB, 15MHz, OPSK, 15 kHz) SG NR FR1 TDD 8.30 ±9 10778 AAC SG NR (CP-OFDM, 59% RB, 25MHz, OPSK, 15 kHz) SG NR FR1 TDD 8.34 ±9 10778 AAC SG NR (CP-OFDM, 59% RB, 25MHz, OPSK, 15 kHz) SG NR FR1 TDD 8.38 ±9 10781 AAD SG NR (CP-OFDM, 59% RB, 20MHz, OPSK, 15 kHz) SG NR FR1 TDD 8.43 ±9 10782 AAD SG NR (CP-OFDM, 59% RB, 20MHz, OPSK, 15 kHz) SG NR FR1 TDD 8.43 ±9 10784 AAD SG NR (CP-OFDM, 109% RB, 50MHz, OPSK, 15 kHz) SG NR FR1 TDD 8.43 ±9 10784 AAD SG NR (CP-OFDM, 109% RB, 50MHz, OPSK, 15 kHz) SG NR FR1 TDD 8.40 ±9 10786 AAD SG NR (CP-OFDM, 109% RB, 20MHz, OPSK, 15 kHz) SG NR FR1 TDD 8.44 ±9 10788 AAD SG NR (CP-OFDM, 109% RB, 20MHz, OPSK, 15 kHz) SG NR FR1 TDD 8.37 ±9 10780 AAD SG NR (CP-OFDM, 109% RB, 20MHz, OPSK, 15 kHz) SG NR FR1 TDD 8.37 ±9 10784 AAD						±9.6
10778 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.34 29 10779 AAC SG NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.34 29 10780 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.38 49 10781 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.38 49 10782 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.31 49 10784 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.31 49 10785 AAD SG NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.35 49 10786 AAD SG NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.39 49 10787 AAD SG NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.39 49 10780 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.39 49 10780 AAD<						±9.6
10779 AAC 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.42 19 10780 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.38 ±9 10781 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.38 ±9 10782 AAD 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.31 ±9 10784 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.29 ±9 10785 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.29 ±9 10786 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.34 ±9 10787 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.39 ±9 10780 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 KHz) 5G NR FR1 TDD 8.39 ±9 10781 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.82 ±9 10791 AAD<					8.30	±9.6
10780 AAD 5G NR (CP-OFDM, 50%, RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.38 ±9 10781 AAD 5G NR (CP-OFDM, 50%, RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ±9 10782 AAD 5G NR (CP-OFDM, 50%, RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ±9 10784 AAD 5G NR (CP-OFDM, 100%, RB, 5MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.43 ±9 10784 AAD 5G NR (CP-OFDM, 100%, RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 ±9 10786 AAD 5G NR (CP-OFDM, 100%, RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 ±9 10787 AAD 5G NR (CP-OFDM, 100%, RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9 10788 AAD 5G NR (CP-OFDM, 100%, RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9 10781 AAD 5G NR (CP-OFDM, 100%, RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9 10781 AAD 5G NR (CP-OFDM, 10%, RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ±9 10794						±9.6
10781 AAD 5G NR (CP-OFDM, 50% RB, 40MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.38 19 10782 AAD 5G NR (CP-OFDM, 50% RB, 50MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.43 ±9 10783 AAE 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.29 ±9 10784 AAD 5G NR (CP-OFDM, 100% RB, 15MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.29 ±9 10785 AAD 5G NR (CP-OFDM, 100% RB, 15MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.43 ±9 10786 AAD 5G NR (CP-OFDM, 100% RB, 20MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.35 ±9 10787 AAD 5G NR (CP-OFDM, 100% RB, 20MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.37 ±9 10789 AAD 5G NR (CP-OFDM, 100% RB, 30MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.37 ±9 10791 AAE 5G NR (CP-OFDM, 100% RB, 40MHz, OPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9 10791 AAD 5G NR (CP-OFDM, 1R, 1S, 15 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10794 AAD						±9.6
10782 AAD 5G NR (CP-OFDM, 50%, RB, 50MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.43 ±9 10783 AAE 5G NR (CP-OFDM, 100%, RB, 50MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.21 ±9 10784 AAD 5G NR (CP-OFDM, 100%, RB, 15 MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.40 ±9 10785 AAD 5G NR (CP-OFDM, 100%, RB, 25 MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.40 ±9 10786 AAD 5G NR (CP-OFDM, 100%, RB, 20 MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.44 ±9 10787 AAD 5G NR (CP-OFDM, 100%, RB, 20 MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.37 ±9 10789 AAD 5G NR (CP-OFDM, 100%, RB, 40 MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9 10790 AAD 5G NR (CP-OFDM, 100%, RB, 50 MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.33 ±9 10791 AAE 5G NR (CP-OFDM, 1RB, 50 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10792 AAD 5G NR (CP-OFDM, 1RB, 10 MHz, OPSK, 30 kHz) 5G NR FR1 TDD 7.84 ±9 10794 AAD						±9.6
10783 AAE 5G NR (CP-OFDM, 100% RB, 5MHz, OPSK, 15 kHz) 5G NR FR1 TDD 8.31 ±9 10784 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ±9 10785 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ±9 10786 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ±9 10787 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9 10788 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9 10789 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9 10781 AAD 5G NR (CP-OFDM, 18B, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10782 AAD 5G NR (CP-OFDM, 18B, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10782 AAD 5G NR (CP-OFDM, 18B, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10784 AAD 5G NR (CP-OFDM, 18B, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ±9 <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10784 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.29 ±9 10785 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ±9 10786 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.44 ±9 10787 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.33 ±9 10788 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.33 ±9 10789 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.33 ±9 10791 AAE 5G NR (CP-OFDM, 18, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10732 AAD 5G NR (CP-OFDM, 18, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ±9 10734 AAD 5G NR (CP-OFDM, 18, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10795 AAD 5G NR (CP-OFDM, 18, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ±9 10796 AAD 5G NR						±9.6
10785 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.40 ±9 10786 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.35 ±9 10787 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9 10789 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.39 ±9 10789 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.33 ±9 10781 AAE 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 7.83 ±9 10791 AAE 5G NR (CP-OFDM, 1RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10782 AAD 5G NR (CP-OFDM, 1RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10784 AAD 5G NR (CP-OFDM, 1RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10785 AAD 5G NR (CP-OFDM, 1RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ±9 10787 AAD						±9.6
10786 AAD 5G NR FR1 TDD 8.35 ±9 10787 AAD 5G NR (CP-OFDM, 100% RB, 20MHz, QPSK, 15kHz) 5G NR FR1 TDD 8.44 ±9 10788 AAD 5G NR (CP-OFDM, 100% RB, 20MHz, QPSK, 15kHz) 5G NR FR1 TDD 8.39 ±9 10789 AAD 5G NR (CP-OFDM, 100% RB, 30MHz, QPSK, 15kHz) 5G NR FR1 TDD 8.37 ±9 10790 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, QPSK, 15kHz) 5G NR FR1 TDD 7.83 ±9 10791 AAE 5G NR (CP-OFDM, 1 RB, 5MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.82 ±9 10792 AAD 5G NR (CP-OFDM, 1 RB, 10MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.82 ±9 10793 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.82 ±9 10794 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, QPSK, 30kHz) 5G NR FR1 TDD						±9.6
10787 AAD 5G NR FR1 TDD 8.44 ±9 10788 AAD 5G NR (CP-OFDM, 100% RB, 30MHz, QPSK, 15kHz) 5G NR FR1 TDD 8.39 ±9 10788 AAD 5G NR (CP-OFDM, 100% RB, 30MHz, QPSK, 15kHz) 5G NR FR1 TDD 8.37 ±9 10780 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, QPSK, 15kHz) 5G NR FR1 TDD 8.37 ±9 10791 AAE 5G NR (CP-OFDM, 1 RB, 50MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.33 ±9 10792 AAD 5G NR (CP-OFDM, 1 RB, 10MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.92 ±9 10793 AAD 5G NR (CP-OFDM, 1 RB, 10MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.92 ±9 10794 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.82 ±9 10796 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.83 ±9 10799 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, QPSK, 30kHz) 5G NR FR1 TDD						±9.6
10788 AAD SG NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.39 ±9 10788 AAD SG NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 KHz) SG NR FR1 TDD 8.37 ±9 10790 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) SG NR FR1 TDD 7.83 ±9 10791 AAE SG NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.92 ±9 10732 AAD SG NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.92 ±9 10732 AAD SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9 10735 AAD SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9 10736 AAD SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9 10797 AAD SG NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9 10797 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9 10797 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.93 ±9						±9.6
10789 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ±9 10790 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 7.83 ±9 10791 AAE 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ±9 10792 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ±9 10793 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ±9 10795 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ±9 10798 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ±9 10798 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9						±9.6
10790 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10791 AAE 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10792 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ±9 10793 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ±9 10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10795 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10799 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10801 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10791 AAE 5G NR (CP-OFDM, 1 RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10792 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ±9 10793 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.95 ±9 10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10795 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10799 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10799 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10802 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10805 AAD 5G NR (CP-O						±9.6
10792 AAD 5G NR (CP-OFDM, 1 RB, 10MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ±9 10793 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.92 ±9 10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10796 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10798 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10802 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10803 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10793 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.95 ±9 10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10795 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10798 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10801 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10803 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10804 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10794 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10795 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ±9 10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10801 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10803 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10806 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (±9.6
10795 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.84 ±9 10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.88 ±9 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 ±9 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G N						±9.6
10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.82 ±9 10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.01 ±9 10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10799 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.83 ±9 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 10803 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 30 HHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9						±9.6
10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.01 ±9 10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 ±9 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 ±9 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 ±9 10805 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10811 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10812 AAD <td< td=""><td></td><td></td><td></td><td></td><td></td><td>±9.6</td></td<>						±9.6
10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 ±9 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 ±9 10805 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10812 AAD 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10817 AAE 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9<		-				±9.6
10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.89 ±9 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 ±9 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 ±9 10805 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.37 ±9 10807 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10818 AAD						±9.6
10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.87 ±9 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 10805 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10807 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10812 AAD 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10817 AAE 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10818 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10820 AAD						±9.6
10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10812 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10817 AAE 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10818 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9 10821 AAD						
10805AAD5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.34±910806AAD5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.37±910809AAD5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.34±910810AAD5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.34±910812AAD5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.35±910812AAD5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.35±910817AAE5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.35±910818AAD5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.34±910819AAD5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.33±910820AAD5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.33±910821AAD5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.41±910822AAD5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.41±910823AAD5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.41±910824AAD5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.39±910825AAD5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)5G NR FR1 TDD8.41±9						±9.6
10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.37 ±9 10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10817 AAE 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10818 AAD 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9 10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10823 AAD						±9.6
10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10817 AAE 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10818 AAD 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10819 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10820 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9 10821 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10822 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10823 AAD <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10817 AAE 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10818 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10819 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9 10820 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9 10821 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10822 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10823 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10824 AAD<						±9.6
10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10818 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9 10821 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10825 AAD						±9.6
10817 AAE 5G NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9 10818 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10819 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9 10820 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9 10821 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10822 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10823 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10827 AA						±9.6
10818 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9 10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9 10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9						±9.6
10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9 10821 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10822 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10823 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9						±9.6
10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9 10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10823 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9						±9.6
10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10823 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9						±9.6
10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9						±9.6
10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9						±9.6
10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9						±9.6
10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9						±9.6
10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9						±9.6
						±9.6
10828 LAAD L 5G NR (CP-OEDM, 100% RB, 90 MHz, OPSK, 30 kHz) 5G NR ER1 TDD 2 8 43 4 +9	10828	AAD	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	±9.6

1988 AD 50 NR (PC-PDM. 100%; RB, 100M/rL, CPSK, 60 Htz) 50 NR FR1 TDD 7.83 9.86 1985 AD 56 NR (PC-PDM. IR, BL, 100M/rL, CPSK, 60 Htz) 50 NR FR1 TDD 7.83 9.86 1985 AD 56 NR (PC-PDM. IR, BL, 100M/rL, CPSK, 60 Htz) 50 NR FR1 TDD 7.74 9.86 1985 AD 56 NR (PC-PDM. IR, BL, 20M/LL, CPSK, 60 Htz) 50 NR FR1 TDD 7.70 9.86 1985 AD 56 NR (PC-PDM. IR, BL, 20M/LL, CPSK, 60 Htz) 50 NR FR1 TDD 7.70 9.86 1985 AD 56 NR (PC-PDM. IR, BL, 20M/LL, CPSK, 60 Htz) 50 NR FR1 TDD 7.76 9.56 1988 AD 56 NR (PC-PDM. IR, BL, 20M/LL, CPSK, 60 Htz) 50 NR FR1 TDD 7.77 1.96 1988 AD 56 NR (PC-PDM. IR, BL, 20M/LL, CPSK, 60 Htz) 50 NR FR1 TDD 7.77 1.96 1984 AD 56 NR (PC-PDM. NGK, BL, 30M/LL, CPSK, 60 Htz) 50 NR FR1 TDD 8.49 4.86 1984 AD 56 NR (PC-PDM. NGK, BL, 30M/LL, CPSK, 60 Htz) 50 NR FR1 TDD 8.49 4.86 1984 AD	UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
1981 AD 56 N R (PC PCPM, 1P8, 20MHz, OPSK, 60 Hz) 50 N RFH TDD 774 195 1982 AD 56 N R (PC PCPM, 1P8, 20MHz, OPSK, 60 Hz) 50 N RFH TDD 776 196 1983 AD 56 N R (PC PCPM, 1P8, 20MHz, OPSK, 60 Hz) 50 N RFH TDD 776 196 1983 AD 56 N R (PC PCPM, 1P8, 20MHz, OPSK, 60 Hz) 50 N RFH TDD 776 196 1983 AD 56 N R (PC PCPM, 1P8, 20MHz, OPSK, 60 Hz) 50 N R FH TDD 776 196 1983 AD 56 N R (PC PCPM, 1P8, 20MHz, OPSK, 60 Hz) 50 N R FH TDD 770 196 1983 AD 56 N R (PC PCPM, 1P8, 20MHz, OPSK, 60 Hz) 50 N R FH TDD 777 196 1984 AD 56 N R (PC PCPM, NP8, 20MHz, OPSK, 60 Hz) 50 N R FH TDD 771 186 1984 AD 56 N R (PC PCPM, NP8, 20MHz, OPSK, 60 Hz) 50 N R FH TDD 774 486 1984 AD 56 N R (PC PCPM, NP8, 20MHz, OPSK, 60 Hz) 50 N R FH TDD 54 44 56 1984 AD 56 N R (PC PCPM, NP8, 20MHz, OPSK, 60 Hz)	10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
1982 AD 5G NR (PC-PDM, IRB, 20MHz, OPSK, 60H4) 5G NR FRITTDD 772 1956 1983 AD 5G NR (PC-PDM, IRB, 20MHz, OPSK, 60H4) 5G NR FRITTDD 776 1956 1984 AD 5G NR (PC-PDM, IRB, 20MHz, OPSK, 60H4) 5G NR FRITTDD 776 1956 1985 AD 5G NR (PC-PDM, IRB, 20MHz, OPSK, 60H4) 5G NR FRITTDD 776 1956 1988 AD 5G NR (PC-PDM, IRB, 20MHz, OPSK, 60H4) 5G NR FRITTDD 778 1956 1988 AD 5G NR (PC-PDM, IRB, 20MHz, OPSK, 60H4) 5G NR FRITTDD 777 196 1988 AD 5G NR (PC-PDM, IRB, 20MHz, OPSK, 60H4) 5G NR FRITTDD 777 196 1984 AD SG NR (PC-PDM, SR, BL, SMHL, CPSK, 60H4) 5G NR FRITTDD 844 196 1984 AD SG NR (PC-PDM, SR, BL, SMHL, CPSK, 60H4) 5G NR FRITTDD 844 196 1984 AD SG NR (PC-PDM, MSR, BL, SMHL, CPSK, 60H4) 5G NR FRITTDD 844 95 1984 AD SG NR (PC-PDM, MSR, BL, SMHL, CPSK, 60H4) SG NR FRITT			5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
1083 AD 50 NR (PC-PDM, 1PB, 25MHz, OPSK, 60Hz) 50 NR PR1 TDD 7.76 156 1084 AD 56 NR (PC-PDM, 1PB, 30MHz, OPSK, 60Hz) 50 NR PR1 TDD 7.76 156 1085 AD 56 NR (PC-PDM, 1PB, 30MHz, OPSK, 60Hz) 50 NR PR1 TDD 7.76 156 1085 AD 56 NR (PC-PDM, 1PB, 30MHz, OPSK, 60Hz) 50 NR PR1 TDD 7.76 156 1085 AD 56 NR (PC-PDM, 1PB, 30MHz, OPSK, 60Hz) 50 NR PR1 TDD 7.77 156 1084 AD 56 NR (PC-PDM, 1PB, 30MHz, OPSK, 60Hz) 50 NR PR1 TDD 7.77 156 1084 AD 56 NR (PC-PDM, 567, RB, 30MHz, OPSK, 60Hz) 50 NR PR1 TDD 54.4 36 36 1084 AD 56 NR (PC-PDM, 567, RB, 20MHz, OPSK, 60Hz) 50 NR PR1 TDD 54.4 36				5G NR FR1 TDD	7.73	±9.6
Tobas ADD SG NR (CP-OPCM, 1 RB, 30MHz, QPSK, 60Hz) SG NR FRI TDD 775 195 TOBAS AAD SG NR (CP-OPCM, 1 RB, 30MHz, QPSK, 60Hz) SG NR FRI TDD 776 196 TOBAS AAD SG NR (CP-OPCM, 1 RB, 30MHz, QPSK, 60Hz) SG NR FRI TDD 776 196 TOBAS AAD SG NR (CP-OPCM, 1 RB, 30MHz, QPSK, 60Hz) SG NR FRI TDD 776 196 TOBAS SG NR (CP-OPCM, 1 RB, 30MHz, QPSK, 60Hz) SG NR FRI TDD 777 196 TOBAS SG NR (CP-OPCM, 1 RB, 30MHz, QPSK, 60Hz) SG NR FRI TDD 8.44 296 TOBAS SG NR (CP-OPCM, 1 RB, 10MHz, QPSK, 60Hz) SG NR FRI TDD 8.44 296 TOBAS SG NR (CP-OPCM, 100K, BR, 10MHz, QPSK, 60Hz) SG NR FRI TDD 8.44 296 TOBAS AAD SG NR (CP-OPCM, 100K, BR, 10MHz, QPSK, 60Hz) SG NR FRI TDD 8.34 296 TOBAS AAD SG NR (CP-OPCM, 100K, BR, 20MHz, QPSK, 60Hz) SG NR FRI TDD 8.34 296 TOBAS AAD SG NR (CP-OPCM, 100K, BR, 20MHz, QPSK, 60Hz) SG NR FRI TDD 8.34				5G NR FR1 TDD	7.74	±9.6
TOBSE ADD SCN NE (CP OFDM, 1 RB, 50MHz, OPSK, 60Hz) SCN NF FRI TDD 770 1952 10886 ADD SCN NE (CP OFDM, 1 RB, 50MHz, OPSK, 60Hz) SCN NF FRI TDD 7.66 1956 10887 ADD SCN NE (CP OFDM, 1 RB, 30MHz, OPSK, 60Hz) SCN NF FRI TDD 7.77 1956 10884 ADD SCN NE (CP OFDM, 1 RB, 30MHz, OPSK, 60Hz) SCN NF FRI TDD 7.71 1956 10844 ADD SCN NE (CP OFDM, 1 RB, 30MHz, OPSK, 60Hz) SCN NF FRI TDD 8.49 956 10844 ADD SCN NE (CP OFDM, 50%, RB, 30MHz, OPSK, 60Hz) SCN NF FRI TDD 8.41 956 10844 ADD SCN NE (CP OFDM, 50%, RB, 30MHz, OPSK, 60Hz) SCN NF FRI TDD 8.34 956 10854 ADD SCN NE (CP OFDM, 100%, RB, 30MHz, OPSK, 60Hz) SCN NF FRI TDD 8.34 956 10854 ADD SCN NC (CP OFDM, 100%, RB, 30MHz, OPSK, 60Hz) SCN NF FRI TDD 8.34 956 10854 ADD SCN NC (CP OFDM, 100%, RB, 30MHz, OPSK, 60Hz) SCN NF FRI TDD 8.34 956 10856 ADD				5G NR FR1 TDD	7.70	±9.6
TOBSE AAD SG NR (PC-PCTM, 1 RB, SOMH, QPSK, 60Hz) SG NR FPI TDD 7.86 1.95 TOBSE AAD SG NR (PC-PCTM, 1 RB, SOMH, QPSK, 60Hz) SG NR FPI TDD 7.76 1.95 TOBSE AAD SG NR (PC-PCTM, 1 RB, SOMH, QPSK, 60Hz) SG NR FPI TDD 7.77 1.95 TOBSE AAD SG NR (PC-PCTM, 1 RB, SOMH, QPSK, 60Hz) SG NR FPI TDD 8.44 1.95 TOBSE SG NR (PC-PCTM, 1 RB, SOMH, QPSK, 60Hz) SG NR FPI TDD 8.44 1.96 TOBSE SG NR (PC-PCTM, SOR, RB, SOMHz, QPSK, 60Hz) SG NR FPI TDD 8.44 1.96 TOBSE SG NR (PC-PCTM, 100%, RB, SOMHz, QPSK, 60Hz) SG NR FPI TDD 8.34 1.96 TOBSE AAD SG NR (PC-PCTM, 100%, RB, SOMHz, QPSK, 60Hz) SG NR FPI TDD 8.34 1.96 TOBSE AAD SG NR (PC-PCTM, 100%, RB, SOMHz, QPSK, 60Hz) SG NR FPI TDD 8.34 1.96 TOBSE AAD SG NR (PC-PCTM, 100%, RB, SOMHz, QPSK, 60Hz) SG NR FPI TDD 8.34 1.96 TOBSE AAD SG NR (PC-PCTM, 100%, RB, SOMHZ, QPSK, 60Hz) SG NR				5G NR FR1 TDD	7.75	±9.6
10837 ADD SG NR (PC-PCIM, 1 R8, 80MHz, 0PSK, 60Ht) SG NR FPI TDD 7.68 10849 ADD SG NR (PC-PCIM, 1 R8, 80MHz, 0PSK, 60Ht) SG NR FPI TDD 7.77 956 10841 ADD SG NR (PC-PCIM, 1 R8, 90MHz, 0PSK, 60Ht) SG NR FPI TDD 7.71 956 10841 ADD SG NR (PC-PCIM, 1 R8, 90MHz, 0PSK, 60Ht) SG NR FPI TDD 8.49 956 10844 ADD SG NR (PC-PCIM, 50% R8, 20MHz, 0PSK, 60Ht) SG NR FPI TDD 8.41 956 10844 ADD SG NR (PC-PCIM, 109% R8, 20MHz, 0PSK, 60Ht) SG NR FPI TDD 8.41 956 10855 ADD SG NR (PC-PCIM, 109% R8, 20MHz, 0PSK, 60Ht) SG NR FPI TDD 8.34 956 10856 ADD SG NR (PC-PCIM, 109% R8, 20MHz, 0PSK, 60Ht) SG NR FPI TDD 8.35 956 10857 ADD SG NR (PC-PCIM, 109% R8, 20MHz, 0PSK, 60Ht) SG NR FPI TDD 8.34 956 10858 ADD SG NR (PC-PCIM, 109% R8, 20MHz, 0PSK, 60Ht) SG NR FPI TDD 8.34 956 10869 ADD SG NR (PC-PCIM, 109% R8, 20MHz, 0				5G NR FR1 TDD	7.70	±9.6
T0839 AAD SG NR (FCP-OTEM, 1R8, 30MHz, OPSK, 60Hz) SG NR FR1 TDD 7.70 1956 10841 AAD SG NR (FCP-OTEM, 1R8, 100MHz, OPSK, 60Hz) SG NR FR1 TDD 7.71 1956 10841 AAD SG NR (FCP-OTEM, 1R8, 100MHz, OPSK, 60Hz) SG NR FR1 TDD 8.44 1956 10844 AAD SG NR (FCP-OTEM, 50%, R8, 15MHz, OPSK, 60Hz) SG NR FR1 TDD 8.44 1956 10844 AAD SG NR (FCP-OTEM, 50%, R8, 20MHz, OPSK, 60Hz) SG NR FR1 TDD 8.44 1956 10854 AAD SG NR (FCP-OTEM, 100%, R8, 10MHz, OPSK, 60Hz) SG NR FR1 TDD 8.34 1956 10855 AAD SG NR (FCP-OTEM, 100%, R8, 20MHz, OPSK, 60Hz) SG NR FR1 TDD 8.34 1956 10856 AAD SG NR (FCP-OTEM, 100%, R8, 20MHz, OPSK, 60Hz) SG NR FR1 TDD 8.34 1966 10858 AAD SG NR (FCP-OTEM, 100%, R8, 20MHz, OPSK, 60Hz) SG NR FR1 TDD 8.34 1966 10869 AAD SG NR (FCP-OTEM, 100%, R8, 20MHz, OPSK, 60Hz) SG NR FR1 TDD 8.34 1966 10864 AAD </td <td></td> <td></td> <td></td> <td>5G NR FR1 TDD</td> <td>7.66</td> <td>±9.6</td>				5G NR FR1 TDD	7.66	±9.6
IDBAD AAD SG NR (PC-POTM, ILB, 300 MHz, OPSK, 60 MHz) SG NR FRI TDD 7.67 1956 IDBAD AAD SG NR (PC-POTM, 50% RB, 15 MHz, OPSK, 60 MHz) SG NR FRI TDD 8.49 9.66 IDBAD SG NR (PC-POTM, 50% RB, 20 MHz, OPSK, 60 MHz) SG NR FRI TDD 8.41 9.66 IDBAD SG NR (PC-POTM, 50% RB, 20 MHz, OPSK, 60 MHz) SG NR FRI TDD 8.41 9.66 IDBAD SG NR (PC-POTM, 50% RB, 20 MHz, OPSK, 60 MHz) SG NR FRI TDD 8.34 9.66 IDBAD SG NR (PC-POTM, 100% RB, 20 MHz, OPSK, 60 MHz) SG NR FRI TDD 8.34 9.66 IDBAD SG NR (PC-POTM, 100% RB, 20 MHz, OPSK, 60 MHz) SG NR FRI TDD 8.34 9.66 IDBAD SG NR (PC-POTM, 100% RB, 20 MHz, OPSK, 60 MHz) SG NR FRI TDD 8.34 9.66 IDBAD SG NR (PC-POTM, 100% RB, 20 MHz, OPSK, 60 MHz) SG NR FRI TDD 8.34 9.66 IDBAD SG NR (PC-POTM, 100% RB, 20 MHz, OPSK, 60 HHz) SG NR FRI TDD 8.41 9.66 IDBAD SG NR (PC-POTM, 100% RB, 10 MHz, OPSK, 60 HHz) SG NR FRI TDD 8.41 9.66 <				5G NR FR1 TDD	7.68	±9.6
10841 AAD SGN NR (CP-OPDM, 11 RB, 100 MHz, OPSK, 60 MHz) ISON NR FR 11 TOD 7.71 195 10844 AAD SGN NR (CP-OPDM, SSYR B, 10 MHz, OPSK, 60 MHz) ISON NR FR 11 TOD 8.34 9.96 10846 AAD SGN NR (CP-OPDM, SSYR B, 20 MHz, OPSK, 60 MHz) ISON NR FR 11 TOD 8.34 9.96 10855 AAD SGN NR (CP-OPDM, 1005K BB, 10 MHz, OPSK, 60 MHz) ISON NR FR 11 TOD 8.34 9.96 10855 AAD SGN NR (CP-OPDM, 1005K BB, 10 MHz, OPSK, 60 MHz) ISON NR FR 11 TOD 8.37 9.96 10857 AAD SGN NR (CP-OPDM, 1005K BB, 20 MHz, OPSK, 60 MHz) ISON NR FR 11 TOD 6.36 9.96 10857 AAD SGN NR (CP-OPDM, 1005K BB, 20 MHz, OPSK, 60 MHz) ISON NR FR 11 TOD 6.34 9.96 10860 AAD SGN NR (CP-OPDM, 1005K BB, 20 MHz, OPSK, 60 MHz) ISON NR FR 11 TOD 6.34 9.96 10861 AAD SGN NR CP-OPDM, 1005K BB, 20 MHz, OPSK, 60 MHz) ISON NR FR 11 TOD 8.34 9.96 10861 AAD SGN NR (CP-OPDM, 1005K BB, 20 MHz, OPSK, 60 MHz) ISON NR FR 11 TOD 8.34				5G NR FR1 TDD	7.70	±9.6
10843 AD SG NR (CP-OPDM, 50% RB, 15MHz, QPSK, 60Hz) SG NN FFR1 TOD 8.49 9.65 10844 AD SG NR (CP-OPDM, 50% RB, 20MHz, QPSK, 60Hz) SG NN FFR1 TOD 8.41 9.66 10854 AD SG NR (CP-OPDM, 50% RB, 20MHz, QPSK, 60Hz) SG NN FFR1 TOD 8.34 9.66 10855 AD SG NR (CP-OPDM, 100% RB, 10MHz, QPSK, 60Hz) SG NN FFR1 TOD 8.37 9.6 10856 AD SG NR (CP-OPDM, 100% RB, 20MHz, QPSK, 60Hz) SG NR FR1 TOD 8.35 9.6 10857 AD SG NR (CP-OPDM, 100% RB, 20MHz, QPSK, 60Hz) SG NR FR1 TOD 8.34 9.6 10859 AD SG NR (CP-OPDM, 100% RB, 20MHz, QPSK, 60Hz) SG NR FR1 TOD 8.41 9.6 10866 AD SG NR (CP-OPDM, 100% RB, 20MHz, QPSK, 60Hz) SG NR FR1 TOD 8.41 9.6 10866 AD SG NR (CP-OPDM, 100% RB, 20MHz, QPSK, 50Hz) SG NR FR1 TOD 8.41 9.6 10866 AD SG NR (CP-OPDM, 100% RB, 20MHz, QPSK, 50Hz) SG NR FR1 TOD 8.41 9.6 10866 AD SG NR						±9.6
10844 AAD SG NR (CP-OPDM, 50% BB, 201MHz, QPSK, 601Hz) SG NN FFR1 TDD 8.34 196 10846 AAD SG NR (CP-OPDM, 100% BB, 201MHz, QPSK, 601Hz) SG NN FFR1 TDD 8.34 196 10855 AAD SG NR (CP-OPDM, 100% BB, 201MHz, QPSK, 601Hz) SG NN FFR1 TDD 8.37 196 10857 AAD SG NR (CP-OPDM, 100% BB, 201MHz, QPSK, 601Hz) SG NN FFR1 TDD 8.37 196 10857 AAD SG NR (CP-OPDM, 100% BB, 201MHz, QPSK, 601Hz) SG NN FFR1 TDD 8.38 196 10859 AAD SG NR (CP-OPDM, 100% BB, 201MHz, QPSK, 601Hz) SG NN FFR1 TDD 8.38 196 10859 AAD SG NR (CP-OPDM, 100% BB, 201MHz, QPSK, 601Hz) SG NN FFR1 TDD 8.41 196 10861 AAD SG NR (CP-OPDM, 100% BB, 201MHz, QPSK, 601Hz) SG NN FR1 TDD 8.41 196 10862 AAD SG NR (CP-OPDM, 100% BB, 201MHz, QPSK, 601Hz) SG NN FR1 TDD 8.41 196 10864 AAD SG NR (CP-OPDM, 100% BB, 201MHz, QPSK, 601Hz) SG NN FR1 TDD 8.41 196 10866					7.71	±9.6
10864 AD 6G NR 100-0FDM, 1095-RB, 10 MHz, 0PSK, 60 Hz) 5G NR FPH TDD 8,34 956 10855 AD 6G NR 670-0FDM, 1095-RB, 15 MHz, 0PSK, 60 Hz) 5G NR FPH TDD 8,33 956 10855 AD 5G NR 670-0FDM, 1095-RB, 25 MHz, 0PSK, 60 Hz) 5G NR FPH TDD 8,33 956 10857 AD 5G NR 670-0FDM, 1007-RB, 25 MHz, 0PSK, 60 Hz) 5G NR FPH TDD 8,34 956 10857 AD 5G NR 100-0FDM, 1007-RB, 25 MHz, 0PSK, 60 Hz) 5G NR FPH TDD 8,34 956 10859 AD 5G NR 100-0FDM, 1007-RB, 20 MHz, 0PSK, 60 Hz) 5G NR FPH TDD 8,44 956 10860 AD 5G NR 100-0FDM, 1007-RB, 20 MHz, 0PSK, 60 Hz) 5G NR FPH TDD 8,41 956 10866 AD 5G NR 100-0FDM, 1007-RB, 20 MHz, 0PSK, 50 Hz) 5G NR FPH TDD 8,41 956 10866 AD 5G NR 100-0FDM, 1007-RB, 20 MHz, 0PSK, 50 Hz) 5G NR FPH TDD 8,41 956 10866 AD 5G NR 100-0FDM, 1007-RB, 20 MHZ, 0PSK, 50 Hz) 5G NR 1PH TDD 8,41 956 10866 AD						±9.6
10855 AD 5G NR FPI TDD 8.34 9.95 10855 AD 5G NR FPI TDD 8.35 9.95 10855 AD 5G NR FPI TDD 8.35 9.95 10857 AD 5G NR FPI TDD 8.35 9.95 10857 AD 5G NR FPI TDD 8.35 1.95 10859 AD 5G NR FPI TDD 8.36 1.95 10859 AD 5G NR FPI TDD 8.36 1.95 10859 AD 5G NR FPI TDD 8.34 9.86 10860 AD 5G NR FPI TDD 8.34 9.86 10861 AD 5G NR FPI TDD 8.41 9.96 10862 AD 5G NR FPI TDD 8.41 9.86 10863 AD 5G NR FPI TDD 8.41 9.86 10864 AD 5G NR FPI TDD 8.41 9.86 10865 AD 5G NR FPI TDD 8.41 9.86 10866 AD 5G NR FPI TDD 5.80 9.86						
10655 AAD 5G NR 1CP-OFDM, 100% RB, 15MHz, OPSK, 60MHz) 5G NR FFH TDD 8.37 -9.6 10856 AAD 5G NR 1CP-OFDM, 100% RB, 25MHz, OPSK, 60MHz) 5G NR FFH TDD 8.33 -9.6 10857 AAD 5G NR 1CP-OFDM, 100% RB, 25MHz, OPSK, 60MHz) 5G NR FFH TDD 8.34 -9.6 10859 AAD 5G NR 1CP-OFDM, 100% RB, 30MHz, OPSK, 60MHz) 5G NR FFH TDD 8.34 -9.6 10860 AAD 5G NR 1CP-OFDM, 100% RB, 30MHz, OPSK, 60MHz) 5G NR FFH TDD 8.44 -9.6 10861 AAD 5G NR 1CP-OFDM, 100% RB, 30MHz, OPSK, 60MHz) 5G NR FFH TDD 8.41 -9.6 10864 AAD 5G NR 1CP-OFDM, 100% RB, 30MHz, OPSK, 60MHz) 5G NR FFH TDD 8.41 -9.6 10864 AAD 5G NR 1CP-OFDM, 100% RB, 100MHz, OPSK, 30HHz) 5G NR FFH TDD 8.41 -9.6 10864 AAD 5G NR 1CP-OFDM, 100% RB, 100MHz, OPSK, 30HHz) 5G NR FFH TDD 58 -9.6 10864 AAD 5G NR 1CP-OFDM, 100% RB, 100MHz, OPSK, 30HHz) 5G NR FFH TDD 58 -9.6 -9.6 -9.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
10655 AAD 5G NR 162-OFDM, 100% RB, 2014/12, OFSK, 6014/2) 5G NR FPH TDD 8.35 +9.6 10857 AAD 5G NR 162-OFDM, 100% RB, 3014/12, OFSK, 6014/2) 5G NR FPH TDD 8.35 +9.6 10859 AAD 5G NR 162-OFDM, 100% RB, 3014/12, OFSK, 6014/2) 5G NR FPH TDD 8.34 +9.6 10860 AAD 5G NR 162-OFDM, 100% RB, 5014/12, OFSK, 6014/2) 5G NR FPH TDD 8.41 +9.6 10861 AAD 5G NR 162-OFDM, 100% RB, 5014/12, OFSK, 6014/2) 5G NR FPH TDD 8.41 +9.6 10864 AAD 5G NR 162-OFDM, 100% RB, 5014/12, OFSK, 6014/2) 5G NR FPH TDD 8.41 +9.6 10865 AAD 5G NR 167-OFDM, 100% RB, 5014/12, OFSK, 6014/2) 5G NR FPH TDD 5.84 +9.6 10868 AAD 5G NR 167-OFDM, 100% RB, 1004/12, OFSK, 6014/2) 5G NR FPH TDD 5.88 +9.6 10870 AAE 5G NR 167-OFDM, 100% RB, 1004/12, OFSK, 6014/2) 5G NR FPH TDD 5.88 +9.6 10870 AAE 5G NR 167-OFDM, 100% RB, 1004/12, OFSK, 5014/2) 5G NR FPH TDD 5.88 +9.6						
10857 AAD 5G NR (CP-OFDM, 100% RB, 25MHz, OPSK, 60Hz) 5G NR (FP TDD 8.35 19.65 10858 AAD 5G NR (CP-OFDM, 100%, RB, 50MHz, OPSK, 60Hz) 5G NR FRI TDD 8.34 19.66 10859 AAD 5G NR (CP-OFDM, 100%, RB, 50MHz, OPSK, 60Hz) 5G NR FRI TDD 8.34 19.66 10861 AAD 5G NR (CP-OFDM, 100%, RB, 50MHz, OPSK, 60Hz) 5G NR FRI TDD 8.41 19.66 10864 AAD 5G NR (CP-OFDM, 100%, RB, 50MHz, OPSK, 60Hz) 5G NR FRI TDD 8.41 19.66 10864 AAD 5G NR (CP-OFDM, 100%, RB, 100MHz, OPSK, 60Hz) 5G NR FRI TDD 8.41 19.66 10868 AAD 5G NR (CP-OFDM, 100%, RB, 100MHz, OPSK, 50Hz) 5G NR FRI TDD 5.88 19.86 10886 AAD 5G NR (CP-OFDM, 100%, RB, 100MHz, OPSK, 50Hz) 5G NR FRI TDD 5.86 19.66 10887 AAE 5G NR (CP-OFDM, 100%, RB, 100MHz, OPSK, 50Hz) 5G NR FRI TDD 5.86 19.66 10887 AAE 5G NR (CP-OFDM, 100%, RB, 100MHz, OPSK, 120Hz) 5G NR FRI TDD 5.86 19.66 10887 <td></td> <td></td> <td></td> <td></td> <td></td> <td>±9.6</td>						±9.6
10858 AAD SG NR (CP-CPM, 100% RB, 30MHz, OPSK, 60Hz) SG NR (FR TDD 8.38 496 10859 AAD SG NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60Hz) SG NR FR TDD 8.44 496 10861 AAD SG NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60Hz) SG NR FR TDD 8.41 496 10861 AAD SG NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60Hz) SG NR FR TDD 8.41 496 10864 AAD SG NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60Hz) SG NR FR TDD 8.41 496 10865 AAD SG NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60Hz) SG NR FR TDD 5.84 496 10868 AAD SG NR (PT-CPCPM, 100% RB, 100MHz, OPSK, 30Hz) SG NR FR TDD 5.86 496 10889 AAE SG NR (DFT-CPEM, 100% RB, 100MHz, OPSK, 120Hz) SG NR FR TDD 5.86 496 10871 AAE SG NR (DFT-CPEM, 100% RB, 100MHz, OPSK, 120Hz) SG NR FR TDD 5.86 496 10872 AAE SG NR (DFT-CPEM, 118, 100MHz, OPSK, 120Hz) SG NR FR TDD 5.86 496 10873 AAE SG						
10855 AAD 5G NR (CP-OPM, 100% RB, 40MHz, QPSK, 60H4z) 5G NR FRI TDD 8.34 +9.6 10860 AAD 5G NR (CP-OFDM, 100% RB, 60MHz, QPSK, 60H4z) 5G NR FRI TDD 8.41 +9.6 10861 AAD 5G NR (CP-OFDM, 100% RB, 60MHz, QPSK, 60H4z) 5G NR FRI TDD 8.41 +9.6 10864 AAD 5G NR (CP-OFDM, 100% RB, 60MHz, QPSK, 60H4z) 5G NR FRI TDD 8.41 +9.6 10864 AAD 5G NR (CP-OFDM, 100% RB, 100MHz, QPSK, 60Hz) 5G NR FRI TDD 8.41 +9.6 10864 AAD 5G NR (CP-OFDM, 100% RB, 100MHz, QPSK, 50Hz) 5G NR FRI TDD 5.84 +9.6 10868 AAD 5G NR (DFT-OFDM, 100% RB, 100MHz, QPSK, 120H2) 5G NR FRI TDD 5.58 +9.6 10870 AAE 5G NR (DFT-OFDM, 100% RB, 100MHz, QPSK, 120Hz) 5G NR FRI TDD 5.58 +9.6 10871 AAE 5G NR (DFT-OFDM, 100% RB, 100MHz, QPSK, 120Hz) 5G NR FRI TDD 5.58 +9.6 10872 AAE 5G NR (DFT-OFDM, 100% RB, 100MHz, 160AH, 120Hz) 5G NR FRI TDD 5.58 +9.6 10874						
10800 AAD SG NR ICP-OFDM. 100% RB. 50 MHz, OPSK. 60 KHz) SG NR IFR ITDD 8.41 =96 10861 AAD SG NR ICP-OFDM. 100% RB. 80 MHz, OPSK. 60 KHz) SG NR IFR ITDD 8.40 ±96 10863 AAD SG NR ICP-OFDM. 100% RB. 80 MHz, OPSK. 60 KHz) SG NR IFR ITDD 8.37 ±96 10864 AAD SG NR ICP-OFDM. 100% RB. 100 MHz, OPSK. 60 KHz) SG NR IFR ITDD 5.88 ±96 10868 AAD SG NR ICPT-SOFDM. 100% RB. 80 NHz, OPSK. 30 KHz) SG NR IFR ITDD 5.88 ±96 10868 AAD SG NR IFR-SOFDM. 100% RB. 80 NHz, OPSK. 30 KHz) SG NR IFR ITDD 5.86 ±96 10870 AAE SG NR IFR-SOFDM. 100% RB. 100 MHz, OPSK. 120 KHz) SG NR IFR ITDD 5.75 ±96 10871 AAE SG NR IDFT-SOFDM. 100% RB. 100 MHz, OPSK. 120 KHz) SG NR IFR ITDD 6.52 ±96 10872 AAE SG NR IDFT-SOFDM. 100% RB. 100 MHz, OPSK. 120 KHz) SG NR IFR ITDD 5.57 ±96 10873 AAE SG NR IDFT-SOFDM. 100% RB. 100 MHz, OPSK. 120 KHz) SG NR IFR IDD 5.57 ±96 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
10861 ADD SG NR (CP-OFDM, 100% RB, 60 MHz, OPSK, 60 KHz) SG NR FR1 TDD 8.40 ±9.6 10883 AAD SG NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 KHz) SG NR FR1 TDD 8.41 ±9.6 10864 AAD SG NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 60 KHz) SG NR FR1 TDD 8.41 ±9.6 10866 AAD SG NR (FR-TDD 8.41 ±9.6 10868 AAD SG NR (FR-TDD 5.68 ±9.6 10868 AAD SG NR (FR-TODD) 1.68 1.00 MHz, OPSK, 30 KHz) SG NR FR1 TDD 5.68 ±9.6 10869 AAE SG NR (DFT-OFDM, 100% RB, 100 MHz, OPSK, 120 Hz) SG NR FR2 TDD 5.66 ±9.6 10871 AAE SG NR (DFT-S-OFDM, 100% RB, 100 MHz, OPSK, 120 Hz) SG NR FR2 TDD 5.66 ±9.6 10872 AAE SG NR (DFT-S-OFDM, 100% RB, 100 MHz, OPSK, 120 Hz) SG NR FR2 TDD 5.66 ±9.6 10873 AAE SG NR (CP-OFDM, 118, 100 MHz, OPSK, 120 Hz) SG NR FR2 TDD 7.78 ±9.6 10874 AAE SG NR (CP-OFDM, 118, 100 MHz, OPSK, 120 Hz) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10683 AD SG NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) SG NR (FR1 TDD 8.41 19.6 10864 AD SG NR (CP-OFDM, 100% RB, 90 MHz, OPSK, 60 kHz) SG NR FR1 TDD 8.87 +9.6 10865 AD SG NR (CP-OFDM, 100% RB, 90 MHz, OPSK, 60 kHz) SG NR FR1 TDD 5.88 +9.6 10868 AD SG NR (PT-S-OFDM, 107, RB, 100 MHz, OPSK, 30 kHz) SG NR FR1 TDD 5.88 +9.6 10868 AD SG NR (DFT-S-OFDM, 108, RB, 100 MHz, OPSK, 120 kHz) SG NR FR2 TDD 5.75 +9.6 10870 AAE SG NR (DFT-S-OFDM, 107% RB, 100 MHz, OPSK, 120 kHz) SG NR FR2 TDD 5.75 +9.6 10871 AAE SG NR (DFT-S-OFDM, 1 RB, 100 MHz, GGAM, 120 kHz) SG NR FR2 TDD 6.52 +9.6 10872 AAE SG NR (DFT-S-OFDM, 1 RB, 100 MHz, GGAM, 120 kHz) SG NR FR2 TDD 6.65 +9.6 10874 AAE SG NR (DFT-S-OFDM, 100% RB, 100 MHz, GGAM, 120 kHz) SG NR FR2 TDD 6.65 +9.6 10875 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, GGAM, 120 kHz) SG NR FR2 TDD 6.61 +9.6						
10864 AD SG NR (CP-OFDM, 100% RB, 90 MHz, OPSK, 60 kHz) SG NR FR1 TDD 8.37 9.9 10865 AAD SG NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 30 kHz) SG NR FR1 TDD 5.80 9.9 10866 AAD SG NR (DFT-s-OFDM, 100% RB, 100 MHz, OPSK, 30 kHz) SG NR FR1 TDD 5.89 1.96 10868 AAD SG NR (DFT-s-OFDM, 18R, 100 MHz, OPSK, 120 kHz) SG NR FR2 TDD 5.56 1.96 10870 AAE SG NR (DFT-s-OFDM, 18R, 100 MHz, OPSK, 120 kHz) SG NR FR2 TDD 5.66 1.96 10871 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, 16AAU, 120 kHz) SG NR FR2 TDD 5.66 1.96 10872 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, 16AAU, 120 kHz) SG NR FR2 TDD 6.51 1.96 10874 AAE SG NR (CP-OFDM, 11RB, 100 MHz, 16AAUM, 120 kHz) SG NR FR2 TDD 7.78 1.96 10874 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 120 KHz) SG NR FR2 TDD 7.78 1.96 10874 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 120 KHz) SG NR FR2 TDD 7.95 1.96						
10855 AD 5G NR (CP-OFDM, 10% RB, 100 MHz, QPSK, 80 KHz) 5G NR FR1 TDD 6.41 1956 10866 AD 5G NR (DFTs-OFDM, 1RB, 100 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.68 +9.6 10868 AAD 5G NR (DFTs-OFDM, 100% RB, 100 MHz, QPSK, 30 KHz) 5G NR FR2 TDD 5.75 +9.6 10870 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, QPSK, 120 KHz) 5G NR FR2 TDD 5.86 +9.6 10871 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, 16QAM, 120 KHz) 5G NR FR2 TDD 6.52 +9.6 10873 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, 46QAM, 120 KHz) 5G NR FR2 TDD 6.52 +9.6 10874 AAE 5G NR (DFTs-OFDM, 118, 100 MHz, 46QAM, 120 KHz) 5G NR FR2 TDD 6.51 +9.6 10875 AAE 5G NR (DFT-OFDM, 118, 100 MHz, 05K, 120 KHz) 5G NR FR2 TDD 7.78 +9.6 10876 AAE 5G NR (CP-OFDM, 1078, RB, 100 MHz, 16QAM, 120 KHz) 5G NR FR2 TDD 7.95 +9.6 10877 AAE 5G NR (CP-OFDM, 1078, RB, 100 MHz, 16QAM, 120 KHz) 5G NR FR2 TDD 8.34 +9.6						
10866 AD 5 GNR (DFT-s-OFDM, 1 BB, 100 MHz, OPSK, 30 KHz) 5 GNR FR1 TDD 5.88 1.95 10888 AAD 5 GNR (DFT-s-OFDM, 1 BB, 100 MHz, OPSK, 120 kHz) 5 GNR FR2 TDD 5.75 1.96 10870 AAE 5 GNR (DFT-s-OFDM, 1 BB, 100 MHz, OPSK, 120 kHz) 5 GNR FR2 TDD 5.75 1.96 10871 AAE 5 GNR (DFT-s-OFDM, 1 BB, 100 MHz, 160AM, 120 kHz) 5 GNR FR2 TDD 5.75 1.96 10872 AAE 5 GNR (DFT-s-OFDM, 100% RB, 100 MHz, 160AM, 120 kHz) 5 GNR FR2 TDD 6.52 1.96 10873 AAE 5 GNR (DFT-s-OFDM, 100% RB, 100 MHz, 64GAM, 120 kHz) 5 GNR FR2 TDD 6.52 1.96 10874 AAE 5 GNR (DF-OFDM, 1078, BB, 100 MHz, 64GAM, 120 kHz) 5 GNR FR2 TDD 7.78 1.96 10875 AAE 5 GNR (DF-OFDM, 1078, BB, 100 MHz, 64GAM, 120 kHz) 5 GNR FR2 TDD 8.39 1.96 10877 AAE 5 GNR (DF-OFDM, 118, 100 MHz, 64GAM, 120 kHz) 5 GNR FR2 TDD 8.39 1.96 10877 AAE 5 GNR (DF-OFDM, 118, 100 MHz, 64GAM, 120 kHz) 5 GNR FR2 TDD 8.41 1.96 <						
10888 AAD 5G NR (DFT+0-FDM, 100% RB, 100 MHz, OPSK, 20 HHz) SG NR FR1 TDD 5.89 19.6 10809 AAE SG NR (DFT+0-FDM, 1 RB, 100 MHz, OPSK, 120 KHz) SG NR FR2 TDD 5.75 19.6 10870 AAE SG NR (DFT+0-FDM, 1 RB, 100 MHz, OPSK, 120 KHz) SG NR FR2 TDD 5.75 19.6 10871 AAE SG NR (DFT+0-FDM, 1 RB, 100 MHz, GPSK, 120 KHz) SG NR FR2 TDD 6.52 19.6 10873 AAE SG NR (DFT+0-FDM, 1 RB, 100 MHz, 64QAM, 120 KHz) SG NR FR2 TDD 6.61 19.6 10873 AAE SG NR (DFT+0-OFDM, 1 RB, 100 MHz, 64QAM, 120 KHz) SG NR FR2 TDD 6.65 19.6 10876 AAE SG NR (CP-0FDM, 1 RB, 100 MHz, 64QAM, 120 KHz) SG NR FR2 TDD 8.61 19.6 10877 AAE SG NR (CP-0FDM, 1 RB, 100 MHz, 64QAM, 120 KHz) SG NR FR2 TDD 8.11 9.6 10878 AAE SG NR (CP-0FDM, 1 RB, 100 MHz, 64QAM, 120 KHz) SG NR FR2 TDD 8.12 9.6 10877 AAE SG NR (CP-0FDM, 1 RB, 50 MHz, 64QAM, 120 KHz) SG NR FR2 TDD 8.12 9.6						
10889 AAE 5G NR (DFT+0-CPDM, 1 BB, 100 MHz, OPSK, 120 KHz) 5G NR FR2 TDD 5.75 19.6 10870 AAE SG NR (DFT+0-CPDM, 100% RB, 100 MHz, 16GAM, 120 KHz) SG NR FR2 TDD 5.68 19.6 10871 AAE SG NR (DFT+0-CPDM, 1108, 100 MHz, 16GAM, 120 KHz) SG NR FR2 TDD 6.52 19.6 10873 AAE SG NR (DFT+0-CPDM, 1108, 100 MHz, 64GAM, 120 KHz) SG NR FR2 TDD 6.65 19.6 10874 AAE SG NR (DFT+0-CPDM, 1108, 100 MHz, 64GAM, 120 KHz) SG NR FR2 TDD 6.65 19.6 10875 AAE SG NR (CP-0FDM, 100%, RB, 100 MHz, 64GAM, 120 KHz) SG NR FR2 TDD 7.78 19.6 10876 AAE SG NR (CP-0FDM, 100%, RB, 100 MHz, 16GAM, 120 KHz) SG NR FR2 TDD 8.39 19.6 10877 AAE SG NR (CP-0FDM, 100%, RB, 100 MHz, 16GAM, 120 KHz) SG NR FR2 TDD 8.34 19.6 10878 AAE SG NR (CP-0FDM, 100%, RB, 50 MHz, 120 KHz) SG NR FR2 TDD 8.34 19.6 10879 AAE SG NR (CP-0FDM, 100%, RB, 50 MHz, 120 KHz) SG NR FR2 TDD 8.31 9.6						
1070 AAE 5G NR (DFT=0-FDM, 100% RB, 100 MHz, 0PSK, 120 kHz) 5G NR FR2 TDD 5.86 19.6 10871 AAE 5G NR (DFT=0-FDM, 1 RB, 100 MHz, 16GAM, 120 kHz) 5G NR FR2 TDD 6.52 19.6 10872 AAE 5G NR (DFT=0-FDM, 100% RB, 100 MHz, 16GAM, 120 kHz) 5G NR FR2 TDD 6.61 19.6 10873 AAE 5G NR (DFT=0-FDM, 100% RB, 100 MHz, 4GAM, 120 kHz) 5G NR FR2 TDD 6.65 19.6 10874 AAE 5G NR (DFT=0-FDM, 100% RB, 100 MHz, 6QAM, 120 kHz) 5G NR FR2 TDD 8.65 19.6 10875 AAE 5G NR (CP-0FDM, 18, 100 MHz, 0PSK, 120 kHz) 5G NR FR2 TDD 8.39 19.6 10877 AAE 5G NR (CP-0FDM, 18, 100 MHz, 640AM, 120 kHz) 5G NR FR2 TDD 8.41 19.6 10878 AAE 5G NR (CP-0FDM, 178, 100 MHz, 640AM, 120 kHz) 5G NR FR2 TDD 8.12 19.6 10878 AAE 5G NR (DFT=0-0FDM, 100% RB, 50 MHz, 0PSK, 120 kHz) 5G NR FR2 TDD 8.12 19.6 10878 AAE 5G NR (DFT=0-0FDM, 100% RB, 50 MHz, 0AQAM, 120 kHz) 5G NR FR2 TDD 5.75 19.6						
10871 AAE 5G NR (DFTa-OFDM, 10% RB, 100 MHz, 16QAM, 120 HHz) 5G NR FR2 TDD 5.75 ±9.6 10872 AAE 5G NR (DFTa-OFDM, 10% RB, 100 MHz, 16QAM, 120 HHz) 5G NR FR2 TDD 6.61 ±9.6 10873 AAE 5G NR (DFTa-OFDM, 10% RB, 100 MHz, 64QAM, 120 HHz) 5G NR FR2 TDD 6.65 ±9.6 10874 AAE 5G NR (DFTa-OFDM, 10% RB, 100 MHz, 64QAM, 120 HHz) 5G NR FR2 TDD 6.65 ±9.6 10875 AAE 5G NR (CP-OFDM, 10% RB, 100 MHz, 0PSK, 120 HHz) 5G NR FR2 TDD 8.39 ±9.6 10876 AAE 5G NR (CP-OFDM, 108, RB, 100 MHz, 16QAM, 120 HHz) 5G NR FR2 TDD 8.41 ±9.6 10877 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 Hz) 5G NR FR2 TDD 8.12 ±9.6 10879 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 46QAM, 120 Hz) 5G NR FR2 TDD 8.12 ±9.6 10881 AAE 5G NR (DFTa-OFDM, 100% RB, 50 MHz, QPSK, 120 Hz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFTa-OFDM, 100% RB, 50 MHz, QPSK, 120 Hz) 5G NR FR2 TDD 5.75 ±9.6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10872 AAE 5G NR (DFTs-OFDM, 109% RB, 100 MHz, 40AM, 120 KHz) 5G NR FR2 TDD 6.52 ±9.6 10873 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, 64QAM, 120 KHz) 5G NR FR2 TDD 6.65 ±9.6 10874 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, 64QAM, 120 KHz) 5G NR FR2 TDD 7.78 ±9.6 10875 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 0PSK, 120 KHz) 5G NR FR2 TDD 7.78 ±9.6 10876 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 KHz) 5G NR FR2 TDD 8.39 ±9.6 10877 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 KHz) 5G NR FR2 TDD 8.41 ±9.6 10878 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 40AM, 120 KHz) 5G NR FR2 TDD 8.12 ±9.6 10880 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 40AM, 120 KHz) 5G NR FR2 TDD 5.75 ±9.6 10881 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, OFSK, 120 KHz) 5G NR FR2 TDD 5.67 ±9.6 10882 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 160AM, 120 KHz) 5G NR FR2 TDD 5.61 ±9.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
10873 AAE SG NR (DFTs-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) SG NR FR2 TDD 6.61 ±9.6 10874 AAE SG NR (DFTs-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) SG NR FR2 TDD 6.65 ±9.6 10875 AAE SG NR (DP-OFDM, 1RB, 100 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 8.39 ±9.6 10876 AAE SG NR (DP-OFDM, 1RB, 100 MHz, 10QAN, 120 kHz) SG NR FR2 TDD 8.39 ±9.6 10877 AAE SG NR (DP-OFDM, 100% RB, 100 MHz, 10QAN, 120 kHz) SG NR FR2 TDD 8.41 ±9.6 10878 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 10QAH, 120 kHz) SG NR FR2 TDD 8.12 ±9.6 10879 AAE SG NR (DP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) SG NR FR2 TDD 8.12 ±9.6 10881 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 5.5 ±9.6 10882 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) SG NR FR2 TDD 6.53 ±9.6 10884 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) SG NR FR2 TDD 6.51 ±9.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10874 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10875 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10876 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.39 ±9.6 10877 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10878 AAE 5G NR (CP-OFDM, 18B, 100 MHz, 40QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10879 AAE 5G NR (CP-OFDM, 18B, 100 MHz, 40QAM, 120 kHz) 5G NR FR2 TDD 8.38 ±9.6 10881 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.57 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10875 AAE 5G NR (CP-OFDM, 10% RB, 100MHz, QPSK, 120kHz) 5G NR FR2 TDD 7.78 ±9.6 10876 AAE 5G NR (CP-OFDM, 100% RB, 100MHz, QPSK, 120kHz) 5G NR FR2 TDD 8.39 ±9.6 10877 AAE 5G NR (CP-OFDM, 100% RB, 100MHz, 16QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6 10878 AAE 5G NR (CP-OFDM, 10% RB, 100MHz, 40QAM, 120kHz) 5G NR FR2 TDD 8.12 ±9.6 10879 AAE 5G NR (CP-OFDM, 100% RB, 100MHz, 40QAM, 120kHz) 5G NR FR2 TDD 8.12 ±9.6 10880 AAE 5G NR (DFT-s-OFDM, 100% RB, 50MHz, 20PSK, 120kHz) 5G NR FR2 TDD 5.75 ±9.6 10881 AAE 5G NR (DFT-s-OFDM, 100% RB, 50MHz, 40QAM, 120kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFT-s-OFDM, 100% RB, 50MHz, 16QAM, 120kHz) 5G NR FR2 TDD 6.53 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 100% RB, 50MHz, 16QAM, 120kHz) 5G NR FR2 TDD 6.53 ±9.6 10886 AAE 5G NR (CP-OFDM, 100% RB, 50MHz, 64QAM, 120kHz) 5G NR FR2 TDD 6.53 ±9.6						
10876 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 KHz) 5G NR FR2 TDD 8.39 ±9.6 10877 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10878 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10880 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ±9.6 10880 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 04QAM, 120 kHz) 5G NR FR2 TDD 8.38 ±9.6 10881 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) 5G NR FR2 TDD 6.57 ±9.6 10883 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 160AM, 120 kHz) 5G NR FR2 TDD 6.51 ±9.6 10886 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 640AM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10886 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 040AM, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6						
10877 AAE SG NR FCP-OFDM, 18B, 100 MHz, 16QAM, 120 kHz) SG NR FR2 TDD 7.95 ±9.6 10878 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) SG NR FR2 TDD 8.41 ±9.6 10879 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) SG NR FR2 TDD 8.12 ±9.6 10880 AAE SG NR (DP-Fo-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) SG NR FR2 TDD 5.75 ±9.6 10881 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) SG NR FR2 TDD 5.75 ±9.6 10882 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) SG NR FR2 TDD 6.57 ±9.6 10885 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) SG NR FR2 TDD 6.61 ±9.6 10885 AAE SG NR (DPT-s-OFDM, 100% RB, 50 MHz, 120 kHz) SG NR FR2 TDD 6.65 ±9.6 10886 AAE SG NR (DPT-s-OFDM, 100% RB, 50 MHz, 120 kHz) SG NR FR2 TDD 8.35 ±9.6 10887 AAE SG NR (CP-OFDM, 100% RB, 50 MHz, 162 MHz) SG NR FR2 TDD 8.35 ±9.6						
10878 AAE 5G NR F(CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10879 AAE 5G NR (CP-OFDM, 1RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ±9.6 10880 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ±9.6 10881 AAE 5G NR (DFT-s-OFDM, 1RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFT-s-OFDM, 1RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 6.57 ±9.6 10883 AAE 5G NR (DFT-s-OFDM, 1RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 1RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10885 AAE 5G NR (CP-OFDM, 1RB, 50 MHz, GAQAM, 120 kHz) 5G NR FR2 TDD 6.66 ±9.6 10886 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10887 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6						
10879 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ±9.6 10880 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ±9.6 10881 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 6.57 ±9.6 10883 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 04QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10886 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 04QAM, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10888 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6						
10880 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ±9.6 10881 AAE 5G NR (DFTs-OFDM, 18B, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ±9.6 10884 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 102 kHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10886 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 04QAM, 120 kHz) 5G NR FR2 TDD 8.65 ±9.6 10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 02 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 02 kHz) 5G NR FR2 TDD 8.32 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 02 kHz) 5G NR FR2 TDD 8.40 ±9.6 10890 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10881 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ±9.6 10883 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10886 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10886 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.32 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 40AM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 40AM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
10882 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ±9.6 10883 AAE 5G NR (DFT-s-OFDM, 1RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 1RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 1RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10886 AAE 5G NR (DFT-s-OFDM, 1RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 1RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10888 AAE 5G NR (CP-OFDM, 1RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (DFT-s-OFDM, 1RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (DFT-s-OFDM, 1RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR1 TDD 5.66 ±9.6						
10883 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10888 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.13 ±9.6 10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.13 ±9.6 10892 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6						
10884 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10886 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.65 ±9.6 10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10891 AAE 5G NR (DFT-s-OFDM, 18, 50 MHz, 64QAM, 120 kHz) 5G NR FR1 TDD 5.66 ±9.6 10892 AAE 5G NR (DFT-s-OFDM, 18, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6						
10885 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.10 ±9.6 10891 AAE 5G NR (CP-OFDM, 10% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10892 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10892 AAE SG NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6						
10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.10 ±9.6 10891 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.13 ±9.6 10891 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10897 AAC 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10890 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6						
10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 18B, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.13 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR1 TDD 5.67 ±9.6 10892 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10893 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1						
10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.13 ±9.6 10892 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10897 AAC 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10889AAE5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)5G NR FR2 TDD8.02±9.610890AAE5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)5G NR FR2 TDD8.40±9.610891AAE5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)5G NR FR2 TDD8.13±9.610892AAE5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)5G NR FR2 TDD8.41±9.610892AAE5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)5G NR FR2 TDD8.41±9.610897AAC5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)5G NR FR1 TDD5.66±9.610898AAB5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)5G NR FR1 TDD5.67±9.610899AAB5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)5G NR FR1 TDD5.67±9.610900AAB5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)5G NR FR1 TDD5.68±9.610901AAB5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)5G NR FR1 TDD5.68±9.610902AAB5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)5G NR FR1 TDD5.68±9.610902AAB5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)5G NR FR1 TDD5.68±9.610902AAB5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)5G NR FR1 TDD5.68±9.610903AAB5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)5G NR FR1 TDD5.68±9.610904AAB5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)5G NR FR1 TDD						
10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.13 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10897 AAC 5G NR (DFT-s-OFDM, 18B, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 1						
10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.13 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10897 AAC 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD						
10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10897 AAC 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10						
10897 AAC 5G NR (DFT-s-OFDM, 1 RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906	L					
10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 109						
10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 109						
10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6						
10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6						
10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6						
10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6						
10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6						
10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6						
10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6						
10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6						
10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6						
		-				
10910 AAB 5G NR (DEI-S-OFDM, 50% KB, 20 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 5.83 ±9.6	10910	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10911	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10912	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10913	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6
10915	AAB	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
10916	AAB	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917	AAB	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10918	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10920	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10921	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10922	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10923 10924	AAB AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10924	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAB	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.95 5.84	±9.6
10920	AAB	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10928	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6 ±9.6
10929	AAC	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	
10929	AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 KHz)	5G NR FR1 FDD	5.52	±9.6 ±9.6
10930	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10932	AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10934	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10935	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10937	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6
10938	AAC	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
10941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6
10945	AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10947	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10948	AAC	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10950	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10951	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAA AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 KHz)	5G NR FR1 FDD 5G NR FR1 FDD	8.42 8.14	±9.6 ±9.6
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	±9.6
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.6
10960	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	±9.6
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	±9.6
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	±9.6
10964	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	±9.6
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.6
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	±9.6
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	±9.6
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	±9.6
10978	AAA	ULLA BDR	ULLA	1.16	±9.6
10979	AAA	ULLA HDR4	ULLA	8.58	±9.6
10980	AAA	ULLA HDR8	ULLA	10.32	±9.6
10981	AAA	ULLA HDRp4	ULLA	3.19	±9.6
10982	AAA	ULLA HDRp8	ULLA	3.43	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.