

FCC Test Report Report No.: RFBDMD-WTW-P22070452 FCC ID: B94-CEB005L Test Model: CEB005 Received Date: Jul. 15, 2022 Test Date: Jul. 22, 2022 ~ Sep. 30, 2022 **Issued Date:** Nov. 01, 2022 Applicant: HP Inc. Address: 3390 East Harmony Road, Fort Collins, Colorado United States 80528 Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location (1): No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan Test Location (2): No. 70, Wenming Rd., Guishan Dist., Taoyuan City 333, Taiwan FCC Registration / (1) 788550 / TW0003 Designation Number: (2) 281270 / TW0032

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the conducted and the correctness of the report contents.

Table of Contents

Re	Release Control Record 4						
1	Cer	tificate of Conformity	5				
2	Sun	nmary of Test Results	6				
		Measurement Uncertainty					
	2.2	Modification Record	7				
3	Gen	neral Information	8				
	3.1	General Description of EUT	8				
	3.2	Description of Test Modes					
	22	3.2.1 Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal					
		Description of Support Units					
	0.1	3.4.1 Configuration of System under Test					
	3.5	General Description of Applied Standards and References	. 13				
4	Test	t Types and Results	. 14				
	4.1	Radiated Emission and Bandedge Measurement	. 14				
		4.1.1 Limits of Radiated Emission and Bandedge Measurement					
		4.1.2 Test Instruments					
		4.1.3 Test Procedures4.1.4 Deviation from Test Standard					
		4.1.5 Test Set Up					
		4.1.6 EUT Operating Conditions					
		4.1.7 Test Results					
	4.2	Conducted Emission Measurement					
		4.2.1 Limits of Conducted Emission Measurement					
		4.2.2 Test Instruments					
		4.2.3 Test Procedures4.2.4 Deviation from Test Standard					
		4.2.5 Test Setup					
		4.2.6 EUT Operating Condition					
		4.2.7 Test Results					
	4.3	Number of Hopping Frequency Used	. 33				
		4.3.1 Limits of Hopping Frequency Used Measurement					
		4.3.2 Test Setup					
		4.3.3 Test Instruments4.3.4 Test Procedure					
		4.3.5 Deviation from Test Standard					
		4.3.6 Test Results					
	4.4	Dwell Time on Each Channel					
		4.4.1 Limits of Dwell Time on Each Channel Measurement	. 35				
		4.4.2 Test Setup					
		4.4.3 Test Instruments					
		4.4.4 Test Procedures4.4.5 Deviation from Test Standard					
		4.4.6 Test Results					
	4.5	Channel Bandwidth					
		4.5.1 Limits of Channel Bandwidth Measurement					
		4.5.2 Test Setup					
		4.5.3 Test Instruments					
		4.5.4 Test Procedure					
		4.5.5 Deviation from Test Standard4.5.6 EUT Operating Condition					
		4.5.7 Test Results					
	4.6	Occupied Bandwidth Measurement					
		-					

		4.6.1 Test Setup	40
		4.6.2 Test Instruments	40
		4.6.3 Test Procedure	
		4.6.4 Deviation from Test Standard	40
		4.6.5 EUT Operating Conditions	
		4.6.6 Test Results	
	4.7	Hopping Channel Separation	
		4.7.1 Limits of Hopping Channel Separation Measurement	
		4.7.2 Test Setup	
		4.7.3 Test Instruments	
		4.7.4 Test Procedure	
		4.7.5 Deviation from Test Standard	
		4.7.6 Test Results	
	4.8	Maximum Output Power	
		4.8.1 Limits of Maximum Output Power Measurement	
		4.8.2 Test Setup	
		4.8.3 Test Instruments	
		4.8.4 Test Procedure	
		4.8.5 Deviation from Test Standard	
		4.8.6 EUT Operating Condition	
		4.8.7 Test Results	
	4.9	Conducted Out of Band Emission Measurement	
		4.9.1 Limits Of Conducted Out of Band Emission Measurement	
		4.9.2 Test Instruments	-
		4.9.3 Test Procedure	
		4.9.4 Deviation from Test Standard	
		4.9.5 EUT Operating Condition4.9.6 Test Results	
		ures of Test Arrangements	
An	nex	A- Band Edge Measurement	52
Ар	pen	dix – Information of the Testing Laboratories	53

Release Control Record

Issue No.	Description	Date Issued
RFBDMD-WTW-P22070452	Original Release	Nov. 01, 2022

1 Certificate of Conformity

Product:	HyperX Cirro Buds Pro True Wireless Earbuds
Brand:	HYPERX
Test Model:	CEB005
Sample Status:	Engineering Sample
Applicant:	HP Inc.
Test Date:	Jul. 22, 2022 ~ Sep. 30, 2022
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10-2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Vera Huang

Vera Huang / Specialist

Date: Nov. 01, 2022

Nov. 01, 2022

Date:

Approved by :

Jeremy Lin

Jeremy Lin / Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)									
FCC Clause	Test Item	Result	Remarks							
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -27.49 dB at 0.55400 MHz.							
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.							
15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.							
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Pass	Meet the requirement of limit.							
15.247(b) (1)	Maximum Peak Output Power	Pass	Meet the requirement of limit.							
	Occupied Bandwidth Measurement	Pass	Reference only							
15.205 & 209	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -7.6 dB at 2390.00 MHz.							
15.247(d)	Band Edge Measurement	Pass	Meet the requirement of limit.							
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.							
15.203	Antenna Requirement	Pass	No antenna connector is used.							

Note:

- If the Frequency Hopping System operating in 2400-2483.5 MHz band and the output power less than 125 mW. The hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of hopping channel whichever is greater.
- 2. For 2.4G band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.
- 3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.79 dB
	9kHz ~ 30MHz	3.00 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	2.91 dB
	200MHz ~1000MHz	2.92 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	1.76 dB
	18GHz ~ 40GHz	1.77 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	HyperX Cirro Buds Pro True Wireless Earbuds		
Brand	HYPERX		
Test Model	CEB005		
Status of EUT	Engineering Sample		
Dower Supply Dating	5 Vdc (from adapter or host equipment)		
Power Supply Rating	3.7 Vdc (from battery)		
Modulation Type	GFSK, π/4-DQPSK, 8DPSK		
Transfer Rate	1/2/3 Mbps		
Operating Frequency	2402 ~ 2480 MHz		
Number of Channel	79		
Output Power	5.358 mW		
Antenna Type	PCB antenna with -4.77 dBi gain		
Antenna Connector	N/A		
Accessory Device	Refer to Note as below		
Data Cable Supplied	Refer to Note as below		

Note:

- 1. This test report is for Left Earbud.
- 2. The EUT contains following accessory devices.

Product	Brand	Model	Description
Battery (Earbuds)	FPR Connectivity Technology Inc.	JL1050	3.7 Vdc, 40 mAh
Battery (Charging Case)	HUIZHOU EVERPOWER TECHNOLOGY CO., LTD.	HT801640	3.7 Vdc, 500 mAh
USB Cable	LECHENG	LC28000002020-01	0.25m shielded cable w/o core
Charging Case	HYPERX	T910000116850 (Color: Blue) T910000116770 (Color: Black) T910000116860 (Color: Tan)	-

3. Detail antenna specification please refer to antenna datasheet or an antenna gain measurement report.

4. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configu	igure Applicable To			able To		Providing
Mode		RE≥1G	RE<1G	PLC	APCM	Description
А		\checkmark	\checkmark	-	\checkmark	EUT (Left Earbud)
В		-	\checkmark	\checkmark	-	EUT (Left Earbud + Right Earbud + Charging case + Adapter)
			d Emission ab e Conducted E			: Radiated Emission below 1 GHz Antenna Port Conducted Measurement

Note:

1. For Radiated emission below 1 GHz test, pre-tested GFSK, π/4-DQPSK, 8DPSK modulation type and found GFSK was the worse, therefore chosen for the final test and presented in the test report.

2. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Y-plane**.

3. "-" means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
А	0 to 78	0, 39, 78	FHSS	GFSK	DH5
А	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

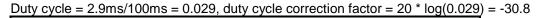
EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
А	0 to 78	39	FHSS	GFSK	DH5
B (Charging only)	-	-	-	-	-

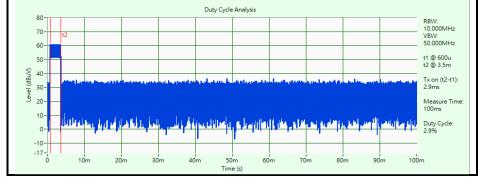
Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type	
B (Charging only)	-	-	-	-	-	

Antenna Port Conducted Measurement:


- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

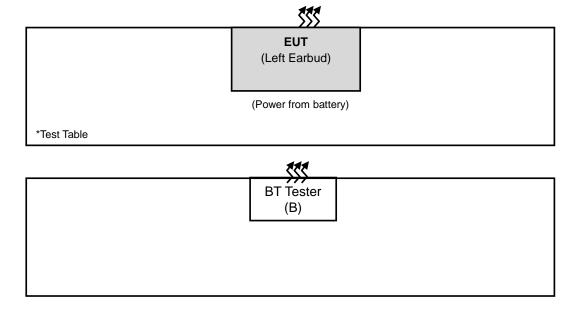

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type	
А	0 to 78	0, 39, 78	FHSS	GFSK	DH5	
А	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5	

Test Condition:

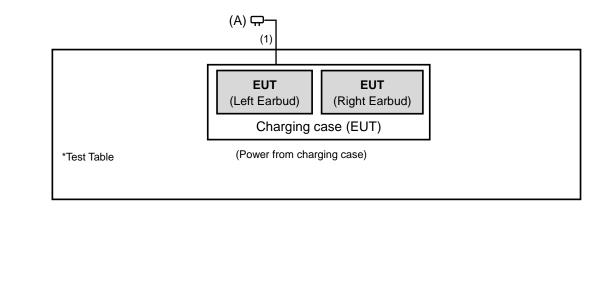
Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G	23 deg. C, 71 % RH	3.7 Vdc	Edison Lee
RE<1G	24 deg. C, 67 % RH	g. C, 67 % RH 3.7 Vdc 120 Vac, 60 Hz	
PLC	PLC 25 deg. C, 75 % RH		Edison Lee
APCM	25 deg. C, 60 % RH	3.7 Vdc	Gary Lin

3.3 Duty Cycle of Test Signal

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
А	Adapter	Liteon	PA-1050-39	N/A	N/A	Provided by Lab
В	Bluetooth Tester	R&S	CBT	100946	N/A	Provided by Lab


ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	0.25	Y	0	Accessory of the EUT

3.4.1 Configuration of System under Test

Mode A

Mode B

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- a. The lower limit shall apply at the transition frequencies.
- b. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- c. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver Rohde & Schwarz	ESR3	102579	Jul. 01, 2022	Jun. 30, 2023
Spectrum Analyzer KEYSIGHT	N9020B	MY60110462	Dec. 21, 2021	Dec. 20, 2022
BILOG Antenna SCHWARZBECK	VULB9168	995	Oct. 28, 2021	Oct. 27, 2022
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-404	Nov. 14, 2021	Nov. 13, 2022
HORN Antenna SCHWARZBECK	BBHA 9170	995	Nov. 14, 2021	Nov. 13, 2022
Loop Antenna EMCI	EM-6879	269	Sep. 16, 2021 Sep. 19, 2022	Sep. 15, 2022 Sep. 18, 2023
Preamplifier EMCI	EMC330N	980783	Jan. 17, 2022	Jan. 16, 2023
Preamplifier EMCI	EMC118A45SE	980810	Dec. 30, 2021	Dec. 29, 2022
Preamplifier EMCI	EMC184045SE	980787	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMC104-SM-SM-(900 0+2000+1000)	201230+ 201242+ 210101	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMCCFD400-NM-NM -(9000+300+500)	201252+ 201250+ 201245	Jan. 17, 2022	Jan. 16, 2023
RF signal cable EMCI	EMC101G-KM-KM-(5 000+3000+2000)	201261+201258+ 201249	Jan. 17, 2022	Jan. 16, 2023
Software BV CPS	ADT_Radiated_V7.6.1 5.9.5	NA	NA	NA
Turn Table Max-Full	MFT-151SS-0.5T	NA	NA	NA
Turn Table Controller Max-Full	MF-7802BS	MF780208675	NA	NA
Antenna Tower KaiTuo	NA	NA	NA	NA
Antenna Tower Controller KaiTuo	KT-2000	NA	NA	NA
USB Wideband Power Sensor KEYSIGHT	U2021XA	MY55050005/MY5 5190004/MY55190 007/MY55210005	Jul. 13, 2022	Jul. 12, 2023

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in WM Chamber 7.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

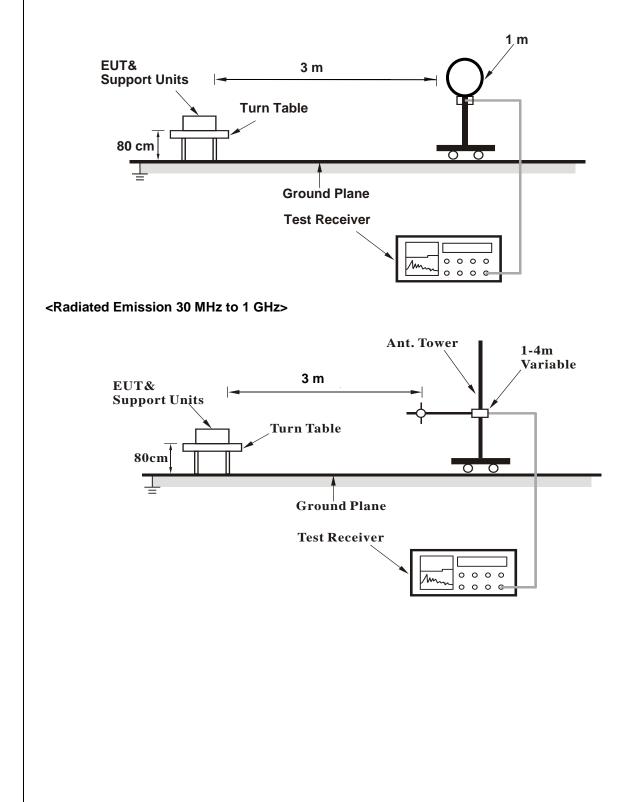
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

For Radiated Emission above 30 MHz

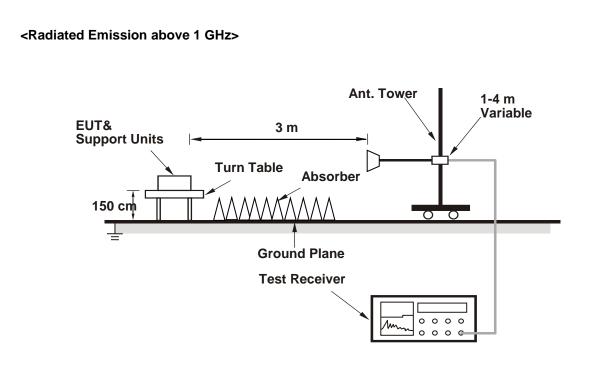
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- 3. For Fundamental frequency and band edge & harmonic: The average value of fundamental frequency is: average value = peak value + 20*log(Duty cycle) where the duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(2.9 ms / 100 ms) = -30.8 dB, please refer to the plotted duty (see section 3.3)
- 4. All modes of operation were investigated and the worst-case emissions are reported.



4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Set Up

<Radiated Emission below 30 MHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1 GHz Data:

RF Mode	TX BT_GFSK	Channel	CH 0:2402 MHz
Eroquonov Pongo	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Range			Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	58.1 PK	74.0	-15.9	1.50 H	259	26.2	31.9
2	2390.00	46.3 AV	54.0	-7.7	1.50 H	259	14.4	31.9
3	*2402.00	105.0 PK			1.50 H	259	73.0	32.0
4	*2402.00	74.2 AV			1.50 H	259	42.2	32.0
5	4804.00	57.6 PK	74.0	-16.4	1.24 H	262	55.5	2.1
6	4804.00	26.8 AV	54.0	-27.2	1.24 H	262	24.7	2.1
		A	Antenna Polar	ity & Test Dis	stance : Vertic	al at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	57.3 PK	74.0	-16.7	1.64 V	171	25.4	31.9
2	2390.00	46.1 AV	54.0	-7.9	1.64 V	171	14.2	31.9
3	*2402.00	100.9 PK			1.64 V	171	68.9	32.0
4	*2402.00	70.1 AV			1.64 V	171	38.1	32.0
5	4804.00	56.9 PK	74.0	-17.1	1.65 V	249	54.8	2.1
6	4804.00	26.1 AV	54.0	-27.9	1.65 V	249	24.0	2.1

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX BT_GFSK	Channel	CH 39:2441 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
Thequency Range		Detector runction	Average (AV)

-								
Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency	Emission Level	Limit	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	*2441.00	105.3 PK			1.51 H	255	73.5	31.8
2	*2441.00	74.5 AV			1.51 H	255	42.7	31.8
3	4882.00	56.8 PK	74.0	-17.2	1.32 H	267	54.6	2.2
4	4882.00	26.0 AV	54.0	-28.0	1.32 H	267	23.8	2.2
		Ą	Antenna Polar	ity & Test Dis	tance : Vertic	al at 3 m		
	Emiss	Emission	Limit Margi	Margin	Antenna	Table	Raw	Correction
No	Frequency (MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor
	(11112)	(dBuV/m)	(ubu v/m)	(UD)	(m)	(Degree)	(dBuV)	(dB/m)
1	*2441.00	101.7 PK			1.63 V	185	69.9	31.8
2	*2441.00	70.9 AV			1.63 V	185	39.1	31.8
3	4882.00	56.4 PK	74.0	-17.6	1.66 V	256	54.2	2.2
4	4882.00	25.6 AV	54.0	-28.4	1.66 V	256	23.4	2.2

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

I.				
	RF Mode	TX BT_GFSK	Channel	CH 78:2480 MHz
	Fraguency Pango	1GHz ~ 25GHz	Detector Function	Peak (PK)
	Frequency Range	10112 ~ 200112		Average (AV)

		Ar	ntenna Polarit	y & Test Dista	ance : Horizo	ntal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	103.2 PK			1.51 H	255	71.4	31.8
2	*2480.00	72.4 AV			1.51 H	255	40.6	31.8
3	2483.50	45.7 PK	74.0	-28.3	1.51 H	255	51.0	-5.3
4	2483.50	14.9 AV	54.0	-39.1	1.51 H	255	20.2	-5.3
5	4960.00	58.6 PK	74.0	-15.4	1.66 H	251	56.2	2.4
6	4960.00	27.8 AV	54.0	-26.2	1.66 H	251	25.4	2.4
		A	Antenna Polar	ity & Test Dis	stance : Vertic	al at 3 m		
No	Frequency	Emission	Limit	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor
No	(MHz)	Level (dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	• •		(dBuV/m)	(dB)		•		
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	(MHz) *2480.00	(dBuV/m) 102.1 PK	(dBuV/m) 74.0	(dB) -29.3	(m) 1.60 V	(Degree) 171	(dBuV) 70.3	(dB/m) 31.8
1	(MHz) *2480.00 *2480.00	(dBuV/m) 102.1 PK 71.3 AV			(m) 1.60 V 1.60 V	(Degree) 171 171	(dBuV) 70.3 39.5	(dB/m) 31.8 31.8
1 2 3	(MHz) *2480.00 *2480.00 2483.50	(dBuV/m) 102.1 PK 71.3 AV 44.7 PK	74.0	-29.3	(m) 1.60 V 1.60 V 1.60 V	(Degree) 171 171 171 171	(dBuV) 70.3 39.5 50.0	(dB/m) 31.8 31.8 -5.3
1 2 3 4	(MHz) *2480.00 *2480.00 2483.50 2483.50	(dBuV/m) 102.1 PK 71.3 AV 44.7 PK 13.9 AV	74.0 54.0	-29.3 -40.1	(m) 1.60 V 1.60 V 1.60 V 1.60 V	(Degree) 171 171 171 171 171	(dBuV) 70.3 39.5 50.0 19.2	(dB/m) 31.8 31.8 -5.3 -5.3

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX BT_8DPSK	Channel	CH 0:2402 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
Trequency Mange		Detector r unction	Average (AV)

		•							
	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	58.3 PK	74.0	-15.7	1.51 H	257	26.4	31.9	
2	2390.00	46.4 AV	54.0	-7.6	1.51 H	257	14.5	31.9	
3	*2402.00	104.7 PK			1.51 H	257	72.7	32.0	
4	*2402.00	73.9 AV			1.51 H	257	41.9	32.0	
5	4804.00	57.4 PK	74.0	-16.6	1.63 H	213	55.3	2.1	
6	4804.00	26.6 AV	54.0	-27.4	1.63 H	213	24.5	2.1	
		A	Antenna Polar	ity & Test Dis	stance : Vertic	cal at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	57.4 PK	74.0	-16.6	1.60 V	168	25.5	31.9	
2	2390.00	45.9 AV	54.0	-8.1	1.60 V	168	14.0	31.9	
3	*2402.00	100.9 PK			1.60 V	168	68.9	32.0	
4	*2402.00	70.1 AV			1.60 V	168	38.1	32.0	
5	4804.00	56.8 PK	74.0	-17.2	1.77 V	247	54.7	2.1	
6	4804.00	26.0 AV	54.0	-28.0	1.77 V	247	23.9	2.1	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX BT_8DPSK	Channel	CH 39:2441 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
	10112 ~ 230112	Detector runction	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level	Limit (dBuV/m)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor	
	(11112)	(dBuV/m)	(ubu v/m)	(UD)	(m)	(Degree)	(dBuV)	(dB/m)	
1	*2441.00	105.1 PK			1.56 H	251	73.3	31.8	
2	*2441.00	74.3 AV			1.56 H	251	42.5	31.8	
3	4882.00	58.2 PK	74.0	-15.8	1.67 H	221	56.0	2.2	
4	4882.00	27.4 AV	54.0	-26.6	1.67 H	221	25.2	2.2	
		A	Antenna Polar	ity & Test Dis	stance : Vertic	al at 3 m			
	Frequency	Emission	Limit	Margin	Antenna	Table	Raw	Correction	
No	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor	
	(101112)	(dBuV/m)	(ubu v/m)	(UD)	(m)	(Degree)	(dBuV)	(dB/m)	
1	*2441.00	101.5 PK			1.66 V	172	69.7	31.8	
2	*2441.00	70.7 AV			1.66 V	172	38.9	31.8	
3	4882.00	57.4 PK	74.0	-16.6	1.79 V	249	55.2	2.2	
4	4882.00	26.6 AV	54.0	-27.4	1.79 V	249	24.4	2.2	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX BT_8DPSK	Channel	CH 78:2480 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
Trequency Range			Average (AV)

		Ar	ntenna Polarit	y & Test Dist	ance : Horizo	ntal at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2480.00	103.4 PK			1.63 H	256	71.6	31.8	
2	*2480.00	72.6 AV			1.63 H	256	40.8	31.8	
3	2483.50	49.8 PK	74.0	-24.2	1.63 H	256	55.1	-5.3	
4	2483.50	19.0 AV	54.0	-35.0	1.63 H	256	24.3	-5.3	
5	4960.00	58.3 PK	74.0	-15.7	1.67 H	200	55.9	2.4	
6	4960.00	27.5 AV	54.0	-26.5	1.67 H	200	25.1	2.4	
		A	Antenna Polar	ity & Test Dis	stance : Vertic	al at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2480.00	102.3 PK			1.61 V	173	70.5	31.8	
2	*2480.00	71.5 AV			1.61 V	173	39.7	31.8	
3	2483.50	48.1 PK	74.0	-25.9	1.61 V	173	53.4	-5.3	
4	2483.50	17.3 AV	54.0	-36.7	1.61 V	173	22.6	-5.3	
5	4960.00	57.9 PK	74.0	-16.1	1.88 V	246	55.5	2.4	
6	4960.00	27.1 AV	54.0	-26.9	1.88 V	246	24.7	2.4	

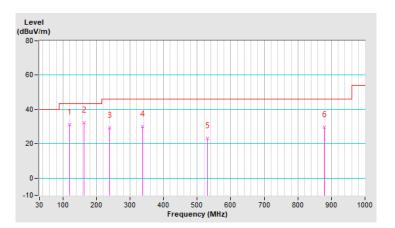
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

Below 1 GHz Worst-Case Data:


Mode A

RF Mode	TX BT_GFSK	Channel	CH 39:2441 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

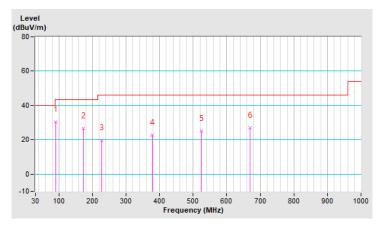
	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	120.21	31.3 QP	43.5	-12.2	1.01 H	264	46.7	-15.4	
2	163.86	32.5 QP	43.5	-11.0	1.01 H	238	46.0	-13.5	
3	238.55	29.4 QP	46.0	-16.6	1.50 H	89	44.6	-15.2	
4	337.49	30.1 QP	46.0	-15.9	2.00 H	37	42.0	-11.9	
5	530.52	23.1 QP	46.0	-22.9	1.50 H	267	30.7	-7.6	
6	878.75	29.6 QP	46.0	-16.4	1.01 H	136	31.5	-1.9	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz \sim 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	TX BT_GFSK	Channel	CH 39:2441 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	90.14	30.4 QP	43.5	-13.1	2.00 V	265	49.7	-19.3	
2	172.59	26.6 QP	43.5	-16.9	1.01 V	352	40.6	-14.0	
3	226.91	19.9 QP	46.0	-26.1	1.50 V	63	36.4	-16.5	
4	378.23	22.7 QP	46.0	-23.3	1.01 V	190	33.6	-10.9	
5	524.70	25.1 QP	46.0	-20.9	1.01 V	2	32.7	-7.6	
6	669.23	26.9 QP	46.0	-19.1	1.50 V	124	31.8	-4.9	


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

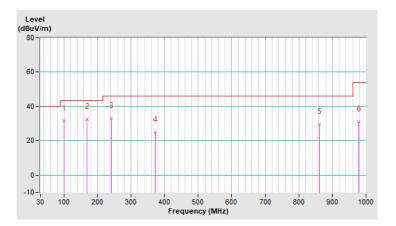
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Mode B

RF Mode	Charging Mode			
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)	

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	99.84	31.5 QP	43.5	-12.0	1.51 H	170	49.3	-17.8				
2	168.71	32.8 QP	43.5	-10.7	1.99 H	264	46.5	-13.7				
3	240.49	33.1 QP	46.0	-12.9	1.01 H	210	48.2	-15.1				
4	371.44	25.2 QP	46.0	-20.8	1.99 H	242	36.3	-11.1				
5	861.29	29.6 QP	46.0	-16.4	1.99 H	57	31.6	-2.0				
6	977.69	31.2 QP	54.0	-22.8	1.51 H	138	31.6	-0.4				

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

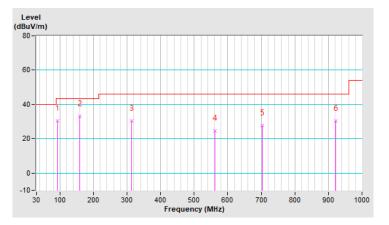
3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz \sim 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	Charging Mode		
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	93.05	30.4 QP	43.5	-13.1	1.00 V	144	49.3	-18.9				
2	159.98	33.2 QP	43.5	-10.3	1.99 V	18	46.4	-13.2				
3	313.24	30.3 QP	46.0	-15.7	1.49 V	137	42.9	-12.6				
4	561.56	24.6 QP	46.0	-21.4	1.99 V	233	31.5	-6.9				
5	702.21	27.9 QP	46.0	-18.1	1.49 V	200	32.2	-4.3				
6	921.43	30.6 QP	46.0	-15.4	1.99 V	50	31.8	-1.2				


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted I	Limit (dBuV)
Frequency (MHz)	Quasi-Peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESR3	102783	Dec. 20, 2021	Dec. 19, 2022
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond2-01	Sep. 03, 2022	Sep. 02, 2023
LISN/AMN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Feb. 17, 2022	Feb. 16, 2023
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Sep. 22, 2022	Sep. 21, 2023
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

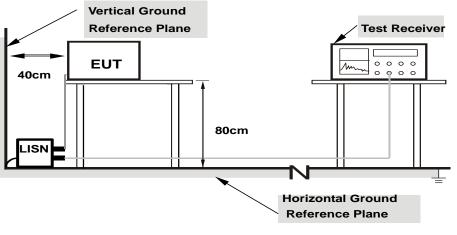
Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 2. (Conduction 2)

3. The VCCI Site Registration No. is C-12047

4. Test Date: 2022/9/30.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz.

4.2.4 Deviation from Test Standard

No deviation.

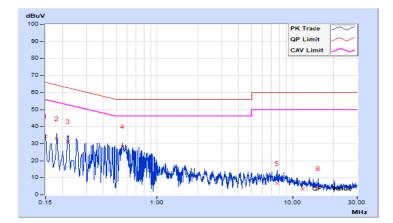
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Set the EUT under transmission condition continuously at specific channel frequency.

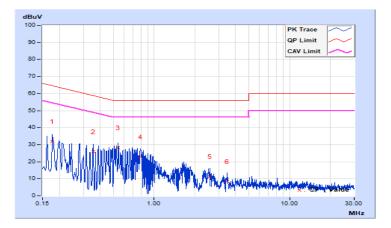

4.2.7 Test Results

Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested by	Edison Lee		

	Phase Of Power : Line (L)											
	Frequency	Correction	Readin	ng Value Emission Level		Limit		Margin				
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(dB)			
	(MHz) (dB) Q.P. AV.		AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.			
1	0.15000	0.14	34.30	18.49	34.44	18.63	66.00	56.00	-31.56	-37.37		
2	0.18200	0.15	32.87	17.29	33.02	17.44	64.39	54.39	-31.37	-36.95		
3	0.21920	0.15	31.18	16.02	31.33	16.17	62.85	52.85	-31.52	-36.68		
4	0.55400	0.19	27.95	18.32	28.14	18.51	56.00	46.00	-27.86	-27.49		
5	7.69800	0.32	6.45	0.81	6.77	1.13	60.00	50.00	-53.23	-48.87		
6	15.52600	0.41	3.38	1.31	3.79	1.72	60.00	50.00	-56.21	-48.28		

Remarks:

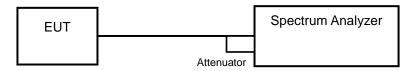
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Fragueney Benge		Detector Function &	Quasi-Peak (QP) /
Frequency Range	150 kHz ~ 30 MHz	Resolution Bandwidth	Average (AV), 9kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested by	Edison Lee		

	Phase Of Power : Neutral (N)											
	Frequency Correctio			Reading Value		Emission Level		nit	Margin			
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.17800	0.16	31.81	15.19	31.97	15.35	64.58	54.58	-32.61	-39.23		
2	0.35400	0.18	25.68	8.63	25.86	8.81	58.87	48.87	-33.01	-40.06		
3	0.54200	0.20	28.24	14.69	28.44	14.89	56.00	46.00	-27.56	-31.11		
4	0.79400	0.21	22.83	6.83	23.04	7.04	56.00	46.00	-32.96	-38.96		
5	2.57000	0.26	11.34	0.75	11.60	1.01	56.00	46.00	-44.40	-44.99		
6	3.45800	0.29	7.96	1.46	8.25	1.75	56.00	46.00	-47.75	-44.25		

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

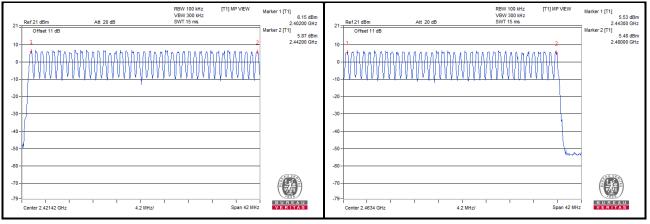
4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.5 Deviation from Test Standard


No deviation.

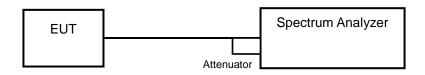
4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

<GFSK>

<8DPSK>

21= Ref 21 dBm Offset 11 dB	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 15 ms	[T1] MP VIEW	Marker 1 [T1] 6.01 dBm 2.40200 GHz Marker 2 [T1]	21	Ref 21 dBm Offset 11 dB	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 15 ms	[T1] MP VIEW	Marker 1 [T1] 5.99 dBm 2.44300 GHz Marker 2 [T1]
10 1			2	5.72 dBm 2.44200 GHz	10-	1			2	5.12 dBm 2.48000 GHz
• AMMAAA		MAAAAAA	MMM.		0 -		wwwwwww	ANNANANNA	W.	-
-10-					-10-					-
-20					-20 -					-
-30 -					-30 -					-
-40 -					-40 -					-
-50 -					-50 -				Wines	*
-60 -				AU VEN	-60 -					-
-70 - -79 - Center 2.42142 GHz	4.2 MHz/	1 1 1	I Span 42 MHz		-70 - -79 -	Center 2.4634 GHz	1 1 1	1 I I I	l Span 42 MH	



4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

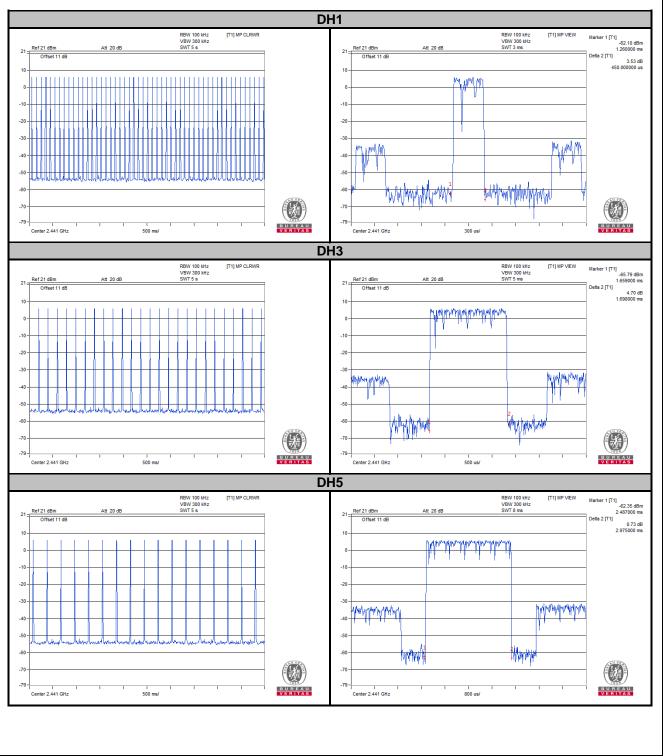
4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.
- 4.4.5 Deviation from Test Standard

No deviation.

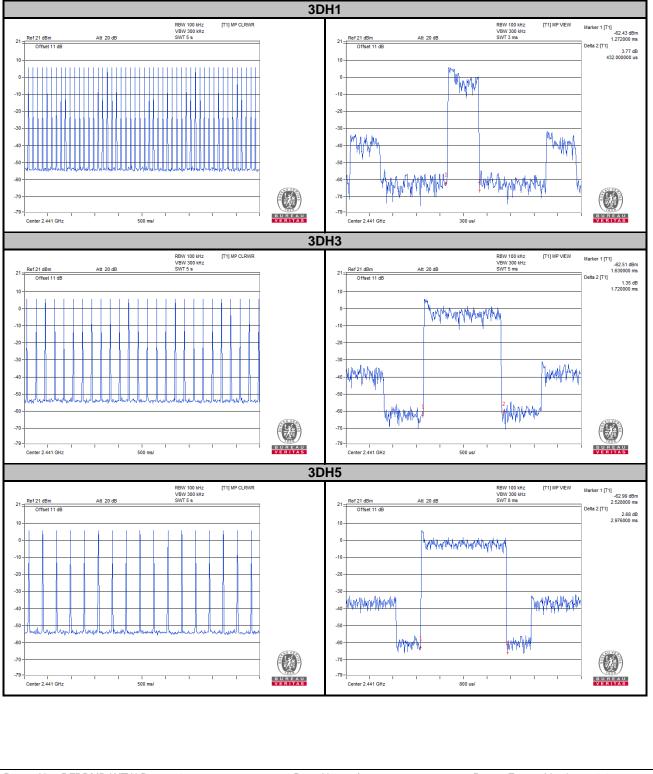


4.4.6 Test Results

GFSK

Mode	Number of Transmission in a 31.6 (79 Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
DH1	51 (times / 5 sec) * 6.32 = 323 tin	nes 0.45	145.35	400
DH3	25 (times / 5 sec) * 6.32 = 158 tim	nes 1.698	268.28	400
DH5	17 (times / 5 sec) * 6.32 = 108 tin	nes 2.975	321.3	400

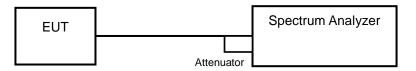
Note: Test plots of the transmitting time slot are shown as below.


Report No.: RFBDMD-WTW-P22070452

8DPSK

Mode	Number of Transmission in a 31.6 (79 Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
3DH1	50 (times / 5 sec) * 6.32 = 316 times	0.432	136.51	400
3DH3	26 (times / 5 sec) * 6.32 = 165 times	1.72	283.8	400
3DH5	17 (times / 5 sec) * 6.32 = 108 times	2.976	321.41	400

Note: Test plots of the transmitting time slot are shown as below.



4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

Maximum bandwidth is not specified.

4.5.2 Test Setup

4.5.3 Test Instruments

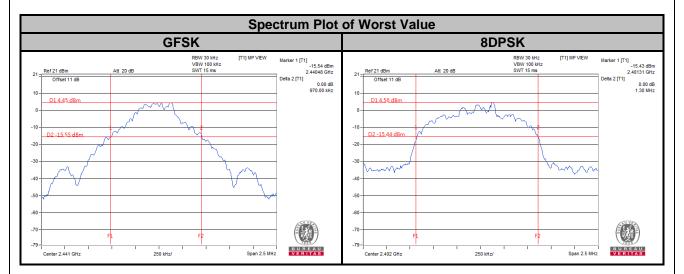
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

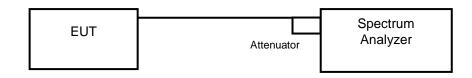
4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results


Channal	Frequency	20 dB Band	width (MHz)
Channel	(MHz)	GFSK	8DPSK
0	2402	0.96	1.30
39	2441	0.97	1.29
78	2480	0.97	1.29

4.6 Occupied Bandwidth Measurement

4.6.1 Test Setup

4.6.2 Test Instruments

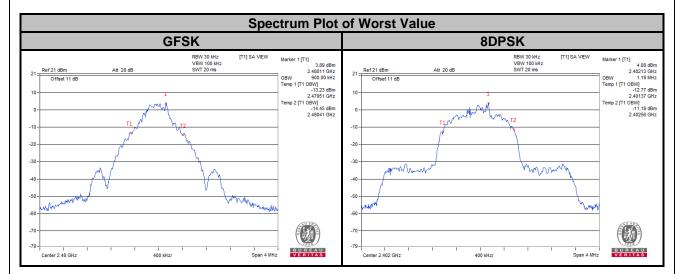
Refer to section 4.1.2 to get information of above instrument

4.6.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1 % to 5 % of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to sampling. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.6.4 Deviation from Test Standard

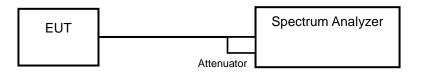
No deviation.


4.6.5 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.6.6 Test Results

Channel	Frequency	Occupied Bar	ndwidth (MHz)
Channel	(MHz)	GFSK	8DPSK
0	2402	0.89	1.19
39	2441	0.89	1.17
78	2480	0.90	1.17



4.7 Hopping Channel Separation

4.7.1 Limits of Hopping Channel Separation Measurement

At least 25 kHz or two-third of 20 dB hopping channel bandwidth (whichever is greater).

4.7.2 Test Setup

4.7.3 Test Instruments

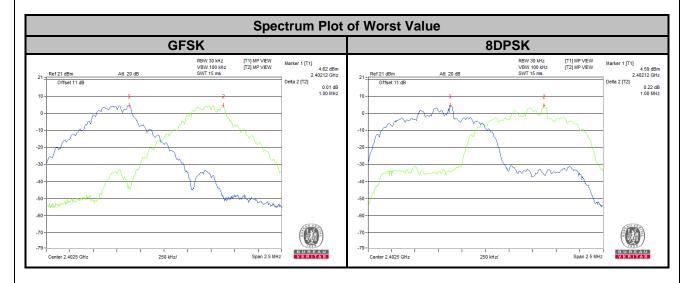
Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

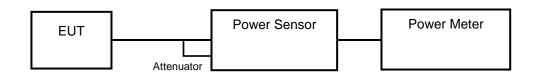
4.7.5 Deviation from Test Standard


No deviation.

4.7.6 Test Results

Channel	Freq. (MHz)	Adjacent Sepai (Mi		20 Bandwid	dB lth (MHz)	Minimum L	.imit (MHz)	Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	0.96	1.30	0.64	0.87	Pass
39	2441	1.00	1.00	0.97	1.29	0.65	0.86	Pass
78	2480	1.00	1.00	0.97	1.29	0.65	0.86	Pass

Note: The minimum limit is two-third 20 dB bandwidth.


4.8 Maximum Output Power

4.8.1 Limits of Maximum Output Power Measurement

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt.

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

4.8.2 Test Setup

4.8.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.8.4 Test Procedure

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.8.5 Deviation from Test Standard

No deviation.

4.8.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.7 Test Results

<GFSK>

Channel	Freq. (MHz)	Peak	Power	Average	e Power	Power Limit	Pass / Fail
Channel	Freq. (MHZ)	(mW)	(dBm)	(mW)	(dBm)	(mW)	Pass / Pali
0	2402	5.358	7.29	5.284	7.23	125 / 1000 Note	Pass
39	2441	5.07	7.05	4.977	6.97	125 / 1000 Note	Pass
78	2480	4.753	6.77	4.677	6.70	125 / 1000 Note	Pass

Note: RF Output Power limit depends on the operating channel numbers, please refer to section 4.3 of the results.

<8DPSK>

Channel		Peak	Power	Average	e Power	Power Limit	Pass / Fail
Channel	Freq. (MHz)	(mW)	(dBm)	(mW)	(dBm)	(mW)	Fass/Fall
0	2402	5.346	7.28	5.284	7.23	125 / 1000 Note	Pass
39	2441	5.047	7.03	4.989	6.98	125 / 1000 Note	Pass
78	2480	4.742	6.76	4.667	6.69	125 / 1000 Note	Pass

Note: RF Output Power limit depends on the operating channel numbers, please refer to section 4.3 of the results.

4.9 Conducted Out of Band Emission Measurement

4.9.1 Limits Of Conducted Out of Band Emission Measurement

Below 20 dB of the highest emission level of operating band (in 100 kHz RBW).

4.9.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.9.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.9.4 Deviation from Test Standard

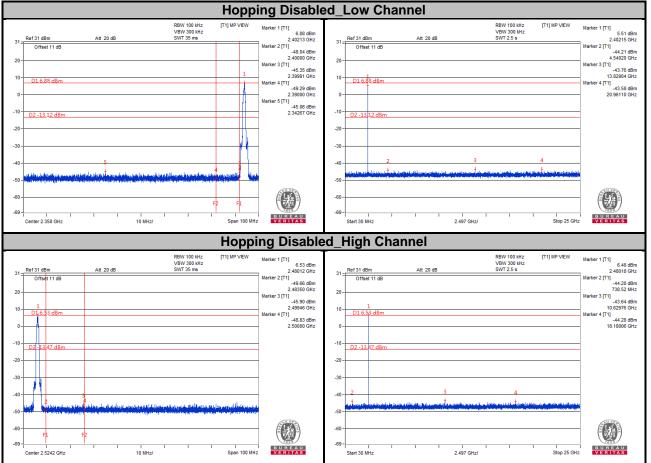
No deviation.

4.9.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

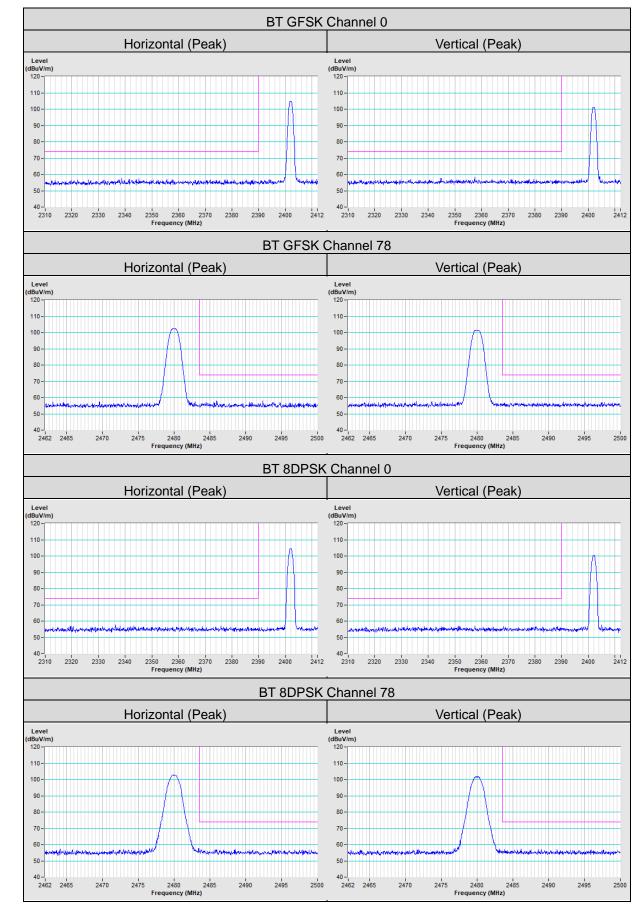
4.9.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20 dB offset below D1. It shows compliance with the requirement.


		Hoppi	ng Disable	d_Low Cha	annel			
ef 31 dBm Att 20 dB Offset 11 dB		[T1] MP VIEW	Marker 1 [T1] 6.91 dBm 2.40212 GHz Marker 2 [T1]	31= Ref 31 dBm Offset 11 dB	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 2.5 s	[T1] MP VIEW	Marker 1 [T1] 2.4 Marker 2 [T1]
			-47.07 dBm 2.40000 GHz Marker 3 [T1] -45.81 dBm	20-				10.0 Marker 3 [T1]
D1 6.91 dBm		1	2.39845 GHz Marker 4 [T1] -50.13 dBm 2.39000 GHz	10- <u>116.91 dBm</u>				11.0 Marker 4 [T1] 21.0
02 -13.09 dBm			2.39000 GHZ Marker 5 [T1] -44.65 dBm 2.35372 GHz	-10 - D2 -13.09 dBm				21.0
				-20 -				-
				-30	2 2			-
	a da a serie a serie da de la cala de la cala La cala de la			-40 -	why was a superior of the street of the stre	Homportopy Control Mylapore	land of hotels and by	
	F2	FL		-60 -				° 7/1
1 1 1 1 1 nter 2.358 GHz 10 MHz/	F2	Span 100 MHz	B U R E AU VERITAS	-69 - I I Start 30 MHz	2.497	I I GHz/	I I Stop 25 GHz	BURE
nter 2.350 GHz 10 MHz/	RBW 100 kHz	Span 100 MHz		-69-		RBW 100 kHz	I I Stop 25 GH2 [T1] MP VIEW	Marker 1 [T1]
nter 2 358 GHz 10 MHz/ 1/ 31 dBm Att 20 dB Offset 11 dB		Span 100 MHz Hoppii [T1] MP VIEW	VERTITAS ng Disable Marker 1 [71] 5.83 dBm 2.47998 GHz Narker 2 [71]	-69 - I I Start 30 MHz				Marker 1 [T1]
f 31 dBm Alt 20 dB	RBW 100 kHz VBW 300 kHz	Span 100 MHz Hoppii (T1) MP VIEW	Marker 1 [71] 5.83 dBm 2.47998 GHz Marker 2 [71] -48.99 dBm 2.48350 GHz Marker 3 [71]	-69- Start 30 MHz	annel	RBW 100 kHz VBW 300 kHz		Marker 1 [T1] Marker 2 [T1] 12. Marker 2 [T1] 12. Marker 3 [T1]
f 31 dBm Alt 20 dB	RBW 100 kHz VBW 300 kHz	Span 100 MHz Hoppin [T1] MP VIEW	Marker 1 [71] 5.83 dBm 2.47998 GHz Marker 2 [71] -48.99 dBm 2.48350 GHz	-69 - 5tart 30 MHz -69 - 5tart 30 MHz -69 - 10 MHz -60	annel	RBW 100 kHz VBW 300 kHz		Marker 1 [T1]
131 dBm Att 20 dB Offset 11 dB 1 01 5.5 3 dBm	RBW 100 kHz VBW 300 kHz	Span 100 MHz Hoppin [T1] MP VIEW	Marker 1 [71] 5.83 dBm 2.47996 GHz 2.47996 GHz 2.4890 dBm 2.4890 dBm 2.4805 GHz Marker 3 [71] 2.49671 GHz Marker 4 [71]	-89 -51 30 MHz -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	annel	RBW 100 kHz VBW 300 kHz		Marker 1 [T1] 2. Marker 2 [T1] 12. Marker 3 [T1] 20. Marker 4 [T1]
131 dBm Att 20 dB	RBW 100 kHz VBW 300 kHz	Span 100 MHz Hoppin [T1] MP VIEW	Marker 1 [11] 5.83 dBm 2.4799 GFm 2.4799 GFm 2.43950 GFr 2.4350 GFr 4.8350 GFr 2.4871 GFr Marker 3 [11] -4.65 dd Bm 2.4971 GFr Marker 4 [11] -4.977 dBm	-89 -89 -80 -80 -80 -80 -80 -80 -80 -80 -80 -80	annel	RBW 100 kHz VBW 300 kHz		Marker 1 [T1] 2. Marker 2 [T1] 12. Marker 3 [T1] 20. Marker 4 [T1]
131 dBm Alt 20 dB Offset 11 dB	RBW 100 kHz VBW 300 kHz	Span 100 MHz Hoppin [T1] MP VIEW	Marker 1 [11] 5.83 dBm 2.4799 GFm 2.4799 GFm 2.43950 GFr 2.4350 GFr 4.8350 GFr 2.4871 GFr Marker 3 [11] -4.65 dd Bm 2.4971 GFr Marker 4 [11] -4.977 dBm	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10	annel	RBW 100 kHz VBW 300 kHz		Marker 1 [T1] 2. Marker 2 [T1] 12. Marker 3 [T1] 20. Marker 4 [T1]
131 dBm Att 20 dB Offset 11 dB 1 21 5.83 dBm	RBW 100 kHz VBW 300 kHz SWT 35 ms	Span 100 MHz	Marker 1 [11] 5.83 dBm 2.4799 GFm 2.4799 GFm 2.43950 GFr 2.4350 GFr 4.8350 GFr 2.4871 GFr Marker 3 [11] -4.65 dd Bm 2.4971 GFr Marker 4 [11] -4.977 dBm	-89- -89- -81 30 MHz -82- -10- -10- -20- -30- -40- -85	annel	RBW 100 kHz VBW 300 kHz		Marker 1 [T1] 2 Marker 2 [T1] 12 Marker 3 [T1] 20 Marker 4 [T1]

	Hoppi	ng Enabled_	Low Chan	nel		
RBW 100 VEW 30 Offset 11 dB D1 6,24 dBm D2 -13,26 dBm 5		Marker 1 [T1] 6.74 dBm 2.42583 GHz 2.40000 GHz 2.40000 GHz 2.35441 GHz 10 Marker 3 [T1] 4.239 dBm 2.35441 GHz 10 Marker 5 [T1] 4.178 dBm 2.31547 GHz -20 -20 -20 -20 -20 -20 -20 -20	0 ffset 11 d8	Att 30 dB	RBW 100 WH2: [T1] MP VEW VBW 300 MH2 SWT 2.5 s	Marker 1 [T1] 6.4.9 Marker 2 [T1] 20.74261 Marker 2 [T1] 30.74261 Marker 3 [T1] 4.0.252 28.2761 Marker 4 [T1] 4.075 24.73157 k
ын на	F2 F1 Span 140 MHz	ng Enabled_	Start 30 MHz	I I I 2.497 GHz/	under Annun Hender Ander Ander Annun Hender 	BUREAU VERITAS
Ref 31 dBm Att 30 dB Yew 30 VBW 30 Offset 11 dB	0 kHz [T1] MP VEW 0 kHz ma	Marker 1 [71] 2.659 GHz 2.46179 GHz 2.4350 GHz 2.4350 GHz 2.4350 GHz 2.4357 GHz 2.4357 GHz 2.451 dBm 2.451 dBm 2.451 dBm 2.50000 GHz -10 -22 -30 -40	Ref 31 dBm Offset 11 dB 1 D16.56 dBm D2-13.44 dBm	Att 30 dB	RBW 100 kH2 [T1] MP VÆW VBW 300 kH2 SWT 2.5 s	Marker 1 [T1] 2.43960 Marker 2 [T1] -41.05 2.361416 Marker 3 [T1] -40.05 2.419471 Marker 4 [T1] -40.97 2.4313321 -40.97 -41.97 -4
al public strain all an an independent and an	and and a subscription of the property of the subscription of the	-50)			-

8DPSK



			Норр	ing Enable	ed_Low Channel
131 dBm Offset 11 dB D1 6.65 dBm 2 - 13.35 dBm	Att 30 dB	RBW 100 kHz VBW 300 kHz SWT 20 ms		Marker 1 [71] 2 41281 GHz Marker 2 [71] -45.55 dBm 2 40000 GHz Marker 3 [71] -42.01 dBm 2.39403 GHz Marker 4 [71] -43.66 dBm 2.39000 GHz Marker 5 [71] -41.85 dBm 2.35663 GHz	RBW 100 M12 [T1] MP VEW Marker 1 [T1] 31 = Ref 31 dBm Att 30 dB SWT 2.5 s Marker 1 [T1] 31 = Offset 11 dB Marker 2 [T1] Marker 2 [T1] 10 =
nter 2.358 GHz	5 1 1 1 1 1 1 1 1 1 14 MHz/	4 3 	L Span 140 MHz	DURI DAU VERTI TAS	2 3 4 -40
			11	ter en Electricado de la	ed_High Channel
		RBW 100 kHz			
af 31 dBm Offset 11 dB 1 1 6,31 dBm 1 1 1 1 1 2 1.3,69 dBm	At: 30 dB	RBW 100 kHz VBW 300 kHz SWT 20 ms	Hopp [T1] MP VEW	Marker 1 [11] 2.46680 GH2 Marker 2 [11] .4.4 Me dBm .4.4 Me dBm	Ref 31 dBm Att 30 dB SWT 25 s Amarker 1 [T1] 31 = Ref 31 dBm Att 30 dB SWT 25 s Amarker 2 [T1] 0 of fset 11 dB Marker 3 [T1] Marker 3 [T1] Marker 3 [T1] 10 - 1 1 Marker 4 [T1] Marker 4 [T1] 0 - - 0 1 Marker 4 [T1] 0 - - 0 1 1 0 - - 0 2 1 0 - - 0 2 2

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Annex A- Band Edge Measurement

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---