

FCC RADIO TEST REPORT

FCC ID	: B94-C09CWLM
Equipment	: Wireless Module
Brand Name	: HP
Model Name	: LBEE58D1VF
Applicant	: HP Inc.
	1501 Page Mill Road, Palo Alto CA 94304 USA
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Aug. 21, 2020 and testing was started from Sep. 19, 2020 and completed on Oct. 06, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	v of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	13
	3.3	Dwell Time Measurement	19
	3.4	20dB and 99% Bandwidth Measurement	21
	3.5	Output Power Measurement	32
	3.6	Conducted Band Edges Measurement	33
	3.7	Conducted Spurious Emission Measurement	40
	3.8	Radiated Band Edges and Spurious Emission Measurement	50
	3.9	AC Conducted Emission Measurement	54
	3.10	Antenna Requirements	56
4	List c	of Measuring Equipment	57
5	Unce	rtainty of Evaluation	59
Арр	oendix	A. Conducted Test Results	
Арр	oendix	B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission	
Арр	pendix	D. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR0O1919A	01	Initial issue of report	Oct. 20, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 7.78 dB at 729.370 MHz
3.9	15.207	AC Conducted Emission	Pass	Under limit 6.41 dB at 0.166 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement Pass		-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Celery Wei

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ax and Wi-Fi 5GHz 802.11a/n/ac/ax.

Product Specification subjective to this standard			
Installed into best	Brand Name: HP		
Installed into host	Model Name: HSN-C09C		
	WLAN		
Antonno Tuno	<ant. 1="">: Couple Antenna</ant.>		
Antenna Type	<ant. 2="">: Couple Antenna</ant.>		
	Bluetooth: Couple Antenna		

Host Antenna Information				
	Ant. Type	Couple		
NB Mode	Part No.	260-24315 (DC33002FX20)	TX1 Antenna	
	Peak Gain (dBi)	Bluetooth: -2.40		
	Ant. Type	Couple		
TB Mode	Part No.	260-24315 (DC33002FX20)	TX1 Antenna	
	Peak Gain (dBi)	Bluetooth: -0.27		

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory			
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)			
Test Site No.	Sporton Site No. TH05-HY CO05-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	PORTON INTERNATIONAL INC. EMC & Wireless Communications aboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH15-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

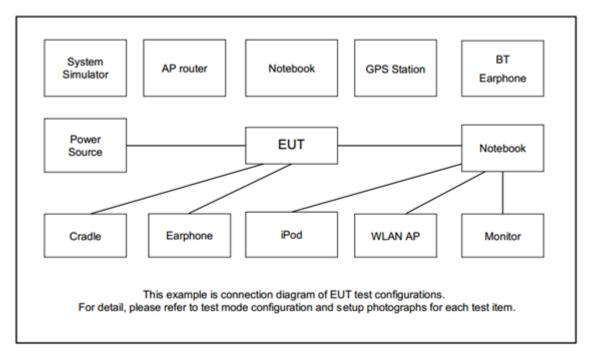
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z and Notebook type. The worst cases (Notebook Type) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


Summary table of Test Cases						
	Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π /4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
	Bluetooth BR 1Mbps GFSK					
Radiated	Mode 1: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz					
Mode 3: CH78_2480						
AC	Made 4 Divetestin Links V		ene i Dete Link with LID i			
Conducted	Mode 1 :Bluetooth Link + WLAN (2.4GHz) Link + Earphone + Data Link with HD +					
Emission	Adapter					
Remark:						
1. For radiate	. For radiated test cases, the worst mode data rate 1Mbps was reported only since the highest RF					
output pov	ver in the preliminary tests. The	e conducted spurious emissior	ns and conducted band edge			
measurem	nent for other data rates were r	not worse than 1Mbps, and no	other significantly			
frequencies found in conducted spurious emission.						

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2. Data Link with HD means data application transferred mode between EUT and HD.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	SonyErricsson	MW600	PY700A2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
4.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P : Unshielded, 1.2m DC O/P : Shielded, 1.8m
5.	HD	Lenovo	F310S	FCC DoC	Shielded, 1.0m	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT V4.0.00156.0" was installed in EUT which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

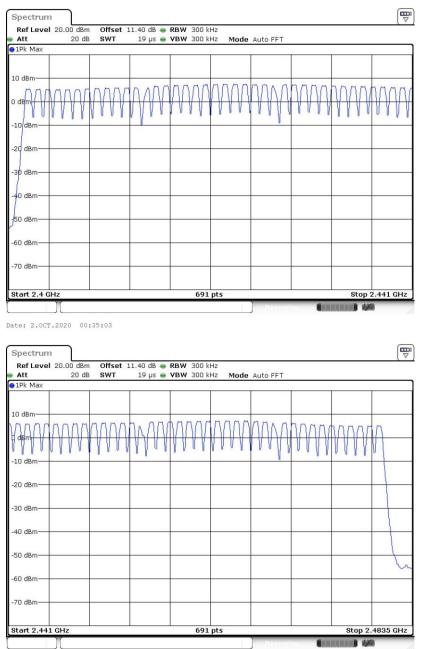
3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup


Spectrum Analyzer

EUT

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

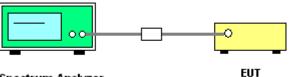
Number of Hopping Channel Plot on Channel 00 - 78

Date: 2.0CT.2020 00:35:48

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

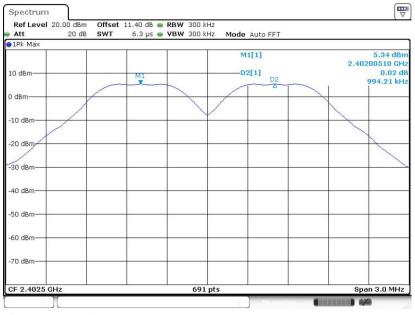
See list of measuring equipment of this test report.

3.2.3 Test Procedures

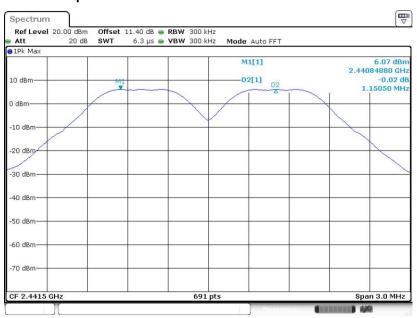
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

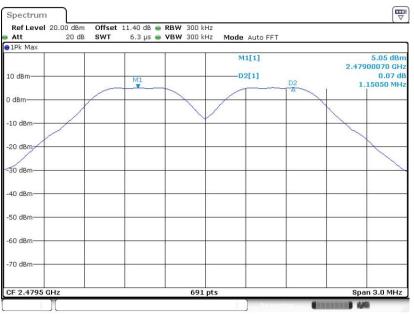
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

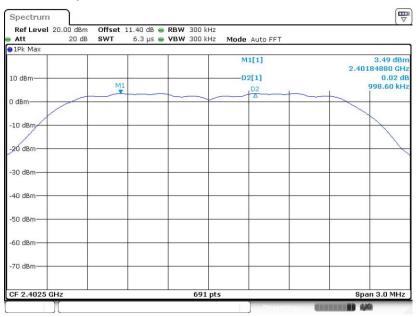

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 2.0CT.2020 00:53:42

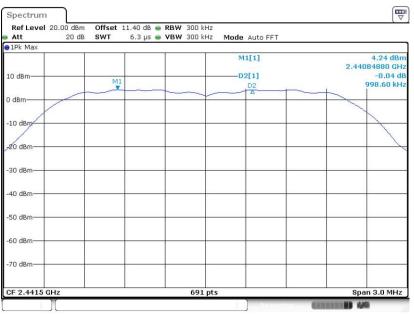
Channel Separation Plot on Channel 39 - 40

Date: 2.0CT.2020 01:10:34



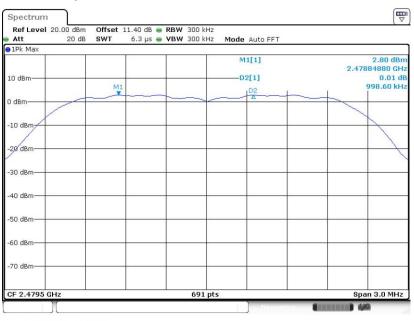
Channel Separation Plot on Channel 77 - 78

Date: 2.0CT.2020 01:17:25


<2Mbps>

Channel Separation Plot on Channel 00 - 01

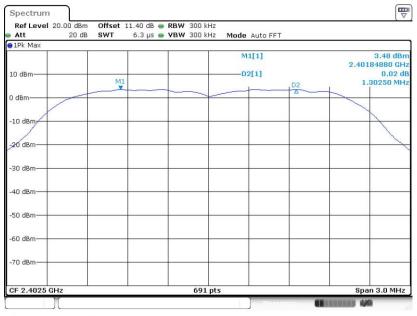
Date: 2.0CT.2020 01:25:27



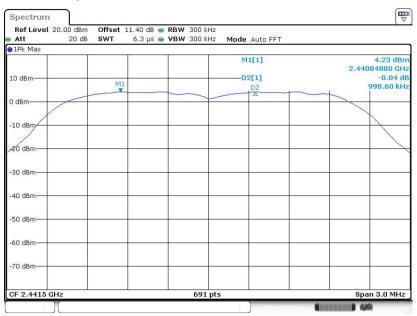
Channel Separation Plot on Channel 39 - 40

Date: 2.0CT.2020 01:32:20

Channel Separation Plot on Channel 77 - 78



Date: 2.0CT.2020 01:38:20


<3Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 2.0CT.2020 02:07:31

Channel Separation Plot on Channel 39 - 40

Date: 2.0CT.2020 02:17:13

Channel Separation Plot on Channel 77 - 78

Date: 2.0CT.2020 02:24:31

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

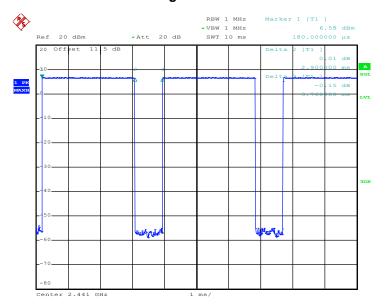
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

```
Date: 19.SEP.2020 15:15:19
```

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

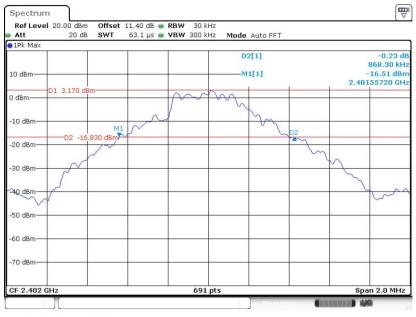
See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

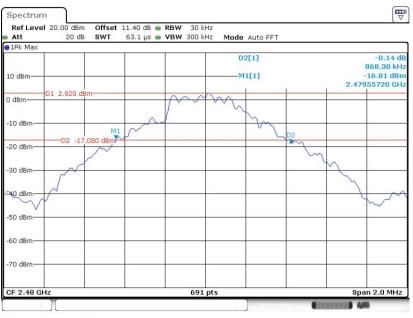
Spectrum Analyzer


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

<1Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 2.0CT.2020 00:55:12

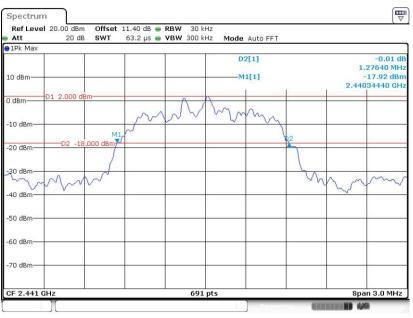
20 dB Bandwidth Plot on Channel 39

Date: 2.0CT.2020 01:12:42



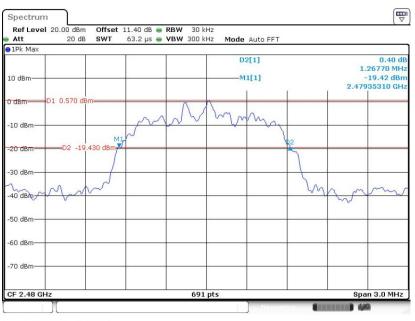
20 dB Bandwidth Plot on Channel 78

Date: 2.0CT.2020 01:19:45


<2Mbps>

20 dB Bandwidth Plot on Channel 00

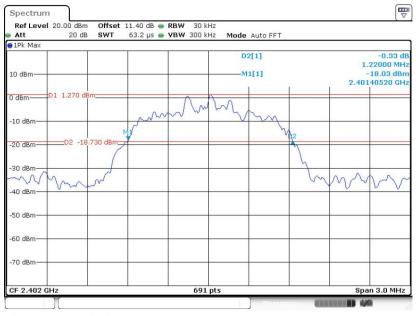
Date: 2.0CT.2020 01:26:56



20 dB Bandwidth Plot on Channel 39

Date: 2.0CT.2020 01:34:05

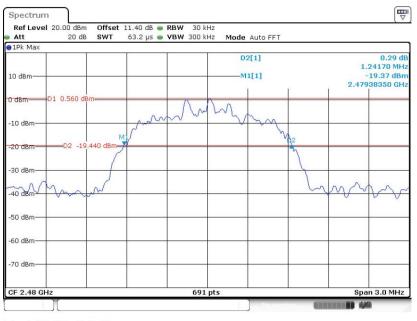
20 dB Bandwidth Plot on Channel 78



Date: 2.0CT.2020 02:01:29

<3Mbps>

20 dB Bandwidth Plot on Channel 00

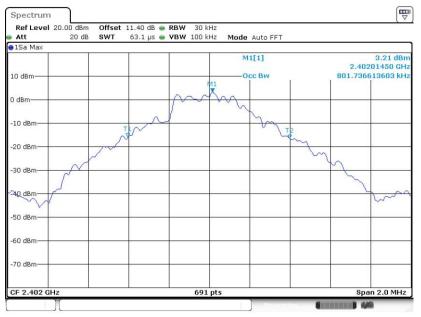

Date: 2.0CT.2020 02:12:10

20 dB Bandwidth Plot on Channel 39

Date: 2.0CT.2020 02:19:15

20 dB Bandwidth Plot on Channel 78

Date: 2.0CT.2020 02:26:22



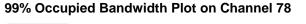
3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

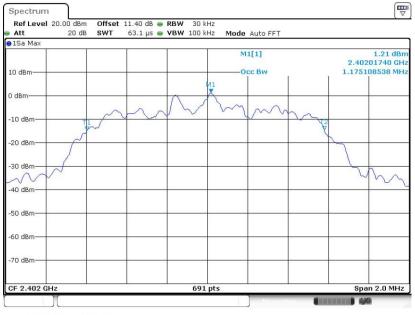
Date: 2.0CT.2020 01:02:07


TEL : 886-3-327-3456	Page Number	: 27 of 59
FAX : 886-3-328-4978	Issued Date	: Oct. 20, 2020
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

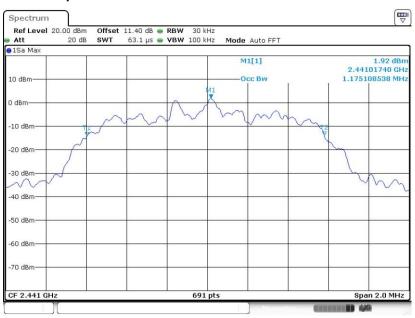


99% Occupied Bandwidth Plot on Channel 39

Date: 2.0CT.2020 01:13:52



Date: 2.0CT.2020 01:21:42


<2Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 2.0CT.2020 01:28:48

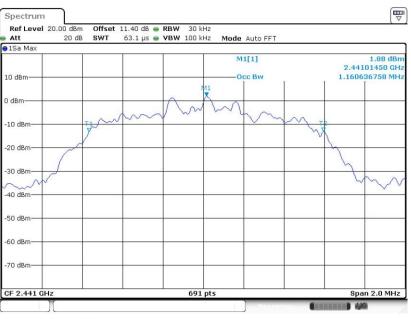
99% Occupied Bandwidth Plot on Channel 39

Date: 2.0CT.2020 01:34:59

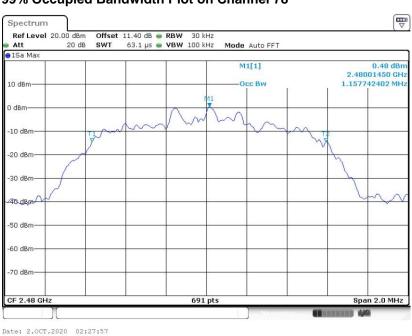


99% Occupied Bandwidth Plot on Channel 78

Date: 2.0CT.2020 02:03:42


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 2.0CT.2020 02:13:48

99% Occupied Bandwidth Plot on Channel 39

Date: 2.0CT.2020 02:20:17

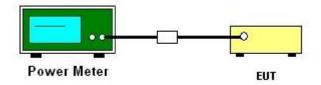
99% Occupied Bandwidth Plot on Channel 78

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

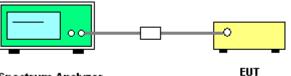
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

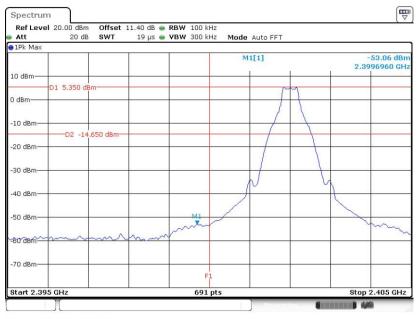

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

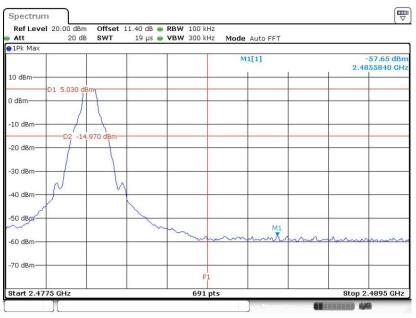
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

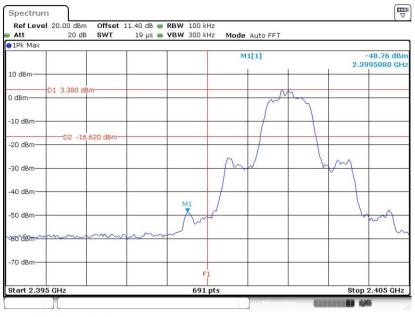
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

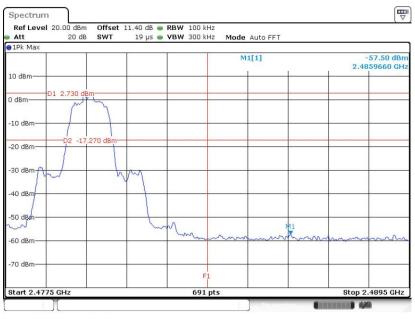
Low Band Edge Plot on Channel 00

Date: 2.0CT.2020 01:03:02

High Band Edge Plot on Channel 78



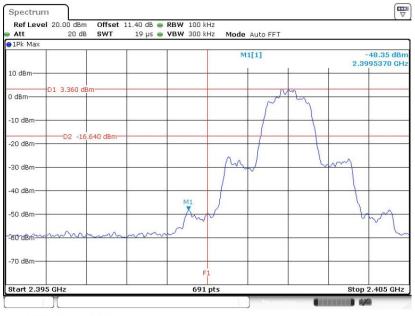
Date: 2.0CT.2020 01:20:29


<2Mbps>

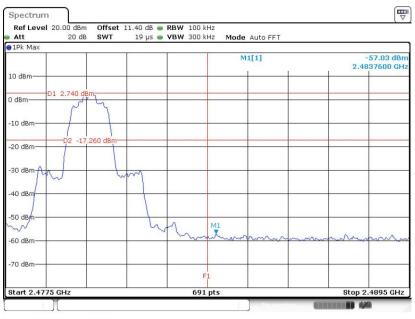
Low Band Edge Plot on Channel 00

Date: 2.0CT.2020 01:27:42

High Band Edge Plot on Channel 78



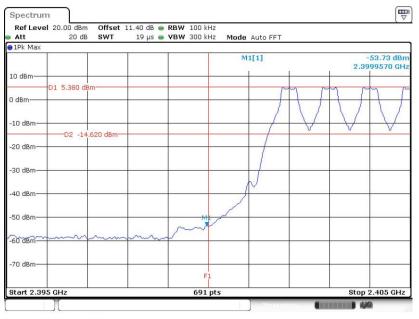
Date: 2.0CT.2020 02:02:25


<3Mbps>

Low Band Edge Plot on Channel 00

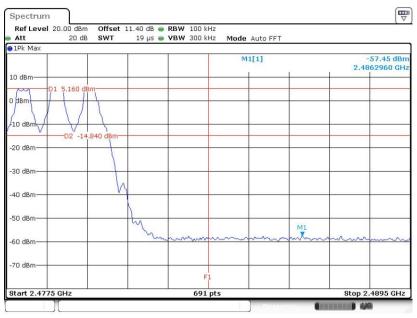
Date: 2.0CT.2020 02:12:58

High Band Edge Plot on Channel 78



Date: 2.0CT.2020 02:27:02

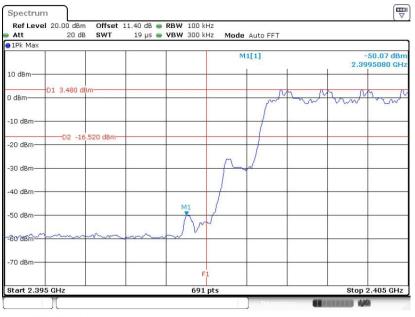
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 2.0CT.2020 00:39:18

Hopping Mode High Band Edge Plot



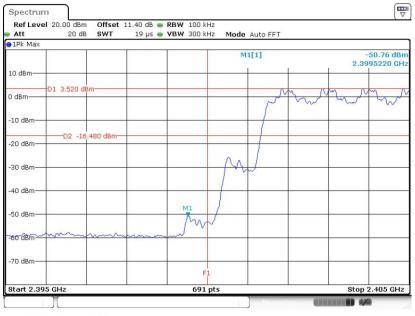
Date: 2.0CT.2020 00:40:19

<2Mbps>

Hopping Mode Low Band Edge Plot

Date: 2.0CT.2020 00:42:40

Hopping Mode High Band Edge Plot



Date: 2.0CT.2020 00:43:28

<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 2.0CT.2020 00:47:13

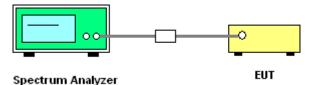
Hopping Mode High Band Edge Plot

Date: 2.0CT.2020 00:47:49

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

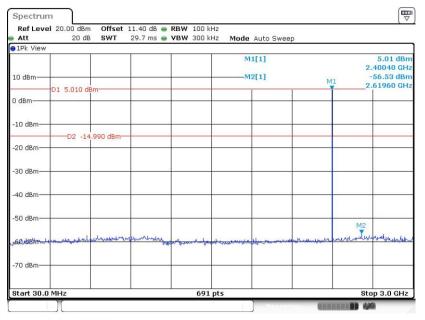

3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

3.7.3 Test Procedure

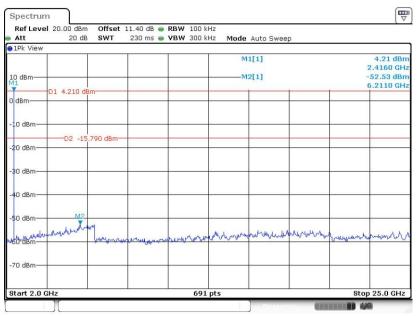
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup



TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 2.0CT.2020 01:03:53

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 2.0CT.2020 01:04:23

Att	20 dB	SWT	29.7 ms 👄	VBW 300 k	Hz Mode	Auto Swee	2		
1Pk View	- 			1					
					M1[1]				5.77 dBn 2.43910 GH
10 dBm—					M	2[1]		M1	-56.90 dBr
	D1 5.770 dBr	m				1	1	T	_2.66260 GH
) dBm									
-10 dBm									
10 aBm-	D2 -14.3	230 dBm-							
20 dBm-			2						
-30 dBm	-				<u>e :</u>				~
40 dBm—									
-50 dBm									
									M2
6aldentu	- I magine with the	undreden	introchinged by	and the second second second	M John Marchael	- all when the set	-	a Jupren	whendnessed
70 dBm—							2		
Start 30.0				691	pts		-	COLUMN DE LA COLUMN	Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 2.0CT.2020 01:14:43

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level 2 Att	20 dB	SWT	11.40 dB 👄 230 ms 👄	VBW 300 k		Auto Swee	р		
1Pk View			1						
					M	1[1]			5.63 dBn 2.4490 GH
μ Ω dBm			-		M	2[1]			51.11 dBr
t d	5.630 dB	m				1	1	1	6.9760 GH
0 dBm									
10 dBm									
	-D2 -14	.370 dBm-							
-20 dBm			-						0
-30 dBm			- 2						
-40 dBm									
-o abiii									
- <mark>50</mark> dBm		M2							
BOHBBM	perandumber	~	and marked	I. Its us .	All abely	romentent	Agrilian	A. J. web A.	run M. M.
60 dBm		ham bound	all and and the	hand the star				- Contraction of a	0.0000
-70 dBm									
Start 2.0 GH				691	nte			Ptor	25.0 GHz

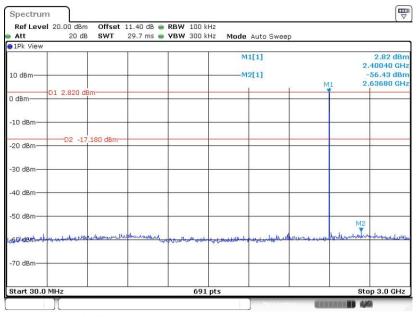
Date: 2.0CT.2020 01:15:13

Att	el 20.00 dBm 20 dB		11.40 dB 👄 29.7 ms 👄	VBW 300		Auto Sweep		
1Pk View	/ <u></u>							
10 dBm—					M1 M2		M1	4.37 dBn 2.48210 GH -56.70 dBn 2.61530 GH
0 dBm	-D1 4.370 d	Bm		_				2.01000 011
-10 dBm—								-
-20 dBm—	D2 -15	.630 dBm-						
-30 dBm—				0	-			
40 dBm—								
50 dBm—	_						M	2
60 dem-	al and the second second	nendetrenetud	hubbarray	the stand and the second	autown	www.weiterstatestatesta		
70 dBm—								
Start 30.					L pts			Stop 3.0 GHz

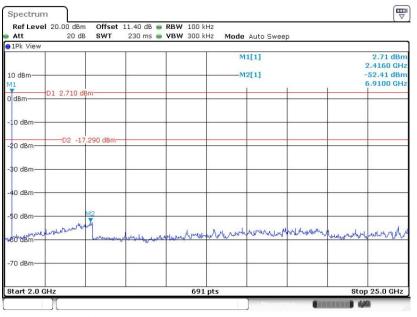
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 2.0CT.2020 01:22:39

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Ref Level 20.0 Att	20 dB SWT	11.40 dB 👄 R 230 ms 👄 V			Auto Sweep			
1Pk View								
				M	1[1]			4.43 dBn 2.4830 GH
LO dBm				M	2[1]			52.00 dBn
	430 dBm	_						5.9430 GH
dBm								
10 dBm								
20 dBm	02 -15.570 dBm-							
20 dBm								
30 dBm						i		
40 dBm		_						
50 dBm	M2							
	verenil				a contract for			
et all m	hours	adul-ulay-warding	-unturano	a human	- and all and a	a hanne an	muman	mantipi
70 dBm								
Start 2.0 GHz			691 g					25.0 GHz

Date: 2.0CT.2020 01:23:21


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

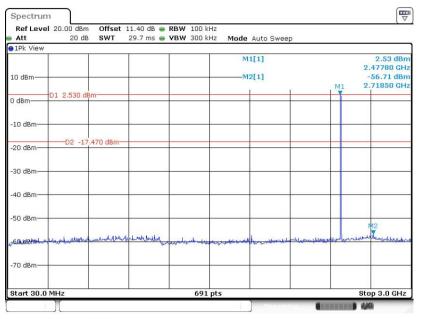
Date: 2.0CT.2020 01:29:36

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 2.0CT.2020 01:30:07

Att	el 20.00 dBm 20 dB	SWT		RBW 100 VBW 300		Auto Swee	þ		
1Pk View									
10 dBm						1[1] 2[1]		M1	3.49 dBn 2.43910 GH -56.96 dBn 2.80870 GH
0 dBm	D1 3.490 dB	m						1	
-10 dBm—									
-20 dBm—	D2 -16.	510 dBm							
-30 dBm—				<u></u>			<u>er</u>	877.	~
-40 dBm—									
-50 dBm—									M2
60,denivy	harmon and an all some and some	under and the	burdham	weduoroww	-	and want	فسحال فيسأح	burgenet	wohnterhellenson
-70 dBm—									
Start 30.0					L pts				Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz


Date: 2.0CT.2020 01:35:51

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

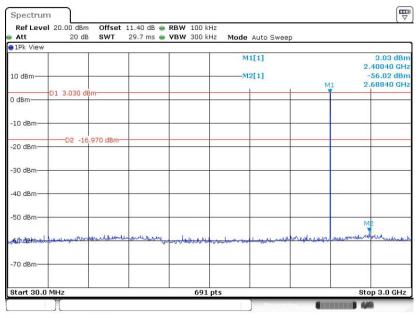
Ref Level 20.0 Att	0 dBm Offset 20 dB SWT	11.40 dB RBW 230 ms VBW		Auto Sweep	
1Pk View	20 08 3 81	230 1115 🔮 🕈 🖬 🖤	SOU KHZ MOUE	Auto Sweep	-
10 dBm-			M1 M2		3.94 di 2.4490 C -52.30 di 7.0090 C
	940 dBm				7.0050 0
10 dBm					
20 dBm	2 -16.060 dBm-				
30 dBm					
40 dBm					
50 dBm	M2			101	
stilder	andreaderstate	I mand and day work	man have a service	4 million and the second	moproverdirente
70 dBm					
Start 2.0 GHz			691 pts		Stop 25.0 G

Date: 2.0CT.2020 01:36:21

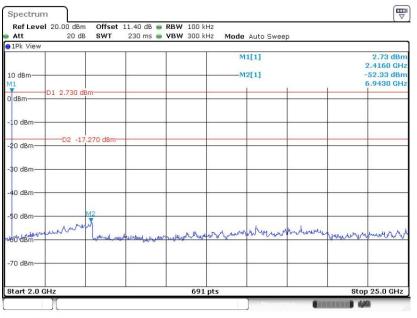
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 2.0CT.2020 02:04:30

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Ref Level 20.0 Att	20 dBm Offse 20 dB SWT	t 11.40 dB 👄 1 230 ms 👄 1			Auto Sweep			
1Pk View								
10 dBm					1[1] 2[1]			2.25 dBn 2.4830 GH 52.27 dBn 5.9430 GH
	.250 dBm							
10 dBm						-		
20 dBm(02 -17.750 dBm							22
30 dBm						:		
40 dBm								
50 dBm	M2							
50 dBm	white	mangely	and the server	whitewhere	nMulunor	whenthe	wanner	mound M
70 dBm								
Start 2.0 GHz			691	nte			Stor	25.0 GHz

Date: 2.0CT.2020 02:05:01


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 2.0CT.2020 02:14:32

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 2.0CT.2020 02:15:03

Att	el 20.00 dBm 20 dB	SWT	11.40 dB 👄 29.7 ms 👄	VBW 300		Auto Swee	5		
1Pk View	8								
10 dBm						1[1] 2[1]		M1	3.86 dBn 2.43910 GH -56.51 dBn 2.12960 GH
0 dBm	-D1 3.860 dB	m						1	
-10 dBm—									
-20 dBm	D2 -16	140 dBm-							
-30 dBm—					c		1		
-40 dBm—									
-50 dBm—							42		
68 dBMm	Anglo by all a horaster	e harrest	wellowing		the show the the second	بالمشيويه معاطية	Y	alione	unrelations
70 dBm—									
Start 30.0					1 pts				Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 2.0CT.2020 02:21:08

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	el 20.00 dBm 20 dB		11.40 dB 👄 230 ms 👄	VBW 300 k		Auto Swee	D		
1Pk View	8 -								
					M	1[1]			3.98 dBn 2.4490 GH
10 dBm	-		-		M	2[1]			-52.90 dBr
M1	D1 3.980 d	8m				-			6.1770 GH
0 dBm									-
10 dBm—									
	D2 -16	.020 dBm-							
20 dBm—									
-30 dBm					-				
40 dBm—									
-50 dBm—	M2	100				10			
et alm	nondeemotion	- Walled		man Martin	undrum	ownorman	andulgerhelter	mound	Month
oo ubiii									
70 dBm—									
Start 2.0	011-			691	nte			Ctor	25.0 GHz

Date: 2.0CT.2020 02:21:38

Ref Leve	el 20.00 dBm 20 dB	Offset SWT	11.40 dB 👄 29.7 ms 👄	RBW 100		Auto Swee	0		
1Pk View							-		
10 dBm						1[1] 2[1]		M1	2.65 dBn 2.47780 GH: -56.95 dBn 2.59810 GH:
0 dBm	D1 2.650 dBr	m							
-10 dBm—									
-20 dBm—	D2 -17.	350 dBm							
-30 dBm—			01		<u>c</u>		80		
-40 dBm—									
-50 dBm—								M	2
6a\d8mtoo	requestion and the	Mr. Martine Roya	hundrunichy			e tooldy and the sec	-	LL. WWWW	minglehanstran
-70 dBm—									
Start 30.0				601	Lpts				Stop 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 2.0CT.2020 02:29:55

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Ref Level 20.0	0 dBm Offse 20 dB SWT	t 11.40 dB 👄	RBW 100 k VBW 300 k			0		
1Pk View	20 08 5 8 1	230 ms 😁	VBW 300 K	HZ Mode	Auto Swee	2		
10 dBm					1[1] 2[1]		-	2.70 dBn 2.4830 GH 51.74 dBn 7.0090 GH
	.700 dBm							
-10 dBm						-		
20 dBm	02 -17.300 dBm							2
30 dBm	-	e e				1		
40 dBm		-						
50 dBm	M2							
60 aBm	when	and the and the	month fatures	www.	H.M. Marken	whenthe	moun	munh
70 dBm						~		
Start 2.0 GHz			691	nts			Stor	25.0 GHz

Date: 2.0CT.2020 02:30:23

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

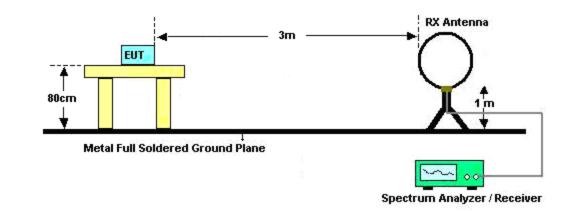
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

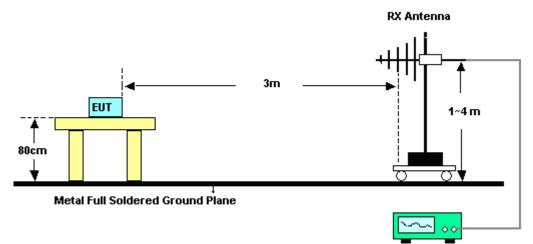
3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

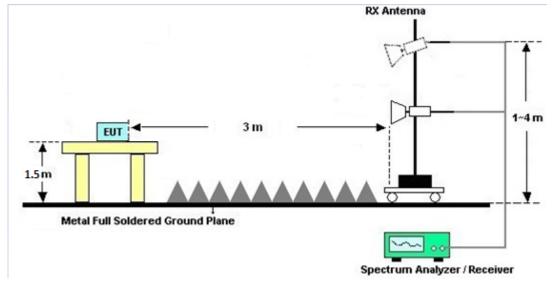
Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz



Spectrum Analyzer / Receiver

TEL : 886-3-327-3456	Page Number	: 52 of 59
FAX : 886-3-328-4978	Issued Date	: Oct. 20, 2020
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.9 AC Conducted Emission Measurement

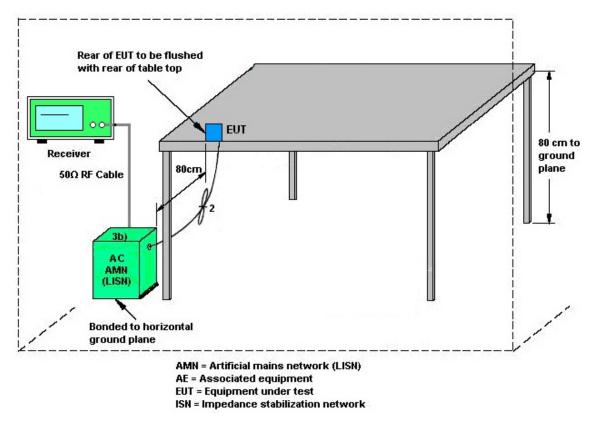
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


See list of measuring equipment of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 09, 2020	Oct. 02, 2020~ Oct. 06, 2020	Jan. 08, 2021	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL6111D&0 0800N1D01N- 06	41912&05	30MHz to 1GHz	Feb. 09, 2020	Oct. 02, 2020~ Oct. 06, 2020	Feb. 08, 2021	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 27, 2019	Oct. 02, 2020~ Oct. 06, 2020	Dec. 26, 2020	Radiation (03CH15-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-162 0	1-18GHz	Oct. 28, 2019	Oct. 02, 2020~ Oct. 06, 2020	Oct. 27, 2020	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Dec. 10, 2019	Oct. 02, 2020~ Oct. 06, 2020	Dec. 09, 2020	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03	171000180 0055006	1GHz~18GHz	May 07, 2020	Oct. 02, 2020~ Oct. 06, 2020	May 06, 2021	Radiation (03CH15-HY)
Preamplifier	Keysight	83017A	MY532701 95	1GHz~26.5GHz	Aug. 21, 2020	Oct. 02, 2020~ Oct. 06, 2020	Aug. 20, 2021	Radiation (03CH15-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 13, 2019	Oct. 02, 2020~ Oct. 06, 2020	Dec. 12, 2020	Radiation (03CH15-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY541300 85	20MHz~8.4GHz	Nov. 01, 2019	Oct. 02, 2020~ Oct. 06, 2020	Oct. 31, 2020	Radiation (03CH15-HY
Spectrum Analyzer	Agilent	E4446A	MY501801 36	3Hz~44GHz	May 04, 2020	Oct. 02, 2020~ Oct. 06, 2020	May 03, 2021	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Oct. 02, 2020~ Oct. 06, 2020	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Oct. 02, 2020~ Oct. 06, 2020	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24(k 5)	RK-00045 1	N/A	N/A	Oct. 02, 2020~ Oct. 06, 2020	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY36980/ 4	30M-18G	Apr. 14, 2020	Oct. 02, 2020~ Oct. 06, 2020	Apr. 13, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9838/4 PE	30M-18G	Apr. 14, 2020	Oct. 02, 2020~ Oct. 06, 2020	Apr. 13, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY37710/ 4	30M-18G	Apr. 17, 2020	Oct. 02, 2020~ Oct. 06, 2020	Apr. 16, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz-40GHz	Feb. 25, 2020	Oct. 02, 2020~ Oct. 06, 2020	Feb. 24, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30MHz-40GHz	Feb. 25, 2020	Oct. 02, 2020~ Oct. 06, 2020	Feb. 24, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	9kHz~30MHz	Mar. 12, 2020	Oct. 02, 2020~ Oct. 06, 2020	Mar. 11, 2021	Radiation (03CH15-HY)
Filter	Wainwright	WLK4-1000-1 530-8000-40S S	SN4	1.53G Low Pass	Jul. 03, 2020	Oct. 02, 2020~ Oct. 06, 2020	Jul. 02, 2021	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60ST	SN4	3GHz High Pass Filter	Sep. 16, 2020	Oct. 02, 2020~ Oct. 06, 2020	Sep. 15, 2021	Radiation (03CH15-HY)

: 57 of 59

: Oct. 20, 2020

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 02, 2020	Sep. 19, 2020~ Oct. 01, 2020	Mar. 01, 2021	Conducted (TH05-HY)
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 27, 2019	Sep. 19, 2020~ Oct. 01, 2020	Dec. 26, 2020	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 27, 2019	Sep. 19, 2020~ Oct. 01, 2020	Dec. 26, 2020	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 15, 2019	Sep. 19, 2020~ Oct. 01, 2020	Nov. 14, 2020	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Dec. 30, 2019	Sep. 19, 2020~ Oct. 01, 2020	Dec. 29, 2020	Conducted (TH05-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2020	Sep. 19, 2020~ Oct. 01, 2020	Mar. 16, 2021	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 23, 2020	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 15, 2019	Sep. 23, 2020	Nov. 14, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 15, 2019	Sep. 23, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 23, 2020	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 02, 2020	Sep. 23, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 02, 2020	Sep. 23, 2020	Jan. 01, 2021	Conduction (CO05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0
of 95% (U = 2Uc(y))	0.0

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	5.4

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0
of 95% (U = 2Uc(y))	5.0

Report Number : FR0O1919A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Jacob Yu / Shiming Liu	Temperature:	23.3~24	°C
Test Date:	2020/9/19~2020/10/1	Relative Humidity:	53.5~54.5	%

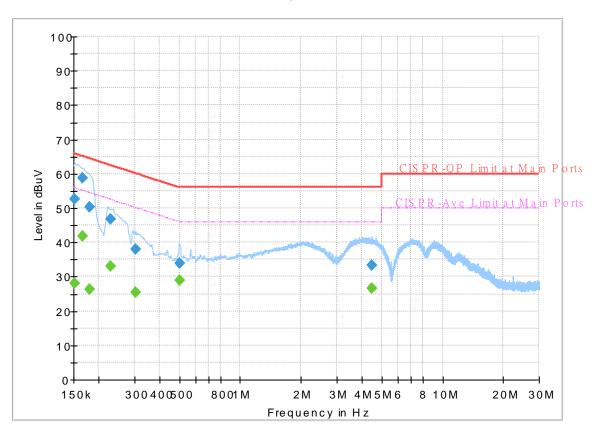
			20dB (and 99	% Occup	-	<u>ULTS DATA</u> th and Hopping	Channel Separ	ration
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.868	0.802	0.994	0.5789	Pass
DH	1Mbps	1	39	2441	0.871	0.799	1.151	0.5808	Pass
DH	1Mbps	1	78	2480	0.868	0.799	1.151	0.5789	Pass
2DH	2Mbps	1	0	2402	1.272	1.175	0.999	0.8481	Pass
2DH	2Mbps	1	39	2441	1.276	1.175	0.999	0.8509	Pass
2DH	2Mbps	1	78	2480	1.268	1.172	0.999	0.8451	Pass
3DH	3Mbps	1	0	2402	1.220	1.161	1.303	0.8133	Pass
3DH	3Mbps	1	39	2441	1.220	1.161	0.999	0.8133	Pass
3DH	3Mbps	1	78	2480	1.242	1.158	1.303	0.8278	Pass

			<u>TES</u>	T RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

					<u>T RESUL</u> eak Powe
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	6.73	30.00	Pass
DH1	39	1	7.31	30.00	Pass
	78	1	6.42	30.00	Pass
	0	1	6.03	20.97	Pass
2DH1	39	1	6.61	20.97	Pass
	78	1	5.46	20.97	Pass
	0	1	6.19	20.97	Pass
3DH1	39	1	6.80	20.97	Pass
	78	1	5.70	20.97	Pass

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)											
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)							
	0	1	6.73	5.15							
DH1	39	1	7.26	5.15							
	78	1	6.43	5.15							
	0	1	4.51	5.15	1						
2DH1	39	1	5.09	5.15							
	78	1	3.75	5.15							
	0	1	4.54	5.12	1						
3DH1	39	1	5.13	5.12							
	78	1	3.81	5.12							

TEST RESULTS DATA Number of Hopping Frequency										
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail							
79	20	> 15	Pass	1						

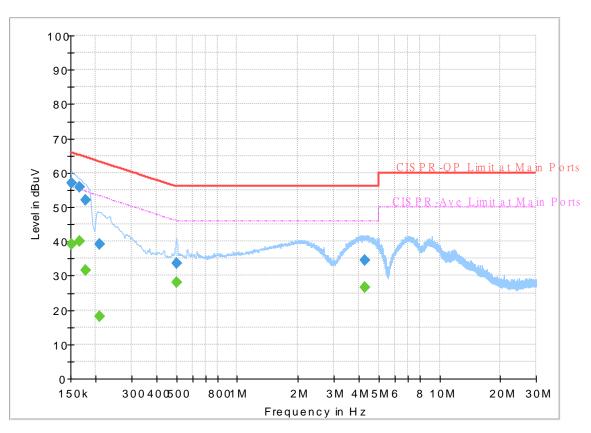


Appendix B. AC Conducted Emission Test Results

Test Engineer :	Tom Loo	Temperature :	24~26 ℃
rest Engineer .	Tom Lee	Relative Humidity :	42~50%

EUT Information

Test Mode : Test Voltage : Phase : Mode 1 120Vac/60Hz Line


Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250		28.14	55.88	27.74	L1	OFF	19.5
0.152250	52.51		65.88	13.37	L1	OFF	19.5
0.165750		41.81	55.17	13.36	L1	OFF	19.5
0.165750	58.76		65.17	6.41	L1	OFF	19.5
0.178980		26.42	54.53	28.11	L1	OFF	19.5
0.178980	50.28		64.53	14.25	L1	OFF	19.5
0.228750		32.94	52.50	19.56	L1	OFF	19.5
0.228750	46.64		62.50	15.86	L1	OFF	19.5
0.305250		25.39	50.10	24.71	L1	OFF	19.5
0.305250	38.14		60.10	21.96	L1	OFF	19.5
0.501810		29.03	46.00	16.97	L1	OFF	19.5
0.501810	33.85		56.00	22.15	L1	OFF	19.5
4.461000		26.55	46.00	19.45	L1	OFF	19.6
4.461000	33.29		56.00	22.71	L1	OFF	19.6

EUT Information

Test Mode : Test Voltage : Phase : Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250		39.04	55.88	16.84	Ν	OFF	19.5
0.152250	56.88		65.88	9.00	Ν	OFF	19.5
0.165750		40.10	55.17	15.07	Ν	OFF	19.5
0.165750	55.84		65.17	9.33	Ν	OFF	19.5
0.178260		31.58	54.57	22.99	Ν	OFF	19.5
0.178260	52.06		64.57	12.51	Ν	OFF	19.5
0.208680		18.27	53.26	34.99	Ν	OFF	19.5
0.208680	39.07		63.26	24.19	Ν	OFF	19.5
0.503160		28.05	46.00	17.95	Ν	OFF	19.5
0.503160	33.49		56.00	22.51	Ν	OFF	19.5
4.298190		26.57	46.00	19.43	Ν	OFF	19.6
4.298190	34.40		56.00	21.60	Ν	OFF	19.6

Appendix C. Radiated Spurious Emission

Test Engineer :	Leo Lee, Mancy Chou and Bigshow Wang	Temperature :	22.7~24.2°C
Test Engineer .		Relative Humidity :	47~57%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2346.96	46.49	-27.51	74	42.07	28.01	7.34	30.93	379	237	Р	Н
		2346.96	21.73	-32.27	54	-	-	-	-	-	-	Α	Н
	*	2402	104	-	-	99.76	27.7	7.45	30.91	379	237	Ρ	Н
	*	2402	79.24	-	-	-	-	-	-	-	-	А	н
вт													Н
CH00													Н
2402MHz		2347.065	46.12	-27.88	74	41.7	28.01	7.34	30.93	394	224	Р	V
		2347.065	21.36	-32.64	54	-	-	-	-	-	-	А	V
	*	2402	106.7	-	-	102.46	27.7	7.45	30.91	394	224	Ρ	V
	*	2402	81.94	-	-	-	-	-	-	-	-	А	V
													V
		2381.54	45.94	-28.06	74	41.64	27.81	7.41	30.92	372	235	Р	V H
		2381.54	21.18	-32.82	54	-	-	-	-	-	-	A	н
	*	2441	103.72	-	-	99.48	27.62	7.52	30.9	372	235	Р	н
	*	2441	78.96	-	-	-	-	-	-	-	-	А	Н
		2488.31	45.46	-28.54	74	41.2	27.52	7.61	30.87	372	235	Ρ	Н
BT		2488.31	20.7	-33.3	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		2325.82	46.67	-27.33	74	42.26	28.05	7.3	30.94	378	229	Ρ	V
244111112		2325.82	21.91	-32.09	54	-	-	-	-	-	-	А	V
	*	2441	105.89	-	-	101.65	27.62	7.52	30.9	378	229	Р	V
	*	2441	81.13	-	-	-	-	-	-	-	-	А	V
		2488.59	45.32	-28.68	74	41.06	27.52	7.61	30.87	378	229	Р	V
		2488.59	20.56	-33.44	54	-	-	-	-	-	-	А	V

	*	2480	102.93	-	-	98.68	27.54	7.59	30.88	365	245	Р	Н
	*	2480	78.17	-	-	-	-	-	-	-	-	А	Н
		2484.44	46.69	-27.31	74	42.44	27.53	7.6	30.88	365	245	Ρ	Н
		2484.44	21.93	-32.07	54	-	-	-	-	-	-	А	Н
DT													Н
ВТ СН 78													Н
СП 78 2480MHz	*	2480	104.63	-	-	100.38	27.54	7.59	30.88	364	226	Р	V
2400101112	*	2480	79.87	-	-	-	-	-	-	-	-	А	V
		2483.56	49.31	-24.69	74	45.06	27.53	7.6	30.88	364	226	Ρ	V
		2483.56	24.55	-29.45	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurio I results are F		ist Peak	and Avera	ge limit lin	е.						

2.4GHz 2400~2483.5MHz

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	40.83	-33.17	74	58.09	31.21	10.61	59.08	100	0	Р	Н
		4804	16.07	-37.93	54	-	-	-	-	-	-	А	н
вт													H H
CH 00		4804	40.81	-33.19	74	58.07	31.21	10.61	59.08	100	0	Р	V
2402MHz		4804	16.05	-37.95	54	-	-	-	-	-	-	А	V
													V
		4000	40.04	22.00	74	FZ 00	24.24	40.04	50.42	100	0		V
		4882 4882	40.01	-33.99	74 54	57.29 -	31.24 -	10.61 -	59.13 -	100	0	P	H H
		7323	15.25 45.17	-38.75 -28.83	54 74	- 54.56	- 36.55	- 12.61	- 58.55	- 100	-	A P	н
вт		7323	20.41	-33.59	54	-	-	-	-	-	-	A	н
CH 39		4882	42.01	-31.99	74	59.29	31.24	10.61	59.13	100	0	P	V
2441MHz		4882	17.25	-36.75	54	-	-	-	-	-	-	A	V
		7323	45.98	-28.02	74	55.37	36.55	12.61	58.55	100	0	Р	V
		7323	21.22	-32.78	54	-	-	-	-	-	-	A	V
		4960	40.21	-33.79	74	57.22	31.54	10.63	59.18	100	0	Р	н
		4960	15.45	-38.55	54	-	-	-	-	-	-	А	н
D.T.		7440	46.53	-27.47	74	55.61	36.56	12.74	58.38	100	0	Ρ	н
ВТ СН 78		7440	21.77	-32.23	54	-	-	-	-	-	-	А	Н
2480MHz		4960	40.76	-33.24	74	57.77	31.54	10.63	59.18	100	0	Р	V
2480MHZ – –		4960	16	-38	54	-	-	-	-	-	-	А	V
		7440	46.37	-27.63	74	55.45	36.56	12.74	58.38	100	0	Р	V
		7440	21.61	-32.39	54	-	-	-	-	-	-	Α	V

BT (Harmonic @ 3m)

Emission below 1GHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	<u> </u>	
			(dBµV/m)		Line		Factor		Factor	Pos	Pos	Avg.	
		(MHz) 88.2	<u>(авруля)</u> 27.34	(dB)	(dBµV/m) 43.5	(dBµV) 43.77	(dB/m) 14.68	(dB) 1.27	(dB) 32.38	(cm)	(deg)	(P/A) P	н
		258.92	30.07	-15.93	46	40.72	19.49	2.29	32.43	-	-	P	н
		279.29	28.81	-17.19	46	40.44	18.51	2.33	32.47	-	-	P	н
		713.85	35.61	-10.39	46	37.73	26.57	3.72	32.41	-	-	Р	Н
		722.58	35.87	-10.13	46	37.59	26.97	3.74	32.43	-	-	Р	F
		746.83	37.64	-8.36	46	38.62	27.66	3.82	32.46	100	0	Р	F
													F
													ŀ
													ŀ
													ŀ
													ŀ
2.4GHz													ŀ
BT LF		42.61	24.81	-15.19	40	38.12	18.2	0.82	32.33	-	-	Р	V
LF		90.14	27.24	-16.26	43.5	43.4	14.91	1.28	32.35	-	-	Ρ	٧
		219.15	26.41	-19.59	46	41.64	15.05	2.11	32.39	-	I	Ρ	V
		257.95	28.84	-17.16	46	39.65	19.33	2.29	32.43	-	-	Р	١
		265.71	28.89	-17.11	46	39.55	19.48	2.3	32.44	-	-	Р	V
		729.37	38.22	-7.78	46	39.63	27.26	3.77	32.44	100	0	Р	V
													V
													V
													١
													V
													V
													V

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

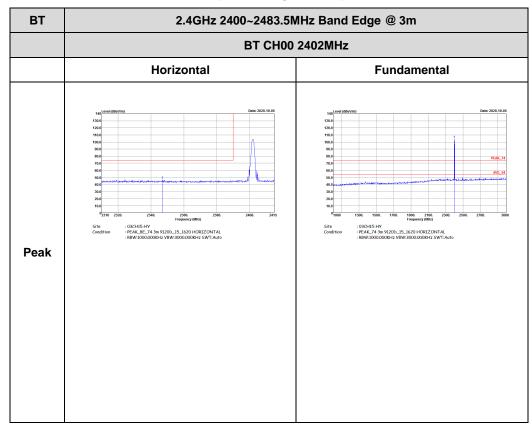
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

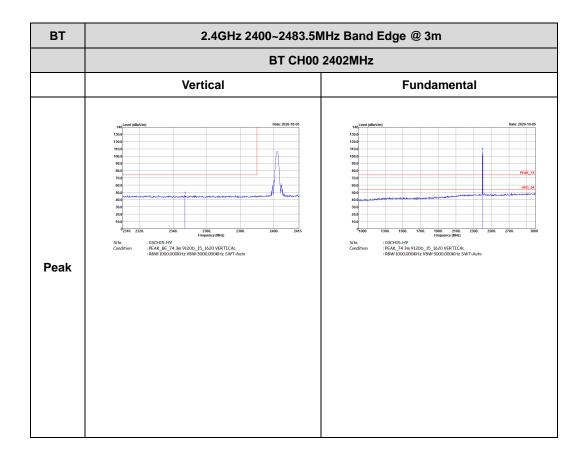
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

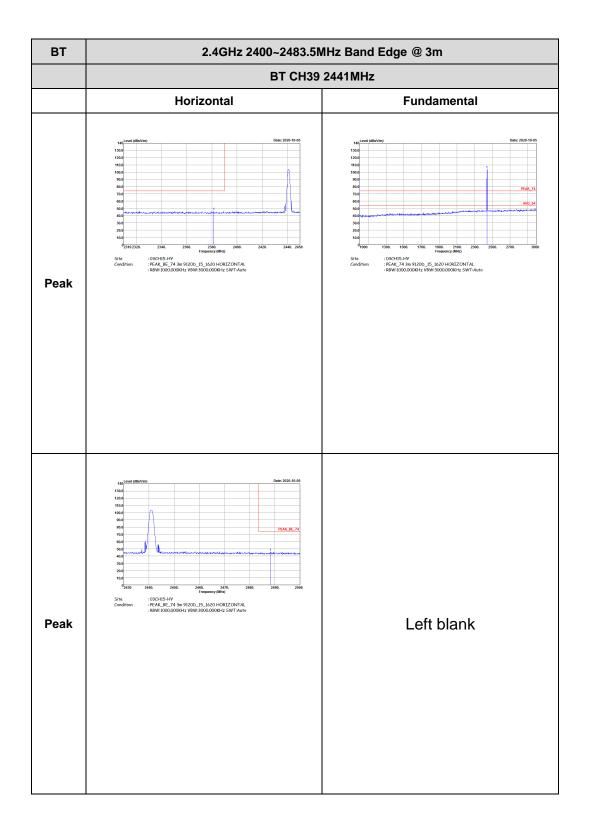
Both peak and average measured complies with the limit line, so test result is "PASS".

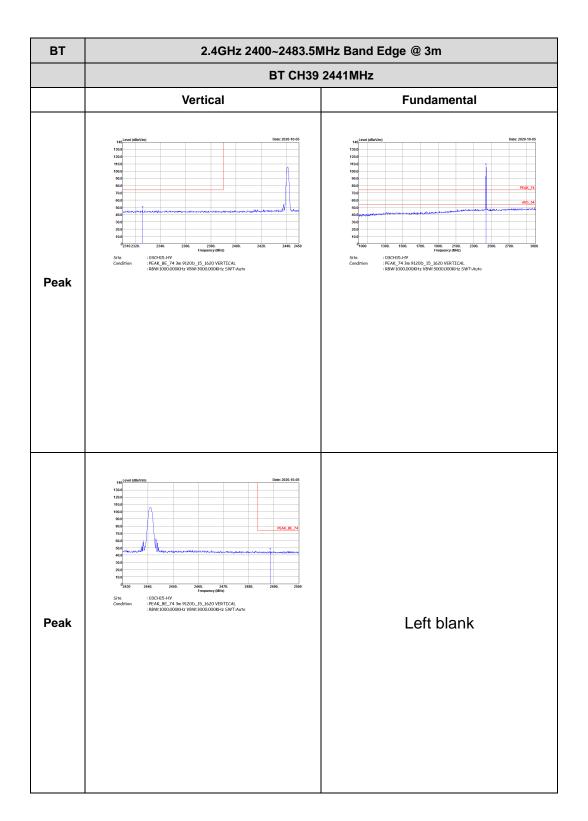


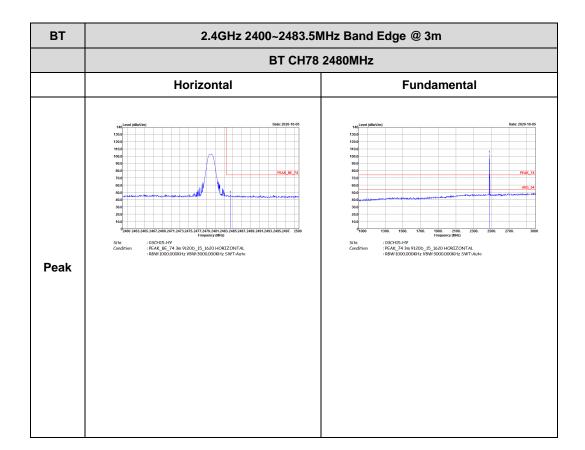
Appendix D. Radiated Spurious Emission Plots

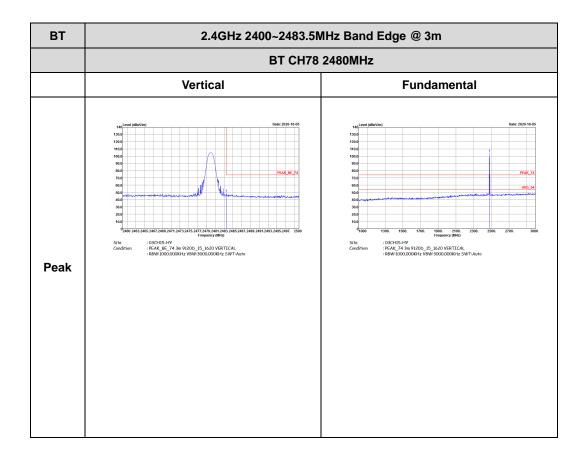

Test Engineer :	Leo Lee, Mancy Chou and Bigshow Wang	Temperature :	22.7~24.2°C
		Relative Humidity :	47~57%

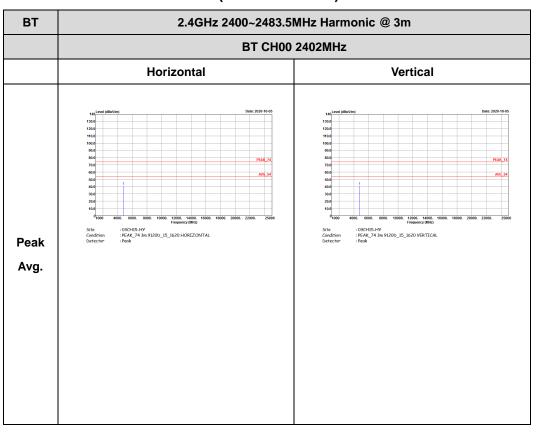
2.4GHz 2400~2483.5MHz

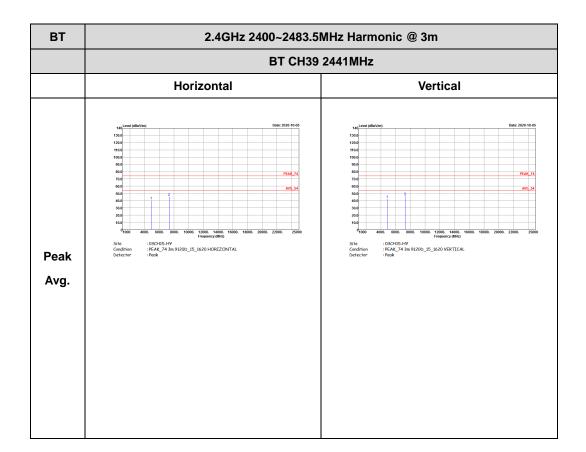

BT (Band Edge @ 3m)



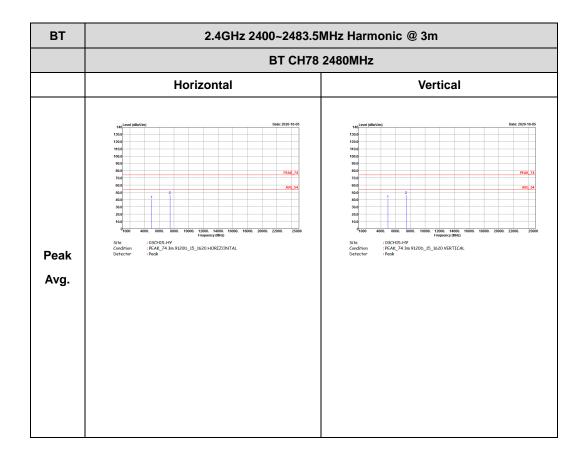




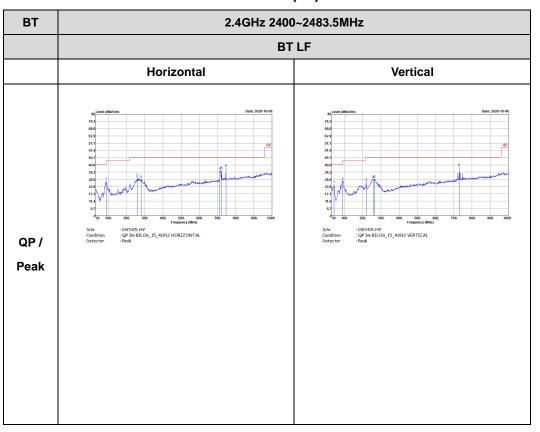




2.4GHz 2400~2483.5MHz



BT (Harmonic @ 3m)



Emission below 1GHz

2.4GHz BT (LF)

Appendix E. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Chann	on time (Count Pulses) Plot on Channel 39		
Image: Trajector Spectrum Analyzer - Swept SA SENSE_SIVT ▲ ALLON OFF 66-47:14 AMOR 52 2020 Image: Trajector Same SENSE_SIVT ▲ ALLON OFF 66-47:14 AMOR 52 2020 Mark for: S ▲ 3.75000 ms PRO: Feat → Trig: Free Run Avg[Hold: 1/1 Free Run Aren: 10 dB Ore Defension Ore Defension	Marker	Image: Spectrum Analyzer - Swept SA StredE_INT[A_ALION OFF 06-52-53 AM Oct 05, 2020 Image: R.k. IF PRESEL So 0.0 A StredE_INT[A_ALION OFF 06-52-53 AM Oct 05, 2020 Image: R.k. IF PRESEL So 0.0 A Trig: Free Run AvglHold: 1/1 Trig: Free Run	Frequency
10 dB/div Ref 106.99 dBμV 0.032 dB	Select Marker	Incluition Attent root Mkr1 72.10 ms 10 dB/div Ref 106.99 dBpV 84.892 dBpV	Auto Tune
	Normal	g 0	Center Freq 2.441000000 GHz
	Delta		Start Freq 2.441000000 GHz
370 July day 1 July da	Fixed⊳	50	Stop Freq 2.441000000 GHz
Center 2.441000000 GHz Span 0 Hz Span 0 Hz Res BW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (1001 pts) Iver word frict Sci. X Y Function Function Function	Off	20 27 ปูลกับเกมารูปการการประกับการการปี หรือเวาปู่การการประกับประกับการประได้ไปกับการการ และเกมร์การประกับการการปร	CF Step 1.000000 MHz uto Man
1 Δ 2 1 t (Δ) 2.890 ms (Δ) 0.586 dB 2 F 1 t 2.180 ms (Δ2.5217 dBuV) 3 Δ 4 1 t (Δ) 3.780 ms (Δ) 0.032 dB 4 F 1 t 2.180 ms 82.817 dBuV 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Properties►	20	Freq Offset 0 Hz
		Center 2.441000000 GHz Span 0 Hz	
450 Suffix not allowed Staffix not allowed		Res BW 1.0 MHz #VBW 1.0 MHz Sweep 100.0 ms (1001 pts) www S Suffix not allowed Starts Allowed	đ

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. **DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.8 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.8 ms] = 2 hops Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.78 \text{ ms}/100 \text{ ms}) = -24.76 \text{ dB}$