

FCC CFR47 PART 95H REQUIREMENT

CERTIFICATION TEST REPORT

FOR

TRANSMITTER FOR MEDICAL

MODEL: ZM-941PA

FCC ID: B6BZM-941PA

REPORT NUMBER: 08J12203-1, Revision A

ISSUE DATE: NOVEMBER 21, 2008

Prepared for NIHON KOHDEN CORPORATION 1-31-4, NISHIOCHIAI SHINJUKU-KU TOKYO 161-8560, JAPAN

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

(R)

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	11/11/08	Initial Issue	T. Chan
A	11/21/2008	Clarified methodology and radiated emission results	M. Heckrotte

Page 2 of 39

TABLE OF CONTENTS

1. ATTE	ESTATION OF TEST RESULTS	4
2. TEST	T METHODOLOGY	5
3. FACI	ILITIES AND ACCREDITATION	5
4. CALI	IBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
4.2.	MEASUREMENT UNCERTAINTY	5
5. EQU	IPMENT UNDER TEST	6
5.1.	DESCRIPTION OF EUT	6
5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5.3.	SOFTWARE AND FIRMWARE	6
5.4.	WORST-CASE CONFIGURATION AND MODE	6
5.5.	DESCRIPTION OF TEST SETUP	7
6. TEST	T AND MEASUREMENT EQUIPMENT	10
6. TEST 7. ANTE	T AND MEASUREMENT EQUIPMENT ENNA PORT TEST RESULTS	10 11
 TEST ANTE 7. 1. 	T AND MEASUREMENT EQUIPMENT ENNA PORT TEST RESULTS 26 dB AND 99% BW	10
 6. TEST 7. ANTE 7.1. 7.2. 	T AND MEASUREMENT EQUIPMENT ENNA PORT TEST RESULTS 26 dB AND 99% BW PEAK OUTPUT POWER	10 11
 6. TEST 7. ANTE 7.1. 7.2. 7.3. 	T AND MEASUREMENT EQUIPMENT ENNA PORT TEST RESULTS 26 dB AND 99% BW PEAK OUTPUT POWER AVERAGE POWER	
 TEST ANTE 7.1. 7.2. 7.3. 7.4. 	T AND MEASUREMENT EQUIPMENT ENNA PORT TEST RESULTS 26 dB AND 99% BW PEAK OUTPUT POWER AVERAGE POWER SPURIOUS EMISSIONS AT ANTENNA TERMINAL	10 11 11151819
 TEST ANTE 7.1. 7.2. 7.3. 7.4. 7.5. 	T AND MEASUREMENT EQUIPMENT ENNA PORT TEST RESULTS 26 dB AND 99% BW PEAK OUTPUT POWER AVERAGE POWER SPURIOUS EMISSIONS AT ANTENNA TERMINAL FREQUENCY STABILITY MEASUREMENT	
 TEST ANTE 7.1. 7.2. 7.3. 7.4. 7.5. RADE 	T AND MEASUREMENT EQUIPMENT ENNA PORT TEST RESULTS	
 TEST ANTE 7.1. 7.2. 7.3. 7.4. 7.5. RADE 8.1. 	T AND MEASUREMENT EQUIPMENT ENNA PORT TEST RESULTS	
 TEST ANTE 7.1. 7.2. 7.3. 7.4. 7.5. RADE 8.1. 8.2. 	T AND MEASUREMENT EQUIPMENT ENNA PORT TEST RESULTS 26 dB AND 99% BW PEAK OUTPUT POWER AVERAGE POWER SPURIOUS EMISSIONS AT ANTENNA TERMINAL FREQUENCY STABILITY MEASUREMENT IATED EMISSION TEST RESULTS FUNDAMENTAL OUTPUT POWER RADIATED EMISSIONS BELOW 960 MHz	
 TEST ANTE 7.1. 7.2. 7.3. 7.4. 7.5. RADE 8.1. 8.2. 8.3. 	T AND MEASUREMENT EQUIPMENT ENNA PORT TEST RESULTS 26 dB AND 99% BW PEAK OUTPUT POWER AVERAGE POWER SPURIOUS EMISSIONS AT ANTENNA TERMINAL FREQUENCY STABILITY MEASUREMENT IATED EMISSION TEST RESULTS FUNDAMENTAL OUTPUT POWER RADIATED EMISSIONS BELOW 960 MHz RADIATED EMISSIONS ABOVE 960 MHz	

Page 3 of 39

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	NIHON KOHDEN CORPORATION 1-31-4, NISHIOCHIAI SHINJUKU-KU TOKYO 161-8560, JAPAN				
EUT DESCRIPTION:	TRANSMITTER FOR MEDICAL				
MODEL:	ZM-941PA				
SERIAL NUMBER:	90003				
DATE TESTED:	NOVEMBER 1 – 8, 2008				
APPLICABLE STANDARDS					
S	TEST RESULTS				
FCC PAR	Pass				

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

MH

MICHAEL HECKROTTE DIRECTOR OF ENGINEERING COMPLIANCE CERTIFICATION SERVICES

Tested By:

Charg

DEVIN CHANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI/TIA-603-C-2004, FCC CFR 47 Part 2 and FCC CFR 47 Part 95.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Power Line Conducted Emission	+/- 2.3 dB
Radiated Emission	+/- 3.4 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 39

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

a). b). c). d). e). f).	Type of EUT: Brand Name: Model No: FCC ID: Battery Type: Channel Number:	WMTS TRANSMITTER NIHON KOHDEN ZM-941PA B6BZM-941PA Three AA (R6) 1395.0250 MHz (channel number E002) to 1399.9750 MHz (channel number E398), and 1427.0250 MHz (channel number E502) to 1431.9750 MHz (channel number E898)
g).	Frequency Range:	1395.025-1399.975 MHz and 1427.025-1431.975 MHz bands
h).	RF Conducted Output Power:	5mW (factory default setting) or 1mW
i).	Channel Spacing:	50 KHz or 37.5 kHz (12.5 KHz when interleave)
j).	Modulation	Frequency Shift Keying
k).	Type of Modulation:	F1D
l).	Occupied Bandwidth	<20 kHz
m).	Antenna Type:	Internal

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Helical Monopole antenna, with a maximum gain of 0 dBi.

5.3. SOFTWARE AND FIRMWARE

The test utility software used during testing was Channel Writer, rev. 02-04.

5.4. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

During emission tests the antenna orientations as X, Y, and Z were investigated to determine the worst-case. The outcome showed that Y-orientation as the worst-case.

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description Manufacturer Model Serial Number FCC ID					
Laptop	LENOVO	7658	L3-A1589 07/07	DoC	
AC Adapter	LENOVO	92P1160	11S92P1160Z1ZBGH74LH2M	N/A	
Channel Writer	NIHON KOHDEN	QI-901PK	28	N/A	

I/O CABLES

I/O CABLE LIST						
Cable	Port	# of	Connector	Cable	Cable	Remarks
No.		Identica	Туре	Туре	Length	
		Ports				
1	AC	1	US115V	Un-shielded	1m	N/A
2	DC	1	DC	Un-shielded	1.8m	Ferrite on laptop's end
3	USB	1	USB	Shielded	2m	No
4	ECG	1	ECG	Un-shielded	0.3m	No
5	ECG	1	ECG	Un-shielded	0.7 m	N/A
6	Sp02	1	Sp02	Un-shielded	1.6 m	Probe
7	NIBP	1	NIBP secket	Rubber	0.3 m	Connect Arm Cuff

TEST SETUP

The EUT is standalone unit and just use a host laptop computer to configure the mode during the tests. Test software exercised the radio card.

Page 7 of 39

SETUP DIAGRAM FOR TESTS

RF Conducted test

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 8 of 39

SETUP DIAGRAM FOR TESTS

RF Radiated test

Page 9 of 39

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Asset	Cal Due
Horn Antenna	ETS	3117	C01005	04/22/09
Bilog Antenna	Sunol Sciences	JB1	C01016	02/11/09
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	11/27/08
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00558	03/31/09
RF Filter Section, 2.9 GHz	Agilent / HP	85420E	C00958	09/19/09
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	03/03/09
Signal Generator, 20 GHz	Agilent / HP	83732B	C00774	07/03/10
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	C00930	05/13/09
DC power supply, 40 V @ 30 A	Agilent / HP	6268A	N02490	CNR

Page 10 of 39

7. ANTENNA PORT TEST RESULTS

7.1. 26 dB AND 99% BW

<u>LIMITS</u>

§2.1049, for reporting purposes only, also the 26dB bandwidth shall be less than 20 KHz (F1D).

TEST PROCEDURE

ANSI C63.4

The transmitter output is connected to the spectrum analyzer.

26dB Bandwidth: The RBW is set to 1% to 3% of the 26dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 26dB bandwidth function is utilized.

99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Page 11 of 39

RESULTS

26dB Bandwidth

Channel	Frequency	26dB Bandwidth
	(MHz)	(kHz)
E002	1395.025	18.851
E390	1399.975	18.369
E502	1427.025	17.890
E898	1431.975	17.482

99% Bandwidth

Channel	Frequency	99% Bandwidth
	(MHz)	(kHz)
E002	1395.025	14.065
E390	1399.975	13.808
E502	1427.025	13.497
E898	1431.975	13.429

Page 12 of 39

20dB and 99% BANDWIDTH

Page 13 of 39

1427.025MHz * Agilent			RT	Freq/Channel
Ch Freq 1.42 Occupied Bandwidth	702 GHz		Trig Free	Center Freq 1.42702500 GHz
Center 1.4270250	20 dB			Start Freq 1.42697500 GHz
#Samp Log 10		₽		Stop Freq 1.42707500 GHz
dB/ Offst 9.6 dB	Am	Y MANY THE	Automation	CF Step 10.0000000 kHz <u>Auto Man</u>
Center 1.427 GHz #Res BW 1 kHz	#VBW 3 kHz	Sweep 163.8 m	Span 100 kHz s (2001 pts)	Freq Offset 0.00000000 Hz
Occupied Bandwi 13.49	dth 967 kHz	Occ BW % Pwr x dB	99.00 % -26.00 dB	Signal Track On <u>Off</u>
Transmit Freq Error x dB Bandwidth	-210.341 Hz 17.890 kHz*			Scale Type Log <u>Lin</u>

Page 14 of 39

7.2. PEAK OUTPUT POWER

LIMITS

§2.1046, for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set greater then the 26dB bandwidth. The VBW is set to 3 times the RBW.

RESULTS

Channel	Frequency	Output
		Power
	(MHz)	(dBm)
E002	1395.025	5.98
E390	1399.975	6.12
E502	1427.025	6.91
E898	1431.975	6.99

Page 15 of 39

OUTPUT POWER

Page 16 of 39

Page 17 of 39

7.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 9.6 dB (including 9.6 dB pad) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Output
		Power
	(MHz)	(dBm)
E002	1395.025	5.96
E390	1399.975	6.10
E502	1427.025	6.91
E898	1431.975	6.95

Page 18 of 39

7.4. SPURIOUS EMISSIONS AT ANTENNA TERMINAL

LIMIT

§2.1051All the conducted emission spurious level shall be at least -20dBc below the band that contains the highest level of desired power.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW=VBW=1MHz.

The spectrum from 30 MHz to 10th harmonic is investigated with the transmitter set to the lowest and highest channels.

TEST RESULTS

Page 19 of 39

Page 20 of 39

Page 21 of 39

7.5. FREQUENCY STABILITY MEASUREMENT

<u>LIMIT</u>

§95.115 (e) Frequency stability.

Manufacturers of wireless medical telemetry devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all of the manufacturer's specified conditions.

TEST PROCEDURE

Frequency stability versus environmental temperature

1) Set the temperature of chamber to 25°C @ low/high channel. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.

2) Set SA Resolution Bandwidth to 300 Hz and Video Resolution Bandwidth to 300 Hz and Frequency Span to 20 KHz. Record this frequency as reference frequency.

3) Repeat step 2 with a 10°C decreased per stage until the lowest temperature -30°C is measured, record all measured frequencies on each temperature step.

3) Repeat step 2 with a 10°C increased per stage until the highest temperature +50°C is measured; record all measured frequencies on each temperature step.

Frequency stability versus input voltage

1). Setup the configuration as shown below for frequencies measured at temperature if it is 25°C.

2). Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 300 Hz and Video Resolution Bandwidth to 300 Hz and Frequency Span to 20 KHz. Record this frequency as reference frequency.

3). For battery operated only device, supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

REPORT NO: 08J12203-1A EUT: TRANSMITTER FOR MEDICAL

Frequency stability measurement configuration

TEST RESULTS

Page 23 of 39

LOW CHANNEL

20°C Ref	erence Fre	equency:	1395.02	MHz	
Limit: +/-	15	ppm =	0.0209	925	MHz
Power	Supply	Environment	Frequency		Lingit
VE	C	Temperature (°C)	(MHz)	Delta (MHz)	+/- (MHz)
		50	1395.025780	0.000780	0.020925
		40	1395.025715	0.000715	0.020925
	Normal	30	1395.025623	0.000623	0.020925
		20	1395.025611	0.000611	0.020925
4.50	(100%)	10	1395.025540	0.000540	0.020925
	(10070)	0	1395.025448	0.000448	0.020925
		-10	1395.025398	0.000398	0.020925
		-20	1395.025300	0.000300	0.020925
		-30	1395.025261	0.000261	0.020925
5.18	High	(115%)	1395.025628	0.000628	0.020925
4.50	Norm	al (100%)	1395.025611	0.000611	0.020925
3.83	Low	v (85%)	1395.025488	0.000488	0.020925
2.90			End Poin	t	

Page 24 of 39

HIGH CHANNEL

20°C Ref	erence Fre	equency:	1431.97	5000	MHz		
Limit: +/-	15	ppm =	0.0214	180	MHz		
Power	Supply	Environment	Frequency		Lingit		
VD	C	Temperature (°C)	(MHz)	Delta (MHz)	+/- (MHz)		
		50	1431.975784	0.000784	0.021480		
		40	1431.975650	0.000650	0.021480		
		30	1431.975578	0.000578	0.021480		
	Nermal	20	1431.975514	0.000514	0.021480		
4.50	(100%)	10	1431.975510	0.000510	0.021480		
	(10070)	0	1431.975440	0.000440	0.021480		
		-10	1431.975411	0.000411	0.021480		
		-20	1431.975383	0.000383	0.021480		
		-30	1431.975339	0.000339	0.021480		
5.18	High	(115%)	1431.975806	0.000806	0.021480		
4.50	Norm	al (100%)	1431.975514	0.000514	0.021480		
3.83	Low	v (85%)	1431.975365	0.000365	0.021480		
2.90			End Poin	t			

Page 25 of 39

8. RADIATED EMISSION TEST RESULTS

<u>LIMITS</u>

§95.115

(a) Field strength limits

(2) In the 1395–1400 MHz and 1427–1429.5 MHz bands, the maximum allowable field strength is 740 mV/m as measured at a distance of 3 meters, using measuring equipment with an averaging detector and a 1 MHz measurement bandwidth.

(b) Undesired emissions.

 Out-of-band emissions below 960 MHz are limited to 200 microvolts/meter, as measured at a distance of 3 meters, using measuring instrumentation with a CISPR quasi-peak detector.
 Out-of-band emissions above 960 MHz are limited to 500 microvolts/meter as measured at a distance of 3 meters, using measuring equipment with an averaging detector and a 1 MHz measurement bandwidth.

TEST PROCEDURE

ANSI/TIA-603-C-2004

RESULTS

8.1. FUNDAMENTAL OUTPUT POWER

	11/05/08 08J1220	hang 3												
Company:	Nihon K	ohden												
EUT Description: EUT only														
est Target:	FCC 95.	 1115 (a)	(2)											
Mode Oper: Tx mode f Measurement Frequency Amp														
				Amp	Preamp (Preamp Gain Average Field Strength Limit								
Read	Analyzer	to Anter Reading	una	Ave	Average	Correc Field St	trenzth @) 3 m	Margin v	sia strengtn vs. Average	Limit			
AF	Antenna	Factor		CL	Cable Lo:	55		HPF	High Pa	ss Filter				
f Dia	+ Baad	AF	CI		DCom	Ki ta	Com	T dans dat	Manaia	Ant Dal	Det	Ant High	Table Angle	Natas
GHz (m) dBuV	dB/m	4B	AB ط	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/OP	cm	Degree	140168
95.025MHz													-	
.395 3.0	64.8	29.2	3.7	0.0	0.0	0.0	97.8	117.4	-19.6	V	A	100.0	223.5	Y-axis
.395 3.0 399.975MHz	63.0	29.2	3.7	0.0	0.0	0.0	96.0	117.4	-21.4	H	A	133.0	227.8	Y-axis
.400 3.0	62.4	29.2	3.8	0.0	0.0	0.0	95.4	117.4	-22.0	v	A	100.0	224.5	Y-axis
.400 3.0	64.7	29.2	3.8	0.0	0.0	0.0	97.6	117.4	-19.8	H	Α	106.1	60.9	Y-axis
427.025MHz .427 3.0	64.3	29.3	3.8	0.0	0.0	0.0	97.4	117.4	-20.0	v	A	139.5	50.8	Y-axis
.427 3.0 431.975MHz	64.7	29.3	3.8	0.0	0.0	0.0	97.8	117.4	-19.6	H	Ā	106.7	321.7	Y-axis
.432 3.0	64.0	29.4	3.8	0.0	0.0	0.0	97.1	117.4	-20.3	V	A	102.7	340.7	Y-axis

Page 27 of 39

8.2. RADIATED EMISSIONS BELOW 960 MHz

Note 1: The measurements in this section show that Peak values are less than the Quasi-Peak limit.

Note 2: Plots in the range of 960 to 100 MHz in this section are shown for reporting purposes only.

Page 28 of 39

SPURIOUS EMISSIONS 30 TO 960 MHz (HORIZONTAL)

1395.025MHz

Page 29 of 39

SPURIOUS EMISSIONS 30 TO 960 MHz (VERTICAL)

Page 30 of 39

SPURIOUS EMISSIONS 30 TO 960 MHz (HORIZONTAL)

1399.975MHz

Page 31 of 39

SPURIOUS EMISSIONS 30 TO 960 MHz (VERTICAL)

Page 32 of 39

SPURIOUS EMISSIONS 30 TO 960 MHz (HORIZONTAL)

1427.025MHz

Page 33 of 39

SPURIOUS EMISSIONS 30 TO 960 MHz (VERTICAL)

Page 34 of 39

SPURIOUS EMISSIONS 30 TO 960 MHz (HORIZONTAL)

1431.975MHz

Page 35 of 39

SPURIOUS EMISSIONS 30 TO 960 MHz (VERTICAL)

Page 36 of 39

8.3. RADIATED EMISSIONS ABOVE 960 MHz

HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 960 MHz

Test Engr:		Devin C	hang												
Date:		11/05/08	•												
Project #:		08J1220	3												
Company TT Da		Nihon K	ohden												
EUI Desci	iption:	EUI only	/ 												
EUI MUN: T- 14 T	.	Z01-9411	/A 1116 A 1												
lest taige Mode One	:::	Tu mada	1119 (0)	(2)											
Mode Oper: 1x mode				• 4 mp	Dreamin	Tain			Å 1707350	Field Stren	~h I imit				
	Dist	Distance	to Anter	иенсу та	D Corr	Distance	Correc	t to 3 me	tors	Peak Fie	ld Strength	I imit			
	Read	⊥ nalvzer	Reading	IIIa	4 vg	Average '	Field S	trensth @	18m	Margin	n Averase	Timit			
	AF	Antenna Factor			CL	Cable Lo:	55	nenem ©	J	HPF	High Pass	Filter			
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
1395.025N	IHz														
2.790	3.0	33.1	32.2	5.4	-35.2	0.0	0.6	36.1	54.0	- 17.9	V	A	102.5	70.0	
4.185	3.0	28.0	33.4	6.6	-34.8	0.0	0.6	33.8	54.0	-20.2	V	A	192.0	327.0	
8.370	3.0	27.7	35.4	9.0	-34.6	0.0	0.7	38.2	54.0	-15.8	<u>v</u>	A	100.2	236.1	
2.790	3.0	37.5	32.2	5.4	-35.2	0.0	0.6	40.5	54.0	-13.5	H	<u>A</u>	100.0	30.4	
4.185	3.0	30.3	33.4	6.6	-34.8	0.0	0.6	36.0	54.0	-18.0	H	A	199.8	213.4	
8.37U 1300 075%	 TH	29.9	35.4	9.0	-34.0	0.0	U./	30.U	54.0	-18.0	п	A	193.3	100.4	
1377.777.8 7 800	30	34.0	32.2	54	-35 2	0.0	0.6	37.1	54 0	-16.9	v	A	100.0	69.7	
4.200	3.0	27.8	33.4	6.6	-34.8	0.0	0.6	33.5	54.0	-20.5	v	A	132.5	337.4	
8.400	3.0	26.4	35.4	9.0	-34.7	0.0	0.7	36.9	54.0	-17.1	v	A	100.0	231.7	
2.800	3.0	36.6	32.2	5.4	-35.2	0.0	0.6	39.6	54.0	-14.4	H	A	100.1	31.6	
4.200	3.0	28.2	33.4	6.6	-34.8	0.0	0.6	33.9	54.0	- 20.1	H	A	200.0	220.8	
8.400	3.0	24.8	35.4	9.0	-34.7	0.0	0.7	35.2	54.0	- 18.8	H	A	125.1	360.0	
1427.025N	IHz									ļ					
2.854	3.0	41.6	32.3	5.4	-35.2	0.0	0.6	44.8	54.0	-9.2	V	A	100.0	70.9	
4.281	3.0	25.7	33.4	6.6	-34.8	0.0	0.6	31.5	54.0	-22.5	V TT	A	121.4	154.6	
2.854	3.0	41.9	32.3	5.4	-35.2	0.0	0.6	45.0	54.0	-9.0	H	A .	105.7	33.9	
4.281 1/31 075%	: 3.U TH-	29./	33.4	0.0	-34.8	0.0	U.0	31.0	24.0	-22.4	п	A	197.2	07.0	
7 864	3.0	40.1	32.3	54	-35.2	0.0	0.6	43.2	540	-10.8	v	A	100.0	68.6	
4.296	3.0	25.7	33.4	6.7	-34.8	0.0	0.6	31.6	54.0	-22.4	v	A	195.7	123.3	
2.864	3.0	39.9	32.3	5.4	-35.2	0.0	0.6	43.0	54.0	-11.0	H	A	103.8	340.8	
	3.0	25.7	33.4	6.7	-34.8	0.0	0.6	31.6	54.0	-22.4	H	A	158.9	117.3	

Page 37 of 39

9. SETUP PHOTOS

ANTENNA PORT

RADIATED EMISSION FOR PORTABLE CONFIGURATION

Page 38 of 39

Page 39 of 39

RADIATED EMISSION

END OF REPORT

Page 40 of 39