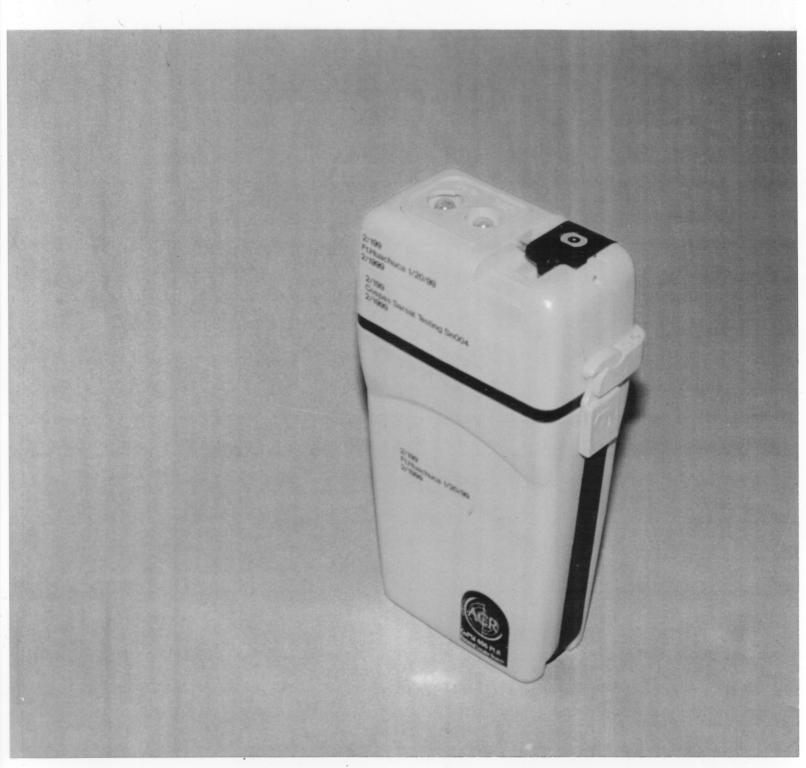


Testing & Consulting Services

2870 Stirling Road - Hollywood, FL 33020-1199 - (954) 925-0499


Test Report For PLB-100

Test conducted for:

ACR Electronics, Inc. 5757 Ravenswood Road Fort Lauderdale, Fl 33312 Ph (954) 981-3333 Fax (954) 983-5087

Test conducted by:

Q. C. Metallurgical, Inc. 2870 Stirling Road Hollywood, Fl 33020 Ph (954) 925-0499 Fax (954) 925-0988

METALLURGICAL, INC. Testing & Consulting Services

- 2870 Stirling Road · Hollywood, FL 33020-1199 · (954) 925-0499

TEST REPORT SIGNATURE PAGE

Performance Test for PLB-100

Test conducted for:

ACR Electronics, Inc. 5757 Ravenswood Road Fort Lauderdale, Fl 33312

Executive Signature Q.C. Metallurgical, Inc.

Test Program Directed By: Q.C. Metallurgical, Inc.

Test Witnessed By: ACR Electronics, Inc. Test conducted by:

Q.C. Metallurgical, Inc. 2870 Stirling Road Hollywood, Fl 33020

Ř. Dean Stickler Date: 3/17/99

J.Bankemper, Jr Date: 3/17/99

William Cox Date: 3/17/99

Testing & Consulting Services

2870 Stirling Road · Hollywood, FL 33020-1199 · (954) 925-0499

SUMMARY

Subject: Environmental and Operational Performance Test For PLB-100.

Attached is the complete report covering the tests performed on ACR's Model PLB-100.

Tests performed were:

- **1. Initial Aliveness**
- 2. Humidity
- 3. Vibration
- 4. Drop
- 5. Submersion
- 6. 121.5 MHz Auxiliary Radio-Locating Device Transmitter
- 7. Carrier Frequency (121.5 MHz)
- 8. Output Power (121.5 MHz)
- 9. Unwanted Emissions
- **10. Modulation Characteristics**
- **11. Spectrum Characteristics**

All test parameters were found to be satisfactory.

J. Bankemper, Jr. Q.C. Metallurgical, Inc.

METALLURGICAL, INC. Testing & Consulting Services

2870 Stirling Road · Hollywood, FL 33020-1199 · (954) 925-0499

2.0 Initial Aliveness Test

The initial aliveness test was performed on PLB-100, S/N 3.

The unit was checked for:

(a) Frequency accuracy.

(b) Medium and short term stability.

(c) RF power output into a 50 ohm dummy load (5W +/- 3dB).

PLB-100, S/N 3 passed the requirements outlined in the Performance Test Plan Section 2.0.

.

PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF SPECIFICATION	UNITS	E	ST RESULTS	S	COMMENTS
	4		с С	T==== (25±5 °C)		
1. N/A						
2. Initial Aliveness Test	-					
Carrier Frequency	406.025 ± 0.002	MHz		106.02493		PLB-100
 Power Output 	35 - 39	dBm		37.75đBm	- -	S/N 3 Passed
 Data Message 	2DDC048006FFBFF					
5. Humidity Test 8 hrs @ 40°C					T = 40°C	
 Carrier Frequency 	406.025 ± 0.002	MHz			106.02492	
Power Output	35 - 39	dBm			37.66dBm	
 Data Message 	2DDC048006FFBFF	-			.0003204	
 Medium term stability mean slope 	≤ 0.001	parts million/ minute		. " <u>-</u>	- <u></u>	Passed
Short term stability	≤ 0.002	parts/ million ms			-0002015	
				R	$\langle \rangle$	

J. Bankemper / Jr. Q.C. Metallurgfzal, Inc.

Testing & Consulting Services

- 2870 Stirling Road · Hollywood, FL 33020-1199 · (954) 925-0499

5.0 Humidity Test

PLB-100, S/N 3 was exposed for 8 hours at 40°C/95% R.H.

The unit was removed from the test chamber and activated within the five minute time period.

Within the fifteen minutes allowed, the unit was checked for:

- (a) Frequency accuracy.
- (b) Medium and short term stability.

(c) RF power output into a 50 ohm dummy load (5W +/- 3dB).

PLB-100, S/N 3 passed the humidity test requirements outlined in the Performance Test Plan Section 5.0.

Testing & Consulting Services

2870 Stirling Road · Hollywood, FL 33020-1199 · (954) 925-0499

6.0 Vibration Test

PLB-100, S/N 3 was exposed to a loose cargo environment.

The test duration was divided into six periods. At the end of each period the unit was rotated on to a different face so that at the end of the total duration, the unit rested on each of its' six sides.

The PLB-100 did not activate during exposure to the vibration test. The exterior mechanical inspection revealed no damage.

The unit was checked for:

(a) Frequency accuracy.

(b) Medium and short term stability.

(c) RF power output into a 50 ohm dummy load (5W +/- 3dB).

PLB-100, S/N 3 passed the vibration test as outlined in the Performance Test Plan Section 6.0.

		- Medium term stability	- Short term stability	- Carrier Frequency - Power Output	 Aliveness Test 	 Mechanical Inspection (nothing loose) 	6. Vibration Test		PARAMETERS TO BE MEASURED DURING TESTS
SUMMARY OF TEST RESULTS		≤ 0.001	≤ 0.002	406.025 ± 0.002 35 - 39		No Damage			RANGE OF SPECIFICATION
OF TEST I		parts million/ minute	parts/ million 100 ms	dBm			:		UNITS
\frown								-C	
J. Bankem 9.C. Meta		.0005449	.0001454	406.02493 37.41dBm				T _{ana} 25±5 °C)	TEST RESULTS
Bankemper, Jr. Metallurgical,								0 0	S
Inc.						No Damage			COMMENTS

2 .

METALLURGICAL, INC.

Testing & Consulting Services

- 2870 Stirling Road - Hollywood, FL 33020-1198 - (954) 925-0499

7.0 Drop Test

PLB-100, S/N 3 was placed in its' transportation case. The unit was dropped from 122 cm six times, once on each face.

Upon completion of the drop test, an exterior and interior inspection was performed.

Within fifteen minutes the unit was checked for:

(a) Frequency accuracy.

(b) Medium and short term stability.

(c) RF power output into a 50 ohm dummy load (5W +/- 3dB).

PLB-100, S/N 3 passed the drop test outlined in the Performance Test Plan Section 7.0.

		- Medium term stability	- Short term stability	- Carrier Frequency - Power Output	 Aliveness Test 	 Exterior Mechanical Inspection (nothing loose) 	On Hard Surface (2 inch plywood)	7. Drop Test (122 cm x 6)		PARAMETERS TO BE MEASURED DURING TESTS
		<u>≤0.001</u>	≤ 0.00 2	406.025 ± 0.002 35 - 39		No Damage				RANGE OF SPECIFICATION
		parts/ million/ minute	parts/ million/ 100 ms	dBm			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			UNITS
(
J. Bankemper, Q.C. Metallur)	.0003825	.0001453	406.02493 37.51					1 amb. (25±5 °C)	TEST RESULTS
nkemper, Jr. Metallurgigal,		· · · · · · · · · · · · · · · · · · ·							• c)	1
Inc.						Passed No Damage				COMMENTS

Testing & Consulting Services

- 2870 Stirling Road - Hollywood, FL 33020-1199 - (954) 925-0499

8.0 Submersion Test

PLB-100, S/N 3 was submerged in water at $18^{\circ}C$ +/- $2^{\circ}C$. The unit was placed at a depth of one meter for one hour.

Upon removal, the PLB was wiped dry and opened for examination. There was no evidence of water leakage.

Fifteen minutes after the power was applied, the unit was checked for:

- (a) Frequency accuracy.
- (b) Medium and short term stability.
- (c) RF power output into a 50 ohm dummy load (5W +/- 3dB).

PLB-100, S/N 3 passed the submersion test outlined in the Performance Test Plan Section 8.0.

TS SPECIFICATION UNITS TEST RESULTS SPECIFICATION Hz Tmm. Tmm. Tmm. 406.025 ± 0.002 MHz 406.02493 35 – 39 dBm 37.54dBm damage 37.54dBm J. Bankemper, Jr. 0.C. Metallurgical									
N Test Results Tmm. Tmm. Tmm. Tmm. C) (18±2°C) dBm 37.54dBm dBm 37.54dBm J. Bankemper, Jr. J. Bankemper, Jr.			 Interior exterior mechanical Inspection 			 Aliveness Test 	A Submonion Test		PARAMETERS TO BE MEASURED DURING TESTS
Test RESULTS Time Time •C) (18±2*C) •C) 406.02493 37.54dBm 37.54dBm 37.54dBm J.VBankemper, Jr. 9.C. Metallurgical,			No water or damage	35 - 39	406.025 ± 0.002				RANGE OF SPECIFICATION
TEST RESULTS T_mm. T_mm. 406.02493			-	dBm	MHz				UNITS
T_mt T_mr. (18±2*C) (°C) 37.54dBm 37.54dBm J.VBankemper, Jr. Q.C. Metallurgical(\sim							-I main	Г
T T T T T T T T T T T T T T T T T T T				37.54dBm	406.02493			Tump	EST RESUL
Passed	per, Jr. llurgical				· ·	2 - A.L	[. 0	Tmax	SI
	(Inc.		Passed						COMMENTS

Testing & Consulting Services

— 2870 Stirling Road - Hollywood, FL 33020-1199 - (954) 925-0499

9.0 121.5 MHz Auxiliary Radio-Locating Device Transmitter Test.

- 9.1 Carrier frequency (121.5 MHz).
- 9.2 Output Power (121.5 MHz).
- 9.3 Unwanted Emissions.
- 9.4 Modulation Characteristics.

9.5 Spectrum Characteristics.

The above tests were conducted by James Jesse of Atlantic Coast Engineering Systems, Inc. on behalf of Q.C. Metallurgical, Inc.

PLB-100, S/N 3 passed the requirements outlined in the Performance Test Plan.

Test results and graphs are attached.

Nominal Supply Voltage

•

PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF SPECIFICATION	UNITS				_	TEST RESULTS	ESULT	ŝ			
			400	ģ	-20	ş	¢	+ ;	+20°	+35°	+45°	5;
9.1 Auxiliary Radio-locating Device Transmitter test										_		
Carrier Frequency	121.5 MHz ± 6.075	동국 2	-О.З	0.8	1.41	1.71	1.74	1.57	1.24	0.76	0.46	0.30
 Carrier Frequency (20°C) +15% Supply Voltage 	121.5 MHz ± 6.075	KHz							1.24			
 Carrier Frequency (20°C) -15% Supply Voltage 	121.5 MHz ± 6.075	KHz							1.24			
9.2 Auxiliary Radio-locating Device Transmitter Test	-											
 Output Power 	14 M in	dBm	20.43	20,5	20.5	20.4	20.4	20.4	20.4	20.3	20.3	20.2
 Output Power (20°C) +15% Supply Voltage 	14 Min	dBm							20,4			
 Output Power (20°C)–15% Supply Voltage 	14 M in	đBm	- -						20.4			
							R		1/ march			

Q.C. Metallurgiqui, Inc.

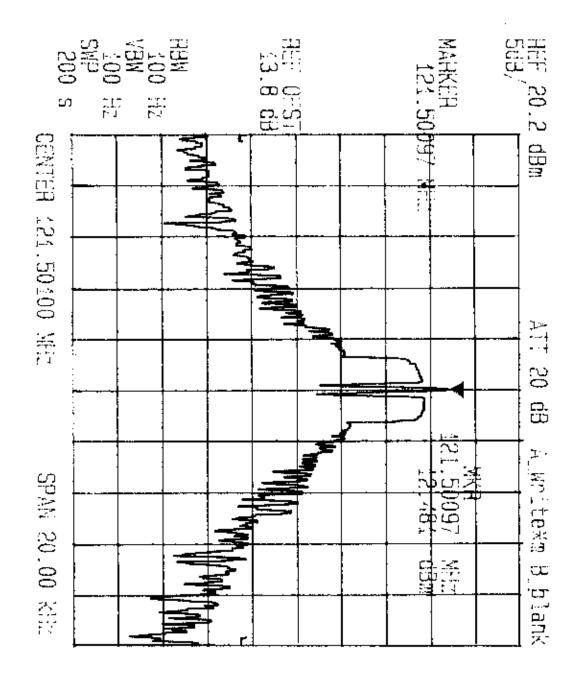
I

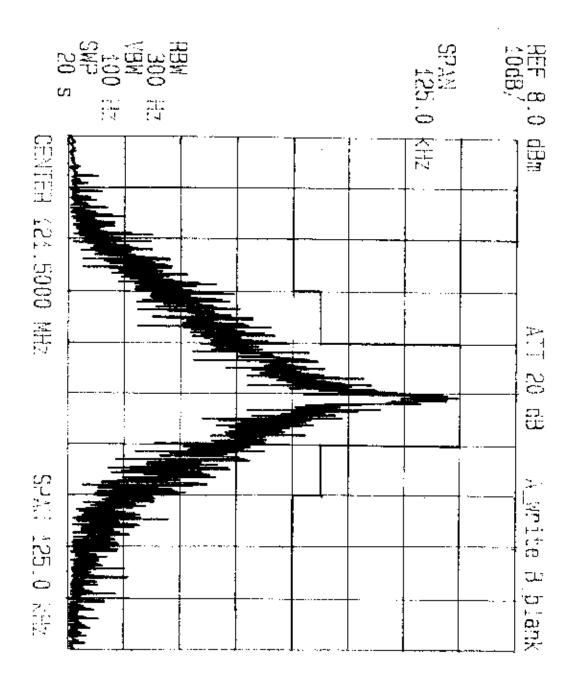
		r	ւ		•	9.4 Auxiliary Radio-locating Device Transmitter Tea	•	9.3 Auxillary Radio-locating Device Transmitter Tea		M
Ś			•	·	Modulation	Devic	Spuri	Devic		PAR
Sweep repetition rate	Factor	Duty Cycle	Direction	Frequency	lation	uxiliary Radio-locating Device Transmitter Test		uxillary Radio-locating Device Transmitter Test		PARAMETERS TO BE MEASURED DURING TESTS
repeti	7	Cycle	lion	ancy		nsmit	missic	nemi:		
tion ra						ter T	ons 12	tter T		IO B
ite				-		<u> </u>	Spurious Emissions 121 MHz	95 Q		E STS
									<u> </u>	<u>0</u>
N	0.85	ಜ	Ę	ange 160			Figure 1	:		PECIF
2-4	0.85 - 1.0	33 - 55	Upward	≥ 700 Hz within range of 300 – 1600 Hz						RANGE OF
				Ĩ				<u>.</u>		Õ."
Ηz	#	*		꾠			. (attach graph)			UNITS
							⊇ छै		6	₩
ω	-	36%		902.3 339 1241.3					T _{min.} (-40.9 °C)	
					.					TES
ω	~	37.9%		892.3 338.7 1231					T _{ank} (<u>22,1 °</u> C)	ST RI
		*		~ \ Q					ເງິ	T RESULTS
ω	_	39,4%		889.4 341.3 1230.7					(55 .	SI
		*		∡ं थं ⊢े					, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
				DIFF				**** <u>*</u> *******		8
				DIFFERENCE MIN MAX		ĺ				COMMENTS
				6						Z

.

SUMMARY OF TEST RESULTS

J. Bankemper, Jr. 9.C. Metallyrgical, Inc.


ŝ
C
9
a.
2
5
2
~
к,
\sim
≌.
-
1
λŐ.
Ĥ.
_
2
2
9
9
-
H
ω.


.

	- % Power in Carrier - Carrier Bandwidth	USB1 USB5 USB5 -	- Range of specification - Carrier - LSB1 - LSB3 - LSB5 - LSB7 - LSB9	PARAMETERS TO BE MEASURED DURING TESTS 9.5 Auxillary Radio-locating Device Transmitter Test • Spectrum
		-13.8 -13.8	-14.5 -14.5 -14.5 -14.5 -14.5 -12.5 -13.5	Power in dBm
		9,1 1,26 0,12 0,04	17.8 1.2 0.44 0.04	Power in mW
Salv	<u>45.4</u>		≥ 30%	Power in Carrier
J Bankemper, Jr. 0.C. Metallyrgigal	30		× 60 Hz	Carrier Bandwidth
gigal, Inc.				COMMENTS

.

.

	 Power Pattern Polarization Median PERP (of 12) Maximum – minimum (of 11) 	Auxiliary Radio-locating Device Transmitter Test		PARAMETERS TO BE MEASURED DURING TESTS
· · ·	Omnidirectional Vertical 25 – 100 ≤6			RANGE OF SPECIFICATION
	dB ₩ < <			UNITS
			Т _{ты} .	
	1 2 2 X 1 X 1 2 X 1		Т <mark>т</mark>	TEST RESULTS
			Т _{тик} (°С)	īS
	·			COMMENTS