

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

Amended FCC/ISED TEST REPORT

Prepared for:

Bosch Security Systems, Inc.

Address:

8601 East Cornhusker Hwy. Lincoln, NE 68507 USA

Product:

BTR-30N

Test Report No:

R20190927-20-E1D

Approved By:

Nic S. Johnson, NCE Technical Manager iNARTE Certified EMC Engineer #EMC-003337-NE

DATE:

1 June 2020

Total Pages:

46

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Bosch Security Systems, Inc

REVISION PAGE

Prepared for:

Rev. No.	Date	Description						
0	27 February 2020	Original – NJohnson						
		Prepared by Kvepuri/CFarrington						
A	3 April 2020	Repeated power measurements and made changes requested by the client.						
		Includes NCEE Labs report R20190927-20-E1 and its amendment in full						
В	5 May 2020	 Radiated emissions details and data was added to the section 4.1 Emissions Masks data was added to the section 4.3 Modulation Characteristics data was added to the section 4.4 Includes NCEE Labs report R20190927-20-E1A and its amendment in full 						
С	22 May 2020	Low and high frequencies were moved within the allocated band. Updated calibration table. Added plots showing center frequency to Section 4.5.						
D	1 June 2020	Updated Table in Section 1 and frequencies in Section 4.2.						

Prepared for: Bosch Security Systems

сог	NTENTS		
Revi	sion Page	9	2
1.0	Sum	nmary of test results	4
2.0	EUT	Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	6
	2.3	Description of support units	6
3.0	Lab	oratory description	7
	3.1	Laboratory description	7
	3.2	Test Personnel	7
	3.3	Test equipment	8
4.0	Deta	ailed results	9
	4.1	Unwanted Emissions & Field Strength of emissions	9
	4.2	Output Power1	3
	4.3	Bandwidth and emissions mask1	8
	4.4	Modulation charecteristics	2
	4.5	Frequecy Stability measurements	6
	4.6	Conducted AC Mains Emissions4	0
Арр	endix A	: Sample Calculation4	3
Арр	endix B	- Measurement Uncertainty4	5
REF		۱D4	6

Prepared for:

Bosch Security Systems

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. The EUT has been tested according to the following specifications:

APPLIED STANDARDS AND REGULATIONS										
Standard Section	Test Type	Result								
FCC Part 74.861(e), 2.1046(a) Using ANSI C63.26-2015 RSS-210 Issue 10, Annex G.1 using ANSI C63.10:2013	Carrier Output Power EIRP	Pass								
FCC Part 2.1053(a) Using ANSI C63.26-2015	Unwanted Emissions	Pass								
FCC Part 74.861(e)(6), 2.1053(a) Using ANSI C63.26-2015 RSS-210 Issue 10, Annex G.4 using ANSI C63.10:2013	Field Strength of Spurious Radiation	Pass								
FCC Part 74.861(e)(7), 2.1053(C) (1) Using ANSI C63.26-2015 RSS-210 Issue 10, Annex G.2 using ANSI C63.10:2013	Emission Masks And Occupied Bandwidth	Pass								
FCC Part 2.1047 Using ANSI C63.26-2015 RSS-210 Issue 10, Annex G.5 using ANSI C63.10:2013	Audio Low Pass Filter, Audio Frequency Response and Modulation Limiting	Pass								
FCC Part 74.861(e)(4) (5), 2.1055 Using ANSI C63.26-2015 RSS-210 Issue 10, Annex G.3 / RSS-Gen Issue 5, Section 8.11 using ANSI C63.10:2013	Frequency Stability	Pass								

See Section 4 for details on the test methods used for each test.

Prepared for: **Bosch Security Systems**

2.0 **EUT DESCRIPTION**

2.1 **EQUIPMENT UNDER TEST**

The Equipment Under Test (EUT) was a portable transceiver from Bosch Security Systems.

Model	BTR-30N
EUT Received	17 December 2019
EUT Tostad	17 December 2019 - 17 January 2020
EUTTESIEU	25 March 2020
	075491495800240001
Serial No.	075491495800240002
	115489195800240002
Operating Band	482 MHz - 572 MHz
Power Supply	120 VAC 60 Hz Internal power supply

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

Prepared for: Bosch Security Systems

2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below:

Channel	Frequency
Low (28u)	482.025
Middle (29u)	527.000
High (30u)	571.975

These are the only three representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

This EUT was set to transmit in a worse-case scenario with modulation on. The manufacturer modified the unit to transmit continuously on the lowest, highest and one channel in the middle.

2.3 DESCRIPTION OF SUPPORT UNITS

NA

Prepared for:

Bosch Security Systems

3.0 LABORATORY DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation No:	US1060
Industry Canada Test Site Registration No:	4294A-1
NCC CAB Identification No:	US0177

Environmental conditions varied slightly throughout the tests: Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^\circ$ Celsius

3.2 TEST PERSONNEL

All testing was performed by Karthik Vepuri, Fox Lane and Caleb Farrington of NCEE Labs. The results were reviewed by Nic Johnson.

Prepared for:

for: Bosch Security Systems

3.3 TEST EQUIPMENT				
DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Rohde & Schwarz Test Receiver	ES126	100037	30 Jan 2018	30 Jan 2020
Keysight EXA Signal Analyzer	N9010A	MY56070862	14 Dec 2018	14 Dec 2020
Keysight MXE Signal Analyzer	N9038A	MY59050109	23 Apr 2019	23 Apr 2021
SunAR RF Motion	JB1	A082918-1	15 Oct 2018	15 Oct 2020
SunAR RF Motion	JB1	A091418	06 Mar 2020	06 Mar 2022
EMCO Horn Antenna	3115	6416	26 Jan 2018	26 Jan 2020
Rohde & Schwarz Preamplifier	TS-PR18	3545700803	09 Mar 2018*	09 Mar 2021*
Trilithic High Pass Filter	6HC330	23042	09 Mar 2018*	09 Mar 2021*
Rohde & Schwarz LISN	ESH3-Z5	836679/010	25 Jul 2019	25 Jul 2020
Rohde & Schwarz Test Software	ES-K1	12575	NA	NA
RF Cable (preamplifier to antenna)	MFR-57500	01-07-002	09 Mar 2018*	09 Mar 2021*
RF Cable (antenna to 10m chamber bulkhead)	FSCM 64639	01E3872	09 Mar 2018*	09 Mar 2021*
RF Cable (10m chamber bulkhead to control room bulkhead)	FSCM 64639	01E3874	09 Mar 2018*	09 Mar 2021*
RF Cable (Control room bulkhead to RF switch)	FSCM 64639	01E3871	09 Mar 2018*	09 Mar 2021*
RF Cable (RF switch to test receiver)	FSCM 64639	01F1206	09 Mar 2018*	09 Mar 2021*
RF switch – Rohde and Schwarz	TS-RSP	1113.5503.14	09 Mar 2018*	09 Mar 2021*
N connector bulkhead (10m chamber)	PE9128	NCEEBH1	09 Mar 2018*	09 Mar 2021*
N connector bulkhead (control room)	PE9128	NCEEBH2	09 Mar 2018*	09 Mar 2021*
HP Modulation Analyzer	8901A	2439A03594	28 May 2019	31 May 2021
HP Arbitrary Waveform Generator	33120A	US34013155	N/A	N/A
Agilent DC Power Supply	E3631A	KR01128922	N/A	N/A
Tektronix Digital Phosphor Oscilloscope	DPO 2024	C011676	23 Apr 2020	23 Apr 2021

*Internal Characterization

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 8 of 46

Prepared for:

or: Bosch Security Systems

4.0 DETAILED RESULTS

4.1 UNWANTED EMISSIONS & FIELD STRENGTH OF EMISSIONS

Test Method: ANSI C63.26:2015:

1. Section 5.5, "Radiated Emissions Testing"

& also, FCC Part 15B using ANSI C63.4-2014 RSS-Gen, ICES-003, Issue 6

Limits for radiated emissions measurements:

Limits from FCC Part 74.861(e)(6)(iii) shall be applied:

Frequency Band	Limit (dB)
≥250% of authorized bandwidth	43 + 10log(P)

Where P is equal to the output power of the transmitter in Watts.

FCC Limit = -13 dBm

Limit from RSS 210, Annex G.4, and ETSI EN 300 422-1

Table 3: Limits for spurious emissions

State	Frequency							
	47 MHz to 74 MHz 87,5 MHz to 137 MHz 174 MHz to 230 MHz 470 MHz to 862 MHz	Other Frequencies below 1 000 MHz	Frequencies above 1 000 MHz					
Operation	4 nW	250 nW	1 µW					
Standby	2 nW	2 nW	20 nW					

Operation

-53.98 dBm (47-862 MHz Bands) -36.02 dBm (Below - 1 GHz) -30 dBm (above 1 GHz)

Standby

-56.99 dBm (47-862 MHz Bands) -56.99 dBm (Below – 1 GHz) -46.99 dBm (above 1 GHz)

ncee.	Report Number:	R20190927-20-E1	Rev	D
labs	Prepared for:	Bosch Security Systems		

Test procedures:

The EUT was connected directly to a spectrum analyzer. Spurious components with frequency less than 1GHz were recorded and evaluated according to the limit stated above. Analyzer measurement settings can be found in the plots below along with the corresponding power levels.

Deviations from test standard:

No deviation.

Test setup:

Figure 1 - Conducted Unwanted Emissions Test Setup

Figure 2 - Radiated Emissions Test Setup

EUT operating conditions

The EUT was powered by 120 VAC 60Hz for all the tests.

ncee .	Report Number:	R20190927-20-E1	Rev	D
	Prepared for:	Bosch Security Systems		

Test results:

na Ke	sysight Spectrum Analy	/zer - Swept SA													d x
Vide		50 Ω AC			SEN	SE:INT			Ανα Τνρ	e: Lo	a-Pwr		03:	20:00 PM Ja TRACE	an 09, 2020
VIU	50 D W 300 F		PNO: IFGair	Fast h:Low	Ģ	Trig: Free R #Atten: 20 d	un IB		Avg Hold	:>10	0/100			TYPE DET	MWWWW PNNNNN
Pea	ak Table						206	AB					Mkr1	572.2	3 MHz
	Freq (GHz)	dBm	ΔLimit 1 (dB)	10 dB	/div	Ref 30.6	0 dB	sm						24.629) dBm
1	0.5722	24.63		Log [D	<mark>⊼1</mark> ∏				
2	0.5538	24.42								<i>A</i>	Y				
3	0.5635	24.19		20.6 -											
4	0.5897	-32.55													
5	0.5363	-33.94		10.6 -											
6	0.5810	-35.77													
7				0.600 -											
8				0.40											
9				-3.40											
10				-19.4											
11															
12				-29.4											
13										5	6				
14				-39.4 -											
15											λ.		d an aite		
16				-49.4	dent lands	Labelins will be all the second	******	The factor is the second of	THUR AND THUR	NI-604 4	rnhandhh	had a second	and a state of the	Uker Tay Yorking at	
17															
18				-59.4 -											
19															
20				Start	0.03	00 GHz							Sto	p 1.00	00 GHz
<			>	#Res	; BW	100 kHz	ŧ	≠VBW 3	00 kHz		S	weep	3.200	ms (10	01 pts)
MSG									STATUS						

Figure 3 - Conducted Unwanted Emissions Plot

Limit = -13 dBm

Prepared for: Bosch Security Systems

Figure 4 - Conducted Unwanted Emissions Plot

Limit = -13 dBm

Low Ch 482 MHz		BTR 30 Radiated Emissions Per ETSI EN 300 422-1						
Frequency	Siggen	Cable loss	Cable loss Gain Corrected Level		Limit	Margin		
MHz	dBm	dB		dBm	dBm	dB		
964.006000 11.2		-56.1	6.6	-38.3	-36.02	2.28		
All the other measurements including the harmonics of mid and high channel were found to be at least 6 dB below the limit.								

* Note that this table covers FCC requirement too as the limits are higher than that required for EN 300 422-1. Corrected Level = Sig gen + Cable Loss+ Gain

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 12 of 46

Prepared for: **Bosch Security Systems**

4.2 **OUTPUT POWER**

Test Method: ANSI C63.26:

Section(s) 5.2.3.3 "Measurement of peak power in a narrowband signal with a spectrum/signal analyzer or EMI receiver"

Limits of power measurements:

- (1) The power may not exceed the following values.
 - (i) 54-72, 76-88, and 174-216 MHz bands: 50 mW EIRP
 - (ii) 470-608 and 614-698: 250 mW conducted power

Test procedures:

All the measurements were done with RBW greater than OBW of the signal.

Deviations from test standard:

No deviation.

Test setup:

Figure 5 – Peak Output Power Measurements Test Setup

EUT operating conditions:

The EUT was powered by 120 VAC 60 Hz power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

ncee.	Report Number:	R20190927-20-E1	Rev	D
	Prepared for:	Bosch Security Systems		

Test results:

Output Power								
CHANNEL	CHANNEL FREQUENCY (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	EIRP (mW)	Method	RESULT		
Low	482.025000	23.863	243.39	243.39	Conducted	PASS		
Middle	527.000000	23.575	227.77	227.77	Conducted	PASS		
High	571.970000	23.847	242.49	242.49	Conducted	PASS		

EIRP = Peak Output Power (mW) x antenna gain (numeric isotropic)

Antenna gain = 0 dBi = 1 (numeric)

ncee	Report Number:	R20190927-20-E1	Rev	D
	Prepared for:	Bosch Security Systems		

Figure 6 - Output Power, Low Channel

ncee.	Report Number:	R20190927-20-E1	Rev	D
labs	Prepared for:	Bosch Security Systems		

Figure 7 - Output Power, Mid Channel

Attenuator was not accounted for,

23.575dBm = 19.72 + 3.855

Output Power = Attenuation + 3.855

Attenuation = 19.72dBm

Figure 8 – Output Power, High Channel

Bosch Security Systems Prepared for:

4.3 BANDWIDTH AND EMISSIONS MASK

Test Method: ANSI C63.26,

1. Section(s) 5.4.3, 5.4.4

Limits of bandwidth measurements:

The operating bandwidth shall not exceed 200 kHz.

The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

(i) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB;

(ii) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB;

(iii) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43 + 10log10 (mean output power in watts) dB.

Test procedures:

The EUT was connected to the spectrum analyzer directly with a low-loss shielded coaxial cable. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1 kHz RBW and 3 kHz VBW. The bandwidth measurements were done using the automatic bandwidth measurement. The modulation frequency was 1 kHz.

Deviations from test standard:

No deviation

ncee.	Report Number:	R20190927-20-E1	Rev	D
labs	Prepared for:	Bosch Security Systems		

Test setup:

Figure 9 – Measurements Test Setup

EUT operating conditions:

The EUT was powered by 120 VAC 60 Hz power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Test results:

ncee labs	Report Number:	R20190927-20-E1		D
	Prepared for:	Bosch Security Systems		

Figure 10 - 99% Occupied Bandwidth, Low Channel, with Tone

ncee	Report Number:	R20190927-20-E1		
labs	Prepared for:	Bosch Security Systems		

Figure 11 - 99% Occupied Bandwidth, Mid Channel, with Tone

ncee.	Report Number:	R20190927-20-E1	Rev	D
labs	Prepared for:	Bosch Security Systems		

Keysight Spec	ctrum Analyzer - Occupied BW	,			
Center Fr	RF 50Ω AC	ЛН	SENSE:INT Center Freq: 571.975000	MHz	05:02:25 PM Jan 17, 2020 Radio Std: None
]	#IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Hold:>10/10	Radio Device: BTS
10 dB/div	Ref 25.00 dBm	1			
Log					
5.00					
-5.00					
-15.0					
-25.0					
-35.0				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-45.0	www.www.				monorman
-55.0					
-65.0					
Center 57	'2 MH7				Snan 70 kHz
Res BW 6	80 Hz		VBW 6.8 kHz		Sweep 139.7 ms
Occup	ied Bandwidt	h	Total Power	28.0 dBm	
	10	6.711 kHz			
Transm	nit Freq Error	-131 Hz	% of OBW Power	99.00 %	
x dB Ba	andwidth	9.537 kHz	x dB	-6.00 dB	
MSG				STATUS	

Figure 12 - 99% Occupied Bandwidth, High Channel, with Tone

ncee
labs

Prepared for: Bosch Security Systems

Figure 13 – Emissions Mask, Low Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 23 of 46

	ncee.	Report Number:	R20190927-20-E1	Rev	D
•	labs	Prepared for:	Bosch Security Systems		

Figure 14 - Emissions Mask, Mid Channel

ncee labs	Report Number:	R20190927-20-E1	Rev	D
	Prepared for:	Bosch Security Systems		

Figure 15 - Emissions Mask, High Channel

nco	•
	J,
. la	JS
•	

Prepared for: Bosch Security Systems

Figure 16 – Emissions Mask, Low Channel, with 1 kHz Tone

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 26 of 46

ncee.	Report Number:	R20190927-20-E1	Rev	D
	Prepared for:	Bosch Security Systems		

RF 50.0 AC Center Freq: 527.00000 MHz Center Freq: 527.00000 MHz Radio Std: None VASS IFGain:Low	Keysight Spectru	m Analyzer - Spectrur	n Emission Mask								
Cert UTS et 19.72 dB 		RF 50 Ω A	C		SENSE:INT	Frog: 527.00	0000 MH-			02:51:26	PM Mar 25, 2020
ASS IFGainLow #Atten: 20 dB Radio Device: BTS Ref Offset 19.72 dB 00 dBadelawredowi Ref 30.0 dBm Accords to the second seco	ker Offset	19.72 aB			u Trig:	Free Run	Av	vg: 100.00% d	of 10	laulo stu. N	one
Start Freq Stop Freq Integ BW dBm Lower Cover Cover Span 100 kHz 25.00 kHz 25.00 kHz 30.00 Hz -54.14 (42.38) -25.00 kHz 300.0 Hz -64.91 -62.60 k -62.60 k </th <th>PASS</th> <th></th> <th>I</th> <th>FGain:Low</th> <th>#Atte</th> <th>n: 20 dB</th> <th></th> <th></th> <th>R</th> <th>adio Device</th> <th>BTS</th>	PASS		I	FGain:Low	#Atte	n: 20 dB			R	adio Device	BTS
Org Org <th>10 d Drielis Window</th> <th>Ref Offset 19.1</th> <th>72 dB</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	10 d Drielis Window	Ref Offset 19.1	72 dB								
20.0	-09										Absolute Lim
10.0 0.00	20.0										
0.00 0.00	10.0					whata					
Start Freq Stop Freq Integ BW dBm Lower Content of the stop of the	0.00				N	1. Str. Mr.					
0.00 0.00	40.0				. N.		_{\γ\} , Γ				Relative Lim
20.0 30.0 40.0	10.0				N		· Ψų,				DEGUVE LIN
Start Freq Stop Freq Integ BW dBm Lower <-Peak > Upper 12.50 kHz 25.00 kHz 30.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k - 12.50 kHz 25.00 kHz 300.0 Hz -54.14 (-42.38) -25.00 k -22.31 (-20.55) 12.50 k 25.00 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 1.000 MHz 12.50 MHz 15.00 MHz 1.000 MHz	20.0			L.	มี		14				
40.0 40.0	30.0			AN"			<u> </u>	¶			
Start Freq Stop Freq Integ BW Lower <-Peak > Upper 12.50 kHz 25.00 kHz 300.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k 25.00 kHz 62.50 kHz 300.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k 25.00 kHz 62.50 kHz 300.0 Hz -54.14 (-42.38) -25.00 k -55.22 (-43.46) 28.80 k 62.50 kHz 100.0 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 1.000 MHz 12.50 MHz 15.00 MHz 1.000 MHz	40.0			<u>_</u>				<u>"\</u>			
Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Upper 12.50 kHz 25.00 kHz 300.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k 25.00 kHz 62.50 kHz 300.0 Hz -54.14 (-42.38) -25.00 k -55.22 (-43.46) 28.80 k 62.50 kHz 100.0 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 8.000 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 25.00 kHz 15.00 MHz 1.000 MHz () 4.000 MHz 15.00 MHz 1.000 MHz () 12.50 MHz 15.00 MHz 1.000 MHz () 12.50 MHz	50.0			. N				۲ YL			
Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) 12.50 kHz 25.00 kHz 300.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k 12.50 kHz 25.00 kHz 300.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k 25.00 kHz 62.50 kHz 300.0 Hz -54.14 (-42.38) -25.00 k -55.22 (-43.46) 28.80 k 62.50 kHz 100.0 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 8.000 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () () () () () () () () () () () ()	00.0		which the man	14,1 °				՝ ՆՆ	www.	J. B. and and an	Spectrur
Span 100 kHz Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Upper 12.50 kHz 25.00 kHz 300.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k ^ 25.00 kHz 62.50 kHz 300.0 Hz -54.14 (-42.38) -25.00 k -55.22 (-43.46) 28.80 k 62.50 kHz 100.0 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 8.000 MHz 1.000 MHz () 12.50 MHz 15.00 MHz 1.000 MHz () 12.50 MHz 15.00 MHz 1.000 MHz () <td>90.0 Www.her.</td> <td>Advertigation And And And And And And And And And An</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>a di ana ang ang ang ang ang ang ang ang ang</td> <td>anthone of the address</td>	90.0 Www.her.	Advertigation And And And And And And And And And An								a di ana ang ang ang ang ang ang ang ang ang	anthone of the address
Start Freq Stop Freq Integ BW dBm Lower <- Peak -> Upper 12.50 kHz 25.00 kHz 300.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k 25.00 kHz 62.50 kHz 300.0 Hz -54.14 (-42.38) -25.00 k -55.22 (-43.46) 28.80 k 62.50 kHz 100.0 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 8.000 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () () () () () () () () () () () () <td>Center 527</td> <td>MHz</td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>I</td> <td>Spa</td> <td>an 100 kHz</td>	Center 527	MHz		1	1				I	Spa	an 100 kHz
Total Power Ref 23.24 dBm / 0.01 MHz Start Freq Stop Freq Integ BW dBm $\Delta Lim(dB)$ Freq (Hz) dBm $\Delta Lim(dB)$ Freq (Hz) 12.50 kHz 25.00 kHz 300.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k 25.00 kHz 62.50 kHz 300.0 Hz -54.14 (-42.38) -25.00 k -55.22 (-43.46) 28.80 k 62.50 kHz 100.0 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 8.000 MHz 1.000 MHz () () 8.000 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () () () () <td></td>											
Start Freq Stop Freq Integ BW dBm $\Delta Lim(dB)$ Freq (Hz) dBm $\Delta Lim(dB)$ Freq (Hz) 12.50 kHz 25.00 kHz 300.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k 25.00 kHz 62.50 kHz 300.0 Hz -54.14 (-42.38) -25.00 k -55.22 (-43.46) 28.80 k 62.50 kHz 100.0 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 8.000 MHz 1.000 MHz () () 8.000 MHz 1.000 MHz () () 8.000 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz	Total Power	Ref 23.24	4 dBm / 0.01	MHz							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) dBm ΔLim(dB) Freq (Hz) 12.50 kHz 25.00 kHz 300.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k ^ 25.00 kHz 62.50 kHz 300.0 Hz -54.14 (-42.38) -25.00 k -55.22 (-43.46) 28.80 k 62.50 kHz 100.0 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 8.000 MHz 1.000 MHz () () 8.000 MHz 12.50 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () ()					Lower	<-	Peak ->	Upper			
12.50 kHz 25.00 kHz 300.0 Hz -20.57 (-18.81) -12.50 k -22.31 (-20.55) 12.50 k ^ 25.00 kHz 62.50 kHz 300.0 Hz -54.14 (-42.38) -25.00 k -55.22 (-43.46) 28.80 k 62.50 kHz 100.0 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 8.000 MHz 1.000 MHz () () 8.000 MHz 12.50 MHz 1.000 MHz () () 8.000 MHz 12.50 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () ()	Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)		
25.00 kHz 62.50 kHz 300.0 Hz -54.14 (-42.38) -25.00 k -55.22 (-43.46) 28.80 k 62.50 kHz 100.0 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 8.000 MHz 1.000 MHz () () 8.000 MHz 12.50 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () ()	12.50 kHz	25.00 kHz	300.0 Hz	-20.57	(-18.81)	-12.50 k	-22.31	(-20.55)	12.50 k	^	
62.50 kHz 100.0 kHz 300.0 Hz -61.91 (-54.91) -62.60 k -62.60 (-55.60) 62.70 k 4.000 MHz 8.000 MHz 1.000 MHz () () 8.000 MHz 12.50 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () ()	25.00 kHz	62.50 kHz	300.0 Hz	-54.14	(-42.38)	-25.00 k	-55.22	(-43.46)	28.80 k		
4.000 MHz 8.000 MHz 1.000 MHz () () 8.000 MHz 12.50 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () ()	62.50 kHz	100.0 kHz	300.0 Hz	-61.91	(-54.91)	-62.60 k	-62.60	(-55.60)	62.70 k		
8.000 MHz 12.50 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () ()	4.000 MHz	8.000 MHz	1.000 MHz		()			()			
12.50 MHz 15.00 MHz 1.000 MHz () <td>8.000 MHz</td> <td>12.50 MHz</td> <td>1.000 MHz</td> <td></td> <td>()</td> <td></td> <td></td> <td>()</td> <td></td> <td></td> <td></td>	8.000 MHz	12.50 MHz	1.000 MHz		()			()			
12.50 MHz 15.00 MHz 1.000 MHz () () u	12.50 MHz	15.00 MHz	1.000 MHz		()			()			
	12.50 MHz	15.00 MHz	1.000 MHz		()			()			

Figure 17 - Emissions Mask, Mid Channel, with 1 kHz Tone

	ncee,	Report Number:	R20190927-20-E1	Rev	D
	Prepared for:	Bosch Security Systems			

Figure 18 - Emissions Mask, High Channel, with 1kHz Tone

ncoo

Prepared for: Bosch Security Systems

Keysight Spectru	m Analyzer - Spectrur	n Emission Mask							- F
	RF 50 Ω A	C		SENSE:INT	- 400.00				01:51:33 PM May 22, 20
lef Offset 1	19.73 dB			Cente Trio:	er Freq: 482.02 Free Run	5000 MHz	a: 100 00% of	50 Rad	lio Std: None
ASS		I	FGain:Low	#Atte	n: 30 dB	~~~~	g. 100.00 % 01	Rac	lio Device: BTS
	Ref Offset 19.	73 dB							
0 Claskick Window		sm							Absolute L
12.7									
1 72					h				
2.7 5					<u>I</u>				
[.] .27									
17.3									
27.3									
37.3									
7.0					/ III \				
/.3									
57.3			<u> </u>						Relative L
57.3			Contraction international state	and the second dates		Married Married Married	No. I wanted at a set		Spect
enter 482	MHz								Span 2 MH
otal Power	Ref 23.9	8 dBm / 0.001	MHz						
				Lower	<-	Peak ->	Upper		
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	1
12.50 kHz	25.00 kHz	1.000 kHz	-50.42	(-15.40)	-24.69 k	-50.89	(-14.87)	25.00 k 🛆	
25.00 kHz	50.00 kHz	1.000 kHz	-56.29	(-0.67)	-49.50 k	-56.84	(-0.82)	50.00 k	
50.00 kHz	1.000 MHz	1.000 kHz	-56.45	(-0.40)	-52.50 k	-56.84	(-0.82)	50.00 k	
0.0 Hz	100.0 Hz	1.000 MHz		()			()		
0.0 Hz	100.0 Hz	1.000 MHz		()			()		
0.0 Hz	100.0 Hz	1.000 MHz		()			()		
0.0 Hz	100.0 Hz	1.000 MHz		()			()		

Figure 19 – Necessary Bandwidth, Low Channel

raa
1000
 labs
•

ſ

D

Prepared for: Bosch Security Systems

Keysight Spect	rum Analyzer - Spectrun	n Emission Mask							
	RF 50 Ω A0			SENSE:INT					01:43:18 PM Apr 08, 2020
Center Fre	eq 527.00000	0 MHz		Cente	er Freq: 527.00 Free Run	Av	va: 100.00% (of 50	lo Sta: None
PASS		1	FGain:Low	#Atte	n: 30 dB		g	Rad	lio Device: BTS
12 dBylictia/Windo		m							
Log									Absolute Limit
12.0									
0.00					<u> </u>				
-12.0									
-24.0									
36.0									
10.0					////				
-48.0									
-60.0									Relative Limit
-72.0			- and the second				and the second second		Spectrum
-84.0									and the second s
Center 527	7 MHz								Span 2 MHz
Total Powe	er Ref 23.98	8 dBm / 0.001	MHz						
Start From	Stop Frog	Integ BW/	dBm	Lower	<- Erog (Hz)	Peak ->	Upper	Frog (Hz)	
			UDIII 54.00			50.05			1
12.50 KHZ	20.00 KHZ	1.000 KHZ	-31.80	(10.98)	-24.94 K	-50.95	(-10.33)	24.00 K	
50.00 kHz	1 000 MHz	1.000 kHz	-57.40	(-1.04)	-49.00 K	-57.64	(-1.59)	49.00 K	
0.0 Hz	100 0 Hz	1 000 MHz	-01.12	()	-02.00 K	-01.04	()		
0.0 Hz	100.0 Hz	1.000 MHz		()			()		
0.0 Hz	100.0 Hz	1.000 MHz		()			()		
0.0 Hz	100.0 Hz	1.000 MHz		()			()	4	
MSG						s	TATUS		

Figure 20 – Necessary Bandwidth, Mid Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 30 of 46

ncee.	
. . labs	

D

Prepared for: Bosch Security Systems

	m Analyzer - Spectrur	n Emission Mask							
	RF 50 Ω A	С		SENSE:INT					11:42:07 AM May 22, 2020
Center Freq	ן 571.97500	0 MHz		Cente Trig	er Freq: 571.97 Free Run	5000 MHz Av	a: 100.00% c	Ra of 50	dio Std: None
PASS		I	FGain:Low	#Atte	n: 30 dB		g	Ra	dio Device: BTS
12 d Bielia Window1	Ref 24.0 dB	Sm							
Log									Absolute Limb
12.0									
0.00									
-12.0									
-24.0					[][[]				
-36.0									
-30.0					/⊪∖				
-48.0									
-60.0									Relative Limit
-72.0									
-84.0									Supertrum
-	an a		- A second second second						Spectrum Spectrum
Center 572	MHz								Span 2 MHz
Total Power	Ref 23.98	8 dBm / 0.001	MHz						
				Lower	<-	Peak ->	Upper		
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	
12.50 kHz	25.00 kHz	1.000 kHz	-71.32	(-35.30)	-25.00 k	-69.93	(-33.91)	25.00 k 1	•
25.00 kHz	50.00 kHz	1.000 kHz	-75.91	(-19.89)	-50.00 k	-76.57	(-20.55)	50.00 k	
50.00 kHz	1.000 MHz	1.000 kHz	-75.71	(-19.65)	-53.50 k	-75.86	(-19.82)	52.00 k	
0.0 Hz	100.0 Hz	1.000 MHz		()			()		
0.0 Hz	100.0 Hz	1.000 MHz		()			()		
0.0 Hz	100.0 Hz	1.000 MHz		()			()		
0.0 Hz	100.0 Hz	1.000 MHz		()			()	、	
MSG						S	TATUS		

Figure 21 – Necessary Bandwidth, High Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 31 of 46

Prepared for: Bosch Security Systems

4.4 MODULATION CHARECTERISTICS

Test Method: ANSI C63.26:

Section(s) 5.3.2 "Modulation limiting test methodology" and 5.3.3" Audio frequency response"

Limits: A maximum deviation of ±75 kHz is permitted when frequency modulation is employed.

-Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

- Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

Test procedures:

Refer to Section 5.3.3 of C63.26, 2015.

Deviations from test standard:

No deviation.

Test setup:

Figure 22 – Modulation Limiting and Audio Frequency Response Test Setup

 The Nebraska Center for Excellence in Electronics

 4740 Discovery Drive

 Lincoln, NE 68521
 Page 32 of 46

ncee.	Report Number:	R20190927-20-E1	Rev	D
	Prepared for:	Bosch Security Systems		

EUT operating conditions:

The EUT was powered by 120 VAC 60 Hz power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Test results:

ncee.	Report Number:	R20190927-20-E1	Rev	D
labs	Prepared for:	Bosch Security Systems		

Modulation Limiting:

Modulation Limit								
Modulation	Peak	Frequency	y Deviatio	n (kHz)	Limit			
Level (dB)	300Hz	1000Hz	2500Hz	3000Hz	(kHz)			
-30	7.73	7.77	7.53	7.47	±75			
-25	9.38	9.45	9.15	9.02	±75			
-20	10.9	10.86	10.56	10.43	±75			
-15	10.92	10.78	10.55	10.44	±75			
-10	11.03	11.1	11.01	10.85	±75			
-5	12.97	12.48	11.27	10.93	±75			
0	14.59	13.58	11.02	10.62	±75			
5	17.46	14.16	11.11	10.75	±75			
10	16.6	12.06	9.72	9.02	±75			
15	16.81	12.08	8.42	7.6	±75			
20	16.92	11.87	7.28	6.76	±75			
25	17.16	11.36	6.85	6.39	±75			

nce	B .	Report Number:	R20190927-20-E1	Rev	D
la	bs	Prepared for:	Bosch Security Systems		

Audio Frequency Response:

Modulation Frequency (kHz)	Max Deviation (kHz)	Audio Frequency Response (dB)
0.30	4.01	-0.02
0.40	4.03	0.02
0.50	4.03	0.02
0.60	4.05	0.06
0.70	4.04	0.04
0.80	4.03	0.02
0.90	4.03	0.02
1.00	4.02	0.00
1.50	3.98	-0.09
2.00	3.95	-0.15
2.50	3.89	-0.29
3.00	3.83	-0.42
3.50	3.79	-0.51
4.00	3.73	-0.65
4.50	3.64	-0.86
5.00	3.56	-1.06
6.00	3.30	-1.71
7.00	3.01	-2.51
8.00	2.73	-3.36
9.00	2.44	-4.34
10.00	2.14	-5.48
11.00	1.94	-6.33
12.00	1.81	-6.93
13.00	1.71	-7.42
14.00	1.65	-7.73
15.00	1.60	-8.00

Page 35 of 46

Prepared for: Bosch Security Systems

4.5 FREQUECY STABILITY MEASUREMENTS

Test Method: ANSI C63.26,

1. Section(s) 5.6.3 "Procedures for frequency stability testing"

Limits:

2 PPM

Test procedures:

Radiated power was measured on a spectrum analyzer with resolution bandwidth and video bandwidth set to 500 Hz and 1 kHz respectively. The frequency error functionality on the receiver was used. The temperature was varied from -30°C to -50°C.

Deviations from test standard:

No deviation

Test setup:

Figure 23 – Measurements Test Setup

EUT operating conditions:

The EUT was powered by 120 VAC 60 Hz power unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

ncee.	Report Number:	R20190927-20-E1	Rev	D
labs	Prepared for:	Bosch Security Systems		

Test results:

Frequency Stability, Temperature Variation

Temp in C°	-30	-20	-10	0	10	20	25	30	40	50			
Freq												limit	
(MHz)				Devia	ation	(Hz)					limit (Hz)	(ppm)	Result
482.0000	477	600	386	232	160	124	302	285	487	496	964.000	50	Pass
527.0000	662	828	353	153	71	404	262	277	499	428	1054.000	50	Pass
571.9750	509	405	233	107	82	149	19	60	135	184	1143.950	50	Pass

Frequency Stability, Voltage Variation

Freq	102V	120V	138V		limit	
(MHz)				limit (Hz)	(ppm)	Result
482.0000	388	412	426	1108.000	50	Pass
527.0000	375	354	360	1126.200	50	Pass
571.9750	129	134	129	1143.950	50	Pass

ncee.	Report Number:	R20190927-20-E1	Rev	D
labs	Prepared for:	Bosch Security Systems		

Keysight S	pectrum A	nalyzer - Swept SA								- 6 🗾
	RF	50 Ω AC		SENSE:I	NT			o: Log Dwr	08:27:1	4 AM May 27, 2020
Ref Offs	et 19.	.73 aB	PNO: Close	Trig	g: Free Ru en: 20 dB	n	Avg Hold	l:>100/100		TYPE MWWWW DET P NNNN
	Ref	Offset 19.73 dB						Mkr	2 482.000	000 MH
10 dB/div	Ref	29.73 dBm							-40.	929 aBn
19.7										
9.73										
5.75										
-0.27										
-10.3										
-20.3					1	5				
-30.3						- hy-				
-40.3		2 2		F		v.	20.0.0			
-50.3			~~~~							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60.3										
-00.0										
Center 4 Res BW	82.02 680 H	500 MHz z	VBV	V 6.8	kHz			Swee	Spaı p 1.000 ms	n 75.00 kH: s (1001 pts
MKRI MODELT	TRC SCL	Х	l Y		FUNCTIO	DN FUNC	TION WIDTH		UNCTION VALUE	
1 N	1 f	482.025 000 M	Hz 23.626	i dBm						
2 N 3	1 f	482.000 000 M	Hz -45.757	dBm						
4										
5 6										
7										
8 9										
10										
11										
ISG							STATUS			

Figure 24 - Lowest channel frequency, 482.025 MHz

ncee.	Report Number:	R20190927-20-E1	Rev	D
labs	Prepared for:	Bosch Security Systems		

Keysight Sp	ectrum Ana	alyzer - Swept SA							
x Marker 1	^{RF} 1 571.9	50 Ω AC 075000000 MHz	PNO: Close IFGain:Low	Trig: Free Atten: 20	Run dB	Avg Type Avg Hold:	: Log-Pwr >100/100	08:29:4 Ті	1 AM May 27, 2020 RACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
10 dB/div	Ref 0 Ref 2	ffset 19.73 dB 2 9.73 dBm					Mkr′	571.975 23.	000 MHz 433 dBm
19.7					V 1				
9.73									
-0.27									
-10.3									
-20.3					<u> </u>				
-30.3				p d d	<u> </u>				
-40.3						hove		() ²	
-50.3	\sim		~~~~~						m
-60.3									
Center 5 Res BW	71.9750 680 Hz	00 MHz	VBV	V 6.8 kHz	<u> </u>		Swee	Spar p 1.000 ms	n 75.00 kHz s (1001 pts)
MKR MODE T 1 N 2 N 3	RC SCL 1 f 1 f	× 571.975 000 MH 572.000 000 MH	z 23.433 z -44.578	FUN 3 dBm 3 dBm	ICTION FU	JNCTION WIDTH	F	UNCTION VALUE	^
4 5 6 7									
8 9 10 11									
<									>
MSG						STATUS			

Figure 25 - Highest Channel Frequency, 571.975 MHz

Prepared for: Bosch Security Systems

4.6 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56	56 to 46		
0.5-5	56	46		
5-30	60	50		

Notes:

1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

The EUT was powered by 120 VAC 60 Hz unless specified and set to transmit continuously on the middle channel.

ncee.	Report Number:	R20190927-20-E1	Rev	D
	Prepared for:	Bosch Security Systems		

Test Results:

Figure 26 - Conducted Emissions Plot, Line

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 41 of 46

. Figure 27 - Conducted Emissions Plot, Neutral

Prepared for:

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20*\log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

ncee.	Report Number:	R20190927-20-E1	Rev	D
	Prepared for:	Bosch Security Systems		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30

Power (watts) = 10^[Power (dBm)/10] / 1000

Voltage ($dB\mu V$) = Power (dBm) + 107 (for 50 Ω measurement systems)

Field Strength (V/m) = 10^{Field} Strength (dB μ V/m) / 20] / 10^{6}

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

Prepared for:

APPENDIX B – MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±3.82 dB
Radiated Emissions, 3m	1GHz - 18GHz	±4.44 dB
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB
Antenna port conducted	9 kHz – 25 GHz	±0.50 dB

Values were calculated per CISPR 16-4-2:2011

Expanded uncertainty values are calculated to a confidence level of 95%.

ncee
 labs

Г

D

Prepared for:

REPORT END

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 46 of 46