PAGE NO. 1 of 29.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a) TEST REPORT

b) Laboratory: M. Flom Associates, Inc.

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044) Chandler, AZ 85224

c) Report Number: d98a0047

d) Client: Telex Communications, Inc.

8601 E. Cornhusker Highway

P.O. Box 5579

Lincoln, NE 68505-5579

e) Identification: Electro-Voice HTV

FCC ID: B5DH212

Description: VHF FM Handheld Transmitter

f) EUT Condition: Not required unless specified in individual

tests.

g) Report Date: October 22, 1998

EUT Received: October 14, 1998

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

1) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

Morton Flom, P. Eng.

n) Results: The results presented in this report relate

only to the item tested.

o) Reproduction: This report must not be reproduced, except in

full, without written permission from this

laboratory.

2 of 29.

LIST OF GENERAL INFORMATION REQUIRED FOR CERTIFICATION

IN ACCORDANCE WITH FCC RULES AND REGULATIONS, VOLUME II, PART 2 AND TO

74H, 74.802, 74.861

Sub-part 2.1033

(c)(1): NAME AND ADDRESS OF APPLICANT:

Telex Communications, Inc. 8601 E. Cornhusker Highway

P.O. Box 5579

Lincoln, NE 68505-5579

VENDOR:

Applicant

(c)(2): FCC ID:

B5DH212

MODEL NO:

Electro-Voice HTV

(c)(3): INSTRUCTION MANUAL(S):

PLEASE SEE ATTACHED EXHIBITS

(c)(4): TYPE OF EMISSION:

25K0F3E

(c)(5); FREQUENCY RANGE, MHz:

174 to 186

(c)(6):

(c)(7): MAXIMUM POWER RATING, Watts: 0.050

3 of 29.

Subpart 2.1033 (continued)

(c) (8): VOLTAGES & CURRENTS IN ALL ELEMENTS IN FINAL R. F. STAGE, INCLUDING FINAL TRANSISTOR OR SOLID STATE DEVICE:

COLLECTOR CURRENT, A = per manual COLLECTOR VOLTAGE, Vdc = per manual SUPPLY VOLTAGE, Vdc = 9

(c)(9): <u>TUNE-UP PROCEDURE</u>:

PLEASE SEE ATTACHED EXHIBITS

(c)(10): CIRCUIT DIAGRAM/CIRCUIT DESCRIPTION:
Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

PLEASE SEE ATTACHED EXHIBITS

(c) (11): LABEL INFORMATION:

PLEASE SEE ATTACHED EXHIBITS

(c)(12): PHOTOGRAPHS:

PLEASE SEE ATTACHED EXHIBITS

(c) (13): DIGITAL MODULATION DESCRIPTION:

X N/A ATTACHED EXHIBITS

(c) (14): TEST AND MEASUREMENT DATA:

FOLLOWS

4 of 29.

Sub-part

2.1033(c)(14): TEST AND MEASUREMENT DATA

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

	21 - Domestic Public Fixed Radio Services 22 - Public Mobile Services 22 Subpart H - Cellular Radiotelephone Service 22.901(d) - Alternative technologies and auxiliary services
	23 - International Fixed Public Radiocommunication services
	24 - Personal Communications Services
<u>x</u>	74 Subpart H - Low Power Auxiliary Stations
	80 - Stations in the Maritime Services
	80 Subpart E - General Technical Standards
	80 Subpart F - Equipment Authorization for Compulsory Ships
	80 Subpart K - Private Coast Stations and Marine Utility Stations
	80 Subpart S - Compulsory Radiotelephone Installations for
	Small Passenger Boats
	80 Subpart T - Radiotelephone Installation Required for
	Vessels on the Great Lakes
	80 Subpart U - Radiotelephone Installations Required by the
	Bridge-to-Bridge Act
	80 Subpart V - Emergency Position Indicating Radiobeacons
	(EPIRB'S)
	80 Subpart W - Global Maritime Distress and Safety System (GMDSS)
	·
	80 Subpart X - Voluntary Radio Installations 87 - Aviation Services
	90 - Private Land Mobile Radio Services
	94 - Private Operational-Fixed Microwave Service
	95 Subpart A - General Mobile Radio Service (GMRS)
	95 Subpart C - Radio Control (R/C) Radio Service
	95 Subpart D - Citizens Band (CB) Radio Service
	95 Subpart E - Family Radio Service
	95 Subpart F - Interactive Video and Data Service (IVDS)
	101 - Fixed Microwave Services

5 of 29.

STANDARD TEST CONDITIONS and ENGINEERING PRACTICES

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40° C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

6 of 29.

NAME OF TEST:

Carrier Output Power (Radiated)

SPECIFICATION:

47 CFR 2.1046(a)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.1

TEST EQUIPMENT:

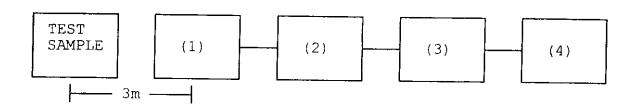
As per attached page

MEASUREMENT PROCEDURE (RADIATED)

- 1. The EUT was placed on an open-field site and its radiated field strength at a known distance was measured by means of a spectrum analyzer. Equivalent loading of a dipole was calculated from the equation $P_t = ((E \times R)^2/49.2)$ watts, where R = 3m.
- 2. Measurement accuracy is ±1.5 dB.

MEASUREMENT RESULTS

FREQUENCY OF CARRIER, MHz = 174.1


POWER SETTING	R. F. POWER, ERP, WATTS
High	0.050
Radiated	0.0022

SUPERVISED BY:

Morton Flom, P. Eng.

7 of 29.

TRANSMITTER RADIATED MEASUREMENTS

Asset Description

s/n

(1) TRANSDUCER

x i00091 Emco 3115 x i00089 Aprel Log Periodic

001469

001500

(2) HIGH PASS FILTER

x i00 Narda μPAD (In-Band Only)

x i00 Trilithic

(Out-Of-Band Only)

(3) PREAMP

x 100028 HP 8449 (+30 dB)

2749A00121

(4) SPECTRUM ANALYZER

 X
 100048
 HP
 8566B
 2511A01467

 100043
 HP
 8558B
 2004A02076

 100057
 HP
 8557A
 1531A00191

 X
 100029
 HP
 8563E
 3213A00104

8 of 29.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)

SPECIFICATION:

47 CFR 2.1051

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.13

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

The emissions were measured for the worst case as follows:

(a): within a band of frequencies defined by the carrier

frequency plus and minus one channel.

(b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.

The magnitude of spurious emissions that are attenuated more 2. than 20 dB below the permissible value need not be specified.

3. MEASUREMENT RESULTS:

ATTACHED FOR WORST CASE

FREQUENCY OF CARRIER, MHz = 174.1

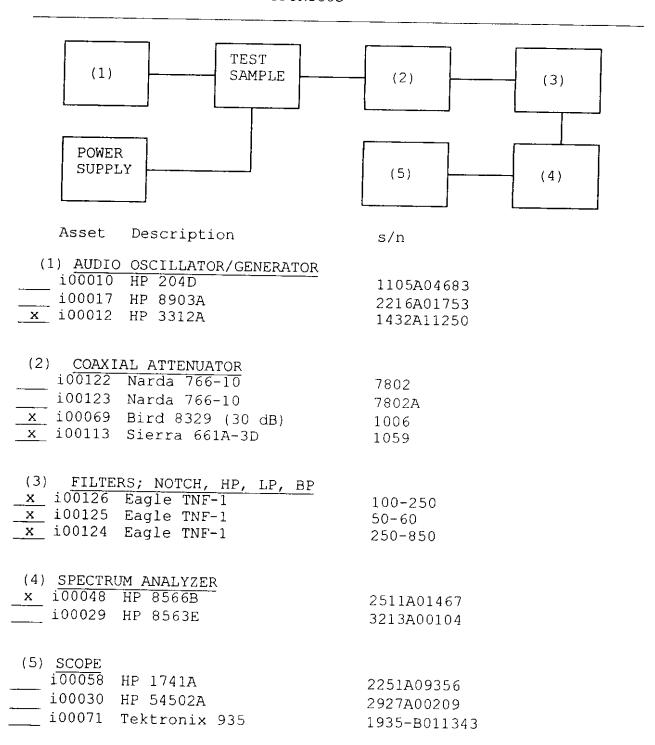
SPECTRUM SEARCHED, GHz = 0 to 10 x F_{c}

MAXIMUM RESPONSE, Hz = 20000

ALL OTHER EMISSIONS = ≥ 20 dB BELOW LIMIT

LIMIT(S), dBc

 $-(43+10\times LOG\ P) = -30\ (0.05\ Watts)$


SUPERVISED BY:

Morton Flom, P. Eng.

9 of 29.

TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)
TEST B. OUT-OF-BAND SPURIOUS

10 of 29.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted) g98a0112: 1998-Oct-15 Thu 08:31:00

STATE: 2:High Power

FREQUENCY TUNED,	FREQUENCY	LEVEL, dBm	LEVEL, dBc	MARGIN. dB
MHz	EMISSION, MHz	•	, =125	(O111, QD
174.100000	193.760000	-35.1	-52	-22.1
174.100000	290.510000	-35.4	-52.3	-22,4
174.100000	348.182000	-34.6	-51.5	-21.6
174.100000	406.300000	-35.2	-52.1	-22.2
174.100000	464.390000	-30.4	-47.3	-22.2 -17.4
174.100000	522.329000	-28.1	-45	-17.4 -15.1
174.100000	696.416000	-44	-60.9	-15.1 -31
174.100000	870.450000	-40.7	-57.6	-31 -27.7
174.100000	986.770000	-37.3	-54.2	_
174.100000	1044.537000	-37.6	-54.5	-24.3
174.100000	1218.628000	-47.2	-64.1	-24.6
174.100000	1392.823000	-49.6	-66.5	-34.2
174.100000	1566.801000	-57.1	-74	-36.6
174.100000	1741.066000	-56.8	-73.7	-44.1
174.100000	1914.989000	-58.7	-75.6	-43.8
174.100000	2089.229000	-56.6	-73.5	-45.7
174.100000	2263.169000	-57.3	-74.2	-43.6
174.100000	2437.598000	-57.7	-74.6	-44.3
174.100000	2611.633000	-58.7	-74.6 -75.6	-44.7
		50.7	-75.6	-45.7

11 of 29.

NAME OF TEST:

Field Strength of Spurious Radiation

SPECIFICATION:

47 CFR 2.1053(a)

GUIDE:

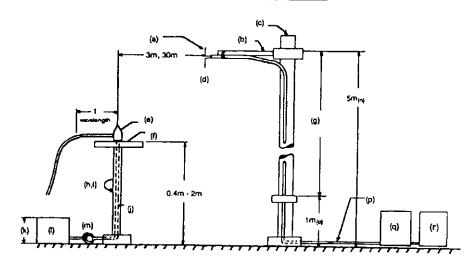
ANSI/TIA/EIA-603-1992, Paragraph 2.2.12

TEST EQUIPMENT:

As per attached page

MEASUREMENT PROCEDURE

- 1. A description of the measurement facilities was filed with the FCC and was found to be in compliance with the requirements of Section 15.38, by letter from the FCC dated March 3, 1997, FILE 31040/SIT. All pertinent changes will be reported to the Commission by up-date prior to March 2000.
- 2. At first, in order to locate all spurious frequencies and approximate amplitudes, and to determine proper equipment functioning, the test sample was set up at a distance of three meters from the test instrument. Valid spurious signals were determined by switching the power on and off.
- 3. In the field, the test sample was placed on a wooden turntable above ground at three (or thirty) meters away from the search antenna. Excess power leads were coiled near the power supply.


The cables were oriented in order to obtain the maximum response. At each emission frequency, the turntable was rotated and the search antennas were raised and lowered vertically.

- 4. The emission was observed with both a vertically polarized and a horizontally polarized search antenna and the worst case was used.
- 6. The field strength of each emission within 20 dB of the limit was recorded and corrected with the appropriate cable and transducer factors.
- 7. The worst case for all channels is shown.
- 8. Measurement results:

ATTACHED FOR WORST CASE

12 of 29.

RADIATED TEST SETUP

NOTES:

- (a) Search Antenna Rotatable on boom
- (b) Non-metallic boom
- (c) Non-metallic mast
- (d) Adjustable horizontally
- (e) Equipment Under Test
- (f) Turntable
- (g) Boom adjustable in height.
- (h) External control cables routed horizontally at least one wavelength.
- (i) Rotatable

- (j)Cables routed through hollow turntable center
- (k) 30 cm or less
- (1) External power source
- (m) 10 cm diameter coil of excess
 cable
- (n) 25 cm (V), 1 m-7 m (V, H)
- (0) 25 cm from bottom end of 'V', 1m normally
- (p) Calibrated Cable at least 10m
 in length
- (q) Amplifier (optional)
- (r) Spectrum Analyzer

Asset	Description	s/n	Cycle	Last Cal
TRANSDUCER	EMCO 3109B 100Hz-50MHz Singer 94593-1 10kHz-32MHz EMCO 3109-B 25MHz-300MHz Aprel 2001 200MHz-1GHz EMCO 3115 1GHz-18GHz EMCO 3116 10GHz-40GHz	2336 0219 2336 001500 9208-3925 2076	12 mo. 12 mo. 12 mo. 12 mo. 12 mo. 12 mo.	Oct-98 Oct-98 Oct-98
AMPLIFIER i00028	HP 8449A	2749A00121	12 mo.	Mar-98
SPECTRUM AI	NALYZER HP 8563E HP 85462A HP 8566B	3213A00104 3625A00357 2511AD1467	12 mo. 12 mo. 6 mo.	Dec-97 Mar-98

<u>PAGE NO.</u> 13 of 29.

NAME OF TEST: Field Strength of Spurious Radiation

ALL OTHER EMISSIONS = \geq 20 dB BELOW LIMIT

EMISSION, MHz/HARMONIC	CDUDIOUS TOWN
· · · · · · · · · · · · · · · · · · ·	SPURIOUS LEVEL, dBc
2nd to 10th	High
2114 (0 10(1)	<-45

SUPERVISED BY:

Morton Flom, P. Eng.

M. There P. Eug

14 of 29.

NAME OF TEST: Field Strength of Spurious Radiation g98a0120: 1998-Oct-19 Mon 08:41:00

STATE: 2:High Power

EDECLIENC	7					
FREQUENC'		METER,	CF,	uV/m @	ERP,	MARGIN,
TUNED, MH	z EMISSION, MHz	dBuV	dB	3 m	dBm	dB
174.10000	0 348.198000	46.54				
	- 0.0.10000			2440.62	-29.65	-16.7
174.10000	-22.23000	48.86	25.03	4948.8	-23.45	-10.5
174.10000	0 696.393000	17 25	29.16			
		47.33	29.10	6691.14	-20.85	-7.9
174.10000	0 870.495000	44.46	30.79	5787.62	-22,15	-9.2
174.10000	0 1044.590000					
		41.13	33.97	5688.53	-22.25	-9.3
174.10000	0 1218.678000	29.3	35.65	1768.07	-32.45	-19.5
174.10000				•		-19.5
		21.42	37.09	842.36	-38.85	-25.9
174.10000	0 1566.870000	18.64	38 51	722.77		
174 10000	· •			122.11	-40.15	-27.2
174.10000		19.31	40.08	932.18	-37.95	-25
174.100000	7 1740.100000					2.5
171.10000	1/40.100000				+3.6	0

15 of 29.

NAME OF TEST:

Emission Masks (Occupied Bandwidth)

SPECIFICATION: 47 CFR 2.1049(c)(1)

GUIDE:

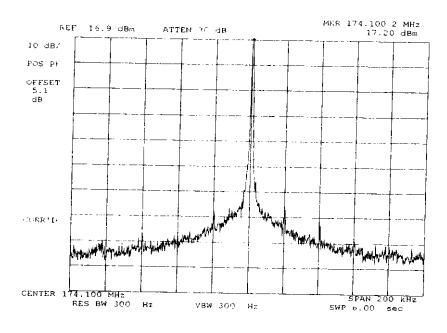
ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

TEST EQUIPMENT:

As per previous page

MEASUREMENT PROCEDURE

- The EUT and test equipment were set up as shown on the 1. following page, with the Spectrum Analyzer connected.
- 2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ± 2.5 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- For EUTs supporting digital modulation, the digital modulation 3. mode was operated to its maximum extent.
- The Occupied Bandwidth was measured with the Spectrum Analyzer 4. controls set as shown on the test results.
- 5. MEASUREMENT RESULTS: ATTACHED


16 of 29.

NAME OF TEST:

Emission Masks (Occupied Bandwidth)

g98a0107: 1998-Oct-15 Thu 07:59:00

STATE: 2:High Power

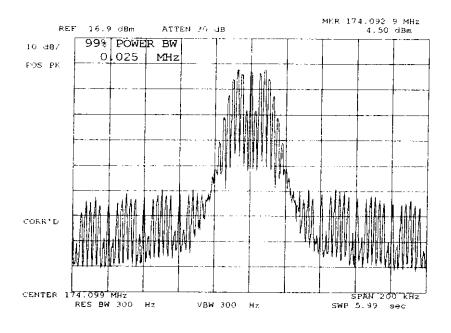
POWER: MODULATION:

HIGH NONE

CARRIER ONLY

SUPERVISED BY:

Morton Flom, P. Eng.


M. Thuch P. Eng

17 of 29.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g98a0109: 1998-Oct-15 Thu 08:15:00

STATE: 2:High Power

POWER: MODULATION:

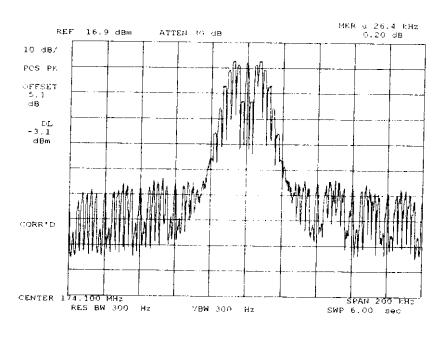
HIGH

VOICE: 2500 Hz SINE WAVE

99% POWER BANDWIDTH

SUPERVISED BY:

Morton Flom, P. Eng.


M. Thur P. Eur

18 of 29.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g98a0110: 1998-Oct-15 Thu 08:21:00

STATE: 2:High Power

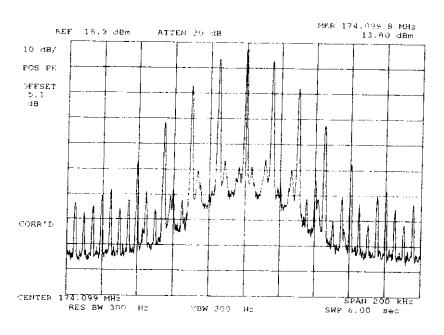
POWER: MODULATION:

HIGH

VOICE: 2500 Hz SINE WAVE

20 DB BANDWIDTH

SUPERVISED BY:


Morton Flom, P. Eng.

19 of 29.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g98a0111: 1998-Oct-15 Thu 08:24:00

STATE: 2: High Power

POWER: MODULATION:

HIGH

15 KHZ TONE

SUPERVISED BY:

Morton Flom, P. Eng.

M. There P. Eng

20 of 29.

NAME OF TEST:

Audio Frequency Response

SPECIFICATION:

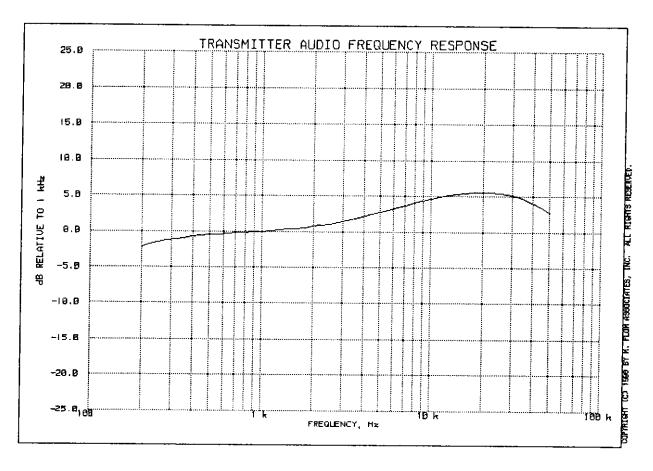
47 CFR 2.1047(a)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.6

TEST EQUIPMENT:

As per previous page


MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up as shown on the following page.
- 2. The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- 3. The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- 4. With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to $50~\mathrm{kHz}$.
- 5. The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.
- 6. MEASUREMENT RESULTS:

ATTACHED

PAGE 21 of 29. TRANSMITTER AUDIO FREQUENCY RESPONSE TELEX, Telex Evi HTV 14 OCT 1998, 15:55

FCC ID: B5DH212

PEAK AUDIO FREQUENCY, Hz: 20000

TABLE VALUES:

FREQUENCY,	LEVEL, dB	FREQUENCY, Hz	LEVEL, dB	FREQUENCY, Hz	
300 20000	-1.2 5.6	30000 50000	5.1 2.7		

22 of 29.

NAME OF TEST:

Modulation Limiting

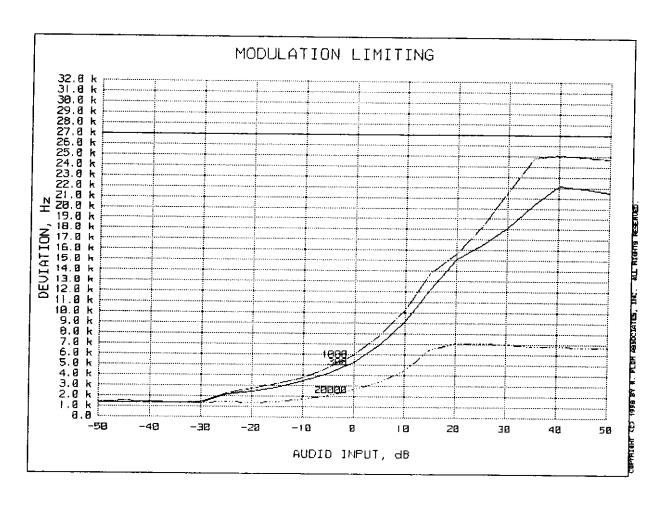
SPECIFICATION:

47 CFR 2.1047(b)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.3

TEST EQUIPMENT:


As per previous page

MEASUREMENT PROCEDURE

- 1. The signal generator was connected to the input of the EUT as for "Frequency Response of the Modulating Circuit."
- 2. The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- 3. The input level was varied from 30% modulation ($\pm 1.5~{\rm kHz}$ deviation) to at least 20 dB higher than the saturation point.
- 4. Measurements were performed for both negative and positive modulation and the respective results were recorded.
- 5. MEASUREMENT RESULTS:

ATTACHED

PAGE 23 of 29.
MODULATION LIMITING
TELEX, Telex Evi HTV
1998-OCT-14, 16:18

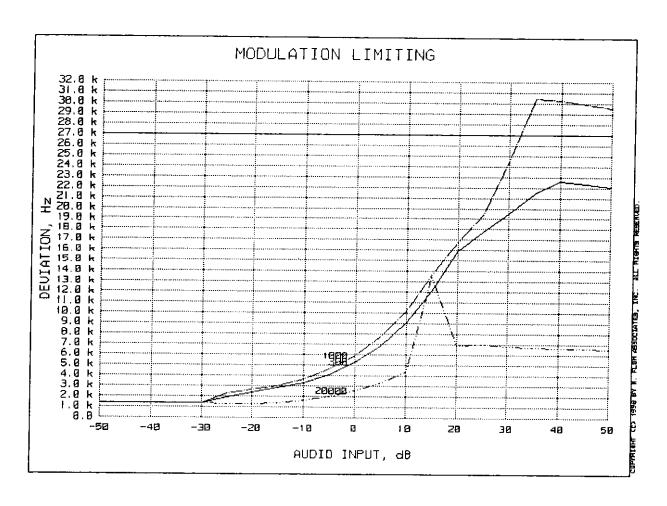
COMMENT

= LIMIT 75 kHz

REFERENCE DEVIATION, kHz

= 6

REFERENCE MODULATION, Hz


= 1000

PEAKS

= POSITIVE

AUDIO AMPLITUDE, mV

= 17.34

COMMENT

= LIMIT 75 kHz

REFERENCE DEVIATION, kHz

- 6

REFERENCE MODULATION, Hz

= 1000

PEAKS

= NEGATIVE

AUDIO AMPLITUDE, mV

= 17.34

25 of 29.

NAME OF TEST:

Frequency Stability (Temperature Variation)

SPECIFICATION:

47 CFR 2.1055(a)(1)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

TEST CONDITIONS:

As Indicated

TEST EQUIPMENT:

As per previous page

MEASUREMENT PROCEDURE

- The EUT and test equipment were set up as shown on the 1. following page.
- With all power removed, the temperature was decreased to -30°C 2. and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- With power OFF, the temperature was raised in 10°C steps. The 3. sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- The temperature tests were performed for the worst case. 4.
- 5. MEASUREMENT RESULTS: ATTACHED

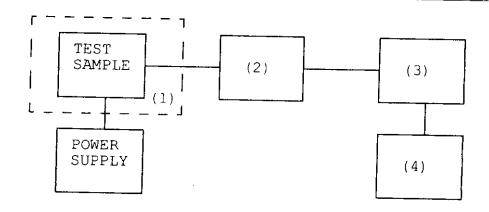
26 of 29.

TRANSMITTER TEST SET-UP

TEST A. OPERATIONAL STABILITY

TEST B. CARRIER FREQUENCY STABILITY

TEST C. OPERATIONAL PERFORMANCE STABILITY


TEST D. HUMIDITY

TEST E. VIBRATION

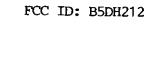
TEST F. ENVIRONMENTAL TEMPERATURE

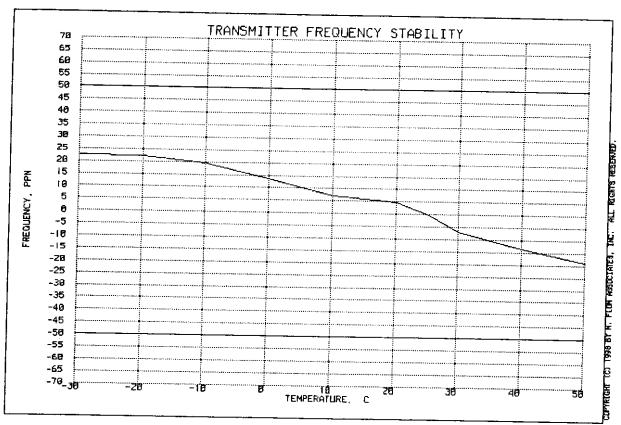
TEST G. FREQUENCY STABILITY: TEMPERATURE VARIATION

TEST H. FREQUENCY STABILITY: VOLTAGE VARIATION

Asset Description

s/n


(1)	TEMPE	RATURE, HUMIDITY, VI	BRATION
_ <u>X</u> _	100027	Tenny Temp. Chamber	9083-765-234
	100	Weber Humidity Cham	ber
		L.A.B. RVH 18-100	


(2) COAX	IAL ATTENUATOR	
	NARDA 766-10	7802
i00123	NARDA 766-10	7802A
	SIERRA 661A-3D	1059
i00069	BIRD 8329 (30 dB)	10066

(3) $R.F.$		
i00014	HP 435A POWER ME	TER 1733A05839
<u>x</u> i00039	HP 436A POWER ME	TER 2709A26776
<u>x</u> i00020	HP 8901A POWER M	IODE 2105A01087

(4) FREQUENCY COUNTER	
i00042 HP 5383A	1628A00959
x i00019 HP 5334B	2704A00347
x i00020 HP 8901A	2105A01087

PAGE 27 of 29.
TRANSMITTER FREQUENCY STABILITY
TELEX, Telex Evi HTV
16 OCT 1998, 08:38

FREQUENCY OF CARRIER, MHz = 174.09989

LIMIT, ppm

= 50

LIMIT, Hz

= 8705

28 of 29.

NAME OF TEST:

Frequency Stability (Voltage Variation)

SPECIFICATION:

47 CFR 2.1055(b)(1)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

TEST EQUIPMENT:

As per previous page

MEASUREMENT PROCEDURE

- 1. The EUT was placed in a temperature chamber at $25\pm5\,^{\circ}\text{C}$ and connected as for "Frequency Stability Temperature Variation" test.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

RESULTS: Frequency Stability (Voltage Variation) g98a0106: 1998-Oct-14 Wed 16:34:44

STATE: 0:General

LIMIT, ppm = 50 LIMIT, Hz = 8705 BATTERY END POINT (Voltage) = 6.7

% of STV 85 100 115 74	Voltage 7.65 9 10.35 6.7	Frequency, MHz 174.099840 174.100000 174.100120 174.099510	Change, Hz -160 0 120 -490	Change, ppm -0.92 0.00 0.69
			-490	-2.81

SUPERVISED BY:

Morton Flom, P. Eng.

29 of 29.

NAME OF TEST: Necessary Bandwidth and Emission Bandwidth

SPECIFICATION: 47 CFR 2.202(g)

Rule 2.202(g)

MAXIMUM MODULATION (M), kHz = 15 MAXIMUM DEVIATION (D), kHz = 15 CONSTANT FACTOR (K) = 1

NECESSARY BANDWIDTH (B_N), kHz = $(2 \times M) + (2 \times D \times K)$ = 60

Rule 74.861(i)(3), Limit = $\leq \pm 75$ kHz

NECESSARY BANDWIDTH (B_H), kHz = 60 TEMPERATURE VARIATION, kHz = 3.8 VOLTAGE VARIATION, kHz = -0.5 EMISSION BANDWIDTH (B_H), kHz = SUM OF ABOVE = 63.3

= 63.3

99% Power Bandwidth = 0.025 MHz (See Page 17.)

SUPERVISED BY:

Morton Flom, P. Eng.

U. Ohuel P. Eng