

UTC Fire and Security

ITI Wireless Motion Detector

FCC 15.231:2018

Low Power Radio

Report # UTCF0113

NVLAP LAB CODE: 200676-0

CERTIFICATE OF TEST

Last Date of Test: October 12, 2018
UTC Fire and Security
Model: ITI Wireless Motion Detector

Radio Equipment Testing

Standards

Specification	Method			
FCC 15.231:2018	ANSI C63.10:2013			

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

Report No. UTCF0113 2/22

REVISION HISTORY

Revision Description		Date (yyyy-mm-dd)	Page Number
00	None		

Report No. UTCF0113 3/22

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

Report No. UTCF0113 4/22

FACILITIES

A-0029

US0158

A-0110

US0157

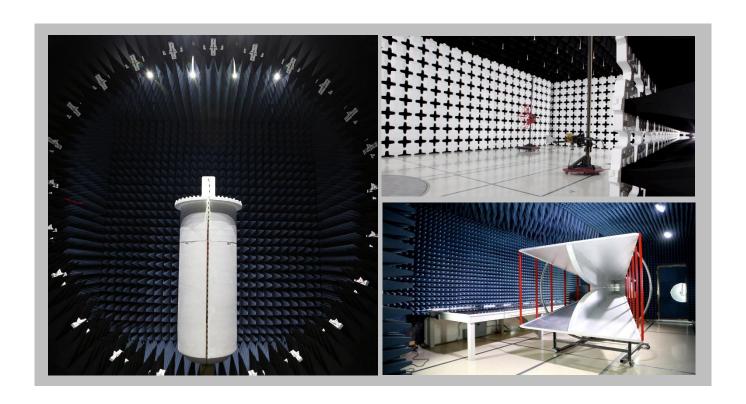
A-0109

US0175

A-0201

US0191

California	Minnesota	New York	Oregon	rexas	wasnington				
Labs OC01-17	Labs MN01-10	Labs NY01-04	Labs EV01-12	Labs TX01-09	Labs NC01-05				
41 Tesla	9349 W Broadway Ave.	4939 Jordan Rd.	6775 NE Evergreen Pkwy #400	3801 E Plano Pkwy	19201 120 th Ave NE				
Irvine, CA 92618	Brooklyn Park, MN 55445	Elbridge, NY 13060	Hillsboro, OR 97124	Plano, TX 75074	Bothell, WA 98011				
(949) 861-8918	(612)-638-5136	(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600				
		A.D.							
		NV	LAP						
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0				
	Innov	ation, Science and Eco	nomic Development Can	ada					
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1				
		BS	МІ						
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R				
	VCCI								


Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA

A-0108

US0017

N/A

N/A

Report No. UTCF0113 5/22

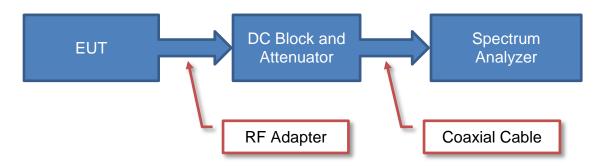
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

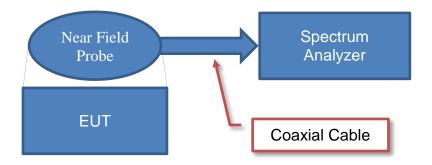
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

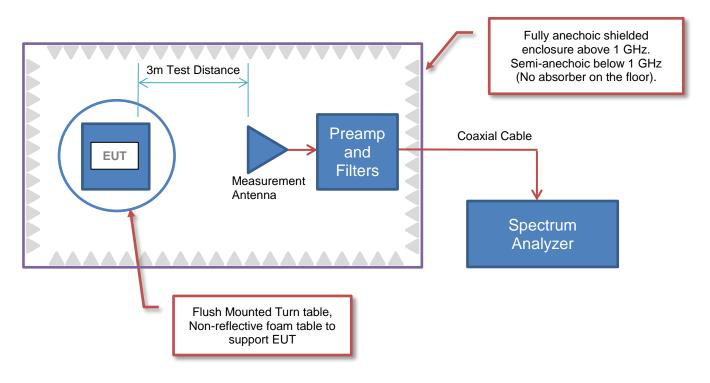
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. UTCF0113 6/22


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. UTCF0113 7/22

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	UTC Fire and Security
Address:	9 Farm Springs Road
City, State, Zip:	Farmington, CT 06034
Test Requested By:	Konstantin Khrustov
Model:	ITI Wireless Motion Detector
First Date of Test:	October 12, 2018
Last Date of Test:	October 12, 2018
Receipt Date of Samples:	October 12, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

This device is a wireless passive infrared motion detector and transmitter for use in a wireless security system. The unit is self-contained and powered by one 3.0 Volt Lithium battery. The transmitter's frequency is crystal controlled and is not adjustable by the user. The device measures approximately 5" by 2.75" by 2". The unit weighs approximately 8 ounces with the battery.

Testing Objective:

To demonstrate compliance to FCC 15.231 specifications.

Report No. UTCF0113 8/22

CONFIGURATIONS

Configuration UTCF0113-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
ITI Wireless Motion Detector	UTC Fire and Security	PIR 60-880-95	04EA91C

Configuration UTCF0113-2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
ITI Wireless Motion Detector	UTC Fire and Security	PIR 60-880-95	04A0545

Report No. UTCF0113 9/22

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
			Tested as	No EMI suppression	EUT remained at
1	1 2018-10-12	Duty Cycle	delivered to	devices were added or	Element following the
		Test Station.	modified during this test.	test.	
	Occupie		Tested as	No EMI suppression	EUT remained at
2	2 2018-10-12	Occupied Bandwidth	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Field	Tested as	No EMI suppression	EUT remained at
3	2018-10-12	Strength of	delivered to	devices were added or	Element following the
		Fundamental	Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	Scheduled testing
4	2018-10-12	Radiated	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	was completed.

Report No. UTCF0113 10/22

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit

MODES OF OPERATION

Transmitting CW at 319.5 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

UTCF0113 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz	Stop Frequency	1000 MHz
------------------------	----------------	----------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	21-Nov-2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1402	AOZ	10-Jul-2018	12 mo
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	20-Sep-2018	12 mo
Antenna - Biconilog	Teseq	CBL 6141A	AYE	7-Nov-2017	24 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).

To derive average emission measurements, a duty cycle correction factor was utilized:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec

Pulsewidth of Type 1 Pulse = 0.9533 mSec

Pulsewidth of Type 2 Pulse = 0.1251 mSec

Pulsewidth of Type 3 Pulse = 0.4909 mSec

Number of Type 1 Pulses = 1

Number of Type 2 Pulses = 58 Number of Type 3 Pulses = 1

..

Duty Cycle = $20 \log [((1)(0.9533) + (58)(0.1251) + (1)(0.4909))/100] = -21.2 dB$

The duty cycle correction factor of -21.2 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Report No. UTCF0113 11/22

RADIATED EMISSIONS

										EmiR5 2018.09.26		PSA-ESCI 2018.07.27
Wo	ork Order:		CF0113		Date:		t-2018		11	,		
	Project:		lone	Tei	mperature:		3 °C		1	46	7-	
	Job Site:		C10	_	Humidity:		% RH					
Seria	Number:		EA91C		etric Pres.:	1010	mbar		Tested by:	Mark Bayta	ın	
Court			ess Motion [Detector								
	iguration:		and Securi	41.4								
	ttendees:		and Securi	ty								
	JT Power:											
			ting CW at 3	R10 5 MHz								
Operati	ing Mode:	Transmit	ing Ovv at t	713.3 WII 12								
D	eviations:	None										
Ce	omments:	None										
Test Speci	ifications						Test Meth	od				
FCC 15.23							ANSI C63.					_
D		Total D			1 Auto			44-4()		Danita l		
Run #	1	l est D	istance (m) 3	Antenna	Height(s)		1 to 4(m)		Results	P	ass
100 T												
00												
90 +												
80												
00												
			-									
70									-			
									•			
60 +												
									•			
-												
50 +												
40 +												
10)					100						1000
						MHz						
										■ PK	◆ AV	• QP
					Duty Cycle		Polarity/					
Freq	Amplitude	Factor	Antenna Heigh	nt Azimuth	Correction Factor	External Attenuation	Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)	.,,,,,	20100101	(dB)	(dBuV/m)	(dBuV/m)	(dB)
, ,												
319.506 319.506	86.1 86.1	5.6 5.6	1.0 1.0	278.0 278.0	-21.2	0.0 0.0	Horz Horz	PK AV	0.0 0.0	91.7 70.5	95.9 75.9	-4.2 -5.4
319.505	84.0	5.6	1.0	199.0	-21.2	0.0	Horz	PK	0.0	70.5 89.6	75.9 95.9	-5.4 -6.3
319.505	83.5	5.6	2.0	299.0		0.0	Vert	PK	0.0	89.1	95.9	-6.8
319.505	84.0	5.6	1.0	199.0	-21.2	0.0	Horz	AV	0.0	68.4	75.9	-7.5
319.505	83.5	5.6	2.0	299.0	-21.2	0.0	Vert	AV	0.0	67.9	75.9	-8.0
319.506	78.5 78.1	5.6 5.6	2.3 1.0	113.0		0.0 0.0	Vert Horz	PK PK	0.0 0.0	84.1 83.7	95.9 95.9	-11.8 -12.2
319.505 319.506	78.1 78.5	5.6 5.6	2.3	24.0 113.0	-21.2	0.0	Vert	AV	0.0	83.7 62.9	95.9 75.9	-12.2 -13.0
319.505	78.1											
		5.6	1.0	24.0	-21.2	0.0	Horz	AV	0.0	62.5	75.9	-13.4
319.506	72.2	5.6	3.8	22.0		0.0	Vert	PK	0.0	77.8	95.9	-18.1
319.506 319.506					-21.2 -21.2							

Report No. UTCF0113 12/22

SPURIOUS RADIATED EMISSIONS

PSA-FSCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting CW at 319.5 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

UTCF0113 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 5000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6-Sep-2018	12 mo
Cable	Northwest EMC	1-8GHz RE Cables	OCJ	6-Sep-2018	12 mo
Antenna - Double Ridge	EMCO	3115	AHB	28-Mar-2018	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	21-Nov-2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1402	AOZ	10-Jul-2018	12 mo
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	20-Sep-2018	12 mo
Antenna - Biconilog	Teseq	CBL 6141A	AYE	7-Nov-2017	24 mo

TEST DESCRIPTION

PK = Peak Detector AV = RMS Detector

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec

Pulsewidth of Type 1 Pulse = 0.9533 mSec

Pulsewidth of Type 2 Pulse = 0.1251 mSec

Pulsewidth of Type 3 Pulse = 0.4909 mSec

Number of Type 1 Pulses = 1

Number of Type 2 Pulses = 58

Number of Type 3 Pulses = 1

Duty Cycle = $20 \log [((1)(0.9533) + (58)(0.1251) + (1)(0.4909))/100] = -21.2dB$

The duty cycle correction factor of -21.2dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.

Report No. UTCF0113 13/22

RADIATED EMISSIONS

\A/ ₄	ork Order:	LITO	F0113		Date:	12-∩≏	t-2018			EmiR5 2018.09.26		PSA-ESCI 2018.07.27
•	Project:		one	Tei	nperature:		3 °C		4	6/	5,4	
	Job Site:		C10		Humidity:	51.59					1	
Seria	I Number:		A91C		etric Pres.:		mbar		Tested by:	Mark Bayt	an	
			ss Motion D	etector								
	figuration:		and Securit	N/								
	Attendees:		and Securit	У								
	UT Power:											
Operat	ing Mode:	Transmitt	ing CW at 3	19.5 MHz								
		NI										
D	eviations:	None										
		None										
С	omments:											
Test Spec							Test Metho					
FCC 15.23	31:2018						ANSI C63.	10:2013				
Run #	2	Test Di	istance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Pa	ass
80												
								 				······································
70								│	س ســ	""		U W
70												
60												
		_		_	HIII	┥╟╟┥		┼┼┞				1.711
50												
00												
40			•						* •			
									•			
30 —												
							•					
20									* \$			
20									* •			
									•			
10												
0 +												Щ
10				100				1000				10000
						MHz				■ PK	◆ AV	QP
					Duty Cycle		Polarity/					
_					Correction	External	Transducer		Distance			Compared to
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	t Azimuth (degrees)	Factor (dB)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)
` ′												
1597.550 1278.045	47.1 46.8	-0.5 -2.9	1.1 1.5	333.0 227.0		0.0 0.0	Horz Horz	AV AV	0.0 0.0	46.6 43.9	54.0 55.9	-7.4 -12.0
1278.025	44.3	-2.9	2.5	184.0		0.0	Vert	AV	0.0	41.4	55.9	-14.5
1597.545 1917.045	39.2 36.3	-0.5 1.5	1.0 1.7	237.0 182.0		0.0 0.0	Vert Horz	AV AV	0.0 0.0	38.7 37.8	54.0 55.9	-15.3 -18.1
1917.045	33.4	1.5	2.0	156.0		0.0	Vert	AV	0.0	34.9	55.9 55.9	-18.1 -21.0
1597.465	49.5	-0.5	1.1	333.0	04.0	0.0	Horz	PK	0.0	49.0	74.0	-25.0
1597.465 958.537	49.5 28.4	-0.5 20.1	1.1 1.0	333.0 307.0	-21.2	0.0 0.0	Horz Horz	AV PK	0.0 0.0	27.8 48.5	54.0 75.9	-26.2 -27.4
958.544	27.3	20.1	1.0	3.0		0.0	Horz	PK	0.0	47.4	75.9	-28.5
1597.550 958.537	47.1 28.4	-0.5 20.1	1.1	333.0 307.0	-21.2 -21.2	0.0 0.0	Horz	AV AV	0.0 0.0	25.4 27.3	54.0 55.9	-28.6 -28.6
958.537 958.515	28.4 26.9	20.1	1.0 1.0	231.0	-Z1.Z	0.0	Horz Horz	PK	0.0	27.3 47.0	55.9 75.9	-28.6 -28.9
1278.115	49.6	-2.9	1.5	227.0		0.0	Horz	PK	0.0	46.7	75.9	-29.2
639.020 958.544	33.4 27.3	13.2 20.1	1.6 1.0	190.0 3.0	-21.2	0.0 0.0	Horz Horz	PK AV	0.0 0.0	46.6 26.2	75.9 55.9	-29.3 -29.7
958.515	26.9	20.1	1.0	231.0	-21.2	0.0	Horz	AV	0.0	25.8	55.9	-30.1
958.546	25.6	20.1	1.2	59.0	04.0	0.0	Vert	PK	0.0	45.7	75.9	-30.2
1278.115 1597.325	49.6 44.1	-2.9 -0.5	1.5 1.0	227.0 237.0	-21.2	0.0 0.0	Horz Vert	AV PK	0.0 0.0	25.5 43.6	55.9 74.0	-30.4 -30.4
1597 325		5.0	1.0	_0,.0		0.0			0.0	.5.0	. 4.0	55.7

Report No. UTCF0113 14/22

OCCUPIED BANDWIDTH

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	21-Nov-17	21-Nov-18
Probe - Near Field Set	Com-Power	PS-400	IPF	NCR	NCR

TEST DESCRIPTION

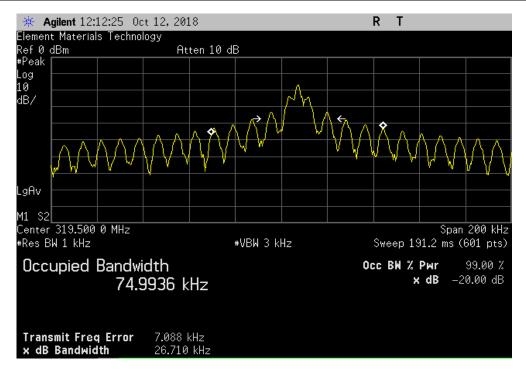
A near-field probe was placed near the transmitter. A low-loss coaxial cable was used to connect the near-field probe to the spectrum analyzer. The EUT was transmitting at its maximum data rate.

The 20dB occupied bandwidth is required to be less than or equal to 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

Report No. UTCF0113 15/22

OCCUPIED BANDWIDTH

EUT: ITI Wireless Motion Detector
Serial Number: 04EA91C
Customer: UTC Fire and Security
Attendees: None
Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Work Order: UTCF0113
Date: 12-Oct-18
Temperature: 21.2 °C
Humidity: 51.4% RH
Barometric Pres.: 1011 mbar Power: Battery
Test Method Job Site: OC10 FCC 15.231:2018 ANSI C63.10:2013 COMMENTS
Limit based on center frequency: 319.5 MHz * 0.25% = 0.79875 MHz DEVIATIONS FROM TEST STANDARD
None 146,4 Configuration # Signature Value Limit Result 319.50 MHz 26.71 kHz 798.75 kHz


Report No. UTCF0113 16/22

OCCUPIED BANDWIDTH

319.50 MHz

| Value | Limit | Result |
| 26.71 kHz | 798.75 kHz | Pass |

Report No. UTCF0113 17/22

DUTY CYCLE

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Probe - Near Field Set	Com-Power	PS-400	IPF	NCR	NCR
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	21-Nov-17	21-Nov-18

TEST DESCRIPTION

A near-field probe was placed near the transmitter. A low-loss coaxial cable was used to connect the near-field probe to the spectrum analyzer. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec

Pulsewidth of Type 1 Pulse = 0.9533 mSec

Pulsewidth of Type 2 Pulse = **0.1251** mSec

Pulsewidth of Type 3 Pulse = **0.4909** mSec

Number of Type 1 Pulses = 1

Number of Type 2 Pulses = 58

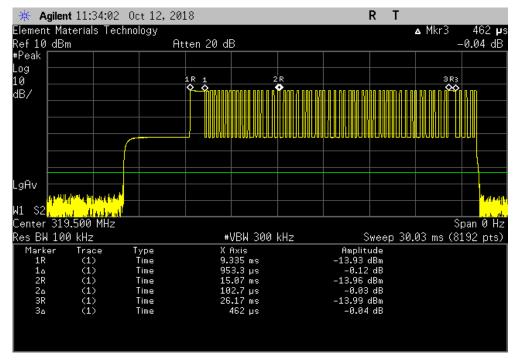
Number of Type 3 Pulses = 1

Duty Cycle = $20 \log [((1)(0.9533) + (58)(0.1251) + (1)(0.4909))/100] = -21.2 dB$

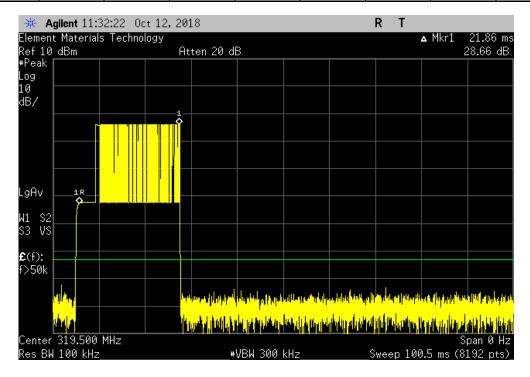
The duty cycle correction factor of -21.2 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Report No. UTCF0113 18/22

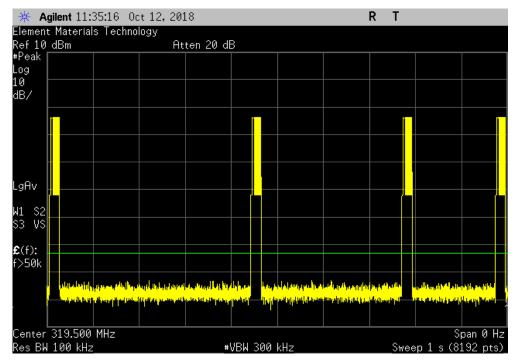
DUTY CYCLE

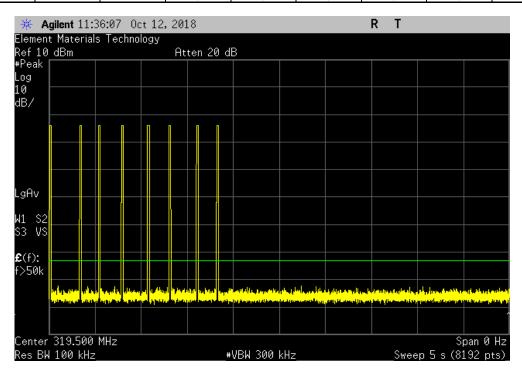


EUT: ITI Wireless Motion Detector
Serial Number: 04EA91C
Customer: UTC Fire and Security
Attendees: None
Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Work Order: UTCF0113
Date: 12-Oct-18
Temperature: 21.1 °C
Humidity: 51.1% RH
Barometric Press: 1011 mbar Power: Battery
Test Method Job Site: OC10 FCC 15.231:2018 COMMENTS DEVIATIONS FROM TEST STANDARD 146,4 Configuration # Signature Pulse Width Type 1 (ms) 0.9533 Pulse Width Type 3 (ms) 0.462 Pulse Width Limit Result Type 2 (ms) 0.1027 N/A N/A N/A N/A N/A N/A N/A N/A N/A 100ms Interval 1s Interval 5s Interval N/A 10s Interval N/A

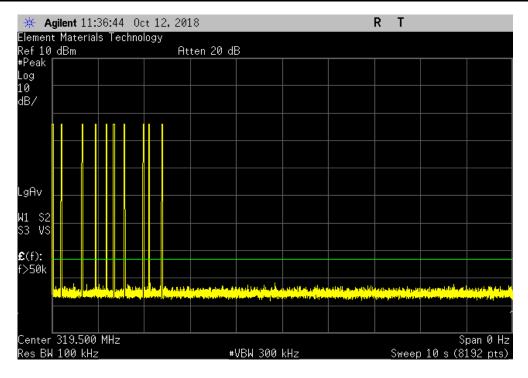

Report No. UTCF0113 19/22

DUTY CYCLE


		100ms Interval			
	Pulse Width	Pulse Width	Pulse Width		
	Type 1 (ms)	Type 2 (ms)	Type 3 (ms)	Limit	Result
	Type I (III3)	iype z (ilis)	iype o (ilio)	Lilling	Nesuit


Report No. UTCF0113 20/22

1s Interval
Pulse Width Pulse Width
Type 1 (ms) Type 2 (ms) Type 3 (ms) Limit Result
N/A N/A N/A N/A N/A N/A


		5s Interval			
	Pulse Width	Pulse Width	Pulse Width		
	Type 1 (ms)	Type 2 (ms)	Type 3 (ms)	Limit	Result
	N/A	N/A	N/A	N/A	N/A

Report No. UTCF0113 21/22

| 10s Interval | | Pulse Width | Pulse Width | Pulse Width | Pulse Width | Type 1 (ms) | Type 2 (ms) | Type 3 (ms) | Limit | Result | N/A | N/A

Report No. UTCF0113 22/22