

UTC Fire and Security

60-744-95R SAW Water Sensor

FCC 15.231:2018

Low Power Radio

Report # UTCF0104

NVLAP LAB CODE: 200676-0

CERTIFICATE OF TEST

Last Date of Test: July 17, 2018 UTC Fire and Security Model: 60-744-95R SAW Water Sensor

Radio Equipment Testing

Standards

Specification	Method			
FCC 15.231:2018	ANSI C63.10:2013			

Results

Method Clause	Test Description Applied		Results	Comments		
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.		
6.5, 6.6	Field Strength of Fundamental	Yes	Pass			
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass			
6.9.2	Occupied Bandwidth	No	N/A	Not required for CIPC or CIIPC, original FCC ID: B4Z-679A-95-DWS.		
7.5	Duty Cycle	No	N/A	Not required for CIPC or CIIPC, original FCC ID: B4Z-679A-95-DWS.		

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

Report No. UTCF0104 2/15

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. UTCF0104 3/15

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

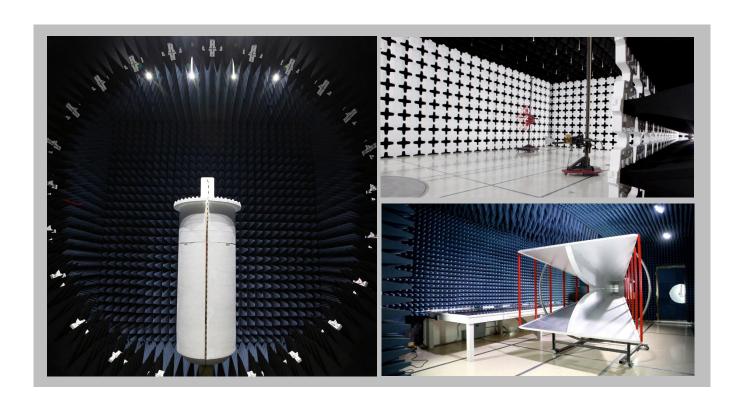
MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. UTCF0104 4/15


FACILITIES

California Minnesota Labs OC01-17 Labs MN01-10 41 Tesla 9349 W Broadway Ave. Irvine, CA 92618 Brooklyn Park, MN 55445 (949) 861-8918 (612)-638-5136		New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600					
NVLAP										
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0					
Innovation, Science and Economic Development Canada										
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1					
		BS	МІ							
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R					
VCCI										
A-0029	A-0109	N/A	A-0108	A-0201	A-0110					
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA									
US0158	US0175	N/A	US0017	US0191	US0157					

Report No. UTCF0104 5/15

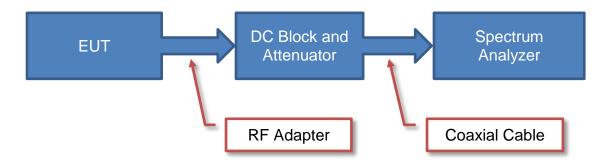
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

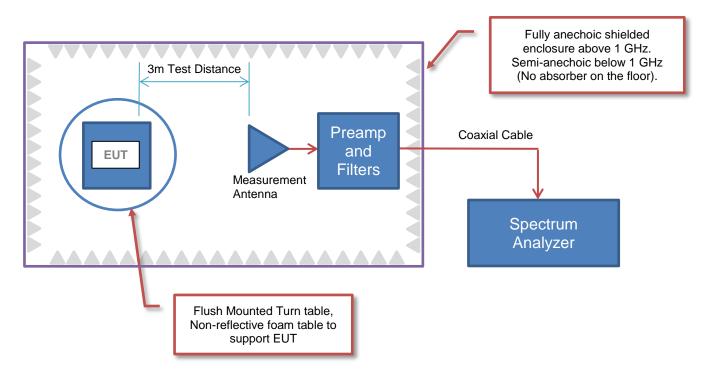
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. UTCF0104 6/15

Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. UTCF0104 7/15

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	UTC Fire and Security
Address:	9 Farm Springs Road
City, State, Zip:	Farmington, CT 06034
Test Requested By:	Konstantin Khrustov
Model:	60-744-95R SAW Water Sensor
First Date of Test:	July 9, 2018
Last Date of Test:	July 17, 2018
Receipt Date of Samples:	July 9, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The device is a wireless Water Sensor used in conjunction with a wireless security alarm system. The Water Sensor unit detects water leak in a home or business. The detector is connected to the sensor. Water that reaches both detector contact points activates the sensor. Causing it to transmit an alarm signal. Depending on the panel settings, the panel will then sound its sirens, and call the monitoring station for help.

Testing Objective:

To demonstrate compliance to FCC 15.231 specifications.

Report No. UTCF0104 8/15

CONFIGURATIONS

Configuration UTCF0104- 1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
60-744-95R SAW Water Sensor	UTC Fire and Security	60-67095R	0A35C0C

Report No. UTCF0104 9/15

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT	
		Field Strength	Tested as	No EMI suppression	EUT remained at	
1	7/9/2018	7/9/2018 of		devices were added or	Element following	
		Fundamental	Test Station.	modified during this test.	the test.	
	7/17/2018	Spurious	Tested as	No EMI suppression	Scheduled testing	
2		7/17/2018 Radiated		delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	was completed.	

Report No. UTCF0104 10/15

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting CW at 319.5 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

UTCF0104 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Fraguency	1000 MHz
Start Frequency	130 MHZ	Stop Frequency	1000 MH2

SAMPLE CALCULATIONS

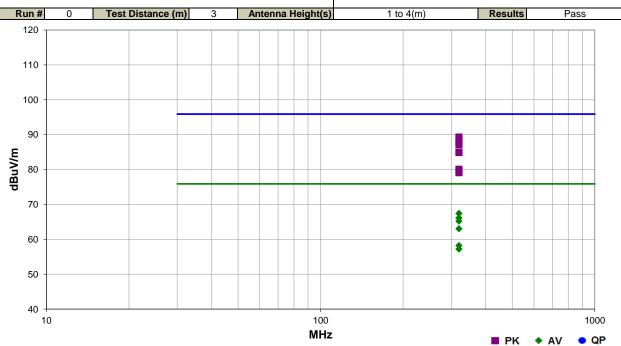
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	1-Aug-2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141A	AYE	7-Nov-2017	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	21-Nov-2017	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).


To derive average emission measurements, a duty cycle correction factor of -21.88 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Report No. UTCF0104 11/15

FIELD STRENGTH OF FUNDAMENTAL

					EmiR5 2018.05.07	PSA-ESCI 2018.05.04				
Work Order:	UTCF0104	Date:	9-Jul-2018		11 -					
Project:	None	Temperature:	26.2 °C		423,	1				
Job Site:	OC10	Humidity:	40.7% RH							
Serial Number:	0A35C0C	Barometric Pres.:	1016 mbar		Tested by: Luis Flores/Mar	rk Baytan				
EUT:	60-744-95R SAW Wa	ter Sensor								
Configuration:	1									
Customer:	UTC Fire and Security	1								
Attendees:	None									
EUT Power:	Battery									
Operating Mode:	Transmitting CW at 3 ^r	Transmitting CW at 319.5 MHz								
Deviations:	None					_				
Comments:		ion factor was referenc	ced from the testing	ng report under	FCC ID: B4Z-679A-95-DW	5				
Test Specifications			Test I	Method						
FCC 15.231:2018			ANSI	C63.10:2013						
Run # 0	Test Distance (m)	3 Antenna	Height(s)	1 to 4(m)	Results	Pass				

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
319.532	66.5	22.8	1.0	195.0		0.0	Horz	PK	0.0	89.3	95.9	-6.6	EUT Y-Axis
319.534	65.2	22.8	1.1	1.0		0.0	Horz	PK	0.0	88.0	95.9	-7.9	EUT X-Axis
319.532	66.5	22.8	1.0	195.0	-21.9	0.0	Horz	AV	0.0	67.4	75.9	-8.5	EUT Y-Axis
319.534	64.3	22.8	1.9	0.0		0.0	Vert	PK	0.0	87.1	95.9	-8.8	EUT Z-Axis
319.534	65.2	22.8	1.1	1.0	-21.9	0.0	Horz	AV	0.0	66.1	75.9	-9.8	EUT X-Axis
319.534	64.3	22.8	1.9	0.0	-21.9	0.0	Vert	AV	0.0	65.2	75.9	-10.7	EUT Z-Axis
319.534	62.1	22.8	1.9	96.0		0.0	Vert	PK	0.0	84.9	95.9	-11.0	EUT X-Axis
319.534	62.1	22.8	1.9	96.0	-21.9	0.0	Vert	AV	0.0	63.0	75.9	-12.9	EUT X-Axis
319.534	57.3	22.8	1.9	265.0		0.0	Horz	PK	0.0	80.1	95.9	-15.8	EUT Z-Axis
319.530	56.3	22.8	1.5	117.0		0.0	Vert	PK	0.0	79.1	95.9	-16.8	EUT Y-Axis
319.534	57.3	22.8	1.9	265.0	-21.9	0.0	Horz	AV	0.0	58.2	75.9	-17.7	EUT Z-Axis
319.530	56.3	22.8	1.5	117.0	-21.9	0.0	Vert	AV	0.0	57.2	75.9	-18.7	EUT Y-Axis

Report No. UTCF0104 12/15

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting CW at 319.5 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

UTCF0104 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Fre	quency 8200 MHz
---------------------------------	-----------------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	1-8GHz RE Cables	OCJ	2-Jul-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	2-Jul-2018	12 mo
Antenna - Double Ridge	EMCO	3115	AHB	28-Mar-2018	24 mo
Attenuator	Fairview Microwave	SA18H-10	TKP	16-Jul-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1402	AOZ	1-Aug-2017	12 mo
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	1-Aug-2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141A	AYE	7-Nov-2017	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	21-Nov-2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

To derive average emission measurements, a duty cycle correction factor of -21.88 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Report No. UTCF0104 13/15

SPURIOUS RADIATED EMISSIONS

958.604

1597.730

958.610

36.5

54.1

37.8

20.4

0.6

20.4

1.3

1.3

1.0

251.0

57.0

360.0

-21.9

PSA-ESCI 2018.05.04

EmiR5 2018.05.07

													EmiR5 2018.05.07		PSA-ESCI 2018.05.04	-
Woi	rk Order:	UTC	F0104			Date:	17-Ju	I-2018				11		_		
	Project:		one		Ten	nperature:		5 °C		_	-	1-1	(5 /		
	Job Site:					Humidity:	26.5 °C 41.1% RH									
]				
Seriai	Number:					tric Pres.:	1016	mbar			16	ested by:	Mark Bayta	an		•
	EUT:	60-744-98	SR SAW Wat	er Ser	nsor											
Confid	guration:	1														
	ustomer:	UTC Fire	and Security	1												•
		None	and Cooding													
																-
EU	T Power:															•
Onorotin	ng Mode:	Transmitt	ing CW at 31	9.5 M	Hz											
Operatii	ng wode:		•													
		None														
De	eviations:	140110														
		T 1 1 4					1.6 (1					00 10 04	7.0704.05	DIMO		
		The duty	cycle correct	ion fac	tor v	vas reterend	ced from th	e testin	g repo	ort un	ider F	CC ID: B4.	Z-679A-95-	·DWS		
Co	mments:															
																İ
est Specif	fications							Test M								-
CC 15.231	1:2018							ANSI C	63.10):201	3					
Run #	2	Test D	istance (m)	3		Antenna	Height(s)		1	to 4	(m)		Results	F	ass	•
																•
80				$\perp \perp \perp$											\perp	
00																
		<u>-</u>			\neg					—					ייריורי	
							1 1111									
70										- 4						
							1 1111			-						
							1 1111			Щ		-				
60 🗕					_										+++	
					\top		7 00								TUTUT .	
E0							1 1 11									
ے ⁵⁰ 🛨																
W/Mgp 40								•	•	8		*				
5											•	•	T			
₫ 40 +			•													
ן ס									•							
30 🗕															+++	
									•							
20																
20																
10 +																
0 ├					+					щ						
10					100					100	00				10000	
							NA! !-			- '					-	
							MHz						■ PK	AV	QP	
						Duty Cycle		Polarity								
						Correction	External	Transdu				Distance	A -4:		Compared to	
Eros	Amplitude	Easter.	Antonna III-i-II	A-1-	,th							Adjustment				
Freq	Amplitude	Factor (dR)	Antenna Height	Azimu (degre		Factor (dB)	Attenuation	Туре		Detec			Adjusted (dBu\//m)	Spec. Limit	Spec.	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimı (degre		Factor (dB)		Туре		Detec	itor	(dB)	(dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)	Comments
(MHz)	(dBuV)	(dB)	(meters)	(degre	es)		Attenuation (dB)					(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments EUT Vert
(MHz) 2236.760	(dBuV) 58.6	(dB)	(meters)	(degree	es)		Attenuation (dB)	Vert		PK		(dB) 0.0	(dBuV/m)	(dBuV/m)	(dB)	EUT Vert
(MHz) 2236.760 2875.850	(dBuV) 58.6 54.2	(dB) 1.5 4.3	(meters) 1.6 2.6	251 340	.0 .0		Attenuation (dB) 10.0 10.0	Vert Horz		PK PK		0.0 0.0	(dBuV/m) 70.1 68.5	74.0 74.0	-3.9 -5.5	EUT Vert EUT Horz
(MHz) 2236.760 2875.850 1917.330	58.6 54.2 58.2	(dB) 1.5 4.3 2.1	1.6 2.6 1.1	251 340 252	.0 .0	(dB)	Attenuation (dB) 10.0 10.0 10.0	Vert Horz Vert		PK PK PK		0.0 0.0 0.0 0.0	70.1 68.5 70.3	74.0 74.0 74.0 75.9	-3.9 -5.5 -5.6	EUT Vert EUT Horz EUT Vert
(MHz) 2236.760 2875.850 1917.330 2236.760	58.6 54.2 58.2 58.6	1.5 4.3 2.1 1.5	1.6 2.6 1.1 1.6	251 340 252 251	.0 .0 .0		Attenuation (dB) 10.0 10.0 10.0 10.0 10.0	Vert Horz Vert Vert		PK PK PK AV		0.0 0.0 0.0 0.0 0.0	70.1 68.5 70.3 48.2	74.0 74.0 75.9 54.0	-3.9 -5.5 -5.6 -5.8	EUT Vert EUT Horz EUT Vert EUT Vert
(MHz) 2236.760 2875.850 1917.330 2236.760 2236.715	58.6 54.2 58.2 58.6 56.5	1.5 4.3 2.1 1.5 1.5	1.6 2.6 1.1 1.6 1.1	251 340 252 251 122	.0 .0 .0 .0	(dB)	10.0 10.0 10.0 10.0 10.0 10.0	Vert Horz Vert Vert Horz		PK PK PK AV PK		0.0 0.0 0.0 0.0 0.0 0.0	70.1 68.5 70.3 48.2 68.0	74.0 74.0 75.9 54.0 74.0	-3.9 -5.5 -5.6 -5.8 -6.0	EUT Vert EUT Horz EUT Vert EUT Vert EUT Horz
(MHz) 2236.760 2875.850 1917.330 2236.760 2236.715 1917.275	58.6 54.2 58.2 58.6 56.5 57.5	1.5 4.3 2.1 1.5 1.5 2.1	1.6 2.6 1.1 1.6 1.1 1.3	251 340 252 251 122 170	0 .0 .0 .0 .0 .0	(dB) -21.9	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Vert Horz Vert Vert Horz Horz		PK PK PK AV PK		0.0 0.0 0.0 0.0 0.0 0.0 0.0	70.1 68.5 70.3 48.2 68.0 69.6	74.0 74.0 75.9 54.0 74.0 75.9	-3.9 -5.5 -5.6 -5.8 -6.0 -6.3	EUT Vert EUT Horz EUT Vert EUT Vert EUT Horz EUT Horz
(MHz) 2236.760 2875.850 1917.330 2236.760 2236.715 1917.275 2875.850	58.6 54.2 58.2 58.6 56.5 57.5 54.2	1.5 4.3 2.1 1.5 1.5 2.1 4.3	1.6 2.6 1.1 1.6 1.1 1.3 2.6	251 340 252 251 122 170 340	.0 .0 .0 .0 .0 .0	-21.9	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Vert Horz Vert Vert Horz Horz Horz		PK PK PK AV PK PK		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	70.1 68.5 70.3 48.2 68.0 69.6 46.6	74.0 74.0 75.9 54.0 75.9 54.0 75.9 54.0	-3.9 -5.5 -5.6 -5.8 -6.0 -6.3 -7.4	EUT Vert EUT Horz EUT Vert EUT Vert EUT Horz EUT Horz EUT Horz
(MHz) 2236.760 2875.850 1917.330 2236.760 2236.715 1917.275 2875.850 1917.330	58.6 54.2 58.2 58.6 56.5 57.5 54.2 58.2	1.5 4.3 2.1 1.5 1.5 2.1 4.3 2.1	1.6 2.6 1.1 1.6 1.1 1.3 2.6	251 340 252 251 122 170 340 252	.0 .0 .0 .0 .0 .0 .0	(dB) -21.9	Attenuation (dB) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Vert Horz Vert Vert Horz Horz Vert		PK PK PK AV PK AV		(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	70.1 68.5 70.3 48.2 68.0 69.6 46.6 48.4	74.0 74.0 75.9 54.0 75.9 54.0 75.9 54.0 55.9	-3.9 -5.5 -5.6 -5.8 -6.0 -6.3 -7.4 -7.5	EUT Vert EUT Horz EUT Vert EUT Vert EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz
(MHz) 2236.760 2875.850 1917.330 2236.760 2236.715 1917.275 2875.850 1917.330 958.610	58.6 54.2 58.2 58.6 56.5 57.5 54.2 58.2 37.8	(dB) 1.5 4.3 2.1 1.5 1.5 2.1 4.3 2.1 20.4	(meters) 1.6 2.6 1.1 1.6 1.1 1.3 2.6 1.1 1.0	251 340 252 251 122 170 340 252 360	.0 .0 .0 .0 .0 .0 .0 .0	-21.9	Attenuation (dB) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Vert Horz Vert Vert Horz Horz Vert Horz		PK PK AV PK AV AV		(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	70.1 68.5 70.3 48.2 68.0 69.6 46.6 48.4 68.2	74.0 74.0 75.9 54.0 75.9 54.0 55.9 75.9	-3.9 -5.5 -5.6 -5.8 -6.0 -6.3 -7.4 -7.5	EUT Vert EUT Horz EUT Vert EUT Vert EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz
(MHz) 1236.760 1875.850 917.330 1236.760 1236.715 1917.275 1875.850 1917.330 1958.610 1958.617	58.6 54.2 58.6 56.5 57.5 54.2 58.2 37.8 37.8	(dB) 1.5 4.3 2.1 1.5 1.5 2.1 4.3 2.1 20.4 20.4	(meters) 1.6 2.6 1.1 1.6 1.1 1.3 2.6 1.1 1.0 1.0	251 340 252 251 122 170 340 252 360 185	.0 .0 .0 .0 .0 .0 .0 .0 .0	-21.9 -21.9 -21.9	Attenuation (dB) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Vert Horz Vert Vert Horz Horz Vert Horz Horz		PK PK PK AV PK AV PK PK		(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	70.1 68.5 70.3 48.2 68.0 69.6 46.6 48.4 68.2 68.2	74.0 74.0 75.9 54.0 75.9 54.0 55.9 75.9 75.9	-3.9 -5.5 -5.6 -5.8 -6.0 -6.3 -7.4 -7.5 -7.7	EUT Vert EUT Horz EUT Vert EUT Horz EUT Ors EUT Horz EUT Horz
(MHz) 2236.760 8275.850 917.330 2236.760 2236.715 917.275 8875.850 917.330 958.610 958.617 2236.715	58.6 54.2 58.6 56.5 57.5 54.2 58.2 37.8 37.8 56.5	(dB) 1.5 4.3 2.1 1.5 1.5 2.1 4.3 2.1 20.4 20.4 1.5	1.6 2.6 1.1 1.6 1.1 1.3 2.6 1.1 1.0 1.0	251 340 252 251 122 170 340 252 360 185 122	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	-21.9 -21.9 -21.9 -21.9	Attenuation (dB) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Vert Horz Vert Vert Horz Horz Horz Horz Vert Horz Vert Horz Horz Horz		PK PK AV PK AV AV PK AV		(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	70.1 68.5 70.3 48.2 68.0 69.6 46.6 48.4 68.2 68.2 46.1	74.0 74.0 75.9 54.0 75.9 54.0 75.9 54.0 55.9 75.9 75.9 54.0	-3.9 -5.5 -5.6 -5.8 -6.0 -6.3 -7.4 -7.5 -7.7 -7.7	EUT Vert EUT Horz EUT Vert EUT Vert EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz EUT Gut EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz
(MHz) 236.760 875.850 917.330 236.760 236.715 917.275 875.850 917.330 958.610 958.617 236.715 917.275	58.6 54.2 58.6 56.5 57.5 54.2 58.2 37.8 37.8 56.5 57.5	(dB) 1.5 4.3 2.1 1.5 1.5 2.1 4.3 2.1 20.4 20.4 1.5 2.1	1.6 2.6 1.1 1.6 1.1 1.3 2.6 1.1 1.0 1.0	251 340 252 251 122 170 340 252 360 185 122	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	-21.9 -21.9 -21.9	Attenuation (dB) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Vert Horz Vert Vert Horz Horz Horz Horz Vert Horz Horz Vert Horz Horz		PK PK PK AV PK AV PK AV		(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	70.1 68.5 70.3 48.2 68.0 69.6 46.6 48.4 68.2 68.2 46.1 47.7	74.0 74.0 75.9 54.0 75.9 54.0 75.9 54.0 55.9 75.9 54.0 55.9	-3.9 -5.5 -5.6 -5.8 -6.0 -6.3 -7.4 -7.5 -7.7 -7.7 -7.9 -8.2	EUT Vert EUT Horz EUT Vert EUT Horz EUT Gon Side EUT Horz EUT Horz EUT Horz EUT Horz
(MHz) 2236.760 875.850 917.330 2236.760 2236.715 917.275 8875.850 917.330 958.610 958.617 2236.715 917.275 597.640	58.6 54.2 58.6 56.5 57.5 54.2 37.8 37.8 56.5 57.5 55.2	(dB) 1.5 4.3 2.1 1.5 1.5 2.1 4.3 2.1 20.4 20.4 1.5 2.1 0.6	(meters) 1.6 2.6 1.1 1.6 1.1 1.3 2.6 1.1 1.0 1.0 1.1 1.3 1.1	251 340 252 251 122 170 340 252 360 185 122 170 331	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	-21.9 -21.9 -21.9 -21.9	Attenuation (dB) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Vert Horz Vert Vert Horz Horz Horz Horz Horz Horz Horz Horz		PK PK PK AV PK AV PK AV PK		(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	70.1 68.5 70.3 48.2 68.0 69.6 46.6 48.4 68.2 68.2 46.1 47.7 65.8	74.0 74.0 74.0 75.9 54.0 75.9 54.0 75.9 75.9 75.9 75.9 75.9 74.0	(dB) -3.9 -5.5 -5.6 -5.8 -6.0 -6.3 -7.4 -7.5 -7.7 -7.7 -7.9 -8.2 -8.2	EUT Vert EUT Horz EUT Vert EUT Vert EUT Horz EUT Horz EUT Horz EUT Horz EUT Grz EUT Horz
	58.6 54.2 58.6 56.5 57.5 54.2 58.2 37.8 37.8 56.5 57.5	(dB) 1.5 4.3 2.1 1.5 1.5 2.1 4.3 2.1 20.4 20.4 1.5 2.1	1.6 2.6 1.1 1.6 1.1 1.3 2.6 1.1 1.0 1.0	251 340 252 251 122 170 340 252 360 185 122	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-21.9 -21.9 -21.9 -21.9	Attenuation (dB) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Vert Horz Vert Vert Horz Horz Horz Horz Vert Horz Horz Vert Horz Horz		PK PK PK AV PK AV PK AV		(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	70.1 68.5 70.3 48.2 68.0 69.6 46.6 48.4 68.2 68.2 46.1 47.7	74.0 74.0 75.9 54.0 75.9 54.0 75.9 54.0 55.9 75.9 54.0 55.9	-3.9 -5.5 -5.6 -5.8 -6.0 -6.3 -7.4 -7.5 -7.7 -7.7 -7.9 -8.2	EUT Vert EUT Horz EUT Vert EUT Horz

Report No. UTCF0104 14/15

Vert

Vert

Horz

PK PK PK

 AV

0.0

0.0

0.0

66.9

64.7

46.3

75.9 74.0 55.9

EUT Vert

EUT Vert EUT Horz

-9.0

-9.3

-9.6

10.0

10.0

10.0

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
958.617	37.8	20.4	1.0	185.0	-21.9	10.0	Horz	AV	0.0	46.3	55.9	-9.6	EUT on Side
1597.640	55.2	0.6	1.1	331.0	-21.9	10.0	Horz	AV	0.0	43.9	54.0	-10.1	EUT Horz
2875.950	51.2	4.3	1.3	356.0	-21.9	10.0	Vert	AV	0.0	43.6	54.0	-10.4	EUT Vert
1278.175	57.7	-2.4	1.1	3.0		10.0	Vert	PK	0.0	65.3	75.9	-10.6	EUT Vert
1278.170	57.6	-2.4	1.4	345.0		10.0	Horz	PK	0.0	65.2	75.9	-10.7	EUT Horz
958.604	36.5	20.4	1.3	251.0	-21.9	10.0	Vert	AV	0.0	45.0	55.9	-10.9	EUT Vert
1597.730	54.1	0.6	1.3	57.0	-21.9	10.0	Vert	AV	0.0	42.8	54.0	-11.2	EUT Vert
1278.175	57.7	-2.4	1.1	3.0	-21.9	10.0	Vert	AV	0.0	43.4	55.9	-12.5	EUT Vert
1278.170	57.6	-2.4	1.4	345.0	-21.9	10.0	Horz	AV	0.0	43.3	55.9	-12.6	EUT Horz
958.594	30.8	20.4	1.7	109.0		10.0	Vert	PK	0.0	61.2	75.9	-14.7	EUT on Side
958.589	30.1	20.4	2.0	114.0		10.0	Vert	PK	0.0	60.5	75.9	-15.4	EUT Horz
958.594	30.8	20.4	1.7	109.0	-21.9	10.0	Vert	AV	0.0	39.3	55.9	-16.6	EUT on Side
958.617	28.3	20.4	2.2	157.0		10.0	Horz	PK	0.0	58.7	75.9	-17.2	EUT Vert
958.589	30.1	20.4	2.0	114.0	-21.9	10.0	Vert	AV	0.0	38.6	55.9	-17.3	EUT Horz
639.076	33.8	13.2	1.5	233.0		10.0	Horz	PK	0.0	57.0	75.9	-18.9	EUT Horz
958.617	28.3	20.4	2.2	157.0	-21.9	10.0	Horz	AV	0.0	36.8	55.9	-19.1	EUT Vert
639.076	33.8	13.2	1.5	233.0	-21.9	10.0	Horz	AV	0.0	35.1	55.9	-20.8	EUT Horz
639.050	25.5	13.2	1.0	122.0		10.0	Vert	PK	0.0	48.7	75.9	-27.2	EUT Vert
639.050	25.5	13.2	1.0	122.0	-21.9	10.0	Vert	AV	0.0	26.8	55.9	-29.1	EUT Vert

Report No. UTCF0104 15/15