

UTC Fire and Security

Model 60-578 Water Resistant Pendant Panic
Low Power Transceiver
FCC 15.231:2017
Report # UTCF0070

NVLAP Lab Code: 200676-0

CERTIFICATE OF TEST

Last Date of Test: June 29, 2017 UTC Fire and Security Model 60-578 Water Resistant Pendant Panic

Radio Equipment Testing

Standards

Specification	Method				
FCC 15.231:2017	ANSI C63.10:2013				

Results

		a.		
Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	No	N/A	Testing covered in previous Certification Test Report UTCF0008.1 for FCC ID: B4Z-612- H20PANIC
7.5	Duty Cycle	No	N/A	Testing covered in previous Certification Test Report UTCF0008.1 for FCC ID: B4Z-612- H20PANIC

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

Report No. UTCF0070 2/17

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. UTCF0070 3/17

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

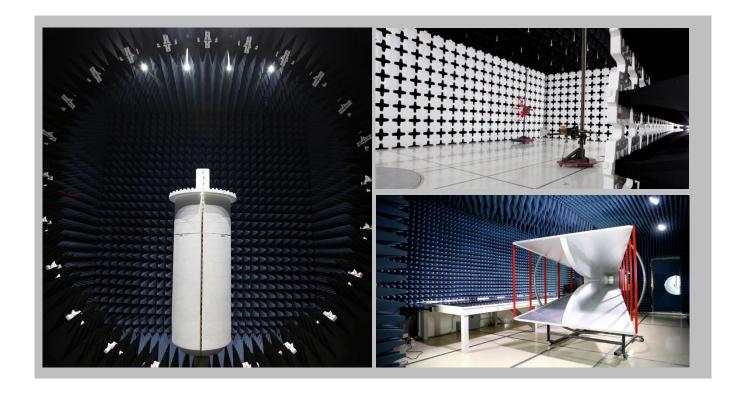
SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. UTCF0070 4/17

FACILITIES


California
Labs OC01-13
41 Tesla
Irvine, CA 92618
(949) 861-8918

Minnesota
Labs MN01-08, MN10
9349 W Broadway Ave.
Brooklyn Park, MN 55445
(612)-638-5136

New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600

41 Tesla 9349 W Broadway Ave. Irvine, CA 92618 Brooklyn Park, MN 55445 (612)-638-5136		4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	19201 120 th Ave NE Bothell, WA 98011 (425)984-6600					
NVLAP										
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0					
Innovation, Science and Economic Development Canada										
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1					
		BS	МІ							
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R					
		VC	CI							
A-0029	A-0109	N/A	A-0108	A-0201	A-0110					
	Recognized Phase	e I CAB for ACMA, BSM	I, IDA, KCC/RRA, MIC, M	OC, NCC, OFCA						
US0158	US0175	N/A	US0017	US0191	US0157					

Report No. UTCF0070 5/17

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

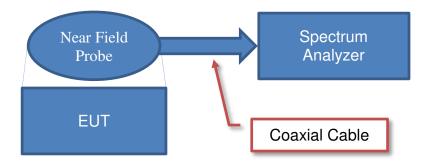
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

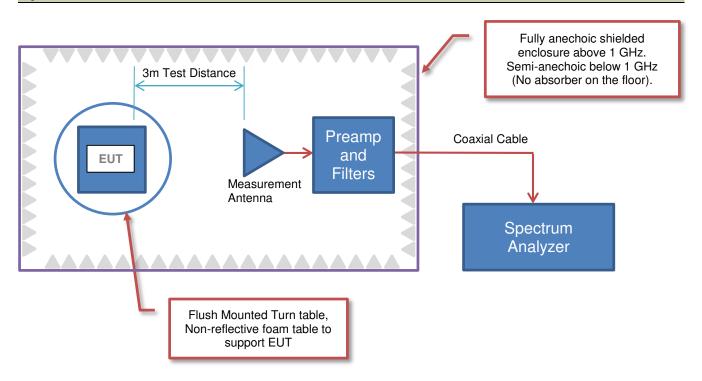
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. UTCF0070 6/17


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. UTCF0070 7/17

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	UTC Fire and Security
Address:	2955 Redhill Avenue, Suite 100
City, State, Zip:	Costa Mesa, CA 92626
Test Requested By:	Konstantin Khrustov
Model:	Water Proof Panic Module
First Date of Test:	June 29, 2017
Last Date of Test:	June 29, 2017
Receipt Date of Samples:	June 29, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Water Resistant Pendant Panic. Low power transmitter operating at 319.5 MHz.

Testing Objective:

To demonstrate compliance to FCC 15.231 specifications via a Class II Permissive Change to FCC ID: B4Z-612-H20PANIC

Customer Justification for Class II Permissive Change:

Complete list of changes to the device

- 1. Q1 was replaced with Q2 (transistor change)
- 2. C10 was changed to 12pF (capacitor value change)
- 3. BAT42 diode was added in parallel with resistor R9 (new component added)
- 4. C5 was removed (capacitor removed)

Report No. UTCF0070 8/17

CONFIGURATIONS

Configuration UTCF0069-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Water Resistant Pendant Panic	UTC Fire and Security	60-578	1

Report No. UTCF0070 9/17

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT	
		Spurious	Tested as	No EMI suppression	EUT remained at	
1 6/29/2017		6/29/2017 Radiated delivered		devices were added or	Element following the	
		Emissions	Test Station.	modified during this test.	test.	
		Field	Tested as	No EMI suppression	Scheduled testing	
2 6	6/29/2017	017 Strength of delivered to		devices were added or	was completed.	
		Fundamental	Test Station.	modified during this test.	was completed.	

Report No. UTCF0070 10/17

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 319.5 MHz, CW

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

UTCF0069 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 1000 MHz	Start Frequency	30 MHz	Stop Frequency	1000 MHz
--	-----------------	--------	----------------	----------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna - Biconilog	EMCO	3142	AXB	11/6/2015	24 mo
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	8/9/2016	12 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	1/28/2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. UTCF0070 11/17

FIELD STRENGTH OF FUNDAMENTAL

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec
Pulsewidth of Type 1 Pulse = 0.9828 mSec
Pulsewidth of Type 2 Pulse = 0.1335 mSec
Pulsewidth of Type 3 Pulse = 0.4975 mSec
Number of Type 1 Pulses = 1
Number of Type 2 Pulses = 58
Number of Type 3 Pulses = 1

Duty Cycle = $20 \log [((1)(0.9828) + (58)(0.1335) + (1)(0.4975)/100] = -20.7 dB$

The duty cycle correction factor of -20.7 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

The duty cycle measurements were taken from previous Certification Test Report UTCF0008.1 for FCC ID: B4Z-612-H20PANIC.

Report No. UTCF0070 12/17

FIELD STRENGTH OF FUNDAMENTAL

										EmiR5 2017.01.25		PSA-ESCI 2017.01.2	16	
	Work Order		CF0069		Date:	06/2			11		-			
	Project		Vone	Ten	nperature:	23.3			4		7/-			
	Job Site)C01		Humidity:	44.5%					/			
Se	rial Number		1		tric Pres.:	1017	mbar		Tested by:	Mark Bayta	an		_	
	onfiguration		-578 Water F	resistant Pe	endant Pan	IC							_	
	Customer	UTC Fire	and Security	,									=	
	Attendees												_	
	EUT Power	Battery											_	
One	rating Mode	Transmitt	ting at 319.5	MHz, CW									_	
Орс	Tating mode												_	
	Deviations	None												
		None											_	
	Comments													
Test Sp	ecifications						Test Meth	od					_	
	.231:2017	•					ANSI C63.	.10:2013					_	
Run	າ# 1	Test D	istance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P:	ass	_	
12		1031 D	istance (iii)	U	Antonia	ricigiit(3)		1 10 4(111)		ricourto			_	
12	-0													
11	10													
10	00													
9	90 +													
Ε														
dBuV/m ⊗	30													
ъ В	,													
7	70													
6	80													
									.					
									•					
5	50													
4	10 ↓													
	10					100						1000		
						MHz				■ PK	◆ AV	• QP		
					D . C .						+ AV			
					Duty Cycle Correction	External	Polarity/ Transducer		Distance			Compared to		
Freq	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Factor (dB)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)		
(MHz)	(ubuv)	(UD)	(Illeters)	(degrees)	(UB)	(ub)			(UB)	(ubuv/III)	(ubuv/III)	(UB)	Comments	
319.51		19.9	1.1	109.0		0.0	Horz	PK	0.0	82.6	95.9	-13.3	EUT Horz	
319.51 319.51		19.9 19.9	1.1 2.0	109.0 119.0	-20.7	0.0 0.0	Horz Vert	AV PK	0.0 0.0	61.9 80.6	75.9 95.9	-14.0 -15.3	EUT Horz EUT Vert	
319.51		19.9	1.8	118.0		0.0	Vert	PK PK	0.0	80.0	95.9 95.9	-15.3 -15.9	EUT on Side	
319.51	3 60.7	19.9	2.0	119.0	-20.7	0.0	Vert	AV	0.0	59.9	75.9	-16.0	EUT Vert	
319.51		19.9	1.8	118.0	-20.7	0.0	Vert	AV	0.0	59.3	75.9	-16.6	EUT on Side	
319.51 319.51		19.9 19.9	2.3 2.3	34.0 34.0	-20.7	0.0 0.0	Horz Horz	PK AV	0.0 0.0	75.0 54.3	95.9 75.9	-20.9 -21.6	EUT Vert EUT Vert	
319.51		19.9	2.0	147.0	20.1	0.0	Vert	PK	0.0	69.1	95.9	-26.8	EUT Horz	
319.51	3 49.2	19.9	2.0	147.0	-20.7	0.0	Vert	AV	0.0	48.4	75.9	-27.5	EUT Horz	
319.50 319.50		19.9 19.9	1.2 1.2	276.0 276.0	-20.7	0.0 0.0	Horz Horz	PK AV	0.0 0.0	68.3 47.6	95.9 75.9	-27.6 -28.3	EUT on Side EUT on Side	
515.50	. 70.7	10.0	1.2	2,0.0	20.1	5.0	11012	, T. V	5.0	77.0	, 5.5	20.0		

Report No. UTCF0070 13/17

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 319.5 MHz, CW

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

UTCF0069 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz	Stop Frequency	5 MHz
Start Frequency (30 MHz	Stop i requericy	13 IVII 12

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	1-8GHz RE Cables	OCJ	8/4/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	8/4/2016	12 mo
Antenna - Double Ridge	EMCO	3115	AHB	3/21/2016	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	1/28/2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. UTCF0070 14/17

SPURIOUS RADIATED EMISSIONS

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec
Pulsewidth of Type 1 Pulse = 0.9828 mSec
Pulsewidth of Type 2 Pulse = 0.1335 mSec
Pulsewidth of Type 3 Pulse = 0.4975 mSec
Number of Type 1 Pulses = 1
Number of Type 2 Pulses = 58
Number of Type 3 Pulses = 1

Duty Cycle = $20 \log [((1)(0.9828) + (58)(0.1335) + (1)(0.4975)/100] = -20.7 dB$

The duty cycle correction factor of -20.7 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz, for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.

The duty cycle measurements were taken from previous Certification Test Report UTCF0008.1 for FCC ID: B4Z-612-H20PANIC.

Report No. UTCF0070 15/17

SPURIOUS RADIATED EMISSIONS

Date:

06/29/17

UTCF0069

Work Order:

EmiR5 2017.01.25

	Dik Oldel.	01010009	_	Date.		00		11	/	100		
	Project:	None	Te	emperature:	23.3			4	-	2/-		
	Job Site:	OC01		Humidity:	44.5%	RH						
Seria	l Number:	1	Baron	netric Pres.:	1017 n		7	Tested by:	Mark Bayta	an		_
		Model 60-578 Wa						rootou ay.	a.r. Dayte	•••		_
0			er riesistant	i chant i an	iic .							=
	figuration:											_
		UTC Fire and Sec										_
Δ	Attendees:	Konstantin Khrustov										
	UT Power:											_
		Transmitting at 31	S E MILLE CIA	1								-
Operat	ing Mode:	Transmitting at 3	9.5 IVITZ, CVI	,								
•												_
n	eviations:	None										
D	eviations.	i										
		None										_
C	omments:	140110										
C	omments.	i										
												_
Test Spec	ifications				Т	Test Metho	h					-
												=
FCC 15.23	31:2017				P	ANSI C63.	10:2013					
												_
Run #	4	Test Distance	m) 3	Antenna	Height(s)		1 to 4(m)		Results	Pa	ass	-
					J -(-)			ı				-
80 ⊤												
			 						. ⊢			
					 		╵			╙╫╸│ ┃┃		
70												
, ,				1 1 1 11111								
				1 1 1 11111								
				1 1 1 11111								
60 +												
50 +												
_				1 1 1 1 1 1 1 1 1		-		_				
W/\ng p												
₹ 40 ↓								•				
ਡ਼ਾਾ∣							_					
쁑								•				
				•		, "		, i				
30 +						•						
						 		•				
20												
20 +				1			♦ ▲					
							*					
						•	*					
						\$	•					
10						*	•					
10						*						
10						\$						
						\$	•					
0						\$	•					
)		100			*	1000				10000	
0)				MHz	*	1000					
0)				MHz	*	1000		■ PK	◆ AV	10000 • QP	
0)			0	MHz		1000		■ PK	+ AV		
0)			Duty Cycle		Polarity/	1000		■ PK	◆ AV	• QP	
0 + 10			100	Duty Cycle Correction	External	Polarity/ Transducer		Distance			• QP Compared to	
0 + 10	Amplitude	Factor Antenna A	100	Duty Cycle Correction Factor	External Attenuation	Polarity/	1000	Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
0 + 10		Factor (dB) Antenna h	100	Duty Cycle Correction	External	Polarity/ Transducer					• QP Compared to	Comments
0 10	Amplitude (dBuV)	(dB) (meter	100 Azimuth (degrees)	Duty Cycle Correction Factor	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0 - 10 Freq (MHz) 1491.035	Amplitude (dBuV)	-2.1 1.5	100 Azimuth (degrees) 22.0	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	EUT Horz
Freq (MHz) 1491.035 1491.035	Amplitude (dBuV) 64.5 64.5	-2.1 1.5 -2.1 1.5	100 Azimuth (degrees) 22.0 22.0	Duty Cycle Correction Factor	External Attenuation (dB)	Polarity/ Transducer Type Vert Vert	Detector PK AV	Adjustment (dB) 0.0 0.0	Adjusted (dBuV/m) 62.4 41.7	Spec. Limit (dBuV/m) 74.0 54.0	Ompared to Spec. (dB)	EUT Horz EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530	Amplitude (dBuV) 64.5 64.5 56.9	-2.1 1.5 -2.1 1.5 -1.3 1.9	100 Azimuth (degrees) 22.0 22.0 341.0	Duty Cycle Correction Factor (dB)	External Attenuation (dB) 0.0 0.0 0.0 0.0	Polarity/ Transducer Type Vert Vert Vert	Detector PK AV PK	Adjustment (dB) 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 62.4 41.7 55.6	Spec. Limit (dBuV/m) 74.0 54.0 74.0	Oppared to Spec. (dB) -11.6 -12.3 -18.4	EUT Horz EUT Horz EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530 1597.530	Amplitude (dBuV) 64.5 64.5 56.9 56.9	-2.1 1.5 -2.1 1.5 -2.1 1.5 -1.3 1.9 -1.3 1.9	100 Azimuth (degrees) 22.0 24.1.0 341.0	Duty Cycle Correction Factor (dB)	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0	Polarity/ Transducer Type Vert Vert Vert Vert	PK AV PK AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 62.4 41.7 55.6 34.9	Spec. Limit (dBuV/m) 74.0 54.0 74.0 54.0 54.0	Ompared to Spec. (dB) -11.6 -12.3 -18.4 -19.1	EUT Horz EUT Horz EUT Horz EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530 1597.530 532.525	Amplitude (dBuV) 64.5 64.5 56.9	-2.1 1.5 -2.1 1.5 -1.3 1.9	100 Azimuth (degrees) 22.0 22.0 341.0	Duty Cycle Correction Factor (dB)	External Attenuation (dB) 0.0 0.0 0.0 0.0	Polarity/ Transducer Type Vert Vert Vert	Detector PK AV PK	Adjustment (dB) 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 62.4 41.7 55.6	Spec. Limit (dBuV/m) 74.0 54.0 74.0	Oppared to Spec. (dB) -11.6 -12.3 -18.4	EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530 1597.530	Amplitude (dBuV) 64.5 64.5 56.9 56.9	-2.1 1.5 -2.1 1.5 -2.1 1.5 -1.3 1.9 -1.3 1.9	100 Azimuth (degrees) 22.0 24.1.0 341.0	Duty Cycle Correction Factor (dB)	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0	Polarity/ Transducer Type Vert Vert Vert Vert	PK AV PK AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 62.4 41.7 55.6 34.9	Spec. Limit (dBuV/m) 74.0 54.0 74.0 54.0 54.0	Ompared to Spec. (dB) -11.6 -12.3 -18.4 -19.1	EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530 1597.530 532.525	Amplitude (dBuV) 64.5 64.5 56.9 56.9 45.7	-2.1 1.5 -2.1 1.5 -2.1 1.5 -1.3 1.9 -1.3 1.9 9.1 1.0	100 Azimuth (degrees) 22.0 22.0 341.0 341.0 272.0	Duty Cycle Correction Factor (dB)	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0	Polarity/ Transducer Type Vert Vert Vert Vert Vert	PK AV PK AV PK	0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 62.4 41.7 55.6 34.9 54.8	Spec. Limit (dBuV/m) 74.0 54.0 74.0 54.0 75.9	Compared to Spec. (dB) -11.6 -12.3 -18.4 -19.1 -21.1	EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530 1597.530 532.525 213.004 1491.025	Amplitude (dBuV) 64.5 64.5 56.9 56.9 45.7 38.9 54.4	(dB) (meter -2.1 1.5 -2.1 1.5 -1.3 1.9 -1.3 1.9 9.1 1.0 15.8 2.6 -2.1 1.6	100 22.0 22.0 341.0 341.0 272.0 175.0 198.0	Duty Cycle Correction Factor (dB) -20.7 -20.7	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Polarity/ Transducer Type Vert Vert Vert Vert Vert Horz Horz	PK AV PK AV PK PK	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 62.4 41.7 55.6 34.9 54.8 54.7 52.3	Spec. Limit (dBuV/m) 74.0 54.0 74.0 54.0 75.9 75.9 74.0	OPP Compared to Spec. (dB) -11.6 -12.3 -18.4 -19.1 -21.1 -21.2 -21.7	EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530 1597.530 532.525 213.004 1491.025 532.525	Amplitude (dBuV) 64.5 64.5 56.9 56.9 45.7 38.9 54.4 45.7	-2.1 1.5 -2.1 1.5 -2.1 1.5 -1.3 1.9 -1.3 1.9 9.1 1.0 15.8 2.6 -2.1 1.6 9.1 1.0	100 Azimuth (degrees) 22.0 241.0 341.0 272.0 175.0 198.0 272.0	Duty Cycle Correction Factor (dB) -20.7 -20.7	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Polarity/ Transducer Type Vert Vert Vert Vert Horz Horz Vert	PK AV PK AV PK PK PK AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 62.4 41.7 55.6 34.9 54.8 54.7 52.3 34.1	Spec. Limit (dBuV/m) 74.0 54.0 74.0 54.0 75.9 75.9 74.0 55.9	ORP Compared to Spec. (dB) -11.6 -12.3 -18.4 -19.1 -21.1 -21.2 -21.7 -21.8	EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530 532.525 213.004 1491.025 532.525 213.004	Amplitude (dBuV) 64.5 64.5 56.9 45.7 38.9 54.4 45.7 38.9	(dB) (meter -2.1 1.5 -2.1 1.5 -1.3 1.9 -1.3 1.9 9.1 1.0 15.8 2.6 -2.1 1.6 9.1 1.0 15.8 2.6	100 Azimuth (degrees) 22.0 22.0 341.0 341.0 272.0 175.0 198.0 272.0 175.0	Duty Cycle Correction Factor (dB) -20.7 -20.7	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Polarity/ Transducer Type Vert Vert Vert Vert Horz Horz Vert Horz	PK AV PK AV PK PK PK AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 62.4 41.7 55.6 34.9 54.8 54.7 52.3 34.1 34.0	Spec. Limit (dBuV/m) 74.0 54.0 74.0 54.0 75.9 75.9 74.0 55.9 55.9	Compared to Spec. (dB) -11.6 -12.3 -18.4 -19.1 -21.1 -21.2 -21.7 -21.8 -21.9	EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530 1597.530 532.525 213.004 1491.025 532.525 213.004 1491.025	Amplitude (dBuV) 64.5 64.5 56.9 56.9 45.7 38.9 54.4 45.7 38.9 54.4	(dB) (meter -2.1 1.5 -2.1 1.5 -1.3 1.9 -1.3 1.9 9.1 1.0 15.8 2.6 -2.1 1.6 9.1 1.0 15.8 2.6 -2.1 1.0	100 22.0 22.0 341.0 341.0 272.0 175.0 198.0 272.0 175.0 198.0	Duty Cycle Correction Factor (dB) -20.7 -20.7	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Polarity/ Transducer Type Vert Vert Vert Vert Horz Horz Horz Horz Horz	PK AV PK AV PK PK AV AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 62.4 41.7 55.6 34.9 54.8 54.7 52.3 34.1 34.0 31.6	Spec. Limit (dBuV/m) 74.0 54.0 74.0 54.0 75.9 75.9 74.0 55.9 55.9 54.0	Compared to Spec. (dB) -11.6 -12.3 -18.4 -19.1 -21.1 -21.2 -21.7 -21.8 -21.9 -22.4	EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530 1597.530 1597.530 532.525 213.004 1491.025 532.525 213.004 1491.025 426.021	Amplitude (dBuV) 64.5 64.5 56.9 56.9 45.7 38.9 54.4 45.7 38.9 54.4	(dB) (meter -2.1 1.5 -2.1 1.5 -1.3 1.9 -1.3 1.9 1.5.8 2.6 -2.1 1.6 9.1 1.0 15.8 2.6 -2.1 1.6 5.2 1.1	100 Azimuth (degrees) 22.0 22.0 341.0 341.0 272.0 175.0 198.0 272.0 175.0 198.0 118.0	Duty Cycle Correction Factor (dB) -20.7 -20.7	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Polarity/ Transducer Type Vert Vert Vert Vert Horz Horz Vert Horz Vert Vert	PK AV PK AV PK AV PK AV AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 62.4 41.7 55.6 34.9 54.8 54.7 52.3 34.1 34.0 31.6 52.6	Spec. Limit (dBuV/m) 74.0 54.0 74.0 54.0 75.9 75.9 74.0 55.9 54.0 75.9	- QP Compared to Spec. (dB) -11.6 -12.3 -18.4 -19.1 -21.1 -21.2 -21.7 -21.8 -21.9 -22.4 -23.3	EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530 1597.530 532.525 213.004 1491.025 532.525 213.004 1491.025 426.021 426.015	Amplitude (dBuV) 64.5 64.5 56.9 56.9 45.7 38.9 54.4 45.7 38.9 54.4 47.7	(dB) (meter -2.1 1.5 -2.1 1.5 -1.3 1.9 -1.3 1.9 9.1 1.0 15.8 2.6 -2.1 1.6 9.1 1.0 15.8 2.6 -2.1 1.6 5.2 1.1	100 22.0 22.0 341.0 341.0 272.0 175.0 198.0 272.0 118.0 192.0	Duty Cycle Correction Factor (dB) -20.7 -20.7 -20.7 -20.7 -20.7	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Polarity/ Transducer Type Vert Vert Vert Vert Horz Horz Vert Horz Vert Horz	PK AV PK AV PK AV PK AV PK AV AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 62.4 41.7 55.6 34.9 54.8 54.7 52.3 34.1 34.0 31.6 52.6 52.5	Spec. Limit (dBuV/m) 74.0 54.0 74.0 54.0 75.9 75.9 74.0 55.9 55.9 54.0 75.9	- QP Compared to Spec. (dB) -11.6 -12.3 -18.4 -19.1 -21.1 -21.2 -21.7 -21.8 -21.9 -22.4 -23.3 -23.4	EUT Horz
Freq (MHz) 1491.035 1491.035 1597.530 1597.530 1597.530 532.525 213.004 1491.025 532.525 213.004 1491.025 426.021	Amplitude (dBuV) 64.5 64.5 56.9 56.9 45.7 38.9 54.4 45.7 38.9 54.4	(dB) (meter -2.1 1.5 -2.1 1.5 -1.3 1.9 -1.3 1.9 1.5.8 2.6 -2.1 1.6 9.1 1.0 15.8 2.6 -2.1 1.6 5.2 1.1	100 Azimuth (degrees) 22.0 22.0 341.0 341.0 272.0 175.0 198.0 272.0 175.0 198.0 118.0	Duty Cycle Correction Factor (dB) -20.7 -20.7	External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Polarity/ Transducer Type Vert Vert Vert Vert Horz Horz Vert Horz Vert Vert	PK AV PK AV PK AV PK AV AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 62.4 41.7 55.6 34.9 54.8 54.7 52.3 34.1 34.0 31.6 52.6	Spec. Limit (dBuV/m) 74.0 54.0 74.0 54.0 75.9 75.9 74.0 55.9 54.0 75.9	- QP Compared to Spec. (dB) -11.6 -12.3 -18.4 -19.1 -21.1 -21.2 -21.7 -21.8 -21.9 -22.4 -23.3	EUT Horz

Report No. UTCF0070 16/17

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
426.015	47.3	5.2	1.0	192.0	-20.7	0.0	Horz	AV	0.0	31.8	55.9	-24.1	EUT Horz
1597.580	49.8	-1.3	2.8	180.0		0.0	Horz	PK	0.0	48.5	74.0	-25.5	EUT Horz
1597.580	49.8	-1.3	2.8	180.0	-20.7	0.0	Horz	AV	0.0	27.8	54.0	-26.2	EUT Horz
532.524	38.7	9.1	2.0	205.0		0.0	Horz	PK	0.0	47.8	75.9	-28.1	EUT Horz
532.524	38.7	9.1	2.0	205.0	-20.7	0.0	Horz	AV	0.0	27.1	55.9	-28.8	EUT Horz
958.534	29.8	16.0	1.2	294.0		0.0	Vert	PK	0.0	45.8	75.9	-30.1	EUT Horz
958.534	29.8	16.0	1.2	294.0	-20.7	0.0	Vert	AV	0.0	25.1	55.9	-30.8	EUT Horz
106.505	32.2	12.7	2.6	158.0		0.0	Horz	PK	0.0	44.9	75.9	-31.0	EUT Horz
106.505	32.2	12.7	2.6	158.0	-20.7	0.0	Horz	AV	0.0	24.2	55.9	-31.7	EUT Horz
958.522	26.4	16.0	1.0	31.0		0.0	Horz	PK	0.0	42.4	75.9	-33.5	EUT Horz
958.522	26.4	16.0	1.0	31.0	-20.7	0.0	Horz	AV	0.0	21.7	55.9	-34.2	EUT Horz
1277.910	44.3	-2.8	1.0	138.0		0.0	Vert	PK	0.0	41.5	75.9	-34.4	EUT Horz
1277.910	44.3	-2.8	1.0	138.0	-20.7	0.0	Vert	AV	0.0	20.8	55.9	-35.1	EUT Horz
1278.170	42.3	-2.8	1.5	179.0		0.0	Horz	PK	0.0	39.5	75.9	-36.4	EUT Horz
1278.170	42.3	-2.8	1.5	179.0	-20.7	0.0	Horz	AV	0.0	18.8	55.9	-37.1	EUT Horz
639.030	27.6	10.4	1.0	108.0		0.0	Vert	PK	0.0	38.0	75.9	-37.9	EUT Horz
639.030	27.4	10.4	1.0	91.0		0.0	Horz	PK	0.0	37.8	75.9	-38.1	EUT Horz
639.013	27.3	10.4	1.6	282.0		0.0	Horz	PK	0.0	37.7	75.9	-38.2	EUT on Side
639.022	27.0	10.4	1.0	324.0		0.0	Vert	PK	0.0	37.4	75.9	-38.5	EUT Vert
639.030	27.6	10.4	1.0	108.0	-20.7	0.0	Vert	AV	0.0	17.3	55.9	-38.6	EUT Horz
639.030	27.4	10.4	1.0	91.0	-20.7	0.0	Horz	AV	0.0	17.1	55.9	-38.8	EUT Horz
639.013	27.3	10.4	1.6	282.0	-20.7	0.0	Horz	AV	0.0	17.0	55.9	-38.9	EUT on Side
639.022	27.0	10.4	1.0	324.0	-20.7	0.0	Vert	AV	0.0	16.7	55.9	-39.2	EUT Vert
639.032	25.0	10.4	1.0	226.0		0.0	Vert	PK	0.0	35.4	75.9	-40.5	EUT on Side
639.032	25.0	10.4	1.0	226.0	-20.7	0.0	Vert	AV	0.0	14.7	55.9	-41.2	EUT on Side
639.030	24.0	10.4	1.6	26.0		0.0	Horz	PK	0.0	34.4	75.9	-41.5	EUT Vert
639.030	24.0	10.4	1.6	26.0	-20.7	0.0	Horz	AV	0.0	13.7	55.9	-42.2	EUT Vert

Report No. UTCF0070