

FCC PART 15D MEASUREMENT AND TEST REPORT

For

Porta Phone Company Inc

145 Dean Knauss Dr. Narragansett, RI 02882, USA.

FCC ID: B4HFLX2015

Report Type: Product Type:

Original Report FULL DUPLEX WIRELESS

COMMUNICATION SYSTEM

Test Engineer: Simon Wang

Report Number: RSZ151030830-00

Report Date: 2015-12-17

Jimmy Xiao Jimmy Xiao

Reviewed By: RF Engineer

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F, the 3rd Phase of WanLi Industrial Building

ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Related Submittal(s)/Grant(s) Test Methodology	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
§1.1307 (B) (1) &§2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)	8
APPLICABLE STANDARD	8
MPE CALCULATION	8
FCC§15.317 & §15.203 - ANTENNA REQUIREMENT	10
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC§15.315 & §15.207 - CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT Setup	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST RESULTS SUMMARY	
TEST DATA	
FCC§15.319 (G) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP.	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	17
TEST PROCEDURE	17
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	19
PRODUCT SIMILARITY DECLARATION LETTER	22

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Porta Phone Company Inc*'s product, model number: *Flex Max COM Center(FLX2015)(FCC ID: B4HFLX2015)* or the "EUT" in this report was a *FULL DUPLEX WIRELESS COMMUNICATION SYSTEM*, which was measured approximately: 21.0 mm (L) x 17.0 mm (W) x 6.8 mm (H), input voltage: DC 3.7V battery or DC 5V from adapter.

Report No.: RSZ151030830-00

Adapter Information:

Model: YNQX09G050100UL Input: AC 100-240V, 50/60 Hz, 0.3A

Output: DC 5V, 1A

Note: This series products model: Flex Max COM Center(FLX2015) and COM Center Pro2000(PRO2015), model Flex Max COM Center(FLX2015) was selected for fully testing, the detailed information can be referred to the attached declaration letter that stated and guaranteed by the applicant.

* All measurement and test data in this report was gathered from production sample serial number: 20151030 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2015-10-30.

Objective

This test report was based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.17 - 2013.

The tests were performed in order to determine the compliance of the EUT with FCC Part 15-Subpart D, section 15.207, 15.315, 15.317, 15.319 and 15.323 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.17 - 2013, American National Standard Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communications Services (UPCS) Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen).

The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

FCC Part 15D Page 3 of 22

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Report No.: RSZ151030830-00

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15D Page 4 of 22

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in TBR6 mode which is provided by the manufacturer.

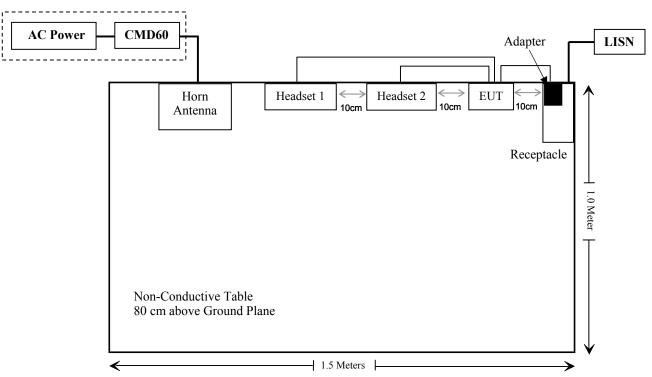
Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Digital Radio-Communication Tester	CMD60	829902/026

Report No.: RSZ151030830-00


External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-shielding Un-detachable DC Power Cable	1.55	Adapter	EUT
Un-shielding un-detachable Audio cable	0.9	EUT	Handset 1
Un-shielding un-detachable Audio cable	0.9	EUT	Handset 2

FCC Part 15D Page 5 of 22

Block Diagram of Test Setup

For conducted emission:

FCC Part 15D Page 6 of 22

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307(b)(1);§2.1091	Maximum Permissible Exposure(MPE)	Compliance
§ 15.317, § 15.203	Antenna Requirement	Compliance
§ 15.315, § 15.207	Conducted Emission	Compliance
§ 15.323 (a)	Emission Bandwidth	Compliance*
§ 15.319 (c)	Peak Transmit Power	Compliance*
§ 15.319 (d)	Power Spectral Density	Compliance*
§ 15.323 (d)	Emission Inside and Outside the sub-band	Compliance*
§ 15.319 (g)	Radiated Emission	Compliance
§ 15.323 (f)	Frequency Stability Handset	Compliance*
§ 15.323 (c)(e) § 15.319 (f)	Specific Requirements for UPCS	Compliance*

Report No.: RSZ151030830-00

Compliance*: the EUT (Model: Flex Max COM Center(FLX2015), FCC ID: B4HFLX2015) has used a certified module with model RF1G9V1 (FCC ID: B4HRF1900V1), the different test data between them are "FCC§15.315 & §15.207 - CONDUCTED EMISSIONS" and "FCC§15.319 (g) - RADIATED EMISSIONS", so all the other test data are referred to the report RSZ151110830-00 with model number RF1G9V1 (FCC ID: B4HRF1900V1), issued on 2015-11-16 by Bay Area Compliance Laboratories Corp. (Shenzhen)

FCC Part 15D Page 7 of 22

§1.1307 (b) (1) &§2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to FCC §15.319(i), FCC §2.1091 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RSZ151030830-00

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minute)	
Limits for General Population/Uncontrolled Exposure					
0.3-1.34	614	1.63	*(100)	30	
1.34-30	842/f	2.19/f	*(180/f\2\)	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz

MPE Calculation

1. Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

Where: S = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For worst case:

Channel	Frequency	Antenna Gain		Target Power		Evaluation	Power	MPE Limit
Channel	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
Low	1921.536	0	1	20.00	100.00	20	0.02	1.0

Note: The module supports the highest gain of antenna is 0dBi when install to the end product.

Result: Compliance

FCC Part 15D Page 8 of 22

^{* =} Plane-wave equivalent power density

2. Simultaneous transmission RF exposure exclusion considerations

Mode	Signal Module Power Density (mW/cm²)	Signal Module Power Density/MPE Limit (%)	Total Percent (%)	Limit (%)
DECT	0.02	2.0	8.0	100

Note: The EUT has four same DECT modules
So the total percent = 4 * Signal Module Power Density/MPE Limit

Report No.: RSZ151030830-00

Result: Compliance

FCC Part 15D Page 9 of 22

FCC§15.317 & §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: RSZ151030830-00

Antenna Connector Construction

The EUT has eight integral antennas arrangement which were permanently attached and the gain is 0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

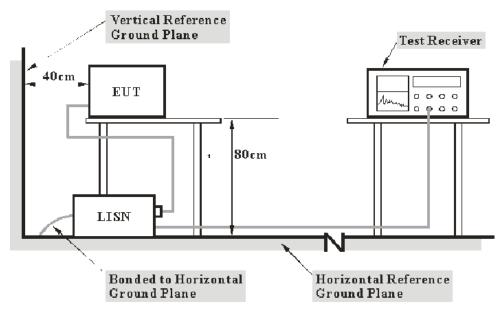
FCC Part 15D Page 10 of 22

FCC§15.315 & §15.207 - CONDUCTED EMISSIONS

Applicable Standard

FCC§15.315, an unlicensed PCS device that is designed to be connected to the public utility (AC) power line must meet the limits specified in §15.207.

Report No.: RSZ151030830-00


Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between AMN/ISN and receiver, AMN/ISN voltage division factor, AMN/ISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report

Port	Measurement uncertainty	
AC Mains	3.26 dB (k=2, 95% level of confidence)	
CAT 3	3.70 dB (k=2, 95% level of confidence)	
CAT 5	3.86 dB (k=2, 95% level of confidence)	
CAT 6	4.64 dB (k=2, 95% level of confidence)	

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

FCC Part 15D Page 11 of 22

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC 15.315 and FCC 15.207 limits.

Report No.: RSZ151030830-00

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2015-06-03	2016-06-03
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2015-12-01	2016-12-01
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2015-05-14	2016-05-14
Rohde & Schwarz	CE Test software	EMC 32	V8.53	NCR	NCR

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 15D Page 12 of 22

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding the Outlet Cable Loss, LISN Insertion Loss, Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RSZ151030830-00

Correction Factor = Outlet Cable Loss + LISN Insertion Loss + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the worst margin reading as below:

16.9 dB at 0.435370 MHz in the Neutral conducted mode

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m} + U_{\rm (Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

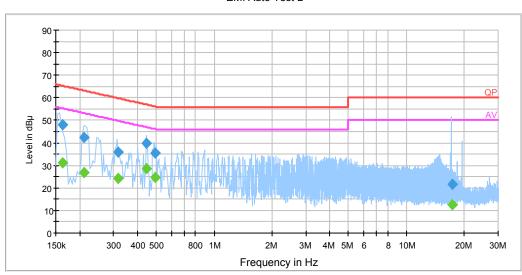
Environmental Conditions

Temperature:	26 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Simon Wang on 2015-11-17.

FCC Part 15D Page 13 of 22

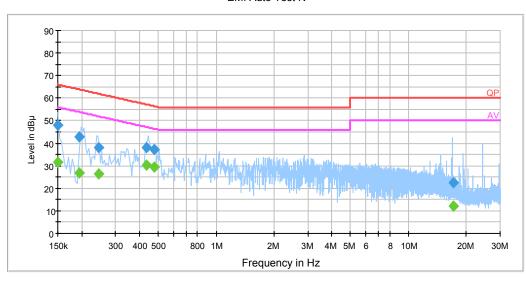
Test mode: Transmitting (Worst case)


Pre-scan with the Model: Flex Max COM Center (FLX2015) and COM Center Pro2000 (PRO2015), the worst case is the Flex Max COM Center (FLX2015).

Report No.: RSZ151030830-00

When the four DECT modules transmit simultaneously, the data of the conducted emission is the worst case.

AC 120V/60 Hz, Line


Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave)
0.162500	48.1	20.0	65.3	17.2	QP
0.162500	31.1	20.0	55.3	24.2	Ave.
0.209500	42.3	20.0	63.2	20.9	QP
0.209500	26.8	20.0	53.2	26.4	Ave.
0.317290	35.9	19.9	59.8	23.9	QP
0.317290	24.4	19.9	49.8	25.4	Ave.
0.443310	39.8	19.9	57.0	17.2	QP
0.443310	28.4	19.9	47.0	18.6	Ave.
0.494650	35.7	19.9	56.1	20.4	QP
0.494650	24.8	19.9	46.1	21.4	Ave.
17.404090	21.5	20.0	60.0	38.5	QP
17.404090	12.4	20.1	50.0	37.6	Ave.

FCC Part 15D Page 14 of 22

AC 120V/60 Hz, Neutral

EMI Auto Test N

Report No.: RSZ151030830-00

Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave)
0.150000	48.1	20.0	66.0	17.9	QP
0.150000	31.5	20.0	56.0	24.5	Ave.
0.193500	43.0	20.0	63.9	20.9	QP
0.193500	26.8	20.0	53.9	27.1	Ave.
0.245500	37.9	20.0	61.9	24.0	QP
0.245500	26.4	20.0	51.9	25.5	Ave.
0.435370	38.0	19.9	57.1	19.1	QP
0.435370	30.2	19.9	47.1	16.9	Ave.
0.474770	37.2	19.9	56.4	19.2	QP
0.474770	29.4	19.9	46.4	17.0	Ave.
17.150850	22.3	20.1	60.0	37.7	QP
17.150850	12.1	20.1	50.0	37.9	Ave.

Note:

FCC Part 15D Page 15 of 22

¹⁾ Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation The corrected factor has been input into the transducer of the test software.

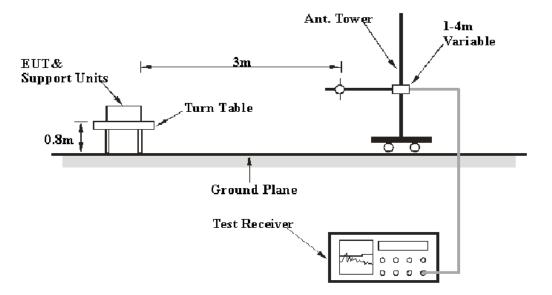
²⁾ Corrected Amplitude = Reading + Correction Factor
3) Margin = Limit - Corrected Amplitude

FCC§15.319 (g) - RADIATED EMISSIONS

Applicable Standard

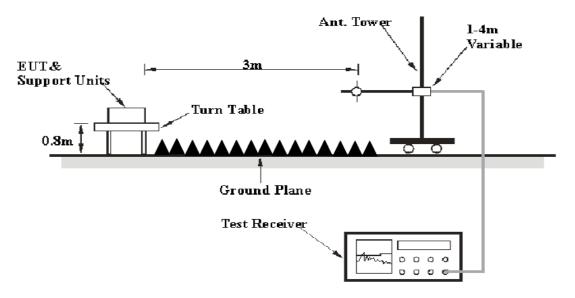
According to FCC§15.319(g), notwithstanding other technical requirements specified in this subpart, attenuation of emissions below the general emission limits in §15.209 is not required.

Report No.: RSZ151030830-00


Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, and it will not be taken into consideration for the test data recorded in the report


EUT Setup

Below 1GHz:

FCC Part 15D Page 16 of 22

Above 1GHz:

Report No.: RSZ151030830-00

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4 - 2014. The specification used was the FCC 15\§ 15.319(g).

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 20 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
Above I GHZ	1 MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz and peak and Average detection modes for frequencies above 1 GHz.

FCC Part 15D Page 17 of 22

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
HP	Amplifier	HP8447E	1937A01046	2015-05-06	2016-05-06	
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2015-11-03	2016-11-03	
Sunol Sciences	Bi-log Antenna	JB1	A040904-2	2014-12-07	2017-12-06	
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2015-04-23	2016-04-23	
Sunol Sciences	Horn Antenna	DRH-118	A052304	2015-12-01	2016-11-30	
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2015-06-13	2016-06-13	
the electro- Mechanics Co.	Horn Antenna	3116	9510-2270	2013-10-14	2016-10-13	
DUCOMMUN	Pre-amplifier	ALN- 22093530-01	991373-01	2015-08-03	2016-08-03	

Report No.: RSZ151030830-00

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss- Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

FCC Part 15D Page 18 of 22

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, the worst margin reading as below:

7.37 dB at 3849.98 MHz in the Horizontal polarization

Report No.: RSZ151030830-00

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	26 ℃			
Relative Humidity:	50 %			
ATM Pressure:	101.0 kPa			

*The testing was performed by Simon Wang on 2015-11-17.

Test Result: Compliance. Please refer to following tables

FCC Part 15D Page 19 of 22

Report No.: RSZ151030830-00

Pre-scan with the Model: Flex Max COM Center (FLX2015) and COM Center Pro2000 (PRO2015), the worst case is the Flex Max COM Center (FLX2015).

30 MHz ~ 20 GHz:

Frequency	Receiver		Turntable	Rx Antenna			Corrected	FCC Part 15.319(g)/209/205		
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBμV/m)		Margin (dB)	
	Low Channel (1921.536 MHz)									
258.9	45.05	QP	93	1.1	Н	-13.6	31.45	46	14.55	
1921.536	110.16	PK	86	1.4	Н	3.23	113.39	/	/	
1921.536	103.80	PK	79	1.2	V	3.23	107.03	/	/	
3843.07	50.35	PK	289	1.2	Н	13.75	64.10	74	9.90	
3843.07	47.20	PK	247	1.3	V	13.75	60.95	74	13.05	
5764.608	40.15	PK	77	2.3	Н	19.23	59.38	74	14.62	
5764.608	39.98	PK	219	1.7	V	19.23	59.21	74	14.79	
	Middle Channel (1924.992 MHz)									
258.9	44.8	QP	93	1.1	Н	-13.6	31.2	46	14.8	
1924.992	84.25	PK	232	2.2	Н	29.50	113.75	/	/	
1924.992	77.43	PK	134	1.3	V	29.50	106.93	/	/	
3849.98	52.88	PK	49	1.2	Н	13.75	66.63	74	7.37	
3849.98	44.68	PK	31	2.3	V	13.75	58.43	74	15.57	
5774.976	40.19	PK	343	1.0	Н	19.23	59.42	74	14.58	
5774.976	40.28	PK	135	2.4	V	19.23	59.51	74	14.49	
			High Chai	nnel (19	28.448	MHz)				
258.9	44.96	QP	93	1.1	Н	-13.6	31.36	46	14.64	
1928.448	108.50	PK	307	1.9	Н	3.23	111.73	/	/	
1928.448	101.92	PK	156	2.0	V	3.23	105.15	/	/	
3856.90	49.18	PK	315	2.4	Н	12.48	61.66	74	12.34	
3856.90	42.36	PK	151	2.4	V	12.48	54.84	74	19.16	
5785.344	39.86	PK	40	2.1	V	19.23	59.09	74	14.91	
5785.344	40.07	PK	339	1.1	V	19.23	59.30	74	14.70	

 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$ Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

FCC Part 15D Page 20 of 22

-27.75

-27.75

-27.75

-27.75

-27.75

77.40

33.91

27.09

31.34

31.55

54

54

54

54

20.09

26.91

22.66

22.45

Report No.: RSZ151030830-00

Note:

Corrected Average Amplitude = Corrected Peak Amplitude + Duty Cycle Factor

V

Η

V

Η

V

Margin = Limit - Corrected Average Amplitude

Duty Cycle = Ton/Tp*100%, $Ton = 412\mu s$, Tp=10.05ms

105.15

61.66

54.84

59.09

59.30

Duty Cycle Factor = $20 \log (Duty Cycle) = -27.75$

Simultaneous transmitting:

1928.448

3856.90

3856.90

5785.344

5785.344

Frequency	Re	ceiver	Turntable	Rx Antenna		Corrected	Corrected	FC	C 15D
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)		Height (m)	Polar (H / V)		Amplitude (dBμV/m)		Margin (dB)
268.76	44.79	QP	337	1.6	Н	-13.9	30.89	46	15.11
1236.4	41.28	PK	96	1.2	V	-0.08	41.20	74	32.80
1236.4	30.26	Ave.	96	1.2	V	-0.08	30.18	54	23.82
1746.3	40.90	PK	149	1.2	V	1.08	41.98	74	32.02
1746.3	29.86	Ave.	149	1.2	V	1.08	30.94	54	23.06

FCC Part 15D Page 21 of 22

PRODUCT SIMILARITY DECLARATION LETTER

Porta Phone Company Inc 145 Dean Knauss Drive Narragansett, RI 02882 USA.

Report No.: RSZ151030830-00

Tel: 401-789-8700 Fax: 401-789-7300

12/16/2015

Product Similarity Declaration

To Whom It May Concern,

We, Porta Phone Company Inc hereby declare that we have a product named as FULL DUPLEX WIRELESS COMMUNICATION SYSTEM (Model no: Flex Max COM Center(FLX2015)) was tested by BACL, meanwhile, for our marketing purpose, we would like to list a series models (COM Center Pro2000(PRO2015)) on reports and certificate, all the models are identical schematics, except for the differences as below,

- 1. Only difference model No.
- 2. Difference model No. has different appearance

Jul Stor &

Model No.	Description
Flex Max COM Center(FLX2015)	Base with wried headset connector
COM Center Pro2000(PRO2015)	Base without wried headset connector

No other changes are made to them.

We confirm that all information above is true, and we'll be responsible for all the consequences. Please contact me if you have any question.

Signature:

John hooper

Jr. Vice President

***** END OF REPORT *****

FCC Part 15D Page 22 of 22