

Approved By:

TEST REPORT

Applicant Name : FCC: Porta Phone Company Inc

ISEDC: PORTA PHONE CO., INC.

Address: FCC: 145 Dean Knauss Drive Narragansett, Rhode Island 02882

United States

ISEDC: 145 Dean Knauss Drive Narragansett, RI 02882, United

States of America

Report Number: SZNS220407-12866E-SA

FCC ID: B4HEVXTR IC 3064A-EVXTR

Test Standard (s)

FCC 47 CFR part 2.1093

RSS-102 Issue 5 Amendment 1 (February 2, 2021)

Sample Description

Product Type: Full Duplex 2.4 GHz Transceiver-Remote

Model No.: EVXTM-R

Multiple Model(s) No.: N/A

Trade Mark: EVADE Xtreme
Date Received: 2022/04/07
Report Date: 2022/05/16

Test Result: Pass*

Prepared and Checked By:

LanceLi

Lance Li Candy Li

EMC Engineer EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "🛧 ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 821: 2021-11-09 Page 1 of 62 SAR

^{*} In the configuration tested, the EUT complied with the standards above.

Attestation of Test Results						
МО	DE	Max. SAR Level(s) Reported(W/kg)	Limit (W/kg)			
2.4 GHz FHSS	1g Head SAR	0.08	1.6			
	FCC 47 CFR part 2. Radiofrequency radiat	1093 tion exposure evaluation: portable devices				
	RSS-102 Issue 5 Amendment 1 (February 2, 2021) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands).					
	Safety Code 6 Health Canada's Radiofrequency Exposure Guidelines Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz					
Applicable Standards	RF Exposure Procedures: TCB Workshop April 2019					
S 	IEC/IEEE 62209-1528:2020 Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)					
	KDB procedures KDB 447498 D01 General RF Exposure Guidance v06. KDB 648474 D04 Handset SAR v01r03. KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02					

Report No.: SZNS220407-12866E-SA

Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in Safety Code 6 Health Canada's Radiofrequency Exposure Guidelines and has been tested in accordance with the measurement procedures specified in IEC/IEEE 62209-1528:2020 and RF exposure KDB procedures.

The results and statements contained in this report pertain only to the device(s) evaluated.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
EUT DESCRIPTION	5
TECHNICAL SPECIFICATION	5
REFERENCE, STANDARDS, AND GUIDELINES	6
SAR LIMITS	7
FACILITIES	8
DESCRIPTION OF TEST SYSTEM	9
EQUIPMENT LIST AND CALIBRATION	
EQUIPMENT LIST AND CALIBRATION	
EQUIPMENTS LIST & CALIBRATION INFORMATION	
SAR MEASUREMENT SYSTEM VERIFICATION	
LIQUID VERIFICATION	
SYSTEM ACCURACY VERIFICATIONSAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	
TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR	
CHEEK/TOUCH POSITION	
EAR/TILT POSITION	
SAR EVALUATION PROCEDURE	
CONDUCTED OUTPUT POWER MEASUREMENT	
MAXIMUM TARGET OUTPUT POWER	
TEST RESULTS:	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
ANTENNA DISTANCE TO EDGE	
SAR MEASUREMENT RESULTS	
SAR TEST DATA	
SAR PLOTS	29
APPENDIX A MEASUREMENT UNCERTAINTY	
APPENDIX B EUT TEST POSITION PHOTOS	
Liquid depth ≥ 15cm	
HEAD-TOUCH (0MM)	
APPENDIX C PROBE CALIBRATION CERTIFICATES	35
APPENDIX D DIPOLE CALIBRATION CERTIFICATES	57

Report No.: SZNS220407-12866E-SA

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	SZNS220407-12866E-SA	Original Report	2022/05/16	

EUT DESCRIPTION

This report has been prepared on behalf of FCC: Porta Phone Company Inc, ISEDC: PORTA PHONE CO., INC. and their product Full Duplex 2.4 GHz Transceiver-Remote, Model: EVXTM-R, FCC ID: B4HEVXTR; IC: 3064A-EVXTR or the EUT (Equipment under Test) as referred to in the rest of this report.

Report No.: SZNS220407-12866E-SA

Technical Specification

HVIN:	EVXTM-R
Device Type:	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Accessories:	None
Operation Mode:	2.4G FHSS
Frequency Band:	2.4GHz Band: 2407~2475MHz
Peak RF Power:	2.4G FHSS: 17.03dBm
Power Source:	Rechargeable Battery
Normal Operation:	Head

^{*}All measurement and test data in this report was gathered from production sample serial number: SZNS220407-12866E-SA-S1 (Assigned by ATC). The EUT supplied by the applicant was received on 2022-04-07.

REFERENCE, STANDARDS, AND GUIDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

Report No.: SZNS220407-12866E-SA

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

IC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ISS-102 for an uncontrolled environment. According to the Safety Code 6 Health Canada's Radiofrequency Exposure Guidelines, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

SAR Limits

FCC Limit(1g Tissue)

Report No.: SZNS220407-12866E-SA

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

IC Limit(1g Tissue)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC& IC) applied to the EUT.

FACILITIES

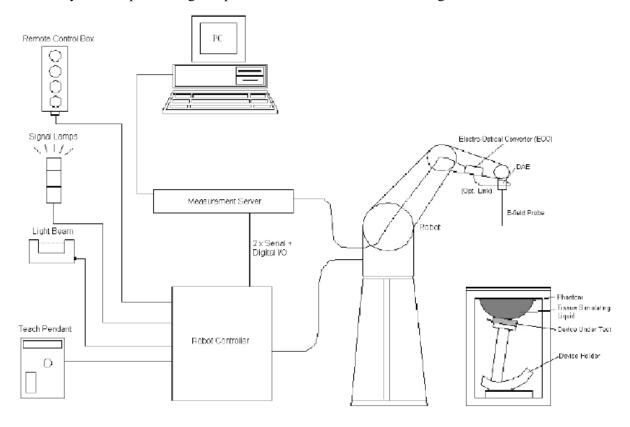
The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358,the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01

Report No.: SZNS220407-12866E-SA

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

The test site has been registered with ISED Canada under ISED Canada Registration Number CN0016.


DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

Report No.: SZNS220407-12866E-SA

- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluations of field measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	\pm 0.3 dB in TSL (rotation around probe axis) \pm 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 $\mu W/g$ to > 100 mW/g Linearity: \pm 0.2 dB (noise: typically < 1 $\mu W/g$)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

SAM Twin Phantom

The SAM Twin Phantom (shown in front of DASY5) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm.

When the phantom is mounted inside allocated slot of the DASY5 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY5 platform is used to mount the

Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required.

In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids:

Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.

Report No.: SZNS220407-12866E-SA

DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).

Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom.

Calibration Frequency Points for EX3DV4 E-Field Probes SN: 3619 Calibrated: 2021/08/25

Calibration Frequency	Frequency Range(MHz)		Conversion Factor		
Point(MHz)	From	То	X	Y	Z
450 Head	350	550	8.89	8.89	8.89
600 Head	500	680	8.96	8.96	8.96
750 Head	680	810	8.63	8.63	8.63
835 Head	810	860	8.50	8.50	8.50
900 Head	860	1000	8.28	8.28	8.28
1750 Head	1650	1810	7.33	7.33	7.33
1900 Head	1810	2000	7.07	7.07	7.07
2450 Head	2350	2500	6.69	6.69	6.69
2600 Head	2500	2700	6.53	6.53	6.53
5250 Head	5140	5360	4.37	4.37	4.37
5600 Head	5490	5700	4.03	4.03	4.03
5800 Head	5700	5910	3.93	3.93	3.93

Report No.: SZNS220407-12866E-SA

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEC 62209-1528-2020

Recommended Tissue Dielectric Parameters for Head

Table 2 – Dielectric properties of the tissue-equivalent medium

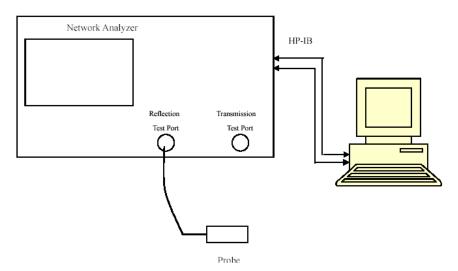
Report No.: SZNS220407-12866E-SA

Frequency	Real part of the complex relative permittivity, ε'_{Γ}	Conductivity, σ	Penetration depth (E-field), δ		
MHz		S/m	mm		
4	55,0	0,75	293,0		
13	55,0	0,75	165,5		
30	55,0	0,75	112,8		
150	52,3	0,76	62,0		
300	45,3	0,87	46,1		
450	43,5	0,87	43,0		
750	41,9	0,89	39,8		
835	41,5	0,90	39,0		
900	41,5	0,97	36,2		
1 450	40,5	1,20	28,6		
1 800	40,0	1,40	24,3		
1 900	40,0	1,40	24,3		
1 950	40,0	1,40	24,3		
2 000	40,0	1,40	24,3		
2 100	39,8	1,49	22,8		
2 450	39,2	1,80	18,7		
2 600	39,0	1,96	17,2		
3 000	38,5	2,40	14,0		
3 500	37,9	2,91	11,4		
4 000	37,4	3,43	10,0		
4 500	36,8	3,94	9,7		

Frequency	Real part of the complex relative permittivity, $\varepsilon'_{\rm f}$	Conductivity, σ	Penetration depth (E-field), δ	
MHz		S/m	mm	
5 000	36,2	4,45	1,5	
5 200	36,0	4,66	8,4	
5 400	35,8	4,86	8,1	
5 600	35,5	5,07	7,5	
5 800	35,3	5,27	7,3	
6 000	35,1	5,48	7,0	
6 500	34,5	6,07	6,7	
7 000	33,9	6,65	6,4	
7 500	33,3	7,24	6,1	
8 000	32,7	7,84	5,9	
8 500	32,1	8,46	5,3	
9 000	31,6	9,08	4,8	
9 500	31,0	9,71 4,		
10 000	30,4	10,40 4,		

NOTE For convenience, permittivity and conductivity values are linearly interpolated for frequencies that are not a part of the original data from Drossos et al. [2]. They are shown in italics in Table 2. The italicized values are linearly interpolated (below 5800 MHz) or extrapolated (above 5800 MHz) from the non-italicized values that are immediately above and below these values.

EQUIPMENT LIST AND CALIBRATION


Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52 52.10.4	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 6.0.31	N/A	NCR	NCR
Data Acquisition Electronics	DAE4	1211	2022/03/01	2023/02/28
E-Field Probe	EX3DV4	3619	2021/08/25	2022/08/24
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
SAM Twin Phantom	SAM-Twin V5.0	1744	NCR	NCR
Dipole,2450MHz	D2450V2	751	2020/10/13	2023/10/12
Simulated Tissue Liquid Head(500-9500MHz)	HBBL600-10000V6	180622-2	Each Time	/
Network Analyzer	8753D	3410A08288	2021/7/07	2022/7/06
Dielectric Assessment Kit	DAK-3.5	1248	NCR	NCR
Signal Generator	SMB100A	108362	2021/12/23	2022/12/22
USB wideband power sensor	U2021XA	MY52350001	2021/12/23	2022/12/22
Power Amplifier	CBA 1G-070	T44328	2021/12/23	2022/12/22
Linear Power Amplifier	AS0860-40/45	1060913	2021/12/23	2022/12/22
Directional Coupler	4223-20	3.113.277	2021/12/23	2022/12/22
6dB Attenuator	8493B 6dB Attenuator	2708A 04769	2021/12/23	2022/12/22

Report No.: SZNS220407-12866E-SA

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

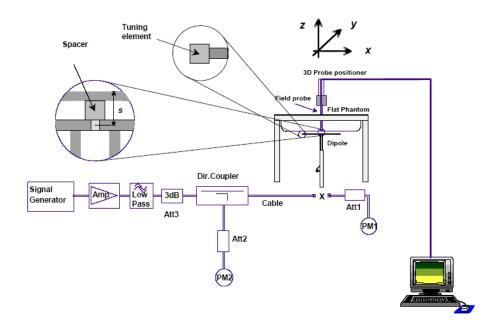
Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	Frequency Liquid Type		Liquid Parameter		Target Value		lta 6)	Tolerance
(MHz)	Elquiu Type	ε _r	O' (S/m)	ε _r	O' (S/m)	$\Delta\epsilon_{r}$	ΔO	(%)
2407	Simulated Tissue Liquid Head	40.137	1.786	39.29	1.76	2.16	1.48	±5
2450	Simulated Tissue Liquid Head	40.074	1.825	39.20	1.80	2.23	1.39	±5
2475	Simulated Tissue Liquid Head	39.963	1.851	39.17	1.83	2.02	1.15	±5

^{*}Liquid Verification above was performed on 2022/04/18.

System Accuracy Verification


Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

Report No.: SZNS220407-12866E-SA

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm for } 300 \text{ MHz} \le f \le 1000 \text{ MHz};$
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for $1000 \text{ MHz} < f \le 3000 \text{ MHz}$;
- c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for $3~000 \text{ MHz} < f \le 6~000 \text{ MHz}$.

System Verification Setup Block Diagram

System Accuracy Check Results

Date	Frequency Band	Liquid Type	Input Power (mW)	;	sured SAR 7/kg)	Normalized to 1W (W/kg)	Target Value (W/kg)	Delta (%)	Tolerance (%)
2022/04/18	2450 MHz	Head	100	1g	5.66	56.6	53	6.792	±10

^{*}The SAR values above are normalized to 1 Watt forward power.

SAR SYSTEM VALIDATION DATA

System Performance 2450 MHz Head

DUT: D2450V2; Type: 2450 MHz; Serial: 751

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.825$ S/m; $\varepsilon_r = 40.074$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3619; ConvF(6.69, 6.69, 6.69) @ 2450 MHz;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1211; Calibrated: 2022/03/01

• Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744

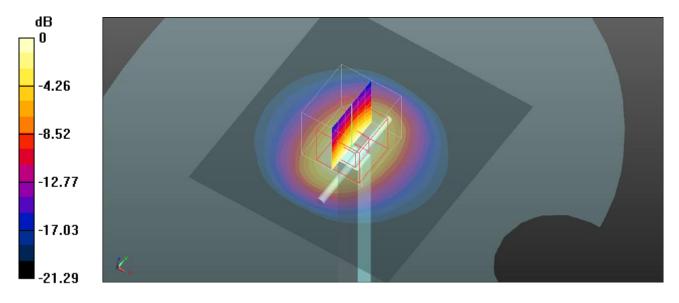
• Measurement SW: DASY52, Version 52.10 (4);

System Performance Cheek at 2450MHz/d=10mm, Pin=100mw 2/Area Scan (101x111x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 6.48 W/kg

System Performance Cheek at 2450MHz/d=10mm, Pin=100mw 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

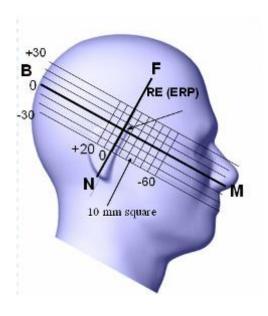

dx=5mm, dy=5mm, dz=5mm

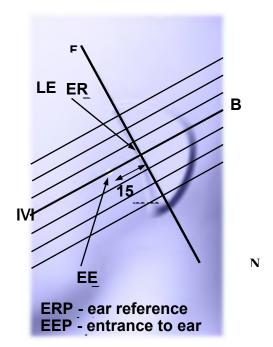
Reference Value = 57.54 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 11.8 W/kg

SAR(1 g) = 5.66 W/kg; SAR(10 g) = 2.62 W/kg

Maximum value of SAR (measured) = 6.41 W/kg


0 dB = 6.41 W/kg = 8.07 dBW/kg


EUT TEST STRATEGY AND METHODOLOGY

Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper 1/4 of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

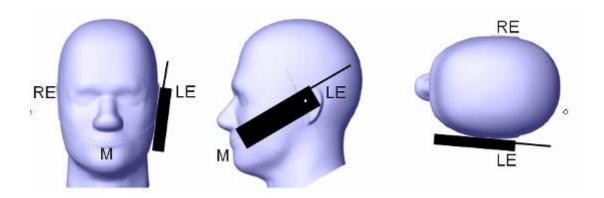
A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

Report No.: SZNS220407-12866E-SA

Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

Report No.: SZNS220407-12866E-SA


This test position is established:

When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.

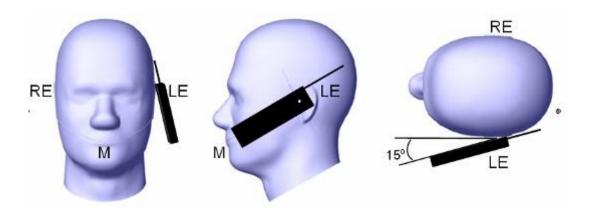
(or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek / Touch Position

Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":


1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.

Report No.: SZNS220407-12866E-SA

2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Report No.: SZNS220407-12866E-SA

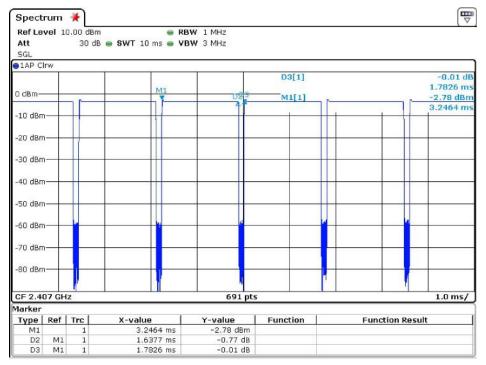
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.
 - All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

CONDUCTED OUTPUT POWER MEASUREMENT

Maximum Target Output Power

Max Target Power(dBm)								
Mada/Dand		Channel						
Mode/Band	Low	Middle	High					
2.4G FHSS	17.5	17.5	17.5					

Report No.: SZNS220407-12866E-SA


Test Results:

2.4G FHSS:

Frequency Band	Modulation Technique	Channel	Frequency (MHz)	Peak Power (dBm)
		Low	2407	15.86
2.4G FHSS	GFSK	Middle	2450	16.52
		High	2475	17.03

Note:

1. Duty Cycle is 91.87%.

Standalone SAR test exclusion considerations

Antennas Location:

EUT Back View

Antenna Distance To Edge

Antenna Distance To Edge(mm)					
Antenna	Front				
2.4G	<5				

Note:

The EUT is a headphone and does not need to consider other edge tests.

Standalone SAR test exclusion for the EUT Edge considerations [RSS-102 Issue 5 Amendment 1 (February 2, 2021)]

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in Table 1, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

Report No.: SZNS220407-12866E-SA

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance 4,5

Frequency	Exemption Limits (mW)									
(MHz)	(MHz) At separation distance of		At separation distance of	At separation distance of	At separation distance of					
	≤5 mm	10 mm	15 mm	20 mm	25 mm					
≤300	71 mW	101 mW	132 mW	162 mW	193 mW					
450	52 mW	70 mW	88 mW	106 mW	123 mW					
835	17 mW	30 mW	42 mW	55 mW	67 mW					
1900	$7 \mathrm{mW}$	10 mW	18 mW	34 mW	60 mW					
2450	4 mW	7 mW	15 mW	30 mW	52 mW					
3500	2 mW	6 mW	16 mW	32 mW	55 mW					
5800	1 mW	6 mW	15 mW	27 mW	41 mW					

Frequency	Exemption Limits (mW)									
(MHz)	At separation distance of 30 mm	At separation distance of 35 mm	At separation distance of 40 mm	At separation distance of 45 mm	At separation distance of ≥50 mm					
≤300	223 mW	254 mW	284 mW	315 mW	345 mW					
450	141 mW	159 mW	177 mW	195 mW	213 mW					
835	80 mW	92 mW	105 mW	117 mW	130 mW					
1900	99 mW	153 mW	225 mW	316 mW	431 mW					
2450	83 mW	123 mW	173 mW	235 mW	309 mW					
3500	86 mW	124 mW	170 mW	225 mW	290 mW					
5800	56 mW	71 mW	85 mW	97 mW	106 mW					

Antenna	Frequency (MHz)	Peak P _{avg} (dBm)	EIRP (dBm)	EIRP (mW)	Exemption Limits (mW)
2.4G	2475	17.5	17.5	56.23	4

Report No.: SZNS220407-12866E-SA

Note:

1. Antenna Gain is 0 dBi

Antenna	Front
2.4G	Required

Note 1:

Required: test is required.

Note 2:

Because the standard of IC is more strict than that of FCC required, So we use the standard of IC to evaluate

Corrected SAR Evaluation

62209-2 © IEC:2010

- 89 -

Annex F

(normative)

SAR correction for deviations of complex permittivity from targets

F.2 SAR correction formula

From [13] and [14], a linear relationship was found between the percent change in SAR (denoted ΔSAR) and the percent change in the permittivity and conductivity from the target values in Table 1 (denoted $\Delta \varepsilon_r$ and $\Delta \sigma$, respectively). This linear relationship agrees with the results of Kuster and Balzano [48] and Bit-Babik et al. [2]. The relationship is given by:

$$\Delta SAR = c_{\varepsilon} \Delta \varepsilon_{r} + c_{\sigma} \Delta \sigma \tag{F.1}$$

Report No.: SZNS220407-12866E-SA

where

 $c_{\epsilon} = \partial(\Delta SAR)/\partial(\Delta \epsilon)$ is the coefficients representing the sensitivity of SAR to permittivity where SAR is normalized to output power;

 $c_{\sigma} = \partial(\Delta \text{SAR})/\partial(\Delta \sigma)$ is the coefficients representing the sensitivity of SAR to conductivity, where SAR is normalized to output power.

The values of c_{ϵ} and c_{σ} have a simple relationship with frequency that can be described using polynomial equations. For the 1 g averaged SAR c_{ϵ} and c_{σ} are given by

$$c_{\varepsilon} = -7,854 \times 10^{-4} \, f^3 + 9,402 \times 10^{-3} \, f^2 - 2,742 \times 10^{-2} \, f - 0,202 \, 6$$
 (F.2)

$$c_{\sigma} = 9,804 \times 10^{-3} f^3 - 8,661 \times 10^{-2} f^2 + 2,981 \times 10^{-2} f + 0,782 9$$
 (F.3)

where

f is the frequency in GHz.

For the 10 g averaged SAR, the variables c_{ϵ} and c_{σ} are given by:

$$c_{\varepsilon} = 3,456 \times 10^{-3} f^3 - 3,531 \times 10^{-2} f^2 + 7,675 \times 10^{-2} f - 0,186 0$$
 (F.4)

$$c_{\sigma} = 4,479 \times 10^{-3} \, f^3 - 1,586 \times 10^{-2} \, f^2 - 0,197 \, 2f + 0,771 \, 7$$
 (F.5)

Scaled SAR = Correct SAR* $(1-\Delta SAR\%)$

Calibrate Date	Liquid Type	Frequency (MHz)	\mathbf{C}_{ϵ}	$\triangle \epsilon_{ m r}$	C_{δ}	Δ_{δ}	△SAR 1g
	Head	2407	-0.225	2.16	0.490	1.48	0.239
2022/04/18		2450	-0.225	2.23	0.480	1.39	0.165
		2475	-0.225	2.02	0.475	1.15	0.092

Note:

1. According to Notice 2012-DRS0529, if the correction \triangle SAR has a negative sign, the measured SAR result should be corrected, and has a positive sign, the measured SAR result shall not be corrected.

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	22.2-23.0 ℃
Relative Humidity:	34-45 %
ATM Pressure:	101.3 kPa
Test Date:	2022/04/18

Testing was performed by Seven Liang.

2.4G FHSS:

		Max.	Max.	1g SAR (W/Kg), Limited=1.6 W/kg							
Mode	EUT Position	Frequency (MHz)	Meas. Power (dBm)	Rated Power (dBm)	Power Scaled Factor		Duty cycle Scaled Factor	Meas.	Scaled SAR	Correct SAR	Plot
		2407	15.86	17.5	1.459	91.87	1.09	0.027	0.05	0.05	1#
2.4G FHSS	Head-touch	2450	16.52	17.5	1.253	91.87	1.09	0.050	0.07	0.07	2#
		2475	17.03	17.5	1.114	91.87	1.09	0.058	0.08	0.08	3#

Report No.: SZNS220407-12866E-SA

Note:

- 1. When SAR or MPE is not measured at the maximum power level allowed for production to the individual channels tested to determine compliance.
- 2. According to Notice 2012-DRS0529, if the correction △SAR has a negative sign, the measured SAR result should be corrected, and has a positive sign, the measured SAR result shall not be corrected.
- 3. According 2016 Oct. TCB, for SAR testing of 2.4G FHSS signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".

SAR Plots

Plot 1#

DUT: Full Duplex 2.4 GHz Transceiver-Remote; Type: EVXTM-R; Serial: SZNS220407-12866E-SA-S1

Communication System: UID 0, 2.4G FHSS (0); Frequency: 2407 MHz; Duty Cycle: 1:1.09

Medium parameters used (interpolated): f = 2407 MHz; $\sigma = 1.786$ S/m; $\varepsilon_r = 40.137$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

Probe: EX3DV4 - SN3619; ConvF(6.69, 6.69, 6.69) @ 2407 MHz;

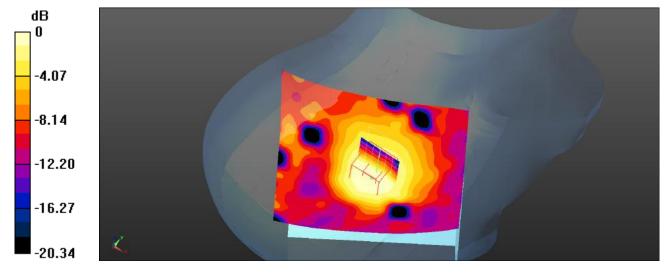
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1211; Calibrated: 2022/03/01

Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744

• Measurement SW: DASY52, Version 52.10 (4);

Head-touch/2.4G FHSS Low/Area Scan (101x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0303 W/kg


Head-touch/2.4G FHSS Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.711 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.0570 W/kg

SAR(1 g) = 0.027 W/kg; SAR(10 g) = 0.013 W/kg

Maximum value of SAR (measured) = 0.0302 W/kg

0 dB = 0.0302 W/kg = -15.20 dBW/kg

DUT: Full Duplex 2.4 GHz Transceiver-Remote; Type: EVXTM-R; Serial: SZNS220407-12866E-SA-S1

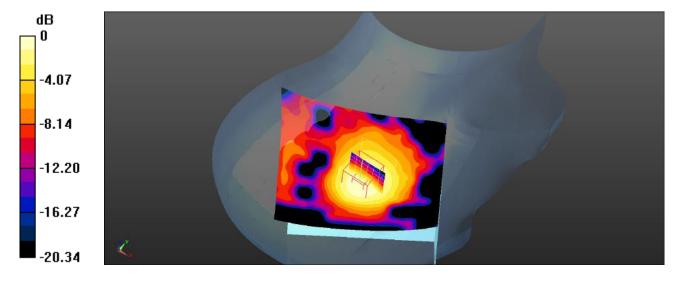
Communication System: UID 0, 2.4G FHSS (0); Frequency: 2450 MHz; Duty Cycle: 1:1.09 Medium parameters used: f = 2450 MHz; $\sigma = 1.825$ S/m; $\epsilon_r = 40.074$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3619; ConvF(6.69, 6.69, 6.69) @ 2450 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744
- Measurement SW: DASY52, Version 52.10 (4);

Head-touch/2.4G FHSS Mid/Area Scan (101x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0539 W/kg


Head-touch/2.4G FHSS Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.593 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.0850 W/kg

SAR(1 g) = 0.050 W/kg; SAR(10 g) = 0.029 W/kg

Maximum value of SAR (measured) = 0.0540 W/kg

0 dB = 0.0540 W/kg = -12.68 dBW/kg

DUT: Full Duplex 2.4 GHz Transceiver-Remote; Type: EVXTM-R; Serial: SZNS220407-12866E-SA-S1

Communication System: UID 0, 2.4G FHSS (0); Frequency: 2475 MHz; Duty Cycle: 1:1.09

Medium parameters used (interpolated): f = 2475 MHz; $\sigma = 1.851$ S/m; $\varepsilon_r = 39.963$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3619; ConvF(6.69, 6.69, 6.69) @ 2475 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744
- Measurement SW: DASY52, Version 52.10 (4);

Head-touch/2.4G FHSS High/Area Scan (101x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0624 W/kg

Head-touch/2.4G FHSS High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.935 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.0960 W/kg

SAR(1 g) = 0.058 W/kg; SAR(10 g) = 0.033 W/kg

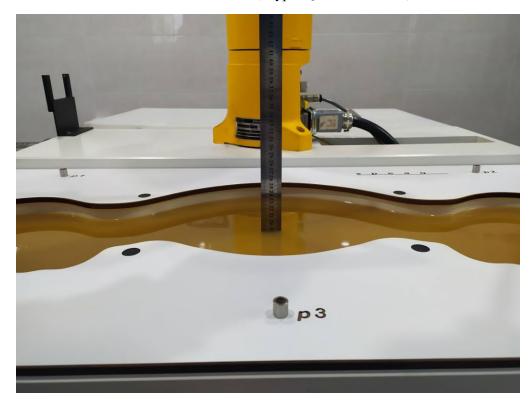
Maximum value of SAR (measured) = 0.0620 W/kg

0 dB = 0.0620 W/kg = -12.08 dBW/kg

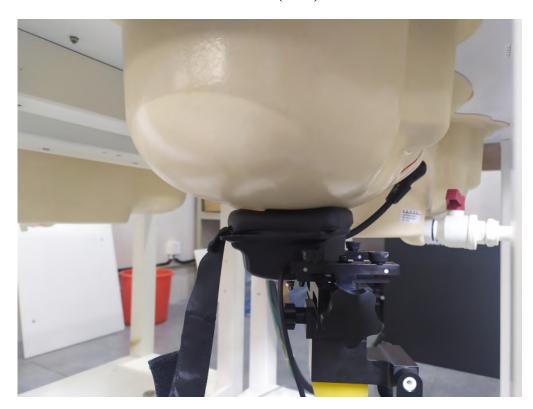
APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Measurement uncertainty evaluation for IEC/IEEE 62209-1528:2020 SAR test


Report No.: SZNS220407-12866E-SA

Symbol	Input quantity X_i (source of uncertainty)	Ref.	Prob Dist. ^a PDF _i	Unc. a(x _i)	Div. ^a q _i	$u(x_i)= a(x_i)/q_i$	c _i	$u(y)=c_i \cdot u(x_i)$	Vi
				easuremen	t system e	rrors			.1
CF	Probe calibration	8.4.1.1	N (k=2)	6.55	2	3.3	1	3.3	∞
CF _{drift}	Probe calibration drift	8.4.1.2	R	1.0	√3	0.6	1	0.6	∞
LIN	Probe linearity and detection limit	8.4.1.3	R	4.7	√3	3.3	1	3.3	∞
BBS	Boundary signal	8.4.1.4	R	1.0	$\sqrt{3}$	0.6	1	0.6	∞
ISO	Probe isotropy	8.4.1.5	R	9.6	$\sqrt{3}$	5.5	1	5.5	œ
DAE	Other probe and data acquistion errors	8.4.1.6	N	1.0	1	1.0	1	1.0	∞
AMB	RF ambient and noise	8.4.1.7	N	1.0	1	1.0	1	1.0	occ
Δ_{xyz}	Probe positioning errors	8.4.1.8	N	0.8	1	0.8	2/δ	0.9	∞
DAT	Data processing errors	8.4.1.9	N	2.0	1	2.0	1	2.0	œ
		Phanto	m and de	vice(DUT	or validati	ion antenna)e	rrors		
$LIQ(\sigma)$	Measurement of phantom conductivity(σ)	8.4.2.1	N	2.5	1	2.5	1	2.5	∞
LIQ(Tc)	Temperature effects(medium)	8.4.2.2	R	0.1	$\sqrt{3}$	0.05	1	0.05	∞
EPS	Shell permittivity	8.4.2.3	R	4.0	$\sqrt{3}$	2.3	q = 0,25 0 GHz 0,25 0 GHz 0,5 0 GHz 0,10 GHz 0,5 0 GHz 0	0	œ
DIS	Distance between the radiating element of the DUT and the phantom medium	8.4.2.4	N	5.0	1	5.0	2	10.0	∞
D_{xyz}	Repeatability of positioning the DUT or source against the phantom	8.4.2.5	N	2.8	1	2.8	1	2.8	5
Н	Device holder effects	8.4.2.5	N	6.3	1	6.3	1	6.3	œ
MOD	Effect of operating mode on	8.4.2.7	R	9.0	√3	5.2	1	5.2	œ
TAS	Time-average SAR	8.4.2.8	R	2.0	√3	1.1	1	1.1	∞
RF _{drift}	Variation in SAR due to drift in output of DUT	8.4.2.9	N	1.0	1	1.0	1	1.0	∞
VAL	Validation antenna uncertainty(validation measurement only)	8.4.2.10	N	5.0	1	5.0	1	5.0	- x
P _{in}	Uncertainty in accepted power(validation measurement only)	8.4.2.11	N	5.0	1	5.0	1	5.0	∞
			Correction	ons to the	SAR result	(if applied)	1		
$C(\varepsilon',\sigma)$	Phantom deviation from $target(\varepsilon', \sigma)$	8.4.3.1	N	1.9	1	1.9	1	1.9	±5%
C(R)	SAR scaling	8.4.3.2	R	4.0	√3	2.3	1	2.3	±5%
$u(\Delta SAR)$	Combined uncertainty		RSS					13.2	
U	Expanded uncertainty and effective degrees of freedom		N (K=2)					26.4	veff


APPENDIX B EUT TEST POSITION PHOTOS

Report No.: SZNS220407-12866E-SA

Liquid depth ≥ 15cm Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962

Head-touch (0mm)

APPENDIX C PROBE CALIBRATION CERTIFICATES

A#00396

Calibration Laboratory of Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zurich, Switzerland

BACL USA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Report No.: SZNS220407-12866E-SA

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3619_Aug21

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3619

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5,

QA CAL-25.v7
Calibration procedure for dosimetric E-field probes

Calibration date: August 25, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778		
The state of the s		09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 660	23-Dec-20 (No. DAE4-660_Dec20)	Dec-21
Reference Probe ES3DV2	SN: 3013	30-Dec-20 (No. ES3-3013_Dec20)	Dec-21
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 fin house check Oct-20\	In house check: Oct-21

Michael Weber Calibrated by: Laboratory Technician Approved by: Quality Manager Issued: September 2, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3619_Aug21

Page 1 of 22

Report No.: SZNS220407-12866E-SA

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid tissue simulating inquio sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters NORMx,y,z ConvF DCP

A, B, C, D

Polarization ø φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\beta=0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)*, October
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z. Assessed for E-field polarization 9 = 0 ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
- implemented in DAST4 soliware versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

 ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer
- Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. "he sensitivity in TSL corresponds to NORMx,y,z "ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from Isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3619 Aug21

Page 2 of 22

Report No.: SZNS220407-12866E-SA

EX3DV4 - SN:3619

August 25, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.45	0.37	0.40	± 10.1 %
DCP (mV) ⁸	100.7	95.9	97.2	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	dB	VR mV	Max dev.	Max Unc ^s (k=2)	
0	CW	X	0.00	0.00	1.00	0.00	136.8	±3.0%	± 4.7 %	
70	0.000.00	Y	0.00	0.00	1.00	10.01502	140.2	-0.000000000000000000000000000000000000	11000000000	
	d	Z	0.00	0.00	1.00		129.7	E		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	91.00	20.78	10.00	60.0 ±	± 3.3 % ±	± 9.6 %	
AAA		Y	20.00	91.31	20.32	1 1000000000000000000000000000000000000	60.0		301.63000	
	A TO A STREET OF THE PARTY OF T	Z	20.00	90.73	20.77	Section 1	60.0			
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	92.40	20.17	6.99	80.0	±1.9%	±9.6 %	
AAA		Y	20.00	94.02	20.51		80.0			
		Z	20.00	92.05	20.07	4-cond	80.0			
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	95.90	20.43	3.98	95.0	± 1.1 %	±1.1% ±	± 9.6 %
AAA	W 1000	Y	20.00	100.99	22.55		95.0			
		Z	20.00	94.75	19.91		95.0		2	
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	101.26	21.75	2.22	120.0	± 0.9 %	± 9.6 %	
AAA		Y	20.00	110.57	25.81		120.0			
		Z	20.00	99.53	20.96		120.0			
10387-	QPSK Waveform, 1 MHz	X	1.63	64.30	14.18	1.00	150.0	± 1.6 %	± 9.6 %	
AAA		Y	1.70	65.79	14.92	1000000	150.0			
		Z	1.75	65.33	14.77	i	150.0			
10388-	QPSK Waveform, 10 MHz	X	2.11	66.24	14.81	0.00	150.0	±1.0%	± 9.6 %	
AAA		Y	2.24	67.52	15.58	Contract of	150.0	100000000000000000000000000000000000000	0250200000	
		Z	2.29	67.54	15.45	E	150.0			
10396-	64-QAM Waveform, 100 kHz	X	3.00	69.58	18.20	3.01	150.0	± 0.8 %	± 9.6 %	
AAA	Separate de la companya del la companya de la compa	Y	2.91	69.50	18.29		150.0		311/24/2014	
	- Commission to commission to	Z	3.05	69.63	18.27	il come	150.0	1	Lucia compression	
10399-	64-QAM Waveform, 40 MHz	X	3.46	66.35	15.34	0.00	150.0	± 0.7 %	± 9.6 %	
AAA		Y	3.57	67.04	15.78		150.0			
		Z	3.43	66.28	15.34	Second Second	150.0			
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.90	65.28	15.30	0.00	150.0	±1.4%	± 9.6 %	
AAA	18	Y	4.76	65.03	15.26		150.0			
255776		Z	4.86	65.14	15.25		150.0	1	0.00	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3619_Aug21

Page 3 of 22

The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3619

August 25, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

Sensor Model Parameters

	C1 fF	C2 fF	α V-1	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V-2	T5 V-1	T6
X	51.1	383.01	35.69	9.96	0.40	5.01	1.42	0.30	1.01
Y	45.1	338.51	35.83	9.28	0.00	5.03	1.02	0.31	1.01
Z	53.1	397.58	35.66	9.81	0.50	5.01	0.63	0.43	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	-153.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX3-3619_Aug21

Page 4 of 22

Report No.: SZNS220407-12866E-SA

EX3DV4- SN:3619

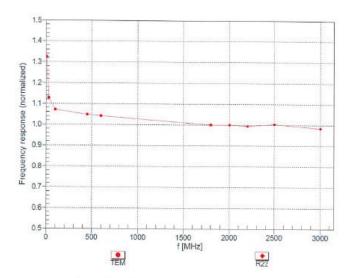
August 25, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	8.89	8.89	8.89	0.16	1.30	± 13.3 %
600	56.1	0.95	8.96	8.96	8.96	0.10	1.25	± 13.3 %
750	41.9	0.89	8.63	8.63	8.63	0.42	0.90	± 12.0 %
835	41.5	0.90	8.50	8.50	8.50	0.43	08.0	± 12.0 %
900	41.5	0.97	8.28	8.28	8.28	0.34	0.99	± 12.0 %
1750	40.1	1.37	7.33	7.33	7.33	0.22	0.86	± 12.0 %
1900	40.0	1.40	7.07	7.07	7.07	0.26	0.86	± 12.0 %
2450	39.2	1.80	6.69	6.69	6.69	0.19	0.90	± 12.0 %
2600	39.0	1.96	6.53	6.53	6.53	0.15	0.90	± 12.0 %
5250	35.9	4,71	4.37	4.37	4.37	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.03	4.03	4.03	0.40	1.80	± 13.1 %
5800	35.3	5.27	3.93	3.93	3.93	0.40	1.80	± 13.1 %

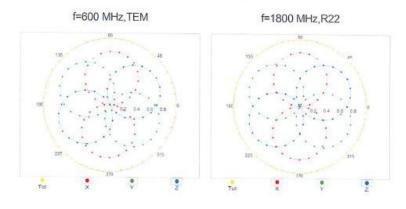
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed et MHz is 4-40 MHz, and ConvF assessed at 13 MHz is 9-19 MHz, ADConvF of DATE (requency calibrative) are extended to ± 110 MHz.

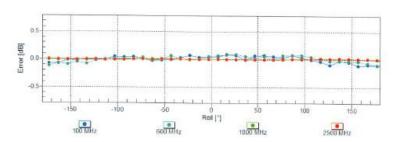

**All frequencies below 3 GHz, the validity of lissue parameters (e and c) can be relaxed to 10% if liquid consensation formula is applied to measured SAR values. All frequencies above 3 GHz, the validity of tissue parameters (e and c) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target issue parameters.

**Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3619_Aug21

Page 5 of 22

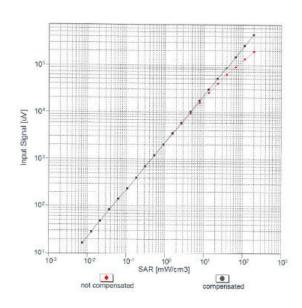

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

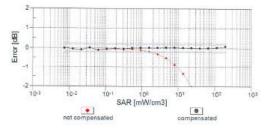


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3619_Aug21 Page 6 of 22

Receiving Pattern (6), 9 = 0°

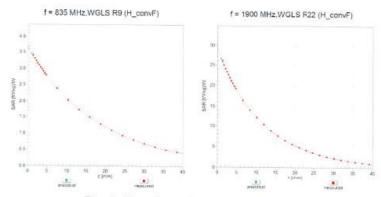



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

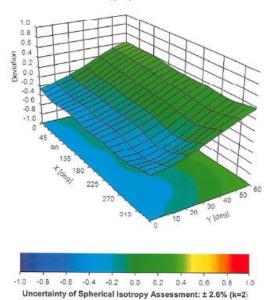
Certificate No: EX3-3619_Aug21

Page 7 of 22

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3619_Aug21

Page 8 of 22

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Certificate No: EX3-3619_Aug21

Page 9 of 22

EX3DV4- SN:3619 August 25, 2021

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^b (k=2)
10010	-	CW	CW	0.00	± 4.7 %
	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 9
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 9
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 9
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 9
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 9
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 9
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 9
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 9
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 9
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 9
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 9
10031	CAA	IEEE 802,15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 9
10032	CAA	IEEE 802,15,1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.69
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.69
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 9
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth		± 9.6 9
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	8.01	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.77	± 9.6 %
0039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.10	± 9.6 %
0042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	70.00	4.57	± 9.6 %
10044	-	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	7.78	± 9.6 9
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Stot, 24)	AMPS	0.00	± 9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	13.80	± 9.6 %
10056	CAA		DECT	10.79	± 9.6 %
10058	CAA	UMTS-TDD (TD-SCDMA, 1.28 Maps)	TD-SCDMA	11.01	± 9.6 %
10059	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 9
	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
0061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
0062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6 %
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
0067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
0068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
0069	CAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
0071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
0072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
0073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
0074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
0075	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
0076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.77	± 9.6 %
0077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	
0081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
0082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	9141	± 9.6 %
0090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	4.77	± 9.6 %
0097		UMTS-FDD (HSDPA)		6.56	± 9.6 %
0098	CAC		WCDMA	3.98	± 9.6 %
0000	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %

Certificate No: EX3-3619_Aug21 Page 10 of 22

EX3DV4-SN:3619

August 25, 2021

10099	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10104	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6 %
10105	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6 %
10108	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6 %
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAG	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAG	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 %
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN		± 9.6 %
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	8.13	± 9.6 %
10141	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)		6.53	± 9.6 %
10143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	5.73	± 9.6 %
10144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)		6.35	± 9.6 %
10145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	6.65	± 9.6 %
10146	_	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QFSK)	LTE-FDD	5.76	± 9.6 %
10147	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10149	CAC		LTE-FDD	6.72	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10151	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10153	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10154	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10156	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %

Page 11 of 22

EX3DV4- SN:3619	August 25, 2021

10181	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10182	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10183	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10184	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10185	CAI	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
10186	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10189	CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	AAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10197	AAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10198	CAF	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10219	CAF	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %
10220	AAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	± 9.6 %
10223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 %
10224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	± 9.6 %
10225	CAD	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 %
10226	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	± 9.6 %
10227	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 %
10228	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6 %
10229	DAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10233	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10234	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10236	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
V. C. C. C.	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10238	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
33.55	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245 10246	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE TDD	10.06	± 9.6 %
10246	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 %
	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %

Page 12 of 22

EX3DV4	- SN:3619		August 25, 2021
10260	CAG LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97 +96%

10260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6%
10261	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDO	9.24	± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TOD	9.23	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TOD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAD	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAD	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAD	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAG	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	CAG	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	CAG	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10292	CAG	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10293	CAG	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	CAG	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10297	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10298	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10299	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6 %
10300	CAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10301	CAC	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	± 9.6 %
10302	CAB	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WIMAX	12.03	± 9.6 %
10303	CAB	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WiMAX	12.57	± 9.6 %
10304	CAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	± 9.6 %
10305	CAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	15.24	± 9.6 %
10306	CAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	14.67	± 9.6 %
10307	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WIMAX	14.49	± 9.6 %
10308	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	± 9.6 %
10309	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)	WIMAX	14.58	± 9.6 %
10310	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3	WIMAX	14.57	± 9.6 %
10311	AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6 %
10313	AAD	IDEN 1:3	IDEN	10.51	± 9.6 %
10314	AAD	IDEN 1:6	IDEN	13.48	± 9.6 %
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	± 9.6 %
10316	AAD	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10317	AAA	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	19.6%
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	± 9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	± 9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	± 9.6 %
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN	8.37	± 9.6 %
10401	AAA	IEEE 802.11ac WiFI (40MHz, 64-QAM, 99pc dc)	WLAN	8.60	
10402	AAA	IEEE 802.11ac WIFI (80MHz, 64-QAM, 99pc dc)	WLAN	8.53	± 9.6 %
10403	AAA	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000		± 9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 %
10406	THE REAL PROPERTY.	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	3.77	± 9.6 %
10400	AAD	COMPLECOO, NOS, SOSE, SONO, PUI Rate	CDMA2000	5.22	± 9.6 %

Page 13 of 22

EX3DV4- SN:3619 August 25, 2021

AAA AAA AAA AAA AAA AAA AAA AAE AAE AAE	WLAN CCDF, 64-CAM, 40MHz IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 8PSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 16-QAM)	Generic WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.54 1.54 8.23 8.23 8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.28	±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 %
AAA AAA AAA AAA AAA AAE AAE AAE AAB AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) IEEE 802.11ah WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 8PSK) IEEE 802.11n (HT Greenfield, 3.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 30 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 50 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 50 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 50 Mbps, 64-QAM)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.23 8.23 8.14 8.19 8.32 8.47 8.40 8.41 8.45	±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 %
AAA AAA AAA AAA AAE AAE AAE AAB AAB AAC AAB	IEEE 802.11ah WIFI 5 GHz (OFDM, 6 Mbps, 99pc dc) IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 4.3.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 8-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.23 8.23 8.14 8.19 8.32 8.47 8.40 8.41 8.45	±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 %
AAA AAA AAA AAE AAE AAE AAB AAB AAC AAB	IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 6 Mibps, 99pc, Long) IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 6 Mibps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 8PSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41	±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 % ±9.6 %
AAA AAA AAE AAE AAE AAB AAB AAC AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mibps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 8PSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 84-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE B02.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE B02.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
AAA AAE AAE AAE AAB AAB AAC AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mibps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 8PSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 84-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE B02.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE B02.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN WLAN WLAN WLAN WLAN WLAN LTE-FDO	8.19 8.32 8.47 8.40 8.41 8.45 8.41	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
AAA AAE AAE AAB AAB AAC AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE FOLOMA, 5 MHz, E-TM, 3.1) LTE-FDD (OFDMA, 5 MHz, E-TM, 3.1)	WLAN WLAN WLAN WLAN WLAN LTE-FDO	8.32 8.47 8.40 8.41 8.45 8.41	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
AAE AAE AAB AAB AAC AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 84-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	WLAN WLAN WLAN WLAN LTE-FDO	8.47 8.40 8.41 8.45 8.41	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
AAE AAB AAB AAC AAB AAC	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	WLAN WLAN WLAN LTE-FDD	8.40 8.41 8.45 8.41	± 9.6 % ± 9.6 % ± 9.6 %
AAE AAB AAB AAC AAB AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) LTE-FD0 (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	WLAN WLAN LTE-FDD	8.41 8.45 8.41	± 9.6 % ± 9.6 %
AAB AAC AAB AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) LTE-FD0 (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	WLAN WLAN LTE-FDD	8.45 8.41	± 9.6 %
AAB AAC AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	WLAN LTE-FDD	8.41	
AAB AAC AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDO		
AAC AAB AAC				± 9.6 %
AAB AAC			8.38	± 9.6 %
AAC		LTE-FDD	8.34	± 9.6 %
_	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	
	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	717.7	± 9.6 %
_		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		± 9.6 %
				± 9.6 %
_				± 9.6 %
				± 9.6 %
		7177177		± 9.6 %
-				± 9.6 %
			1.010.0	± 9.6 %
				± 9.6 %
				± 9.6 %
				± 9.6 %
				± 9.6 %
		100000000000000000000000000000000000000		± 9.6 %
				± 9.6 %
				± 9.6 %
			-	± 9.6 %
			7.82	± 9.6 %
			8.32	± 9.6 %
AAC		LTE-TDD	8.57	± 9.6 %
		LTE-TDD	7.82	± 9.6 %
	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
AAD		LTE-TDD	8.56	± 9.6 %
AAD		LTE-TDD	7.82	± 9.6 %
AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
AAA		LTE-TDD	7.82	± 9.6 %
AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD		± 9.6 %
AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD		± 9.6 %
AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD		± 9.6 %
AAA				± 9.6 %
AAA				± 9.6 %
				± 9.6 %
				±9.6 %
				± 9.6 %
				± 9.6 %
	AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA	AAA LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) AAA LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) AAA LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) AAA LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) AAA LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) AAA LTE-FDD (OFDMA, 12 MHz, E-TM 3.1, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA CDMA (BS TEST MODEL 1, 64 DPCH, Clipping 44%) AAA LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, GPSK, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPSK, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPSK, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPSK, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB, 16 MHz, GPAM, UL Sub) AAA LTE-TDD (SC-FDMA, 1 RB	AAA LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD AAA LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD AAA LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD AAA LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD AAA LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD AAA LTE-FDD (OFDMA, 16 MHz, E-TM 3.1, Clipping 44%) LTE-FDD AAA LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) AAA (W-CDMA (W-CS Test Model 1, 64 DPCH, Clipping 44%) AAA (W-CDM	AAA LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-TDD 7.92 AAA LTE-PD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.53 AAA LTE-PD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.53 AAA LTE-PD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.53 AAA LTE-PD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.53 AAA LTE-PD (OFDMA, 12 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.48 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 MPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 MPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 MPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 MPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 MPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 MPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 MPCH, Clipping 44%) WCDMA 8.63 AAA W-CDMA (BS Test Model 1, 64 MPCH, Clipping 44%) WCDMA 9.65 AAA W-CDMA (BS Test Model 1, 64 MPCH, Clipping 44%) WCDMA 9.65 AAA W-CDMA (BS Test Model 1, 64 MPCH, Clipping 44%) WCDMA

Certificate No: EX3-3619_Aug21 Page 14 of 22

10488	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	± 9.6 %
10489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	± 9.6 %
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	± 9.6 %
10496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TOD	8.54	± 9.6 %
10497	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, U. Sub)	LTE-TDD	8.40	± 9.6 %
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	± 9.6 %
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10501	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	± 9.6 %
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	± 9.6 %
10503	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	± 9.6 %
10504	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10505	AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10506	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10507	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	± 9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL 9.tb)	LTE-TDD	7.99	± 9.6 %
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	± 9.6 %
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	± 9.6 %
10514	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10515	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	± 9.6 %
10516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	± 9.6 %
10517	AAF	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dci	WLAN	1.58	± 9.6 %
10518	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10519	AAF	IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFl 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	± 9.6 %
10521	AAB	IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10523	AAC	IEEE 802.11a/h WIFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	±9.6%
10524	AAC	IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	± 9.6 %
10525	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)	WLAN	8.36	± 9.6 %
10526	AAF	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)	WLAN	8.42	± 9.6 %
10527	AAF	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)	WLAN	8.21	± 9.6 %
10528	AAF	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.36	± 9.6 %
10529	AAF	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)	WLAN	8.36	± 9.6 %
10531	AAF	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)	WLAN	8.43	± 9.6 %
10532	AAF	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10533	AAE	IEEE 802.11ac WIFI (20MHz, MCS8, 99pc dc)	WLAN	8.38	± 9.6 %
10534	AAE	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.45	± 9.6 %
10535	AAE	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)	WLAN	8.45	± 9.6 %
10536	AAF	IEEE 802.11ac WiFi (40MHz, MCS2, 98pc dc)	WLAN	8.32	± 9.6 %
10537	AAF	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)	WLAN	8.44	± 9.6 %
10538	AAF	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)	WLAN	8.54	± 9.6 %
10540	AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)	WLAN	8.39	± 9.6 %
10541	AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)	WLAN	8.46	± 9.6 %
10542	AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.65	±9.6 %
	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)	WLAN	8.65	±9.6 %
10543			******	0.00	I 3.0 76
10543 10544	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)	WLAN	8.47	± 9.6 %

Certificate No: EX3-3619_Aug21

Page 15 of 22

10546	AAC	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc)	WLAN	8.35	± 9.6 %
10547	AAC	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc)	WLAN	8.49	± 9.6 %
10548	AAC	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc)	WLAN	8.37	± 9.6 %
10550	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc)	WLAN	8.38	± 9.6 %
10551	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc)	WLAN	8.50	± 9.6 %
10552	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc)	WLAN	8.42	± 9.6 %
10553	AAC	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)	WLAN	8.45	± 9.6 %
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc)	WLAN	8.48	± 9.6 %
10555	AAC	IEEE 802.11ac WIFI (160MHz, MCS1, 99pc dc)	WLAN	8.47	± 9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc)	WLAN	8.50	± 9.6 %
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc)	WLAN	8.52	± 9.6 %
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc)	WLAN	8.61	± 9.6 %
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc)	WLAN	8.73	± 9.6 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc)	WLAN	8.56	± 9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc)	WLAN	8.69	± 9.6 %
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc)	WLAN	8.77	± 9.6 %
10564	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	± 9.6 %
10565	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10566	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	± 9.6 %
10567	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	8.00	± 9.6 %
10568	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.37	± 9.6 %
10569	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN	8.10	± 9.6 %
10570	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	8.30	± 9.6 %
10571	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)	WLAN	1.99	± 9.6 %
10572	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	± 9.6 %
10573	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10574	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10575	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 9(pc dc)	WLAN	8.59	± 9.6 %
10576	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 9(pc dc)	WLAN	8.60	± 9.6 %
10577	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 50pc dc)	WLAN	8.70	± 9.6 %
10578	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 50pc dc)	WLAN	8.49	± 9.6 %
10579	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 50pc dc)	WLAN	8.36	± 9.6 %
10580	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 50pc dc)	WLAN	8.76	±9.6 %
10581	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10582	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
10583	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10584	AAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	±9.6 %
10585	AAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10586	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10587	AAA	IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10588	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10589	AAA	IEEE 802 11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
0590	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
0591	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)	WLAN	8.63	± 9.6 %
10592	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10593	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc)	WLAN	8.64	± 9.6 %
0594	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc)	WLAN	8.74	± 9.6 %
0595	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc)	WLAN	8.74	± 9.6 %
0596	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc)	WLAN	8.71	± 9.6 %
0597	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc)	WLAN	8.72	± 9.6 %
0598	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc)	WLAN	8.50	± 9.6 %
0599	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc)	WLAN	8.79	± 9.6 %
0600	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
0601	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc)	WLAN	8.82	± 9.6 %
0602	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc)	WLAN	8.94	± 9.6 %
10603	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)	WLAN	9.03	± 9.6 %

Certificate No: EX3-3619_Aug21 Page 16 of 22

EX3DV4- SN:3619 August 25, 2021

10604	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)	WLAN	8.76	± 9.6 %
10605	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN	8.97	± 9.6 %
10606	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10607	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.64	± 9.6 %
10608	AAC	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc)	WLAN	8.77	± 9.6 %
10609	AAC	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc)	WLAN	8.57	± 9.6 %
10610	AAC	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc)	WLAN	8.78	± 9.6 %
10611	AAC	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10612	AAC	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10613	AAC	IEEE 802.11ac WiFl (20MHz, MCS6, 90pc dc)	WLAN	8.94	± 9.6 %
10614	AAC	IEEE 802.11ac WIFI (20MHz, MCS7, 90pc dc)	WLAN	8.59	± 9.6 %
10615	AAC	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10616	AAC	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
10617	AAC	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc)	WLAN	8.81	± 9.6 %
10618	AAC	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc)	WLAN	8.58	± 9.6 %
10619	AAC	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	± 9.6 %
10620	AAC	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc)	WLAN	8.87	± 9.6 %
10621	AAC	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10622	AAC	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc)	WLAN	8.68	± 9.6 %
10623	AAC	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10824	AAC	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc)	WLAN	8.96	± 9.6 %
10625	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)	WLAN	8.96	± 9.6 %
10626	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
10627	AAC	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
10628	AAC	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc)	WLAN	8.71	± 9.6 %
10629	AAC	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc)	WLAN	8.85	
10630	AAC	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)	WLAN	8.72	± 9.6 %
10631	AAC	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc)	WLAN	8.81	-
10632	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10633	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)	WLAN	8.83	± 9.6 %
10634	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc)	WLAN	_	± 9.6 %
10635	AAC	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc)	WLAN	8.80	± 9.6 %
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
10637	AAC	IEEE 802.11ac WIFI (160MHz, MCS1, 90pc dc)	WLAN		
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)	WLAN	8.79	± 9.6 %
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	8.86	± 9.6 %
10640	AAC	IEEE 802,11ac WiFi (160MHz, MCS4, 90pc dc)	WLAN	8.85	± 9.6 %
10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc)	WLAN	8.98	± 9.6 %
10642	AAC	IEEE 802.11ac WiFI (160MHz, MCS6, 90pc dc)	WLAN	9.06	± 9.6 %
10643	AAC	IEEE 802.11ac WiFI (160MHz, MCS7, 90pc dc)	WLAN	9.06	± 9.6 %
10644	AAC	IEEE 802.11ac WiFI (160MHz, MCS8, 90pc dc)	WLAN	8.89	± 9.6 %
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc)		9.05	±9.6%
10646	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	WLAN LTE-TDD	9.11	± 9.6 %
10647	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2.7)	LTE-TOD	11.96	± 9.6 %
10648	AAC	CDMA2000 (1x Advanced)		11.96	±9.6%
10652	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	CDMA2000	3.45	± 9.6 %
10653		LTE-TOD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6 %
10654	AAC		LTE-TDD	7.42	± 9.6 %
10655	AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 %
10655	AAC	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Pulse Waveform (200Hz, 10%)	LTE-TDD	7.21	± 9.6 %
10659	AAC	Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%)	Test	10.00	± 9.6 %
10660	AAC		Test	6.99	± 9.6 %
10661	AAC	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
	AAC	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
10662	AAC	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670	AAC	Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %
100/1	AAD	IEEE 802.11ax (20MHz, MCS0, 90pc dc)	WLAN	9.09	± 9.6 %

Page 17 of 22

EX3DV4- SN:3619 August 25, 2021

10672	AAD	IEEE 802.11ax (20MHz, MCS1, 90pc dc)	WLAN	8.57	1.000
10673	AAD	IEEE 802.11ax (20MHz, MCS2, 90pc dc)	WLAN		± 9.6 %
10674	AAD	IEEE 802.11ax (20MHz, MCS3, 90pc dc)	WLAN	8.78 8.74	±9.6%
10675	AAD	IEEE 802.11ax (20MHz, MCS4, 90pc dc)	WLAN	8.90	±9.6 %
10676	AAD	IEEE 802.11ax (20MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6 %
10677	AAD	IEEE 802.11ax (20MHz, MCS6, 90pc dc)	WLAN	8.73	± 9.6 %
10678	AAD	IEEE 802.11ax (20MHz, MCS7, 90pc dc)	WLAN	8.78	± 9.6 %
10879	AAD	IEEE 802.11ax (20MHz, MCS8, 90pc dc)	WLAN	8.89	± 9.6 %
10680	AAD	IEEE 802.11ax (20MHz, MCS9, 90pc dc)	WLAN	8.80	± 9.6 %
10681	AAG	IEEE 802.11ax (20MHz, MCS10, 90pc dc)	WLAN	8.62	± 9.6 %
10682	AAF	IEEE 802.11ax (20MHz, MCS11, 90pc dc)	WLAN	8.83	± 9.6 %
10683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10684	AAC	IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	± 9.6 %
10685	AAC	IEEE 802.11ax (20MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10686	AAC	IEEE 802.11ax (20MHz, MCS3, 99pc dc)	WLAN	8.28	± 9.6 %
10687	AAE	IEEE 802.11ax (20MHz, MCS4, 99pc dc)	WLAN	8.45	± 9.6 %
10688	AAE	IEEE 802.11ax (20MHz, MCS5, 99pc dc)	WLAN	8.29	± 9.6 %
10689	AAD	IEEE 802.11ax (20MHz, MCS6, 99pc dc)	WLAN	8.55	± 9.6 %
10690	AAE	IEEE 802.11ax (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10691	AAB	IEEE 802.11ax (20MHz, MCS8, 99pc dc)	WLAN	8.25	± 9.6 %
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc dc)	WLAN	8.29	± 9.6 %
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc dc)	WLAN	8.25	± 9.6 %
10694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc dc)	WLAN	8.57	± 9.6 %
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc dc)	WLAN	8.78	± 9.6 %
10896	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc dc)	WLAN	8.91	± 9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc dc)	WLAN	8.61	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc dc)	WLAN	8.89	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc dc)	WLAN	8.82	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc dc)	WLAN	8.73	± 9.6 %
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN	8.86	± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	± 9.6 %
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc dc)	WLAN	8.56	± 9.6 %
10705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc dc)	WLAN	8.69	± 9.6 %
10706	AAC	IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN	8.66	± 9.6 %
10707	AAC	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.32	± 9.6 %
10708	AAC	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10709	AAC	IEEE 802.11ax (40MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10710	AAC	IEEE 802.11ax (40MHz, MCS3, 99pc dc)	WLAN	8.29	± 9.6 %
10711	AAC	IEEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.39	± 9.6 %
10712	AAC	IEEE 802.11ax (40MHz, MCS5, 99pc dc)	WLAN	8.67	± 9.6 %
10713	AAC	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8.33	± 9.6 %
10714	AAC	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	± 9.6 %
10715	AAC	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN	8.45	± 9.6 %
10716	AAC	IEEE 802.11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	± 9.6 %
10717	AAC	IEEE 802.11ax (40MHz, MCS10, 99pc dc)	WLAN	8.48	± 9.6 %
10718	AAC	IEEE 802.11ax (40MHz, MCS11, 99pc dc)	WLAN	8.24	± 9.6 %
10719	AAC	IEEE 802.11ax (80MHz, MCS0, 90pc dc)	WLAN	8.81	± 9.6 %
10720	AAC	IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.87	± 9.6 %
10721	AAC	IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.76	± 9.6 %
10722	AAC	IEEE 802.11ax (80MHz, MCS3, 90pc dc)	WLAN	8.55	± 9.6 %
10723	AAC	IEEE 802.11ax (80MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10724	AAC	IEEE 802.11ax (80MHz, MCS5, 90pc dc)	WLAN	8.90	± 9.6 %
10725	AAC	IEEE 802.11ax (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10726	AAC	IEEE 802.11ax (80MHz, MCS7, 90pc dc)	WLAN	8.72	± 9.6 %
10727	AAC	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8.66	± 9.6 %

Page 18 of 22

EX3DV4- SN:3619	August 25, 2021

10728	AAC	IEEE 802.11ax (80MHz, MCS9, 90pc dc)	WLAN	8.65	± 9.6 %
10729	AAC	IEEE 802.11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	± 9.6 %
10730	AAC	IEEE 802.11ax (80MHz, MCS11, 90pc dc)	WLAN	8.67	± 9.6 %
10731	AAC	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10732	AAC	IEEE 802.11ax (80MHz, MCS1, 99pc dc)	WLAN	8.46	± 9.6 %
10733	AAC	IEEE 802.11ax (80MHz, MCS2, 99pc dc)	WLAN	8.40	± 9.6 %
10734	AAC	IEEE 802.11ax (80MHz, MCS3, 99pc dc)	WLAN	8.25	± 9.6 %
10735	AAC	IEEE 802.11ax (80MHz, MCS4, 99pc dc)	WLAN	8.33	± 9.6 %
10736	AAC	IEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN	8.27	± 9.6 %
10737	AAC	IEEE 802.11ax (80MHz, MCS6, 99pc dc)	WLAN	8.36	± 9.6 %
10738	AAC	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	± 9.6 %
10739	AAC	IEEE 802.11ax (80MHz, MCS8, 99pc dc)	WLAN	8.29	± 9.6 %
10740	AAC	IEEE 802.11ax (80MHz, MCS9, 99pc dc)	WLAN	8.48	± 9.6 %
10741	AAC	IEEE 802.11ax (80MHz, MCS10, 99pc dc)	WLAN	8.40	± 9.6 %
10742	AAC	IEEE 802.11ax (80MHz, MCS11, 99pc dc)	WLAN	8.43	± 9.6 %
10743	AAC	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	8.94	± 9.6 %
10744	AAC	IEEE 802.11ax (160MHz, MCS1, 90pc dc)	WLAN	9.16	± 9.6 %
10745	AAC	IEEE 802.11ax (160MHz, MCS2, 90pc dc)	WLAN	8.93	± 9.6 %
10746	AAC	IEEE 802.11ax (160MHz, MCS3, 90pc dc)	WLAN	9.11	± 9.6 %
10747	AAC	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	9.04	and the second second
10748	AAC	IEEE 802.11ax (160MHz, MCS5, 90pc dc)	WLAN		± 9.6 %
10749	AAC	IEEE 802.11ax (160MHz, MCS6, 90pc dc)	WLAN	8.93	± 9.6 %
0750		IEEE 802.11ax (160MHz, MCS7, 90pc dc)	C 100000 0000	8.90	± 9.6 %
10751	AAC	IEEE 802.11ax (160MHz, MCS7, 90pc dc)	WLAN	8.79	± 9.6 %
0752	AAC	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN	8.82	± 9.6 %
0753	AAC		WLAN	8.81	± 9.6 %
0754	AAC	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	9.00	± 9.6 %
	AAC	IEEE 802.11ax (160MHz, MCS11, 90pc dc)	WLAN	8.94	± 9.6 %
10755 10756	AAC	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.64	± 9.6 %
	AAC	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.77	± 9.6 %
10757	AAC	IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	8.77	± 9.6 %
10758	AAC	IEEE 802.11ax (160MHz, MCS3, 99pc dc)	WLAN	8.69	± 9.6 %
0759	AAC	IEEE 802.11ax (160MHz, MCS4, 99pc dc)	WLAN	8.58	± 9.6 %
0760	AAC	IEEE 802.11ax (160MHz, MCS5, 99pc dc)	WLAN	8.49	± 9.6 %
0761	AAC	IEEE 802.11ax (160MHz, MCS6, 99pc dc)	WLAN	8.58	± 9.6 %
10762	AAC	IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	± 9.6 %
10763	AAC	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8.53	± 9.6 %
10764	AAC	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	± 9.6 %
0765	AAC	IEEE 802.11ax (160MHz, MCS10, 99pc dc)	WLAN	8.54	± 9.6 %
0766	AAC	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	± 9.6 %
0767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	± 9.6 %
0768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
0769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
0772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	± 9.6 %
0773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	
0774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD		± 9.6 %
0775	AAC	5G NR (CP-OFDM, 1 NB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
0776		5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)		8.31	± 9.6 %
0777	AAC		5G NR FR1 TDD	8.30	± 9.6 %
0778	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
0779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
0780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
0781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
0782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %

Page 19 of 22

EX3DV4- SN:3619	
EX3DV4- SN.3619	August 25, 2021

10785 AAC SG NR (CP-CPDM, 100%, RB, 20 MHz, CPSK, 15 MHz) SG NR FRI TDD 8.30 29.6 % 10787 AAC SG NR (CP-CPDM, 100%, RB, 20 MHz, CPSK, 15 MHz) SG NR FRI TDD 8.34 29.6 % 10788 AAC SG NR (CP-CPDM, 100%, RB, 25 MHz, CPSK, 15 MHz) SG NR FRI TDD 8.34 29.6 % 10789 AAC SG NR (CP-CPDM, 100%, RB, 30 MHz, CPSK, 15 MHz) SG NR FRI TDD 8.37 29.6 % 10789 AAC SG NR (CP-CPDM, 100%, RB, 30 MHz, CPSK, 15 MHz) SG NR FRI TDD 8.37 29.5 % 10780 AAC SG NR (CP-CPDM, 100%, RB, 50 MHz, CPSK, 15 MHz) SG NR FRI TDD 8.37 29.5 % 10780 AAC SG NR (CP-CPDM, 100%, RB, 50 MHz, CPSK, 15 MHz) SG NR FRI TDD 8.39 19.6 5 % 10782 AAC SG NR (CP-CPDM, 1 RB, 5 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.52 19.6 5 % 10782 AAC SG NR (CP-CPDM, 1 RB, 5 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.52 19.6 5 % 10784 AAC SG NR (CP-CPDM, 1 RB, 10 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.52 19.6 5 % 10784 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.52 19.6 5 % 10784 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.52 19.6 5 % 10784 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.52 19.6 5 % 10789 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.52 19.6 5 % 10789 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.52 19.6 % 10789 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.52 19.6 % 10789 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.52 19.6 % 10789 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.53 19.6 % 10789 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.53 19.6 % 10899 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.53 19.6 % 10899 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI TDD 7.53 19.6 % 10899 AAC SG NR (CP-CPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR FRI	10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	± 9.6 %
10786 AAC. SG NR (CP-OPDM, 100% RB, 20 MHz, CPSK, 15 MHz) SG NR RERT TDD 8.35 ± 9.6 % 10788 AAC. SG NR (CP-OPDM, 100% RB, 30 MHz, CPSK, 15 MHz) SG NR RERT TDD 8.39 ± 9.6 % 10788 AAC. SG NR (CP-OPDM, 100% RB, 30 MHz, CPSK, 15 MHz) SG NR RERT TDD 8.39 ± 9.6 % AAC. SG NR (CP-OPDM, 100% RB, 30 MHz, CPSK, 15 MHz) SG NR RERT TDD 8.39 ± 9.6 % AAC. SG NR (CP-OPDM, 100% RB, 50 MHz, CPSK, 15 MHz) SG NR RERT TDD 8.39 ± 9.6 % AAC. SG NR (CP-OPDM, 100% RB, 50 MHz, CPSK, 30 MHz) SG NR RERT TDD 5.39 ± 9.6 % AAC. SG NR (CP-OPDM, 100% RB, 50 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.83 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 15 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.763 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 15 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.763 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 15 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.765 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.762 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.762 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.762 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.762 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 20 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.762 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 30 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.762 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 30 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.762 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 30 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.762 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 30 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.769 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 30 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.789 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 30 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.789 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 30 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.789 ± 9.6 % AAC. SG NR (CP-OPDM, 1 RB, 30 MHz, CPSK, 30 MHz) SG NR RERT TDD 7.789 ± 9.6 % AAC. SG NR (CP-OPDM, 1 SG	10785			1,7,7,11,11,11,11,11,11,11,11,11,11,11,1		
10788 A.C. SG NR (CP-OFDM, 100% RB, 35 MHz, CPSK, 15 MHz)	10786					
10788 AAC SG NN (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 MHz) SG NN FRI TDD 8.39 ±9.6 % 10790 AAC SG NN (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 MHz) SG NN FRI TDD 8.39 ±9.6 % 10791 AAC SG NN (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.83 ±9.6 % 10792 AAC SG NN (CP-OFDM, 1 RB, 51 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.83 ±9.6 % 10793 AAC SG NN (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.83 ±9.6 % 10793 AAC SG NN (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.95 ±9.6 % 10793 AAC SG NN (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.95 ±9.6 % 10793 AAC SG NN (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.95 ±9.6 % 10793 AAC SG NN (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.84 ±9.6 % 10793 AAC SG NN (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.84 ±9.6 % 10793 AAC SG NN (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.84 ±9.6 % 10793 AAC SG NN (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.89 ±9.6 % 10799 AAC SG NN (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.89 ±9.6 % 10799 AAC SG NN (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.89 ±9.6 % 10799 AAC SG NN (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.99 ±9.6 % 10802 AAC SG NN (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.99 ±9.6 % 10802 AAC SG NN (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.99 ±9.6 % 10802 AAC SG NN (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.93 ±9.6 % 10802 AAC SG NN (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.93 ±9.6 % 10802 AAC SG NN (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.93 ±9.6 % 10802 AAC SG NN (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.93 ±9.6 % 10802 AAC SG NN (CP-OFDM, 50% RB, 50 MHz, QPSK, 30 MHz) SG NN FRI TDD 7.93 ±9.6 % 10802	10787				37,00	
10799	10788	-				The second second second
10790	10789		5G NR (CP-OFDM, 100% RB, 40 MHz, CPSK, 15 kHz)			
10791 AAC SIGN (CP-OFDM, 1 RB, 5 MHz, OFSK, 30 Mtz) SIGN R FRI TOD 7.83 ±9.6 %		_				
10792	10791	-				
10794	10792					
10796 AAC 56 NR (CP-OFDM, 1 RB, 26 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.82 ±9.6 % 10796 AAC 56 NR (CP-OFDM, 1 RB, 25 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.84 ±9.6 % 10797 AAC 56 NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.82 ±9.6 % 10797 AAC 56 NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ±9.6 % 10799 AAC 56 NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ±9.6 % 10799 AAC 56 NR (CP-OFDM, 1 RB, 60 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ±9.6 % 10890 AAC 56 NR (CP-OFDM, 1 RB, 60 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ±9.6 % 10890 AAC 56 NR (CP-OFDM, 1 RB, 60 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ±9.6 % 10890 AAD 56 NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ±9.6 % 10890 AAD 56 NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ±9.6 % 10890 AAD 56 NR (CP-OFDM, 50 NR, 15 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ±9.6 % 10890 AAD 56 NR (CP-OFDM, 50 NR, 15 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ±9.6 % 10890 AAD 56 NR (CP-OFDM, 50 NR, 15 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ±9.6 % 10890 AAD 56 NR (CP-OFDM, 50 NR, 15 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.34 ±9.6 % 10891 AAD 56 NR (CP-OFDM, 50 NR, 8, 10 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.34 ±9.6 % 10891 AAD 56 NR (CP-OFDM, 50 NR, 8, 10 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.34 ±9.6 % 10812 AAD 56 NR (CP-OFDM, 100 NR, 8, 10 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.35 ±9.6 % 10812 AAD 56 NR (CP-OFDM, 100 NR, 8, 10 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.35 ±9.6 % 10812 AAD 56 NR (CP-OFDM, 100 NR, 8, 10 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.35 ±9.6 % 10812 AAD 56 NR (CP-OFDM, 100 NR, 8, 10 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.35 ±9.6 % 10822 AAD 56 NR (CP-OFDM, 100 NR, 8, 10 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.39 ±9.6 % 10822 AAD 56 NR (CP-OFDM, 100 NR, 8, 10 MHz, OPSK, 30 kHz) 56 NR FR1	10793					
10796 AAC 56 NR (CP-OFDM, 1 RB, 25 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.84 ± 9.6 % 10796 AAC 56 NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.82 ± 9.6 % 10798 AAC 56 NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ± 9.6 % 10798 AAC 56 NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ± 9.6 % 10798 AAC 56 NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ± 9.6 % 10891 AAC 56 NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ± 9.6 % 10891 AAC 56 NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.89 ± 9.6 % 10891 AAC 56 NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.87 ± 9.6 % 10893 AAE 56 NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.87 ± 9.6 % 10893 AAE 56 NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 7.87 ± 9.6 % 10893 AAE 56 NR (CP-OFDM, 50% RB, 10 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10890 AAD 56 NR (CP-OFDM, 50% RB, 10 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.37 ± 9.6 % 10890 AAD 56 NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10891 AAD 56 NR (CP-OFDM, 50% RB, 60 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10812 AAD 56 NR (CP-OFDM, 50% RB, 60 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10812 AAD 56 NR (CP-OFDM, 50% RB, 60 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10812 AAD 56 NR (CP-OFDM, 50% RB, 60 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10812 AAD 56 NR (CP-OFDM, 50% RB, 60 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.35 ± 9.6 % 10812 AAD 56 NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.35 ± 9.6 % 10812 AAD 56 NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10812 AAD 56 NR (CP-OFDM, 100% RB, 10 MHz, OPSK, 30 kHz) 56 NR FR1 TDD 8.30 ± 9.6 % 10822 AAD 56 NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 30 kHz) 56	10794	7.5.54				
10796		-		15.5		
10797 AAC 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 9.5 % 10798 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 9.5 % 10799 AAC 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 4.9.6 % 10802 AAC 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 4.9.6 % 10802 AAC 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 4.9.6 % 10803 AAE 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 4.9.6 % 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.33 4.9.6 % 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 4.9.6 % 10809 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 4.9.6 % 10809 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 4.9.6 % 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 4.9.6 % 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 4.9.6 % 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.35 4.9.6 % 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.35 4.9.6 % 10810 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.35 4.9.6 % 10810 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.35 4.9.6 % 10810 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.35 4.9.6 % 10821 AAC 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.33 4.9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.30 4.9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.31 4.9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.41 4.9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.41	10796					1.00
10799 AAC 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 19.6 % 10801 AAC 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 19.6 % 10802 AAC 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 19.6 % 10802 AAC 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.87 19.6 % 10803 AAE 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.87 19.6 % 10805 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 19.6 % 10805 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 19.6 % 10805 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 19.6 % 10809 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 19.6 % 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 19.6 % 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 19.6 % 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 19.6 % 10818 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.35 19.6 % 10818 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.35 19.6 % 10818 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 19.6 % 10819 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 19.6 % 10819 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 19.6 % 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 19.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.41 19.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.41 19.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.41 19.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.41 19.6 % 10	10797					
10799	10798					
10801 AAC SG NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.89 49.6 % 10802 AAC SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.87 49.6 % 10803 AAC SG NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.93 49.6 % 10805 AAD SG NR (CP-OFDM, 50% RB, 150 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 49.6 %	10799					
10802	10801					
10803 AAE \$5 NR (CP-OFDM, 188, 100 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 7.93 ± 9.6 % 10805 AAD 56 NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10806 AAD 56 NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.37 ± 9.6 % 10809 AAD 56 NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10810 AAD 56 NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10810 AAD 56 NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.35 ± 9.6 % 10812 AAD 56 NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.35 ± 9.6 % 10811 AAD 56 NR (CP-OFDM, 100% RB, 16 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.35 ± 9.6 % 10818 AAD 56 NR (CP-OFDM, 100% RB, 16 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.35 ± 9.6 % 10811 AAD 56 NR (CP-OFDM, 100% RB, 16 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10820 AAD 56 NR (CP-OFDM, 100% RB, 16 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.34 ± 9.6 % 10821 AAC 56 NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.30 ± 9.6 % 10822 AAD 56 NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.30 ± 9.6 % 10822 AAD 56 NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.41 ± 9.6 % 10822 AAD 56 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.41 ± 9.6 % 10824 AAD 56 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.41 ± 9.6 % 10824 AAD 56 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.41 ± 9.6 % 10824 AAD 56 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.41 ± 9.6 % 10825 AAD 56 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.42 ± 9.6 % 10826 AAD 56 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 56 NR FR1 TDD 8.42 ± 9.6 % 10826 AAD 56 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 50 kHz) 56 NR FR1 TDD 7.70 ± 9.6 % 10826 AAD 56 NR (CP-OFDM, 100% R	10802	-		the state of the s		
10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10806 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10810 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10812 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10812 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10812 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10818 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10819 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10819 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ± 9.6 % 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ± 9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10823 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10824 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10826 AAB 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 50 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10826 AAB 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10826 AAD 5G NR (CP-OFDM, 1RB,	10803					and the second
10808 AAD \$50 NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.34 ± 9.6 % 10810 AAD \$50 NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.34 ± 9.6 % 10812 AAD \$50 NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.35 ± 9.6 % 10812 AAD \$50 NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.35 ± 9.6 % 10817 AAD \$50 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.35 ± 9.6 % 10819 AAD \$50 NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.35 ± 9.6 % 10819 AAD \$50 NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.34 ± 9.6 % 10820 AAD \$50 NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.34 ± 9.6 % 10820 AAD \$50 NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.30 ± 9.6 % 10820 AAD \$50 NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.30 ± 9.6 % 10821 AAC \$50 NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.41 ± 9.6 % 10823 AAC \$50 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.41 ± 9.6 % 10823 AAC \$50 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.36 ± 9.6 % 10824 AAD \$50 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.36 ± 9.6 % 10825 AAD \$50 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.31 ± 9.6 % 10825 AAD \$50 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.41 ± 9.6 % 10829 AAD \$50 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.42 ± 9.6 % 10829 AAD \$50 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) \$50 NR FR1 TDD 8.42 ± 9.6 % 10829 AAD \$50 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 50 kHz) \$50 NR FR1 TDD 7.70 ± 9.6 % 10829 AAD \$50 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 50 kHz) \$50 NR FR1 TDD 7.70 ± 9.6 % 10829 AAD \$50 NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) \$50 NR FR1 TDD 7.70	10805					
10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10810 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10817 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10818 AAD 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10818 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10821 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10823 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.73 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.74 ± 9.6 % 10830 AAD 5G NR (CP-OFDM, 1RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.76 ± 9.6 % 10833 AAD 5G NR (CP-OFDM, 1RB, 5	10806	-				
10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10818 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10819 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10819 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10820 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9.6 % 10821 AAC 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 % 10823 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 % 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 % 10826 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 % 10826 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 % 10828 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 % 10828 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 % 10828 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.73 ±9.6 % 10830 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.73 ±9.6 % 10830 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ±9.6 % 10830 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ±9.6 % 10830 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	10809					
10812	10810	-				
10817 AAD	10812	-				
10818 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10820 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ± 9.6 % 10821 AAC 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10821 AAC 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10823 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10823 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10828 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10830 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.63 ± 9.6 % 10830 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.73 ± 9.6 % 10830 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.75 ± 9.6 % 10830 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10830 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ± 9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QP	10817					
10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ± 9.6 % 10820 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ± 9.6 % 10821 AAC 5G NR (CP-OFDM, 100% RB, 35 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10823 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10828 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10830 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.63 ± 9.6 % 10831 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.73 ± 9.6 % 10832 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10833 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10835 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAE 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60	10818	AAD		Sec. 30.0024-03-00-03/20-04-04-04-04-04-04-04-04-04-04-04-04-04		
10820	10819	AAD				
10821 AAC 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10823 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10824 AAC 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10824 AAC 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10827 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10828 AAE 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10830 AAD 5G NR (CP-OFDM, 18B, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.73 ± 9.6 % 10833 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.74 ± 9.6 % 10833 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.74 ± 9.6 % 10833 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ± 9.6 % 10836 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.67 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G	10820	AAD		5G NR FR1 TDD		
10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10827 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10828 AAE 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.40 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.63 ± 9.6 % 10830 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.63 ± 9.6 % 10831 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.73 ± 9.6 % 10832 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.73 ± 9.6 % 10833 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10846 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.34 ±	10821	AAC		5G NR FR1 TDD		
10823 AAC 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.39 ± 9.6 % 10827 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10828 AAE 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ± 9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.43 ± 9.6 % 10830 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.63 ± 9.6 % 10831 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.73 ± 9.6 % 10832 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10833 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % <	10822	AAD		5G NR FR1 TDD		
10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ± 9.6 %		AAC		5G NR FR1 TDD		
10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ±9.6 %		AAD		5G NR FR1 TDD	8.39	± 9.6 %
10828 AAE 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.43 ±9.6 % 10829 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.40 ±9.6 % 10830 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.63 ±9.6 % 10831 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.73 ±9.6 % 10832 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.74 ±9.6 % 10833 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ±9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ±9.6 % 10835 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ±9.6 % 10836 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ±9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ±9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ±9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ±9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ±9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ±9.6 % 10844 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.67 ±9.6 % 10844 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.67 ±9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ±9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ±9.6 % 10846 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ±9.6 % 10846 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ±9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10855 AAD 5G NR	The second second	AAD		5G NR FR1 TDD	8.41	± 9.6 %
10829 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.63 ± 9.6 % 10830 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.73 ± 9.6 % 10831 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.73 ± 9.6 % 10832 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.73 ± 9.6 % 10833 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.75 ± 9.6 % 10835 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10836 AAE 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.76 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.71 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.71 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ± 9.6 % 10845 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.44 ± 9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10854 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35	1770000	AAD		5G NR FR1 TDD	8.42	± 9.6 %
10830 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.63 ± 9.6 % 10831 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.73 ± 9.6 % 10832 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.74 ± 9.6 % 10833 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10835 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.71 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ± 9.6 % 10845 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.44 ± 9.6 % 10845 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10845 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.3		AAE		5G NR FR1 TDD	8.43	± 9.6 %
10831 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.74 ± 9.6 % 10832 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.74 ± 9.6 % 10833 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.75 ± 9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.75 ± 9.6 % 10835 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.75 ± 9.6 % 10836 AAE 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.66 ± 9.6 % 10837 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.68 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.68 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.67 ± 9.6 % 10841 AAD 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.67 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.49 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.49 ± 9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.49 ± 9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 TDD		AAD		5G NR FR1 TDD	8.40	± 9.6 %
10832 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.74 ±9.6 % 10833 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.75 ±9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.75 ±9.6 % 10835 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.76 ±9.6 % 10836 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.68 ±9.6 % 10837 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.68 ±9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.68 ±9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ±9.6 % 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ±9.6 % 10841 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.71 ±9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ±9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ±9.6 % 10845 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.44 ±9.6 % 10845 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10854 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10858				5G NR FR1 TDD	7.63	± 9.6 %
10833 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ±9.6 % 10834 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.75 ±9.6 % 10835 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.76 ±9.6 % 10836 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ±9.6 % 10837 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.68 ±9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ±9.6 % 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ±9.6 % 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.71 ±9.6 % 10841 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.71 ±9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ±9.6 % 10843 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ±9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.44 ±9.6 % 10845 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ±9.6 % 10854 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10		AAD			7.73	± 9.6 %
10834 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.75 ± 9.6 %				5G NR FR1 TDD	7.74	± 9.6 %
10835 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.70 ±9.6 % 10836 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.66 ±9.6 % 10837 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.68 ±9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.67 ±9.6 % 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.67 ±9.6 % 10841 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.67 ±9.6 % 10843 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 7.71 ±9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.49 ±9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.44 ±9.6 % 10855 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.41 ±9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.41 ±9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.41 ±9.6 % 10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.36 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 KHz) 5G NR FR1 TDD 8.35 ±9.6 %	-70,750	_		5G NR FR1 TDD	7.70	± 9.6 %
10836 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.66 ± 9.6 % 10837 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.68 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.77 ± 9.6 % 10841 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.71 ± 9.6 % 10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ± 9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10854 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz,	1.000000	AAD		5G NR FR1 TDD	7.75	± 9.6 %
10837 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.68 ± 9.6 % 10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 % 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.67 ± 9.6 % 10841 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.71 ± 9.6 % 10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 M				5G NR FR1 TDD	7.70	± 9.6 %
10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.70 ± 9.6 %					7.66	± 9.6 %
10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.67 ±9.6 % 10841 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.71 ±9.6 % 10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ±9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ±9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ±9.6 % 10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10857 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 %						± 9.6 %
10841 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 7.71 ±9.6 % 10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ±9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 %						± 9.6 %
10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.49 ± 9.6 % 10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 1					7.67	± 9.6 %
10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 %					-	± 9.6 %
10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.41 ± 9.6 % 10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ± 9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 %	The Wart of	-		Ultra transfer and the second		± 9.6 %
10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.34 ±9.6 % 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ±9.6 % 10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ±9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ±9.6 %						
10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 % 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 %						The second second second
10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.37 ± 9.6 % 10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 %	and the second					
10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.35 ± 9.6 % 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 %						
10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 TDD 8.36 ± 9.6 %		Name and Address of the Owner, where				
	0.000000					
AAD 30 M (CF-0FDM, 100% RB, 40 M/1Z, QFSK, 60 KHZ) 30 NK FK1 TDD 8.34 ± 9.6 %					100000	
	,0000	AAD	SO THE COT DIM, 100% RB, 40 WITE, QESK, OU KHZ)	JO NK PKT TOO	8.34	19.6%

Page 20 of 22

EX3DV4- SN:3619 August 25, 2021

10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	160 100 100 100		
10861	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 50 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10865	AAD	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10866		5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	8.41	± 9.6 %
10868	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10869	11111	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10870	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10871		5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
10872	AAD		5G NR FR2 TDD	5.75	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10875	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10876	AAD		5G NR FR2 TDD	7.78	± 9.6 %
10877	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10879	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 tHz)	5G NR FR2 TDD	8.38	± 9.6 %
10881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	± 9.6 %
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	±9.6%
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	± 9.6 %
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6%
10897	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6%
10898	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6%
10899	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10900	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10901	AAD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10902	AAD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10904	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10906	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10907	AAD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	± 9.6 %
10908	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10909	AAD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	±9.6 %
10910	AAD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10911	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10912	AAD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10913	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10914	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	± 9.6 %
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
10917	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
10918	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10919	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10920	AAD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
10921	AAD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %

Page 21 of 22

± 9.6 9	5.82	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	22 AAD
± 9.6 %	5.84	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	23 AAD
± 9.6 %	5.84	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	24 AAD
± 9.6 %	5.95	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	25 AAD
± 9.6 %	5.84	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	26 AAD
± 9.6 %	5.94	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	27 AAD
± 9.6 %	5.52	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	28 AAD
± 9.6 %	5.52	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	29 AAD
± 9.6 %	5.52	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	30 AAD
± 9.6 %	5.51	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	31 AAD
± 9.6 %	5.51	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	32 AAB
± 9.6 %	5.51	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	33 AAA
± 9.6 %	5.51	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	34 AAA
± 9.6 %	5.51	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	35 AAA
± 9.6 %	5.90	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	36 AAC
± 9.6 %	5.77	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	37 AAB
± 9.6 %	5.90	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	38 AAB
± 9.6 %	5.82	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	39 AAB
± 9.6 %	5.89	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	40 AAB
± 9.6 %	5.83	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	41 AAB
± 9.6 %	5.85	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	42 AAB
± 9.6 %	5.95	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	43 AAB
± 9.6 %	5.81	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	44 AAB
± 9.6 %	5.85	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	45 AAB
± 9.6 %	5.83	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	16 AAC
± 9.6 %	5.87	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	17 AAB
± 9.6 %	5.94	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	48 AAB
± 9.6 %	5.87	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	49 AAB
± 9.6 %	5.94	5G NP. FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	O AAB
± 9.6 %	5.92	5G NR FR1 FDD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	1 AAB
± 9.6 %	8.25	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	2 AAB
± 9.6 %	8.15	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	3 AAB
± 9.6 %	8.23	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	54 AAB
± 9.6 %	8.42	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	55 AAB
± 9.6 %	8.14	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	66 AAB
± 9.6 %	8.31	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	7 AAC
± 9.6 %	8.61	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	SB AAB
± 9.6 %	8.33	5G NR FR1 FDD	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	9 AAB
± 9.6 %	9.32	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	O AAB
± 9.6 %	9.36	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	1 AAB
± 9.6 %	9.40	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	2 AAB
± 9.6 %	9.55	5G NF FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	3 AAB
± 9.6 %	9.29	5G NR FR1 TDD	5G NR DL (CP-DFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	4 AAB
± 9.6 %	9.37	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5 AAB
± 9.6 %	9.55	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	6 AAB
± 9.6 %	9.42	5G NR FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	7 AAB
± 9.6 %	9.49	5G NF FR1 TDD	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	8 AAB
± 9.6 %	11.59	5G NR FR1 TDD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	2 AAB
± 9.6 %	9.06	5G NR FR1 TDD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	3 AAB
± 9.6 %	10.28	5G NR FR1 TDD	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	4 AAB

^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3619_Aug21 Page 22 of 22

APPENDIX D DIPOLE CALIBRATION CERTIFICATES

Report No.: SZNS220407-12866E-SA

Certificate No: Z20-60412 Client CALIBRATION CERTIFICATE Object D2450V2 - SN: 751 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 13, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 106276 Power Meter NRP2 12-May-20 (CTTL, No.J20X02965) May-21 Power sensor NRP6A 101369 12-May-20 (CTTL, No.J20X02965) May-21 ReferenceProbe EX3DV4 SN 3617 30-Jan-20(SPEAG,No.EX3-3617_Jan20) Jan-21 DAE4 SN 771 10-Feb-20(CTTL-SPEAG, No. Z20-60017) Feb-21 Call Date(Calibrated by, Certificate No.) Secondary Standards ID# Scheduled Calibration Signal Generator E4438C MY49071430 25-Feb-20 (CTTL, No.J20X00516) Feb-21 NetworkAnalyzer E5071C MY48110673 10-Feb-20 (CTTL, No.J20X00515) Feb-21 Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 22, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z20-60412

Page 1 of 6

Add: No.51 Xoeyeem Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.com

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016

Report No.: SZNS220407-12866E-SA

- 6GHz)", July 2016
 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60412

Page 2 of 6

Add: No.51. Xueyuan Road, Haidian District, Beijing, 100191, China Tol: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettögebinutt.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.0 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 18.7 % (k=2)

Certificate No: Z20-60412

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6Ω+ 4.03 jΩ - 25.7dB	
Return Loss		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.022 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard seminigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

CONTRACTOR	
Manufactured by	SPEAG
	0.01100

Certificate No: Z20-60412

Page 4 of 6

Date: 10.13.2020

Add: No.51 Xuvyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 751

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.809$ S/m; $\epsilon_r = 39.02$; $\rho = 1000$ kg/m³

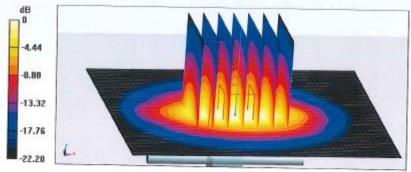
Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.65, 7.65, 7.65) @ 2450 MHz; Calibrated: 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW; DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.1 V/m; Power Drift = -0.04 dB

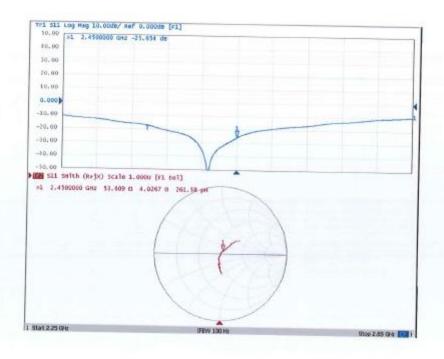

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.12 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 47.6%

Maximum value of SAR (measured) = 22.7 W/kg


0 dB = 22.7 W/kg = 13.56 dBW/kg

Certificate No: Z20-60412

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: Z20-60412

Page 6 of 6

***** END OF REPORT *****