

TEST REPORT

Applicant Name :

Address :

Report Number : FCC ID: IC FCC: Porta Phone Company Inc ISEDC: PORTA PHONE CO., INC. FCC: 145 Dean Knauss Drive Narragansett, Rhode Island 02882 United States ISEDC: 145 Dean Knauss Drive Narragansett, RI 02882, United States of America SZNS211206-61772E-RFB B4HDBXR 3064A-DBXR

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247, ISSUE 2,

FEBRUARY 2017

Sample Description

Product Type:	Full Duplex 900 MHz / 2.4 GHz Transceiver-Remote
Model No.:	DBX-RS
Multiple Model(s) No.:	DBX-RD,DBX-RSW,DBX-RDW (Please refer to DOS for Model difference)
Trade Mark:	N/A
Date Received:	2021/12/06
Date of Test:	2022/01/04~2022/02/24
Report Date:	2022/02/28

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above. **Prepared and Checked By:**Approved By:

Bluek

Black Ding

EMC Engineer

and li

Robert Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 30: 2021-11-09

Page 1 of 38

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
Test Methodology	
Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
Special Accessories Equipment Modifications	
EQUIPMENT MODIFICATIONS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
-	
FCC§15.247 (I), §1.1307 (B) (1) & §2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	
RSS-102 – RF EXPOSURE	
APPLICABLE STANDARD	11
FCC §15.203 & RSS-GEN §6.8- ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	12
FCC §15.205, §15.209 & §15.247(D) & RSS-247§ 5.5 - RADIATED EMISSIONS	13
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure Corrected Factor & Margin Calculation	
TEST DATA	
FCC §15.247(A) (1) & RSS-247 § 5.1 (B)-CHANNEL SEPARATION TEST	
Applicable Standard	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(A) (1) & RSS-GEN § 6.7 & RSS-247 § 5.1 (A)(C)–99% OCCUPIED BANDWID	TH & 20 DB
EMISSION BANDWIDTH	
APPLICABLE STANDARD	24
TEST PROCEDURE	
TEST DATA	25

Version 30: 2021-11-09

FCC §15.247(A) (1) (I) & RSS-247 § 5.1 (C)-QUANTITY OF HOPPING CHANNEL TEST	29
APPLICABLE STANDARD	29
Test Procedure	29
TEST DATA	29
FCC §15.247(A) (1) (I) & RSS-247 § 5.1 (C) - TIME OF OCCUPANCY (DWELL TIME)	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(B) (2) & RSS-247§ 5.4(A) - PEAK OUTPUT POWER MEASUREMENT	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(D) & RSS-247 § 5.5 - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	

GENERAL INFORMATION

HVIN	DBX-RS
Frequency Range	905-925MHz
Maximum conducted Peak output power	22.98dBm
Modulation Technique	GFSK
Antenna Specification*	0 dBi(It is provided by the applicant)
Voltage Range	DC3.7V from battery
Sample number	SZNS211206-61772E-RF-S1for RF conducted SZNS211206-61772E-RF-S2 for radiated test (Assigned by ATC)
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules and RSS-247, Issue 2, February 2017, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and RSS-247, Issue 2, February 2017, RSS-GEN Issue 5, Feb. 2021 Amendment 2 of the Innovation, Science and Economic Development Canada rules.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Parameter		Uncertainty		
Occupied Cha	nnel Bandwidth	5%		
RF Fre	equency	$0.082*10^{-7}$		
RF output po	wer, conducted	0.73dB		
Unwanted Emi	ssion, conducted	1.6dB		
AC Power Lines C	conducted Emissions	2.72dB		
	9kHz - 30MHz	2.66dB		
	30MHz - 1GHz	4.28dB		
Emissions, Radiated	1GHz - 18GHz	4.98dB		
Radiated	18GHz - 26.5GHz	5.06dB		
	26.5GHz - 40GHz	4.72dB		
Temperature		1 °C		
Hur	nidity	6%		
Supply voltages		0.4%		

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

	Channel list						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	905.00	11	910.50	22	916.00	33	921.50
1	905.50	12	911.00	23	916.50	34	922.00
2	906.00	13	911.50	24	917.00	35	922.50
3	906.50	14	912.00	25	917.50	36	923.00
4	907.00	15	912.50	26	918.00	37	923.50
5	907.50	16	913.00	27	918.50	38	924.00
6	908.00	17	913.50	28	919.00	39	924.50
7	908.50	18	914.00	29	919.50	40	925.00
8	909.00	19	914.50	30	920.00	/	/
9	909.50	20	915.00	31	920.50	/	/
10	910.00	21	915.50	32	921.00	/	/

The equipment has designed 41 channels totally, but only 26 channels selected from the 41 channels active at same time.

EUT was test in channel 0, 20, 40.

EUT Exercise Software

EUT was configured to testing mode by applicant and power level is default*.

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer Description		Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

Block Diagram of Test Setup

For Radiated Emission

	EUT]	▲ 1.0 Meter
Non-Conductive Table 80/150 cm above Ground Plane			
<	1.5 Meters	$ \longrightarrow $	•

SUMMARY OF TEST RESULTS

FCC Rules	ISEDC Rules	Description of Test	Result
§15.247 (i), §2.1093	RSS-102	RF EXPOSURE	Compliant
§15.203	RSS-Gen §6.8	Antenna Requirement	Compliant
§15.207(a)	RSS-Gen §8.8	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209 & §15.247(d)	RSS-247 § 5.5	Radiated Emissions	Compliant
§15.247(a)(1)	RSS- Gen§6.7, RSS-247 § 5.1 (a)(c)	99% Occupied Bandwidth & 20 dB Emission Bandwidth	Compliant
§15.247(a)(1)	RSS-247 § 5.1 (b)	Channel Separation Test	Compliant
§15.247(a)(1)(i)	RSS-247 § 5.1 (c)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(i)	RSS-247 § 5.1 (c)	Quantity of hopping channel Test	Compliant
§15.247(b)(2)	RSS-247§ 5.4(a)	Peak Output Power Measurement	Compliant
§15.247(d)	RSS-247 § 5.5	Band edges	Compliant

Not Applicable: EUT only powered by battery. Note: Pre-scan all models, the worst case model DBX-RS was selected to test.

Report No.: SZNS211206-61772E-RFB

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
Radiated Emissions Test								
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12			
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08			
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05			
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04			
CD	High Pass Filter	HPM- 1.2/18G-60	110	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13			
Radiated Emission T	Radiated Emission Test Software: e3 19821b (V9)							
RF Conducted Test								
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12			
SPECTRUM ANALYZER	Rohde & Schwarz	FSU26	200982	2021/07/06	2022/07/05			
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13			
HP	6dB Attenuator	8493B 6dB Attenuator	2708A 04769	2021/12/14	2022/12/13			

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Measurement Result

Please refer to SAR test report: SZNS211206-62024E-SA

RSS-102 – RF EXPOSURE

Applicable Standard

According to RSS-102, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Result: Compliance.

Please refer to SAR Report Number: SZNS211206-62024E-SA

FCC §15.203 & RSS-GEN §6.8–ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

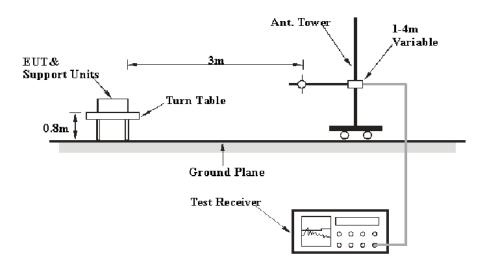
Antenna Connector Construction

The EUT has one internal antenna arrangements which were permanently attached and the gain is 0dBi, fulfill the requirement of this section. Please refer to the EUT photos.

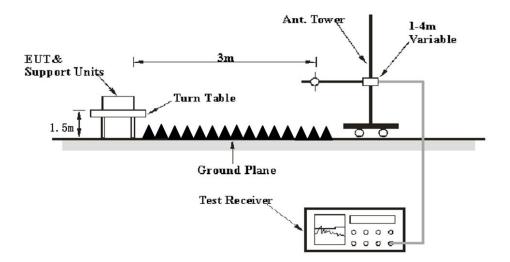
Туре	Antenna Gain	Impedance
Monopole	0dBi	50 Ω

Result: Compliance.

FCC §15.205, §15.209 & §15.247(d) & RSS-247§ 5.5 – RADIATED EMISSIONS


Applicable Standard

FCC §15.205; §15.209; §15.247(d) and RSS-247 §5.5


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits and RSS-247/RSS-Gen limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Factor & Margin Calculation

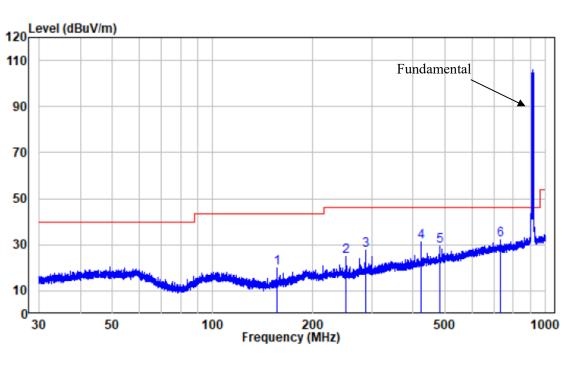
The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit or Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a over limit/margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

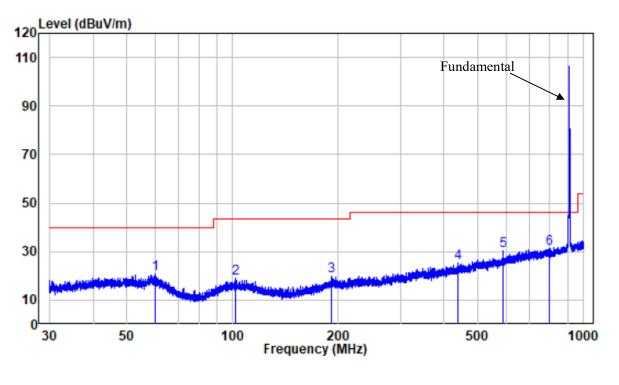
Margin/Over Limit = Corrected Amplitude/Level-Limit Corrected Amplitude/Level = Reading + Corrected Factor

Test Data


Environmental Conditions

Temperature:	20 °C
Relative Humidity:	59 %
ATM Pressure:	101.0 kPa

The testing was performed by Chao Mo on 2022-01-05 for below 1GHz and 2022-01-07 for above 1GHz.


EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

30MHz-1GHz: (worst case for Middle channel)

Horizontal:

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	155.979	-14.82	34.71	19.89	43.50	-23.61	Peak
2	251.952	-10.69	35.79	25.10	46.00	-20.90	Peak
3	287.990	-9.36	36.83	27.47	46.00	-18.53	Peak
4	422.428	-6.00	37.40	31.40	46.00	-14.60	Peak
5	480.107	-5.00	34.62	29.62	46.00	-16.38	Peak
6	729.998	-0.91	32.87	31.96	46.00	-14.04	Peak

Vertical

	Freq	Factor		Level		Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	60.227	-10.71	31.36	20.65	40.00	-19.35	Peak
2	101.957	-11.57	30.62	19.05	43.50	-24.45	Peak
3	191.241	-11.37	31.09	19.72	43.50	-23.78	Peak
4	436.928	-5.68	31.14	25.46	46.00	-20.54	Peak
5	589.680	-2.76	33.03	30.27	46.00	-15.73	Peak
6	797.930	-0.30	31.61	31.31	46.00	-14.69	Peak

Report No.: SZNS211206-61772E-RFB

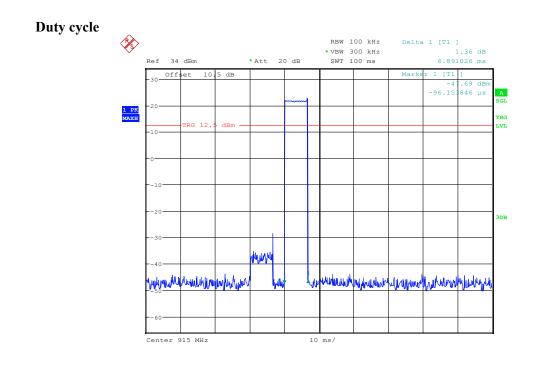
Above 1GHz:

Encarronov	Re	ceiver	Turntable	Rx An	tenna	Corrected	Corrected	Limit	Margin	
Frequency (MHz)	Reading (dBµV)	PK/QP/AV	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)	
	Low Channel 905 MHz									
1810	77.53	PK	308	2.0	Н	-8.69	68.84	74	-5.16	
1810	80.28	PK	318	2.1	V	-8.69	71.59	74	-2.41	
2715	75.05	PK	27	1.4	Н	-6.60	68.45	74	-5.55	
2715	77.79	РК	22	2.0	V	-6.60	71.19	74	-2.81	
3620	71.05	PK	330	1.4	Н	-5.91	65.14	74	-8.86	
3620	71.97	РК	188	1.7	V	-5.91	66.06	74	-7.94	
	Middle Channel 915 MHz									
1830	70.50	РК	297	2.0	Н	-8.53	61.97	74	-12.03	
1830	75.38	РК	300	2.3	V	-8.53	66.85	74	-7.15	
2745	74.54	РК	168	1.2	Н	-6.60	67.94	74	-6.06	
2745	77.53	РК	201	1.9	V	-6.60	70.93	74	-3.07	
3660	66.29	РК	40	1.0	Н	-5.83	60.46	74	-13.54	
3660	70.28	РК	168	1.5	V	-5.83	64.45	74	-9.55	
			High (Channel	925MH	[z				
1850	66.79	РК	238	1.0	Н	-8.37	58.42	74	-15.58	
1850	71.50	РК	21	1.5	V	-8.37	63.13	74	-10.87	
2775	71.71	PK	241	1.8	Н	-6.43	65.28	74	-8.72	
2775	74.79	РК	218	1.3	V	-6.43	68.36	74	-5.64	
3700	64.10	РК	6	2.0	Н	-5.70	58.40	74	-15.60	
3700	66.29	РК	235	1.0	V	-5.70	60.59	74	-13.41	

Report No.: SZNS211206-61772E-RFB

	Field Strength of Average								
Frequency	Peak Measurement	Polar	Duty Cycle Correction	Corrected	Part 15.247&RSS-247				
(MHz)	@3m (dBµV/m)	(H/V)	Factor (dB)	Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment		
			Low Channe	el 905MHz					
1810.00	68.84	Н	-23.23	45.61	54	-8.39	Harmonic		
1810.00	71.59	V	-23.23	48.36	54	-5.64	Harmonic		
2715.00	68.45	Н	-23.23	45.22	54	-8.78	Harmonic		
2715.00	71.19	V	-23.23	47.96	54	-6.04	Harmonic		
3620.00	65.14	Н	-23.23	41.91	54	-12.09	Harmonic		
3620.00	66.06	V	-23.23	42.83	54	-11.17	Harmonic		
	Middle Channel 915MHz								
1830.00	61.97	Н	-23.23	38.74	54	-15.26	Harmonic		
1830.00	66.85	V	-23.23	43.62	54	-10.38	Harmonic		
2745.00	67.94	Н	-23.23	44.71	54	-9.29	Harmonic		
2745.00	70.93	V	-23.23	47.70	54	-6.30	Harmonic		
3660.00	60.46	Н	-23.23	37.23	54	-16.77	Harmonic		
3660.00	64.45	V	-23.23	41.22	54	-12.78	Harmonic		
			High Channe	el 925MHz					
1850.00	58.42	Н	-23.23	35.19	54	-18.81	Harmonic		
1850.00	63.13	V	-23.23	39.90	54	-14.10	Harmonic		
2775.00	65.28	Н	-23.23	42.05	54	-11.95	Harmonic		
2775.00	68.36	V	-23.23	45.13	54	-8.87	Harmonic		
3700.00	58.40	Н	-23.23	35.17	54	-18.83	Harmonic		
3700.00	60.59	V	-23.23	37.36	54	-16.64	Harmonic		

Note:

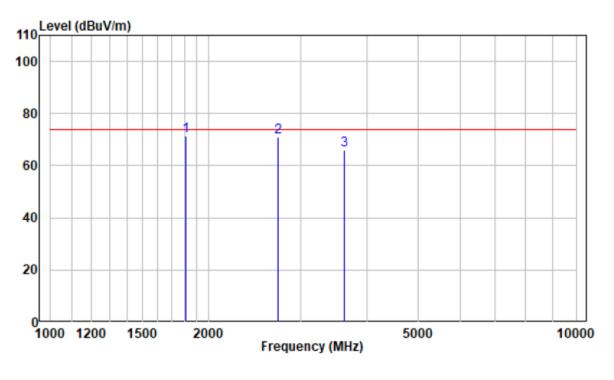

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit The other spurious emission which is in the noise floor level was not recorded.

Duty cycle:

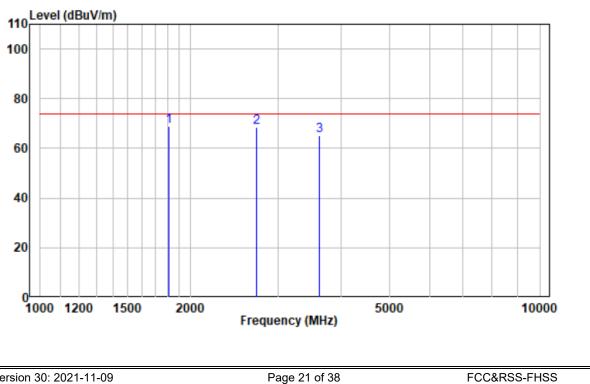
Ton =6.891ms; Tp = 100 ms

Duty cycle = Ton/Tp = 6.891/100=0.06891

Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg(0.06891) = -23.23 Average=Peak - Duty Cycle Corrected Factor


Date: 7.JAN.2022 13:52:46

1-10GHz


Pre-scan for Peak

Low Channel

Horizontal:

Version 30: 2021-11-09

FCC §15.247(a) (1) & RSS-247 § 5.1 (b)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems (FHSs) shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

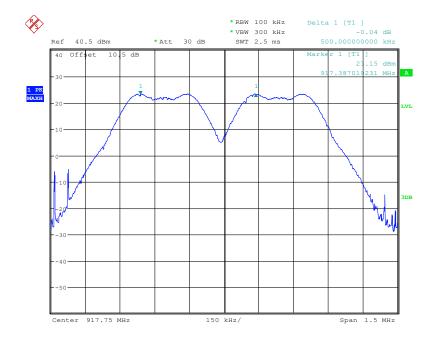
- 1. Set the EUT in transmitting mode, maxhold the channel and in Operating mode, RBW was set at 30 kHz, VBW ≥ 3RBW max-hold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	52 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Fan Yang on 2022-02-24.


EUT operation mode: Transmitting

Test Result: Compliant.

Note: According to frequency table in page 6 and inverstigating the hopping channel test in page 30, the minimum channel separation is the worst case which were recorded as below:

Test Mode	Channel Separation (kHz)	20 dBc BW (kHz)	Channel Separation Limit	Result		
GFSK						
Hopping	500.00	286.50	> 20 dB bandwidth	Pass		

Please refer to the below plots:

Date: 24.FEB.2022 14:51:19

Version 30: 2021-11-09

FCC §15.247(a) (1) & RSS-GEN § 6.7 & RSS-247 § 5.1 (a)(c)–99% OCCUPIED BANDWIDTH & 20 dB EMISSION BANDWIDTH

Applicable Standard

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "20 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 20 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

		Signal and Spectrum
EUT	Attenuator	Analyzer

Test Data

Environmental Conditions

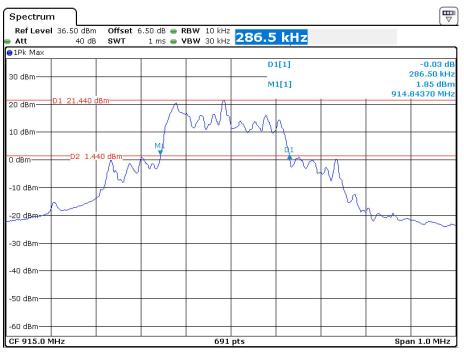
Temperature:	25 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2022-01-04.

EUT operation mode: Transmitting

Test Result: Compliant.

Test Mode	Channel	Frequency (MHz)	OBW (kHz)	20 dB Emission Bandwidth (kHz)	Limit (kHz)
	Low	905	364.69	286.50	$250 < BW_{20dB} \le 500$
GFSK	Middle	915	366.14	286.50	$250 < BW_{20dB} \le 500$
	High	925	364.69	285.10	$250 < BW_{20dB} \le 500$


Please refer to the below plots:

20 dB EMISSION BANDWIDTH

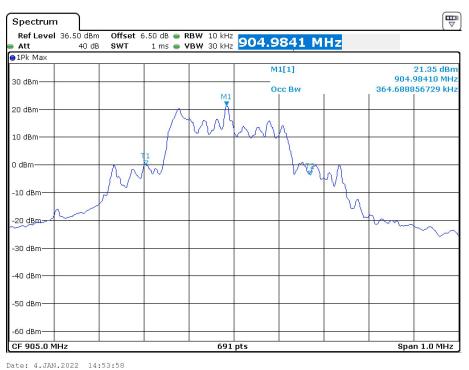
Date: 4.JAN.2022 14:51:43

Middle Channel

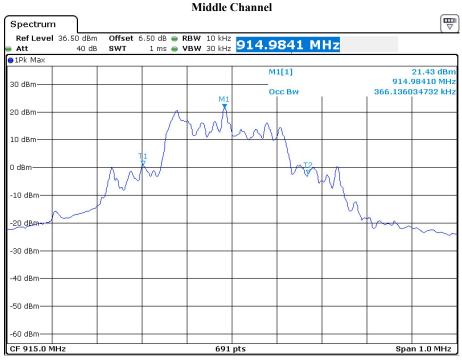
Date: 4.JAN.2022 14:52:21

Version 30: 2021-11-09

Report No.: SZNS211206-61772E-RFB



High Channel


Date: 4.JAN.2022 14:53:09

OBW

Low Channel

Report No.: SZNS211206-61772E-RFB

Date: 4.JAN.2022 14:54:14

High Channel

Date: 4.JAN.2022 14:53:43

Version 30: 2021-11-09

FCC §15.247(a) (1) (i) & RSS-247 § 5.1 (c)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

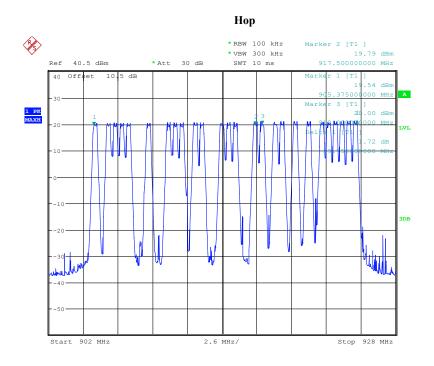
For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2022-02-24.

EUT operation mode: Transmitting

Test Result: Compliant.

Mode	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)
GFSK	902-928	26	25

Date: 24.FEB.2022 14:37:56

FCC §15.247(a) (1) (i) & RSS-247 § 5.1 (c) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

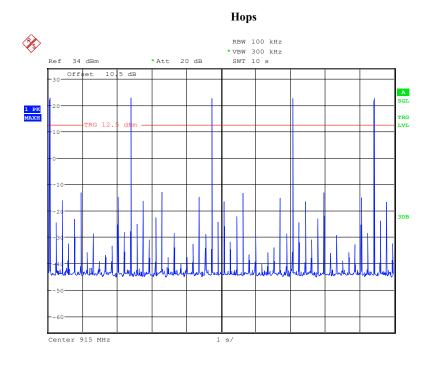
Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

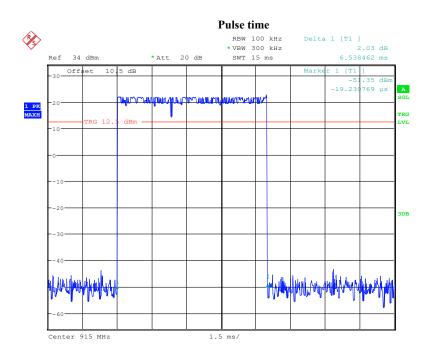
Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa


The testing was performed by Fan Yang on 2022-01-07.

EUT operation mode: Transmitting


Test Result: Compliant.

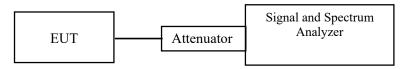
Test Mode	Channel	Pulse Time [ms]	Total Hops [Num]	Result[s]	Limit[s]	Verdict
GFSK	Нор	6.538	5	0.033	<=0.4	PASS

Note: A period time=10(s), Result= Pulse Time *Total hops

Date: 7.JAN.2022 13:53:30

Date: 7.JAN.2022 13:51:07

FCC §15.247(b) (2) & RSS-247§ 5.4(a) - PEAK OUTPUT POWER MEASUREMENT


Applicable Standard

According to 15.247(b)(2), For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

According to RSS-247 § 5.4(a)For FHSs operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

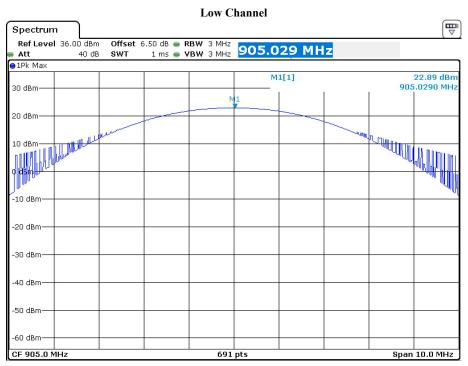
Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

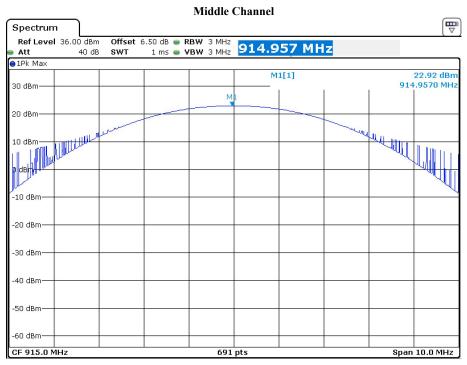
Test Data

Environmental Conditions

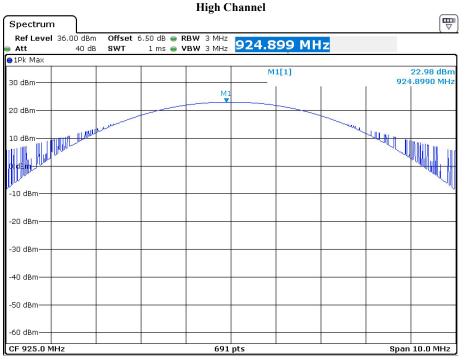
Temperature:	25 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa


The testing was performed by Fan Yang on 2022-01-04.

EUT operation mode: Transmitting


Test Result: Compliant.

Mode	Channel	Frequency (MHz)	Peak Output Power (dBm)	Limit (dBm)
	Low	905	22.89	23.98
GFSK	Middle	915	22.92	23.98
	High	925	22.98	23.98


Note: the antenna gain is 0dBi, the maximum EIRP=22.98dBm+0dBi=22.98dBm<30dBm, so it's compliance with the EIRP limit of ISEDC.

Date: 4.JAN.2022 15:33:51

Date: 4.JAN.2022 15:34:02

Date: 4.JAN.2022 15:34:16

FCC §15.247(d) & RSS-247 § 5.5 - BAND EDGES TESTING

Applicable Standard

According to FCC §15.247(d) & RSS-247 § 5.5.

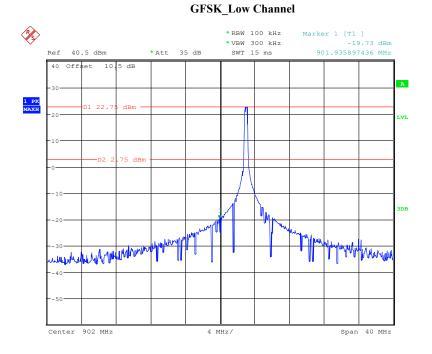
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)) & RSS-Gen.

Test Procedure

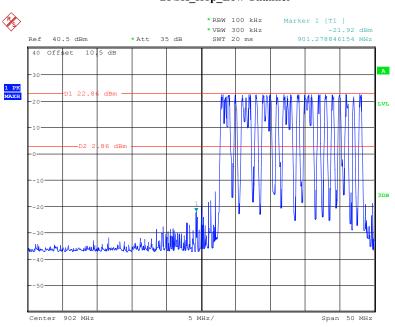
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

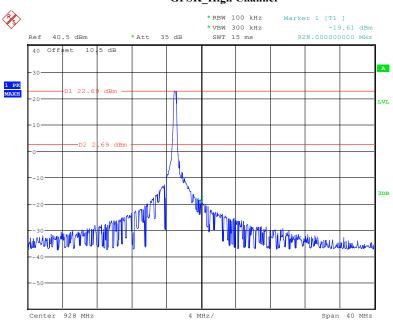

Temperature:	25 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Fan Yang on 2022-01-06.

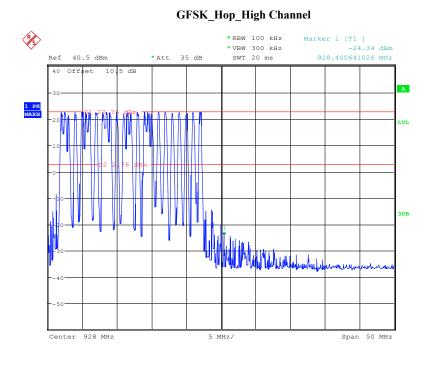

EUT operation mode: Transmitting

Test Result: Compliant.

Conducted Band Edge Result:



Date: 6.JAN.2022 14:30:57


GFSK_Hop_Low Channel

Date: 6.JAN.2022 15:00:01

GFSK_High Channel

Date: 6.JAN.2022 15:14:27

Date: 6.JAN.2022 15:05:07

***** END OF REPORT *****

Version 30: 2021-11-09

Page 38 of 38