

FCC PART 15D

MEASUREMENT AND TEST REPORT

For

Porta Phone Company Inc

145 Dean Knauss Dr. Narragansett, RI 02882, USA

FCC ID: B4HBPK1015

Report Type:		Product Type:
Original Report		FULL DUPLEX WIRELESS COMMUNICATION SYSTEM
Test Engineer:	Rocky Kang	Rocky Kang
Report Number:	<u>RSZ151030832</u>	-00
Report Date:	2015-12-15	
	Candy Li	Candry . Ci
Reviewed By:	RF Engineer	U
Prepared By:	6/F, the 3rd Pha	3320018 3320008

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

FCC Part 15D

Bay Area Compliance Laboratories Corp. (Shenzhen)

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology	
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
§1.1307 (B) (1) &§2.1093 – RF EXPOSURE	8
APPLICABLE STANDARD	
FCC§15.317 & §15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC§15.315 & §15.207 - CONDUCTED EMISSIONS	10
APPLICABLE STANDARD	
Measurement Uncertainty	
EUT SETUP	
EMI TEST RECEIVER SETUP	11
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED FACTOR & MARGIN CALCULATION	
Test Results Summary	
TEST DATA	
FCC§15.319 (G) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
Measurement Uncertainty	
EUT SETUP	15
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	

Report No.: RSZ151030832-00

Page 2 of 20

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Porta Phone Company Inc*'s product, model number: *ComPAK(BPK1015) (FCC ID: B4HBPK1015)* or the "EUT" in this report was a *FULL DUPLEX WIRELESS COMMUNICATION SYSTEM*, was measured approximately: 110 mm (L) x 75 mm (W) x 43 mm (H), input voltage: DC 3.7V battery or DC 5.0V from adapter.

Adapter Information: Model: YNQX09G050100UL Input: AC 100-240V, 50/60 Hz, 0.3A Output: DC 5.0V, 1.0A

* All measurement and test data in this report was gathered from production sample serial number: 20151030 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2015-10-30.

Objective

This test report was based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.17 - 2013.

The tests were performed in order to determine the compliance of the EUT with FCC Part 15-Subpart D, section 15.207, 15.315, 15.317, 15.319 and 15.323 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.17 - 2013, American National Standard Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communications Services (UPCS) Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen).

The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

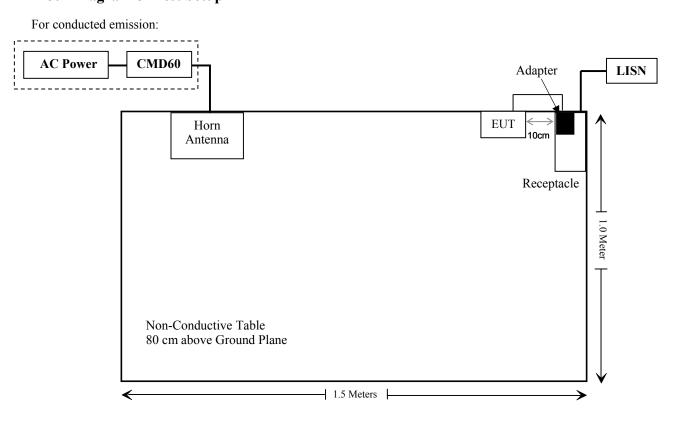
Description of Test Configuration

The system was configured for testing in TBR6 mode which is provided by the manufacturer.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
R&S	Digital Radio-Communication Tester	CMD60	829902/026

External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-shielding Un-detachable DC Power Cable	1.5	Adapter	EUT

Report No.: RSZ151030832-00

Block Diagram of Test Setup

FCC Part 15D

Page 6 of 20

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307(b);§2.1093	RF Exposure	Compliance
§ 15.317, § 15.203	Antenna Requirement	Compliance
§ 15.315, § 15.207	Conducted Emission	Compliance
§ 15.323 (a)	Emission Bandwidth	Compliance*
§ 15.319 (c)	Peak Transmit Power	Compliance*
§ 15.319 (d)	Power Spectral Density	Compliance*
§ 15.323 (d)	Emission Inside and Outside the sub-band	Compliance*
§ 15.319 (g)	Radiated Emission	Compliance
§ 15.323 (f)	Frequency Stability Handset	Compliance*
§ 15.323 (c)(e) § 15.319 (f)	Specific Requirements for UPCS	Compliance*

Compliance*: the EUT (Model: ComPAK(BPK1015), FCC ID: B4HBPK1015) has used a certified module with model RF1G9V1 (FCC ID: B4HRF1900V1), the different test data between them are "FCC§15.315 & §15.207 - CONDUCTED EMISSIONS" and "FCC§15.319 (g) - RADIATED EMISSIONS", so all the other test data are referred to the report RSZ151110830-00 with model number RF1G9V1 (FCC ID: B4HRF1900V1), issued on 2015-11-16 by Bay Area Compliance Laboratories Corp. (Shenzhen)

§1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

For Standalone SAR test exclusion considerations:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $\left[\sqrt{f_{(GHz)}}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. $\hat{f}_{(GHz)}$ is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Evaluation data:

The maximum tune-up conducted peak output power is 20 dBm(100 mW) @1928.448 MHz

And

Duty Cycle = Ton/Tp*100% = 4.10%

Which, Ton = $412 \,\mu s$, Tp= 10.05 ms, please refer to the report RSZ151110830-00 with model number RF1G9V1 (FCC ID: B4HRF1900V1) page 44 and 45 for plot detail

So,the maximum conducted source-based, time-averaged output power is: 100*4.10%mW=4.10 mW@1928.448 MHz

(4.10/5)* \(\1.928448=1.14<3.0\)

Result: No SAR test is required for Standalone SAR

FCC§15.317 & §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

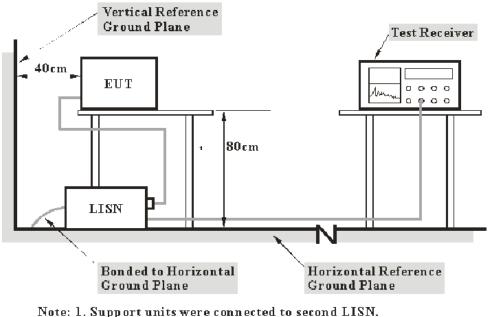
The EUT has one integral antenna arrangement, which was permanently attached and the gain is 0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC§15.315 & §15.207 - CONDUCTED EMISSIONS

Applicable Standard

FCC§15.315, an unlicensed PCS device that is designed to be connected to the public utility (AC) power line must meet the limits specified in §15.207.


Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between AMN/ISN and receiver, AMN/ISN voltage division factor, AMN/ISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report

Port	Measurement uncertainty
AC Mains	3.26 dB (k=2, 95% level of confidence)
CAT 3	3.70 dB (k=2, 95% level of confidence)
CAT 5	3.86 dB (k=2, 95% level of confidence)
CAT 6	4.64 dB (k=2, 95% level of confidence)

EUT Setup

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

FCC Part 15D

Page 10 of 20

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC 15.315 and FCC 15.207 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2015-06-03	2016-06-03
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2014-12-01	2015-12-01
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2015-05-14	2016-05-14
Rohde & Schwarz	CE Test software	EMC 32	V8.53	NCR	NCR

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding the Outlet Cable Loss, LISN Insertion Loss, Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = Outlet Cable Loss + LISN Insertion Loss + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the worst margin reading as below:

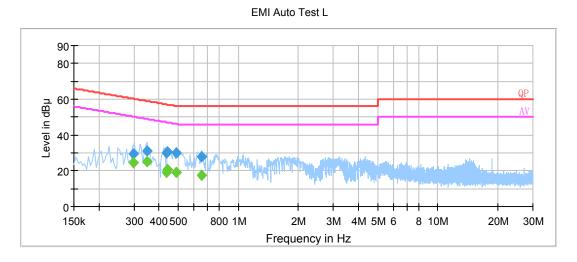
22.5 dB at 0.348750 MHz in the Neutral conducted mode

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_{m} is less than L_{lim} , it implies that the EUT complies with the limit.

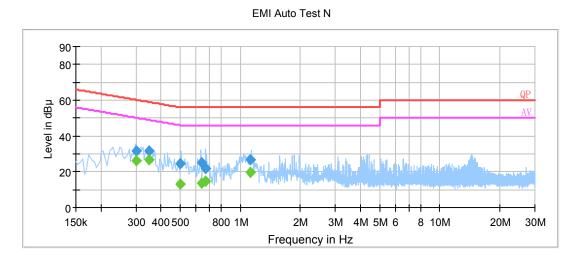
Test Data


Environmental Conditions

Temperature:	24 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Rocky Kang on 2015-11-04.

Test mode: Transmitting


AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave)
0.297470	29.7	19.9	60.3	30.6	QP
0.297470	24.4	19.9	50.3	25.9	Ave.
0.348750	31.2	19.9	59.0	27.8	QP
0.348750	25.1	19.9	49.0	23.9	Ave.
0.435550	30.0	19.9	57.1	27.1	QP
0.435550	19.3	19.9	47.1	27.8	Ave.
0.443310	30.5	19.9	57.0	26.5	QP
0.443310	21.0	19.9	47.0	26.0	Ave.
0.486590	29.8	19.9	56.2	26.4	QP
0.486590	19.0	19.9	46.2	27.2	Ave.
0.656130	27.9	19.9	56.0	28.1	QP
0.656130	17.7	19.9	46.0	28.3	Ave.

FCC Part 15D

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave)
0.302500	31.4	19.9	60.2	28.8	QP
0.302500	26.2	19.9	50.2	24.0	Ave.
0.348750	31.7	19.9	59.0	27.3	QP
0.348750	26.5	19.9	49.0	22.5	Ave.
0.502410	24.8	19.9	56.0	31.2	QP
0.502410	12.9	19.9	46.0	33.1	Ave.
0.640490	24.9	19.9	56.0	31.1	QP
0.640490	13.4	19.9	46.0	32.6	Ave.
0.667950	21.7	19.9	56.0	34.3	QP
0.667950	14.9	19.9	46.0	31.1	Ave.
1.128870	26.7	20.0	56.0	29.3	QP
1.128870	19.7	20.0	46.0	26.3	Ave.

Note:

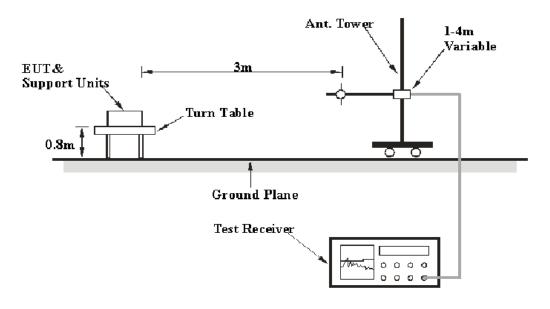
1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation

2) Corrected Amplitude = Reading + Correction Factor
3) Margin = Limit - Corrected Amplitude

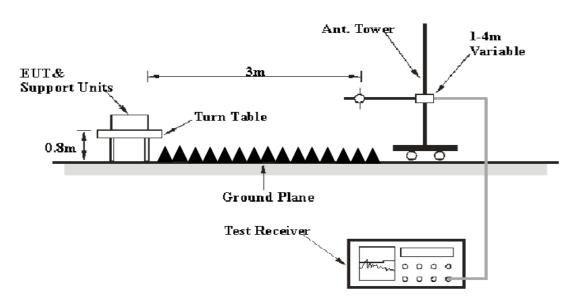
FCC§15.319 (g) - RADIATED EMISSIONS

Applicable Standard

According to FCC§15.319(g), notwithstanding other technical requirements specified in this subpart, attenuation of emissions below the general emission limits in §15.209 is not required.


Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.


Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, and it will not be taken into consideration for the test data recorded in the report

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4 - 2014. The specification used was the FCC 15 15.319(g).

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 20 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
HP	Amplifier	HP8447E	1937A01046	2015-05-06	2016-05-06	
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2015-11-03	2016-11-03	
Sunol Sciences	Bi-log Antenna	JB1	A040904-2	2014-12-07	2017-12-06	
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2015-04-23	2016-04-23	
Sunol Sciences	Horn Antenna	DRH-118	A052304	2012-12-01	2015-11-30	
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2015-06-13	2016-06-13	
the electro- Mechanics Co.	Horn Antenna	3116	9510-2270	2013-10-14	2016-10-13	
DUCOMMUN	DUCOMMUN Pre-amplifier		991373-01	2015-08-03	2016-08-03	

Test Equipment List and Details

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss- Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the worst margin reading as below:

11.26 dB at 135.52 MHz in the Horizontal polarization

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

 $L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

*The testing was performed by Rocky Kang on 2015-11-26.

Test Result: Compliance. Please refer to following tables

Report No.: RSZ151030832-00

Test mode: Transmitting

30 MHz ~ 20 GHz:

Frequency	Receiver		Turntable	Rx Antenna			Corrected	FCC Part 15.319(g)/209/205		
(MHz)	z) Reading Detector Degree Height Pol	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)				
	Low Channel (1921.536 MHz)									
135.52	46.87	QP	120	1.5	Н	-15.6	31.27	43.5	12.23	
1921.54	105.68	РК	16	1.7	Н	3.23	108.91	/	/	
1921.54	96.51	PK	249	1.1	V	3.23	99.74	/	/	
3843.08	39.38	РК	210	2.2	Н	12.48	51.86	74	22.14	
3843.08	36.56	РК	45	1.5	V	12.48	49.04	74	24.96	
5764.62	41.31	РК	157	1.5	Н	19.23	60.54	74	13.46	
5764.62	38.62	РК	160	1.3	V	19.23	57.85	74	16.15	
7686.16	34.56	РК	164	1.1	Н	20.82	55.38	74	18.62	
7686.16	33.52	РК	337	1.3	V	20.82	54.34	74	19.66	
	Middle Channel (1924.992 MHz)									
135.52	47.84	QP	158	1.3	Н	-15.6	32.24	43.5	11.26	
1924.99	105.41	РК	117	2.2	Н	3.23	108.64	/	/	
1924.99	96.42	РК	349	1.4	V	3.23	99.65	/	/	
3849.98	41.75	РК	86	2.4	Н	13.75	55.50	74	18.50	
3849.98	35.63	РК	287	1.8	V	13.75	49.38	74	24.62	
5774.98	40.15	РК	100	2.2	Н	19.23	59.38	74	14.62	
5774.98	38.56	РК	224	2.4	V	19.23	57.79	74	16.21	
7699.97	33.84	РК	322	1.3	Н	20.82	54.66	74	19.34	
7699.97	33.56	РК	270	1.5	V	20.82	54.38	74	19.62	
	High Channel (1928.448 MHz)									
135.52	46.59	QP	95	1.6	Н	-15.6	30.99	43.5	12.51	
1928.45	103.22	РК	286	2.2	Н	3.23	106.45	/	/	
1928.45	94.74	PK	74	1.1	V	3.23	97.97	/	/	
3856.90	40.66	РК	2	1.7	Н	13.75	54.41	74	19.59	
3856.90	36.94	РК	355	2.0	V	13.75	50.69	74	23.31	
5785.35	40.14	РК	40	2.5	Н	19.23	59.37	74	14.63	
5785.35	38.91	PK	168	2.4	V	19.23	58.14	74	15.86	
7713.80	33.60	РК	213	2.3	Н	20.82	54.42	74	19.58	
7713.80	32.54	РК	274	1.7	V	20.82	53.36	74	20.64	

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

	Field Strength of Radiated Emission Average								
Frequency (MHz)	Corrected Peak	Rx Antenna	Duty Cycle Factor	Corrected Average	FCC Part 15.319(g)/209/205				
	Amplitude (dBμV/m)	Polar (H/V)	(dB)	Amplitude (dBµV/m)		Margin (dB)			
Low Channel (1921.536 MHz)									
1921.54	108.91	Н	-27.75	81.16	/	/			
1921.54	99.74	V	-27.75	71.99	/	/			
3843.08	51.86	Н	-27.75	24.11	54	29.89			
3843.08	49.04	V	-27.75	21.29	54	32.71			
5764.62	60.54	Н	-27.75	32.79	54	21.21			
5764.62	57.85	V	-27.75	30.10	54	23.90			
7686.16	55.38	Н	-27.75	27.63	54	26.37			
7686.16	54.34	V	-27.75	26.59	54	27.41			
	Middle Channel (1924.992 MHz)								
1924.99	108.64	Н	-27.75	80.89	/	/			
1924.99	99.65	V	-27.75	71.90	/	/			
3849.98	55.50	V	-27.75	27.75	54	26.25			
3849.98	49.38	Н	-27.75	21.63	54	32.37			
5774.98	59.38	V	-27.75	31.63	54	22.37			
5774.98	57.79	Н	-27.75	30.04	54	23.96			
7699.97	54.66	V	-27.75	26.91	54	27.09			
7699.97	54.38	Н	-27.75	26.63	54	27.37			
	High Channel (1928.448 MHz)								
1928.45	106.45	Н	-27.75	78.70	/	/			
1928.45	97.97	V	-27.75	70.22	/	/			
3856.90	54.41	Н	-27.75	26.66	54	27.34			
3856.90	50.69	V	-27.75	22.94	54	31.06			
5785.35	59.37	Н	-27.75	31.62	54	22.38			
5785.35	58.14	V	-27.75	30.39	54	23.61			
7713.80	54.42	Н	-27.75	26.67	54	27.33			
7713.80	53.36	V	-27.75	25.61	54	28.39			

Note:

Corrected Average Amplitude = Corrected Peak Amplitude + Duty Cycle Factor Margin = Limit - Corrected Average Amplitude Duty Cycle = Ton/Tp*100%, Ton = 412μ s, Tp= 10.05ms Duty Cycle Factor = 20lg (Duty Cycle) = -27.75

***** END OF REPORT *****