
Test report No.	:	32EE0061-HO-A-R1
Page	:	52 of 78
FCC ID	:	B3Q-WYSAGBUX7
Issued date	:	December 9, 2011
Revised date	:	December 13, 2011

APPENDIX 3 : System specifications

1. Configuration and peripherals

The DASY5 system for performing compliance tests consist of the following items:

- a) A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- b) An isotropic field probe optimized and calibrated for the targeted measurement.

c) A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

- d) The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- e) The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

f) The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.

- g) A computer running WinXP and the DASY5 software.
- h) Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

i) The phantom, the device holder and other accessories according to the targeted measurement.

Test report No.	: 32EE0061-HO-A-R1	
Page	: 53 of 78	
FCC ID	: B3Q-WYSAGBUX7	
Issued date	: December 9, 2011	
Revised date	: December 13, 2011	

2. Specifications

a)Robot TX60L		
Number of Axes	:	6
Nominal Load	:	2 kg
Maximum Load	:	5kg
Reach	:	920mm
Repeatability	:	+/-0.03mm
Control Unit	:	CS8c
Programming Language	:	VAL3
Weight	:	52.2kg
Manuafacture	:	Stäubli Robotics

b)E-Field Probe		
Model	:	EX3DV4
Serial No.	:	3540
Construction	:	Symmetrical design with triangular core
		Built-in shielding against static charges
		PEEK enclosure material
		(resistant to organic solvents, e.g., glycol ether)
Frequency	:	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	:	+/-0.3 dB in HSL (rotation around probe axis)
•		+/-0.5 dB in tissue material (rotation normal probe axis)
Dynamic Range	:	10 uW/g to > 100 mW/g;Linearity
		+/-0.2 dB(noise: typically < 1uW/g) EX3DV3 E-field Probe
Dimensions	:	Overall length: 337 mm (Tip: 20 mm)
		Tip diameter: 2.5mm (Body: 12 mm)
		Typical distance from probe tip to dipole centers: 1 mm
Application	:	Highprecision dosimetric measurement in any exposure scenario
		(e.g., very strong gradient fields). Only probe which enables compliance
		testing for frequencies up to 6GHz with precision of better 30%.
Manufacture	:	Schimid & Partner Engineering AG

Features	:	Signal amplifier, multiplexer, A/D converter and control logic
		Serial optical link for communication with DASY5 embedded system (fully remote controlled)
		Two step probe touch detector for mechanical surface detection and emergency robot stop
Measurement Range	:	-100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)
Input Offset voltage	:	$< 5 \mu V$ (with auto zero)
Input Resistance	:	200 ΜΩ
Input Bias Current	:	< 50 fA
Battery Power	:	> 10 h of operation (with two 9.6 V NiMH accus)
Dimension	:	60 x 60 x 68 mm
Manufacture	:	Schimid & Partner Engineering AG

d)Electro-Optic Conver	rter (EO	(C)
Version	:	EOC 61
Descrption	:	for TX60 robot arm, including proximity sensor
Manufacture	:	Schimid & Partner Engineering AG

UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

Test report No.	32EE00	61-HO-A-R1
Page	: 54 of 78	6
FCC ID	B3Q-W	YSAGBUX7
Issued date	Decemb	oer 9, 2011
Revised date	Decemb	oer 13, 2011

e)DASY5 Measurement server

t server			
:	Intel ULV Celeron 400MHz		
	128MB chip disk and 128MB RAM		
	16 Bit A/D converter for surface detection system		
	Vacuum Fluorescent Display		
	Robot Interface		
	Serial link to DAE (with watchdog supervision)		
	Door contact port (Possibility to connect a light curtain)		
	Emergency stop port (to connect the remote control)		
	Signal lamps port		
	Light beam port		
	Three Ethernet connection ports		
	Two USB 2.0 Ports		
	Two serial links		
	Expansion port for future applications		
:	440 x 241 x 89 mm		
:	Schimid & Partner Engineering AG		
	:		

<u>f) Light Beam Switche</u>	s	
Version	:	LB5
Dimensions (L x H)	:	110 x 80 mm
Thickness	:	12 mm
Beam-length	:	80 mm
Manufacture	:	Schimid & Partner Engineering AG

g)Software		
Item	:	Dosimetric Assesment System DASY5
Туре No.	:	SD 000 401A, SD 000 402A
Software version No.	:	DASY52, Version 52.6 (1)
Manufacture / Origin	:	Schimid & Partner Engineering AG

h)Robot Controll Unit				
Weight	:	70 Kg		
AC Input Voltage	:	selectable		
Manufacturer	:	Stäubli Robotics		

Test report No.	: 32EE0061-HO-A-R1	
Page	: 55 of 78	
FCC ID	: B3Q-WYSAGBUX7	
Issued date	: December 9, 2011	
Revised date	: December 13, 2011	

i)Phantom and Device Holder

Phantom		
Туре	:	SAM Twin Phantom V4.0
Description	:	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.
Material	:	Vinylester, glass fiber reinforced (VE-GF)
Shell Material	:	Fiberglass
Thickness	:	2.0 +/-0.2 mm
Dimensions	:	Length: 1000 mm Width: 500 mm Height: adjustable feet
Volume	:	Approx. 25 liters
Manufacture	:	Schimid & Partner Engineering AG
Type Description	:	2mm Flat phantom ERI4.0 Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all
		predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles.
Material	:	Vinylester, glass fiber reinforced (VE-GF)
Shell Thickness	:	$2.0 \pm 0.2 \text{ mm} \text{ (sagging: <1\%)}$
Filling Volume	:	approx. 30 liters
Dimensions	:	Major ellipse axis: 600 mm Minor axis: 400 mm
Manufacture	:	Schimid & Partner Engineering AG

Device Holder

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). Material : POM

Laptio Extensions kit

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM, ELI4 Phantoms. Material : POM, Acrylic glass, Foam

<u>Urethane</u>

For this measurement, the urethane foam was used as device holder.

Test report No.	:	32EE0061-HO-A-R1
Page	:	56 of 78
FCC ID	:	B3Q-WYSAGBUX7
Issued date	:	December 9, 2011
Revised date	:	December 13, 2011

j)Simulated Tissues (Liquid)

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for required for routine SAR evaluation.

Mintune (0/)					Frequen	cy (MHz))			
Mixture (%)	4	50	900		18	600	19	50	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.91	46.21	40.29	50.75	55.24	70.17	55.41	69.79	55.0	68.64
Sugar	56.93	51.17	57.90	48.21	-	-	-	-	-	-
Cellulose	0.25	0.18	0.24	0.00	-	-		-	-	-
Salt (NaCl)	3.79	2.34	1.38	0.94	0.31	0.39	0.08	0.2	-	-
Preventol	0.12	0.08	0.18	0.10	-				-	-
DGMBE	-	-	-	-	44.45	29.44	44.51	30.0	45.0	31.37
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Note:DGMBE(Diethylenglycol-monobuthyl ether)

Mintune (9/)	Frequ	iency(MHz)
Mixture (%)		5800
Tissue Type	Head	Body
Water	64.0	78.0
Mineral Oil	18.0	11.0
Emulsifiers	15.0	9.0
Additives and salt	3.0	2.0

Decision on Simulated Tissues of 5GHz band

In the current standards (e.g., IEC62209-2, IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given at 3000MHz and 5800MHz. As an intermediate solution, dielectric parameters for the frequencies between 5000to 5800 MHz were obtained using linear interpolation.

Therefore the dielectric parameters of 5200MHz,5300MHz,5600MHz and 5500MHz(The frequency for the validation) were decided as following.

f (MHz)	Head Tis	Head Tissue		ue	Reference
	εr	σ [mho/m]	εr	σ [mho/m]	
3000	38.5	2.40	52.0	2.73	Standard
5800	35.3	5.27	48.2	6.00	Standard
5000	36.2	4.45	49.3	5.07	Interpolated
5100	36.1	4.55	49.1	5.18	Interpolated
5200	36.0	4.66	49.0	5.30	Interpolated
5300	35.9	4.76	48.9	5.42	Interpolated
5400	35.8	4.86	48.7	5.53	Interpolated
5500	35.6	4.96	48.6	5.65	Interpolated
5600	35.5	5.07	48.5	5.77	Interpolated
5700	35.4	5.17	48.3	5.88	Interpolated

Standard and interpolated dielectric parameters for head and body tissue simulating liquid in the frequency range 3000 to 5800MHz.

Test report No.	:	32EE0061-HO-A-R1
Page	:	57 of 78
FCC ID	:	B3Q-WYSAGBUX7
Issued date	:	December 9, 2011
Revised date	:	December 13, 2011

3. Dosimetric E-Field Probe Calibration (EX3DV4,S/N: 3540)

Engineering AG Coughausstrasse 43, 8004 Zuri	ry Of ch, Switzerland	S S S S S S S S S S S S S S S S S S S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizie svizzere di taratura Swiss Calibration Service
Accredited by the Swiss Accredit The Swiss Accreditation Servic Multilateral Agreement for the (e is one of the signatorie	s to the EA	o.: SCS 108
Client PTT		Certificate No:	EX3-3540_Jul11
CALIBRATION	CERTIFICATI		
GALIDINATION	GERTITIOATI		
Object	EX3DV4 - SN:35	40	
Calibration procedure(8)	QA CAL-25.v4	DA CAL-12.v7, QA CAL-14.v3, QA dure for dosimetric E-field probes	CAL-23.94,
Calibration date:	July 21, 2011		ļ.
The measurements and the unc All calibrations have been condu	ertainties with confidence p ucted in the closed laborato	anal standards, which realize the physical units robability are given on the following pages and γ facility: environment temperature (22 ± 3)°C a	are part of the certificate.
The measurements and the unc All calibrations have been condu Calibration Equipment used (Mé	ertainties with confidence p ucted in the closed laborator RTE critical for calibration)	robability are given on the following pages and y facility: environment temperature (22 ± 3)°C a	are part of the cartificate. and humidity < 70%.
The measurements and the unc All cellbrations have been condu Collbration Equipment used (Mé Primary Standards	ertainties with confidence p ucted in the closed laborato BTE critical for calibration)	robability are given on the following pages and y facility: environment temperature (22 ± 3)°C a Cal Data (Certificate No.)	are part of the cartificate. and humidity < 70%. Scheduled Calibration
The measurements and the unc All celibrations have been condu Calibration Equipment used (Mé Primary Standards Power meter E4419B	ertainties with confidence p ucted in the closed laborato ATE critical for calibration) ID GB41293874	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C a Cal Data (Certificate No.) 31-Mar-11 (No. 217-01372)	are part of the cartificate. and humidity < 70%.
The measurements and the unc All cellbrations have been condu Collbration Equipment used (Mé Primary Standards	ertainties with confidence p ucted in the closed laborato BTE critical for calibration)	robability are given on the following pages and y facility: environment temperature (22 ± 3)°C a Cal Data (Certificate No.)	are part of the certificate. and humidity < 70%. Scheduled Celibration Apr-12
The measurements and the unc All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power metar E44198 Fower sensor E4412A	ertainties with confidence p ucted in the closed laborato &TE critical for celibration) ID GB41293074 MrY41498087	robability are given on the following pages and y facility: environment temperature (22 ± 3)°C a Cal Data (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
The measurements and the unc All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power metar E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	ertainties with confidence p ucted in the closed faborato STE critical for calibration) ID GB41293074 MY41498087 SN: 56054 (30) SN: 56054 (20b) SN: 55129 (20b)	Call Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372)	scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
The measurements and the unc All calibrations have been condit Calibration Equipment used (M& Primary Standards Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 9 robe E83DV2	ertainties with confidence p ucted in the closed laborator BTE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 3013	Cal Data (Certificate No.) Cal Data (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01370)	are part of the cartificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 Dec-11
The measurements and the unc All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power metar E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	ertainties with confidence p ucted in the closed faborato STE critical for calibration) ID GB41293074 MY41498087 SN: 56054 (30) SN: 56054 (20b) SN: 55129 (20b)	Call Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372)	scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
The measurements and the unc All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe E83DV2 DAE4 Secondary Standards	ertainties with confidence p ucted in the closed faborator BTE critical for celibration) ID GB41293074 MY41498037 SN: 55054 (3a) SN: 55054 (3b) SN: 55129 (30b) SN: 3013 SN: 654 ID	Cal Data (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power metar E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ertainties with confidence p ucted in the closed laborator BTE critical for calibration) ID GB41293074 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: S5129 (30b) SN: 8544 ID US3842U01700	Cal Dets (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01370) 29-Mar-11 (No. DAE4-654_May11) Check Date (In house) 4-Aug-99 (In house check Oct-09)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11
The measurements and the unc All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe E83DV2 DAE4 Secondary Standards	ertainties with confidence p ucted in the closed faborator BTE critical for celibration) ID GB41293074 MY41498037 SN: 55054 (3a) SN: 55054 (3b) SN: 55129 (30b) SN: 3013 SN: 654 ID	Cal Data (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power metar E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ertainties with confidence p ucted in the closed laborator BTE critical for calibration) ID GB41293074 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: S5129 (30b) SN: 8544 ID US3842U01700	Cal Dets (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01370) 29-Mar-11 (No. DAE4-654_May11) Check Date (In house) 4-Aug-99 (In house check Oct-09)	are part of the cartificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11
The measurements and the unc All calibrations have been condit Calibration Equipment used (M& Primary Standards Power metar E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 7 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	Articles with confidence p ucted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 554 ID US3842U01700 US3842U01700 US37390585 Name	Call Data (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 20-Mar-11 (No. 217-01369) 20-Mar-11 (No. 217-01370) 20-Mar-11 (No. 217-01369) 20-Mar-11 (No. 217-01370) 20-Mar-11 (No. 217-01370) </td <td>are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11</td>	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11

Test report No.:32EE0061-HO-A-R1Page:58 of 78FCC ID:B3Q-WYSAGBUX7Issued date:December 9, 2011Revised date:December 13, 2011

Calibration Lab Schmid & Partne Engineering A _{Zeughausstrasse} 43, 8		SINISG BERNISG BERNISG RESERVICE	S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swise Callbration Service	
The Swiss Accreditatio	Accreditation Service (SAS) n Service is one of the signatories to the E for the recognition of calibration certificate	A	Accreditation No.: SCS 108	14
Glossary: TSL NORMx,y,z ConvF DCP CF A, B, C Polarization φ Polarization 9	tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the modulation dependent linearizati φ rotation around probe axis 9 rotation around an axis that is i.e., $\beta = 0$ is normal to probe axis	ion parameters in the plane normal to pro	be axis (at measurement center),	
	erformed According to the For 28-2003, "IEEE Recommended Prace	tice for Determining the P	eak Spatial-Averaged Specific	
Absorption Techniques b) IEC 62209- proximity to Methods Applie	Rate (SAR) in the Human Head from ¹ , December 2003 1, Procedure to measure the Specifi the ear (frequency range of 300 MHz d and Interpretation of Parar Assessed for E-field polarization 8 =	Wireless Communications c Absorption Rate (SAR) f z to 3 GHz)", February 200 meters: = 0. (f < 900 MHz in TEM-c	s Devices: Measurement or hand-held devices used in close 55 ell: f > 1800 MHz: R22 waveguide).	
Absorption Techniques b) IEC 62209 proximity to Methods Applid NORMx,y, NORMx,y, uncertainty NORM/()x, implements	Rate (SAR) in the Human Head from ', December 2003 ', Procedure to measure the Specifi the ear (frequency range of 300 MH: d and Interpretation of Parar Assessed for E-field polarization 9 = are only intermediate values, i.e., the inside TSL (see below ConvP). yz = NORMx, yz * frequency_respond d In DASY4 software versions later U	Wireless Communication: c Absorption Rate (SAR) f z to 3 GHz)", February 200 meters: = 0 (f ≤ 900 MHz in TEM-c e uncertainties of NORMX, se (see Erequency Respo	a Devices: Measurement for hand-held devices used in close 5 wil; f > 1800 MHz: R22 waveguide). y,z does not affect the E ² -field	
Absorption Techniques b) IEC 62209- proximity to Methods Appli • NORMx,y, NORMx,y, uncertainty • NORM(f)x, implementa in the state • DCPx,y,z: signal (no t	Rate (SAR) in the Human Head from 7, December 2003 1, "Procedure to measure the Specifi- the ear (frequency range of 300 MHz d and Interpretation of Parar c Assessed for E-field polarization 9 : are only intermediate values, i.e., the inside TSL (see below ConvF). yz = NORMx,yz * frequency_respond d In DASY4 software versions later the 4 uncertainty of ConvF. DCP are numerical linearization parar ncertainty required). DCP does not do	Wireless Communication: c Absorption Rate (SAR) f z to 3 GHz)", February 200 meters: = 0 (f ≤ 900 MHz in TEM-c a uncartainties of NORMx, se (see Frequency Respo han 4.2. The uncertainty o meters assessed based or lepend on frequency nor n	s Devices: Measurement or hand-held devices used in close 05 well; f > 1800 MHz: R22 waveguide), y,z does not affect the E ² -field nse Chart), This linearization is f the frequency response is included in the data of power sweep with CW nedia.	
Absorption Techniques b) IEC 62209 proximity to Methods Applie • NORMs,y, NORMs,y, uncertainty • NORMs,y, implement in the state • DCPs,y,z: signal (no • PAR: PAR characteris	Rate (SAR) in the Human Head from 7, December 2003 1, "Procedure to measure the Specifi the ear (frequency range of 300 MH: d and interpretation of Parar Assessed for E-field polarization $3 = 3$ are only intermediate values, i.e., the inside TSL (see below <i>ConvF</i>). $y_z = NORMx, y_z * frequency_respond of In DASY4 software versions later the succertainty of ConvF. DCP are numerical linearization parar ncertainty required). DCP does not of s the Peak to Average Ratio that is nolos$	Wireless Communications c Absorption Rate (SAR) f z to 3 GHz)", February 200 meters: = 0 (f \leq 900 MHz in TEM-c a uncertainties of NORMx, se (see Frequency Respo han 4.2. The uncertainty o meters assessed based or lepend on frequency nor n tot calibrated but determin	a Devices: Measurement or hand-held devices used in close 55 ell; f > 1800 MHz: R22 waveguide). y,z does not affect the E ² -field nse Chart). This linearization is f the frequency response is included in the data of powor sweep with CW nedia. ed based on the signal	
Absorption Techniques b) IEC 62209 proximity to Methods Applie NORMx,y,z NORMx,y,z NORMx,y,z NORM(f)x, implemente in the state DCPx,y,z: signal (no t PAR: PAR characteris Ax,y,z; Bx, nowar swo	Rate (SAR) in the Human Head from ¹ , December 2003 ¹ , "Procedure to measure the Specifi- the ear (frequency range of 300 MHz d and Interpretation of Parar ² Assessed for E-field polarization 9 = are only intermediate values, i.e., the Inside TSL (see below <i>ConvF)</i> . ² , <i>z</i> = <i>NORMx</i> , <i>y</i> , <i>z</i> * frequency_respond d In DASY4 software versions later to a uncartainty of <i>ConvF</i> . DCP are numerical linearization parar ncertainty required). DCP does not d s the Peak to Average Ratio that is no ² , <i>z</i> ; <i>Cx</i> , <i>y</i> , <i>z</i> , <i>VRx</i> , <i>y</i> , <i>z</i> : <i>A</i> , <i>B</i> , <i>C</i> are numerical infor specific modulation signal. The	Wireless Communication: c Absorption Rate (SAR) f z to 3 GHz)", February 200 meters: = 0 (f ≤ 900 MHz in TEM-co a uncertainties of NORMX, se (see Frequency Respo han 4.2. The uncertainty o meters assessed based or lepend on frequency nor n tot calibrated but determin arical linearization parame parameters do not depen	a Devices: Measurement or hand-held devices used in close 55 ell; f > 1800 MHz: R22 waveguide). y,z does not affect the E ² -field nse Chart). This linearization is f the frequency response is included in the data of powor sweep with CW nedia. ed based on the signal	
Absorption Techniques b) IEC 62209 proximity to Methods Applife • NORMx,y; uncertainty • NORM/()x, implementa in the state • DCPx,y,z: signal (no t • PAR: PAR characteris • Ax,y,z; Bx, power swo maximum • ConvF and Standard fi measurem boundary of used in DA	Rate (SAR) in the Human Head from ', December 2003 ', Procedure to measure the Specifi the ear (frequency range of 300 MH: d and interpretation of Parar Assessed for E-field polarization $3 = 3$ are only intermediate values, i.e., the inside TSL (see below ConvP). $y_z = NORMx, y, z^*$ frequency_respond in DASY4 software versions later to the uncartainty of ConvF. DCP are numerical linearization parar ncertainty required). DCP does not do is the Peak to Average Ratio that is no tab $y_z; cx, y, z, VRx, y, z; A, B, C are numerical por specific modulation signal. The alibration range expressed in RMS v Boundary Effact Parameters: Assess: r f < 800 MHz) and inside waveguided on the part to improve probe accur y_z * ConvF whereby the uncertaintysed in DASY version 4.4 and higher v$	Wireless Communications c Absorption Rate (SAR) f z to 3 GHz)", February 200 meters: = 0 (f \leq 900 MHz in TEM-co a uncertainties of NORMx, se (see Frequency Respo han 4.2. The uncertainty of meters assessed based or lepend on frequency nor in not calibrated but determin arical linearization parame parameters do not depen oltage across the dlode. sed in flat phantom using I o using analytical filed distu- se are used for assessmet typical uncertainty values racy close to the boundary corresponds to that given which allows extending the	a Devices: Measurement or hand-held devices used in close 55 well; f > 1800 MHz: R22 waveguide). y,z does not affect the E ² -field mse Chart). This linearization is f the frequency response is included in the data of power sweep with CW hedia. ed based on the signal ters assessed based on the data of d on frequency nor media. VR is the E-field (or Temperature Transfer tibutions based on power t of the parameters applied for are given. These parameters are t. The sensitivity in TSL corresponds for <i>ConVF</i> . A frequency dependent e validity from ± 50 MHz to ± 100	
Absorption Techniques b) IEC 62209 proximity to Methods Applife NORMx,y,z NORMx,y,z uncertainty NORMx(j)x, implementa in the state DCPx,y,z: signal (no PAR: PAR characteris Ax,y,z; Bx, power swo maximum ConvF and Standard fi measurem boundary o used in DA to NORMX ConvF is U MHz. Spherical i exposed b	Rate (SAR) in the Human Head from T_{i} , December 2003 T_{i} , "Procedure to measure the Specifi- the ear (frequency range of 300 MHz d and Interpretation of Parar : Assessed for E-field polarization $S =$ are only intermediate values, i.e., thi- inside TSL (see below <i>ConvF</i>). $T_{i} = NORMx, y, z * frequency_respon- d In DASY4 software versions later the uncartainty of ConvF. DCP are numerical linearization parar- ncertainty required). DCP does not d s the Peak to Average Ratio that is no los T_{i} \subset X, y, z, VRx, y, z: A, B, C are numi- p for specific modulation signal. The alibration range expressed in RMS v Boundary Effect Parameters: Assess rf \le 800 MHz) and inside waveguidewavestime to fr > 800 MHz. The same setupompensation (alpha, depth) of whichSY4 software to improve probe accu$	Wireless Communications c Absorption Rate (SAR) f z to 3 GHz)", February 200 meters: = 0 (f \leq 900 MHz in TEM-c e uncertainties of NORMx, se (see Frequency Respo han 4.2. The uncertainty o meters assessed based or lepend on frequency nor n tot calibrated but determin arical linearization parame parameters do not depen oltage across the diode. sed in flat phantom using I using analytical field dist os are used for assessmen typical uncertainty values racy close to the boundary corresponds to that given which allows extending the in a field of low gradients i	a Devices: Measurement or hand-held devices used in close 55 well; f > 1800 MHz: R22 waveguide), y,z does not affect the E ² -field nse Chart). This linearization is f the frequency response is included in the data of powor sweep with CW nedla. ed based on the signal ters assessed based on the data of d on frequency nor media. <i>VR</i> is the E-field (or Temperature Transfer ibutions based on power int of the parameters applied for are given. These parameters are , The sensitivity in TSL corresponds for <i>ConvF</i> . A frequency dependent e validity from ± 50 MHz to ± 100 realized using a flat phantom	

Test report No.	:	32EE0061-HO-A-R1
Page	:	59 of 78
FCC ID	:	B3Q-WYSAGBUX7
Issued date	:	December 9, 2011
Revised date	:	December 13, 2011

EX3DV4 SN:3540		July 21, 2011
Р	robe EX3I	אער/4
	ON1-2540	
	SN:3540	
	Manufactured: August 23	, 2005
	Calibrated: July 21, 20	
	Calibrated for DASY/EASY Sy	vstems
	(Note: non-compatible with DASY2 syste	m!)

EX3DV4- SN:3540

July 21, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3540

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.45	0.53	0.54	± 10.1 %
DCP (mV) ^B	100.9	101.2	99.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc [⊨] (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	139.8	±2.2 %
			Y	0.00	0.00	1.00	119.0	
			Z	0.00	0.00	1.00	112.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the extension. field value.

Certificate No: EX3-3540_Jul11

Page 4 of 11

Test report No. : 32EE0061-HO-A-R1 : 61 of 78 Page FCC ID : B3Q-WYSAGBUX7 **Issued date** : December 9, 2011 **Revised date** : December 13, 2011

EX3DV4- SN:3540

July 21, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3540

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	45.3	0.87	11.39	11.39	11.39	0.20	0.71	± 13.4 %
450	43.5	0.87	10.47	10.47	10.47	0.12	1.87	± 13.4 %
835	41.5	0.90	10.02	10.02	10.02	0.60	0.73	± 12.0 %
900	41.5	0.97	9.82	9.82	9.82	0.57	0.77	± 12.0 %
1450	40.5	1,20	9.81	9.81	9.81	0.36	1.13	± 12.0 %
1640	40.3	1.29	9.35	9.35	9.35	0.69	0.60	± 12.0 %
1750	40.1	1.37	9.13	9.13	9,13	0.77	0.55	± 12.0 %
1810	40.0	1.40	8.81	8.81	8.81	0.76	0.55	± 12.0 %
1900	40.0	1.40	8.65	8.65	8,65	0.64	0.62	± 12.0 %
1950	40.0	1.40	8.46	8.46	8,46	0.74	0.56	± 12.0 %
2000	40.0	1.40	8.59	8.59	8.59	0.72	0.56	± 12.0 %
2450	39.2	1.80	7.65	7.65	7,65	0.61	0.62	± 12.0 %
2600	39.0	1.96	7.52	7.52	7.52	0.51	0.72	± 12.0 %
3500	37.9	2.91	7.24	7.24	7.24	0.25	1.20	± 13.1 %
5200	36.0	4.66	4.71	4.71	4.71	0.35	1.85	± 13.1 %
5300	35.9	4.76	4.39	4.39	4.39	0.35	1.85	± 13.1 %
5500	35.6	4.96	4.30	4.30	4.30	0.45	1.85	± 13.1 %
5600	35,5	5.07	4.00	4.00	4.00	0.50	1.85	± 13.1 %
5800	35.3	5.27	4.16	4.16	4.16	0.45	1.85	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncortainty for the indicated frequency band. ^{*} At frequencies below 3 GHz, the validity of this up parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No; EX3-3540_Jul11

Page 5 of 11

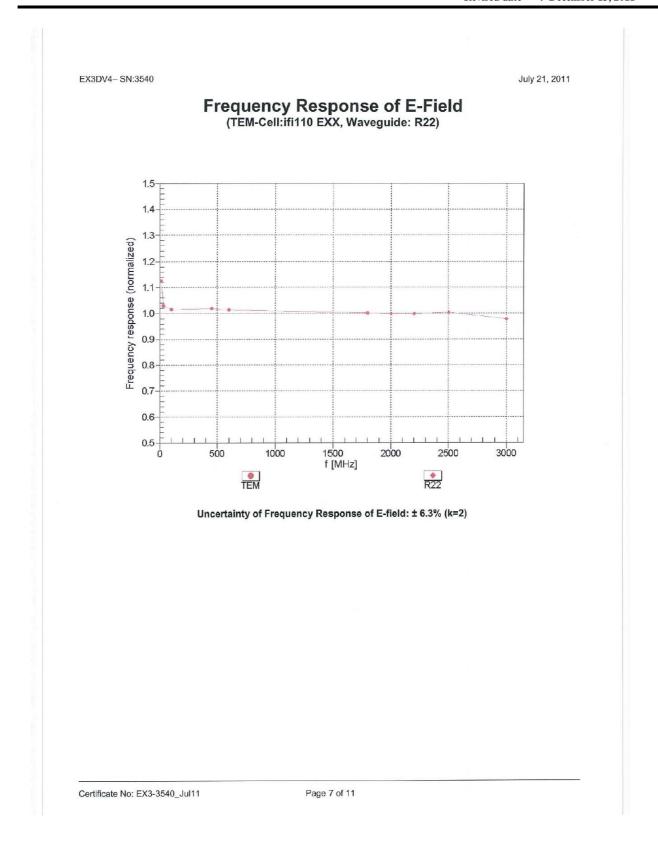
Test report No.	: 32EE0061-HO-A-R1
Page	: 62 of 78
FCC ID	: B3Q-WYSAGBUX7
Issued date	: December 9, 2011
Revised date	: December 13, 2011

EX3DV4-- SN:3540

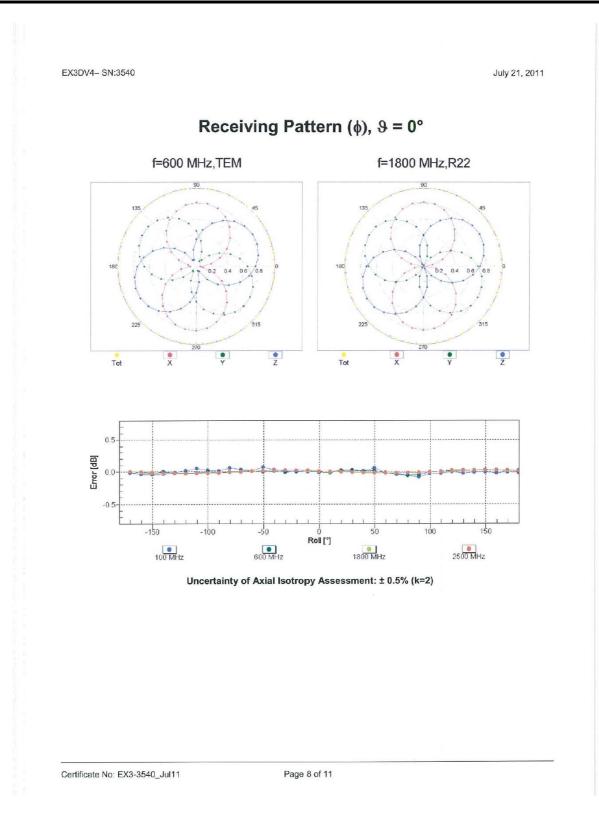
July 21, 2011

DASY/EASY - Parameters of Probe: EX3DV4- SN:3540

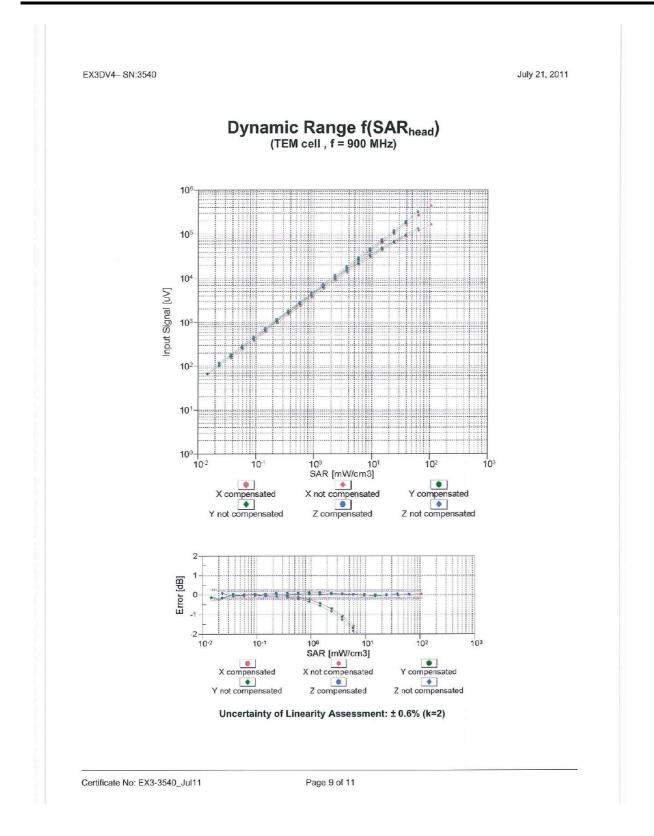
Г	f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
	300	58.2	0.92	11.11	11.11	11.11	0.17	1.15	± 13.4 %
	450	56.7	0.94	11.61	11.61	11.61	0.03	1.00	± 13.4 %
	835	55.2	0.97	10.29	10.29	10.29	0.79	0.64	± 12.0 %
	900	55.0	1.05	10.05	10.05	10.05	0.67	0.74	± 12.0 %
Γ	1450	54.0	1.30	9.02	9.02	9.02	0.56	0.78	± 12.0 %
	1640	53.8	1.40	9.11	9.11	9.11	0.68	0.65	± 12.0 %
Γ	1750	53.4	1.49	8.21	8.21	8.21	0.76	0.60	± 12.0 %
ſ	1810	53.3	1.52	8.00	8.00	8.00	0.70	0.63	± 12.0 %
	1900	53.3	1.52	7.95	7.95	7.95	0.58	0.69	± 12.0 %
Ī	1950	53.3	1.52	8.27	8.27	.8.27	0.70	0.62	± 12.0 %
	2000	53.3	1.52	8.19	8.19	8.19	0.60	0.68	± 12.0 %
	2450	52.7	1.95	7.64	7.64	7.64	0.80	0.54	± 12.0 %
	2600	52.5	2.16	7.51	7.51	7.51	0.80	0.50	± 12.0 %
Γ	3500	51.3	3.31	6.56	6.56	6.56	0.20	1.60	± 13.1 %
	5200	49.0	5.30	3.94	3.94	3,94	0.55	1.90	± 13.1 %
	5300	48.9	5.42	3.59	3.59	3.59	0.55	1.90	± 13.1 %
	5500	48.6	5.65	3.56	3.56	3.56	0.58	1.90	± 13.1 %
Ī	5600	48.5	5.77	3.25	3.25	3.25	0.60	1.90	± 13.1 %
	5800	48.2	6.00	3.40	3.40	3.40	0.60	1.90	± 13.1 %

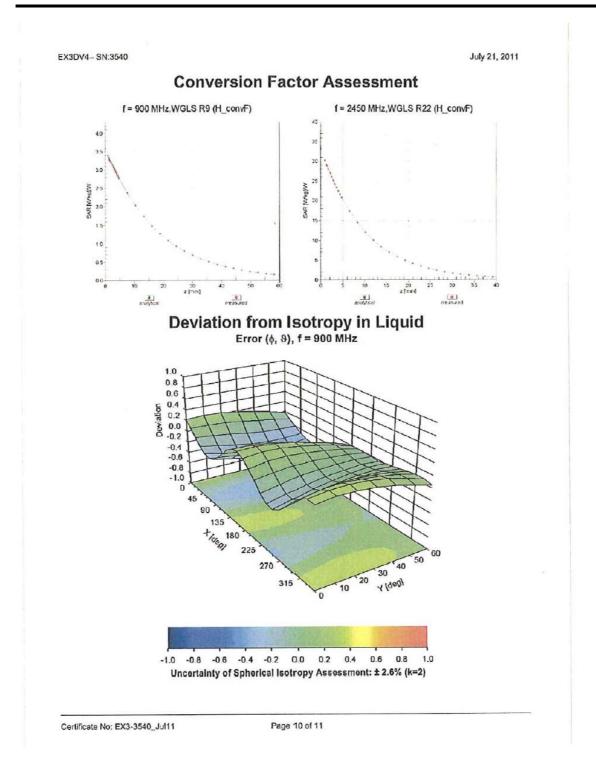

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY V4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^c All frequencies below 30 Hz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated frequences.


Certificate No: EX3-3540_Jul11

Page 6 of 11


Test report No.: 32EE0061-HO-A-R1Page: 63 of 78FCC ID: B3Q-WYSAGBUX7Issued date: December 9, 2011Revised date: December 13, 2011


Test report No.	:	32EE0061-HO-A-R1
Page	:	64 of 78
FCC ID	:	B3Q-WYSAGBUX7
Issued date	:	December 9, 2011
Revised date	:	December 13, 2011

Test report No.: 32EE0061-HO-A-R1Page: 65 of 78FCC ID: B3Q-WYSAGBUX7Issued date: December 9, 2011Revised date: December 13, 2011

Test report No.: 32EE0061-HO-A-R1Page: 66 of 78FCC ID: B3Q-WYSAGBUX7Issued date: December 9, 2011Revised date: December 13, 2011

Test report No.: 32EE0061-HO-A-R1Page: 67 of 78FCC ID: B3Q-WYSAGBUX7Issued date: December 9, 2011Revised date: December 13, 2011

EX3DV4-SN:3540

July 21, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3540

Not applicable
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
2 mm

Certificate No: EX3-3540_Jul11

Page 11 of 11