FCC Test Report

Report No.: RF161114C10-7
FCC ID: B32V400M3G

Test Model: V400m Plus 3G
Received Date: Nov. 14, 2016
Test Date: Nov. 23, 2016 ~ Dec. 04, 2016
Issued Date: Dec. 15, 2016

Applicant: Verifone, Inc.
Address: 1400 West Stanford Ranch Road Suite 200 Rocklin CA 95765 USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)

Test Location (1): No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

Table of Contents

Release Control Record 3
1 Certificate of Conformity 4
2 Summary of Test Results 5
2.1 Measurement Uncertainty 5
2.2 Modification Record 5
3 General Information 6
3.1 General Description of EUT 6
3.2 Description of Test Modes 7
3.2.1 Test Mode Applicability and Tested Channel Detail 7
3.3 Description of Support Units 9
3.3.1 Configuration of System under Test 9
3.4 General Description of Applied Standards 9
4 Test Types and Results 10
4.1 Radiated Emission Measurement 10
4.1.1 Limits of Radiated Emission Measurement 10
4.1.2 Test Instruments 11
4.1.3 Test Procedures 12
4.1.4 Deviation from Test Standard 12
4.1.5 Test Set Up 13
4.1.6 EUT Operating Conditions 13
4.1.7 Test Results 14
4.2 Conducted Emission Measurement 21
4.2.1 Limits of Conducted Emission Measurement 21
4.2.2 Test Instruments 21
4.2.3 Test Procedures 22
4.2.4 Deviation from Test Standard 22
4.2.5 Test Setup 22
4.2.6 EUT Operating Conditions 22
4.2.7 Test Results 23
4.3 Frequency Stability 25
4.3.1 Limits of Frequency Stability Measurement 25
4.3.2 Test Setup 25
4.3.3 Test Instruments 25
4.3.4 Test Procedure 25
4.3.5 Deviation fromTest Standard 25
4.3.6 EUT Operating Conditions 25
4.3.7 Test Result 26
4.420 dB Bandwidth 27
4.4.1 Limits of 20 dB Bandwidth Measurement 27
4.4.2 Test Setup 27
4.4.3 Test Instruments 27
4.4.4 Test Procedures 27
4.4.5 Deviation from Test Standard 27
4.4.6 EUT Operating Conditions 27
4.4.7 Test Results 28
5 Pictures of Test Arrangements 29
Appendix - Information on the Testing Laboratories 30

Release Control Record

Issue No.	Description	Date Issued
RF161114C10-7	Original Release	Dec. 15, 2016

1 Certificate of Conformity

Product: Point of Sale Terminal
Brand: Verifone
Test Model: V400m Plus 3G
Sample Status: Identical Prototype
Applicant: Verifone, Inc.
Test Date: Nov. 23, 2016 ~ Dec. 04, 2016
Standards: 47 CFR FCC Part 15, Subpart C (Section 15.225)
47 CFR FCC Part 15, Subpart C (Section 15.215)
ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taiyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.
 Ivonne Wu / Supervisor
, Date: \qquad
Dec. 15, 2016

, Date: \qquad
Dec. 15, 2016

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.225, 15.215)			
FCC Clause	Test Item	Result	Remarks
15.207	Conducted emission test	Pass	Meet the requirement of limit. Minimum passing margin is -4.15 dB at 0.48678 MHz .
15.225 (a)	The field strength of any emissions within the band $13.553-13.567 \mathrm{MHz}$	Pass	Meet the requirement of limit. Minimum passing margin is -55.45 dB at 13.56 MHz .
15.225 (b)	The field strength of any emissions within the bands $13.410-13.553 \mathrm{MHz}$ and 13.567-13.710 MHz	Pass	Meet the requirement of limit.
15.225 (c)	The field strength of any emissions within the bands $13.110-13.410 \mathrm{MHz}$ and 13.710-14.010 MHz	Pass	Meet the requirement of limit.
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	Pass	Meet the requirement of limit. Minimum passing margin is -12.06 dB at 135.73 MHz .
15.225 (e)	The frequency tolerance	Pass	Meet the requirement of limit.
15.215 (c)	20dB Bandwidth	Pass	Meet the requirement of limit.
15.203	Antenna Requirement	Pass	No antenna connector is used.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty $\mathbf{(k = 2)}(\pm)$
Conducted Emissions at mains ports	$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$	2.44 dB
Radiated Emissions up to 1 GHz	$30 \mathrm{MHz} \sim 200 \mathrm{MHz}$	2.93 dB
	$200 \mathrm{MHz} \sim 1000 \mathrm{MHz}$	2.95 dB
Radiated Emissions above 1 GHz	$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$	2.26 dB
	$18 \mathrm{GHz} \sim 40 \mathrm{GHz}$	1.94 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Point of Sale Terminal
Brand	Verifone
Test Model	V400m Plus 3G
Status of EUT	Identical Prototype
Power Supply Rating	5.0 Vdc (adapter or host equipment) 3.85 Vdc (Li-ion battery)
Modulation Type	ASK
Operating Frequency	13.56 MHz
Antenna Type	Loop Antenna
Accessory Device	Refer to Note
Data Cable Supplied	Refer to Note

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
Adapter 1	Verifone	AM11A-050A	I/P: 100-240 Vac, $50 / 60 \mathrm{~Hz}, 500 \mathrm{~mA}$ O/P: $5 \mathrm{Vdc}, 2.2 \mathrm{~A}$ 1.75 m non-shielded cable w/o core Manufacturer: Phihong
Adapter 2	Verifone	VF0402	I/P: 100-240 Vac, $50 / 60 \mathrm{~Hz}, 500 \mathrm{~mA}$ O/P: $5 \mathrm{Vdc}, 2.2 \mathrm{~A}$ 1.75 m non-shielded cable w/o core Manufacturer: Salcomp
Battery	Verifone	BPK475-001	3.85 Vdc , 2890 mAh

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

One channel was provided to this EUT:

Channel	Frequency (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Mode	RE	PLC	FS	EB	Description
		$\sqrt{\|c\|}$ Applicable To			
-	V	V	V		-

Where
RE: Radiated Emission
PLC: Power Line Conducted Emission
FS: Frequency Stability
EB: 20 dB Bandwidth measurement

Radiated Emission Test:

\boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
\boxtimes Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Axis
-	1	1	ASK	Z

Power Line Conducted Emission Test:

\boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Axis
-	1	1	ASK	Z

Frequency Stability:

\boxtimes This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
\boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
\boxtimes Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Axis
-	1	1	ASK	Z

20 dB Bandwidth:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
\boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
\boxtimes Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Axis
-	1	1	ASK	Z

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE	25 deg. C, $65 \% \mathrm{RH}$	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Gavin Wu
FS	25 deg. C, $65 \% \mathrm{RH}$	3.85 Vdc	Luke Chen
PLC	25 deg. C, $65 \% \mathrm{RH}$	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Toby Tian
EB	25 deg. C, $68 \% \mathrm{RH}$	3.85 Vdc	Luke Chen

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units.
3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225)
FCC Part 15, Subpart C (15.215)
ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

The field strength of any emissions within the band $13.553-13.567 \mathrm{MHz}$ shall not exceed 15,848 microvolts/meter at 30 meters.
The field strength of any emissions within the bands $13.410-13.553 \mathrm{MHz}$ and $13.567-13.710 \mathrm{MHz}$ shall not exceed 334 microvolts/meter at 30 meters.
The field strength of any emissions within the bands $13.110-13.410 \mathrm{MHz}$ and $13.710-14.010 \mathrm{MHz}$ shall not exceed 106 microvolts/meter at 30 meters.
The field strength of any emissions appearing outside of the $13.110-14.010 \mathrm{MHz}$ band shall not exceed the general radiated emission limits in § 15.209.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level $(\mathrm{dBuV} / \mathrm{m})=20 \log$ Emission level $(\mathrm{uV} / \mathrm{m})$.
3. For frequencies above 1000 MHz , the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.
4.1.2 Test Instruments

Description \& Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent	N9038A	MY51210203	Jan. 21, 2016	Jan. 20, 2017
Spectrum Analyzer Agilent	N9010A	MY52220314	Dec. 16, 2016	Dec. 15, 2017
Spectrum Analyzer ROHDE \& SCHWARZ	FSU43	101261	Dec. 17, 2015	Dec. 16, 2016
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Jan. 07, 2016	Jan. 06, 2017
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Jan. 04, 2016	Jan. 03, 2017
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Jan. 08, 2016	Jan. 07, 2017
Fixed Attenuator Mini-Circuits	BW-N10W5+	NA	Jul. 08, 2016	Jul. 07, 2017
Loop Antenna	EM-6879	269	Aug. 11, 2016	Aug. 10, 2017
Bluetooth Tester	CBT	100980	Apr. 27, 2015	Apr. 26, 2017
Preamplifier EMCI	EMC 012645	980115	Oct. 21, 2016	Oct. 20, 2017
Preamplifier EMCI	EMC 184045	980116	Oct. 21, 2016	Oct. 20, 2017
Preamplifier EMCI	EMC 330H	980112	Oct. 21, 2016	Oct. 20, 2017
Power Meter Anritsu	ML2495A	1232002	Sep. 08, 2016	Sep. 07, 2017
Power Sensor Anritsu	MA2411B	1207325	Sep. 08, 2016	Sep. 07, 2017
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	$\begin{aligned} & \hline 309219 / 4 \\ & 2950114 \\ & \hline \end{aligned}$	Oct. 21, 2016	Oct. 20, 2017
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 21, 2016	Oct. 20, 2017
RF Coaxial Cable Worken	8D-FB	Cable-Ch10-01	Oct. 21, 2016	Oct. 20, 2017
Software BV ADT	$\begin{gathered} \text { E3 } \\ 6.120103 \\ \hline \end{gathered}$	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower \&Turn Table Controller MF	MF-7802	NA	NA	NA
Fixed Attenuator Mini-Circuits	BW-N10W5+	NA	Jul. 08, 2016	Jul. 07, 2017

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in HwaYa Chamber 10.
3. The horn antenna and preamplifier (model: EMC 184045) are used only for the measurement of emission frequency above 1 GHz if tested.
4. The FCC Site Registration No. is 690701.
5. The IC Site Registration No. is IC7450F-10.

4.1.3 Test Procedures

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
c. Height of receiving antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz .
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1 GHz .
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $\geq 1 / T$ (Duty cycle < 98%) or 10 Hz (Duty cycle > 98%) for Average detection (AV) at frequency above 1 GHz .
4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Set Up

Frequency range $9 \mathrm{k} \sim 30 \mathrm{MHz}$:

Frequency range 30~1000MHz:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

a. Placed the EUT on the testing table.
b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

No non-compliance noted:

KDB 937606 OATS and Chamber Correlation Justification

- Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.
- OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

EUT Test Condition		Measurement Detail	
Channel	Channel 1	Frequency Range	$13.553 \sim 13.567 \mathrm{MHz}$
Input Power	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Detector Function	Quasi-Peak
Environmental Conditions	25 deg. C, $65 \% \mathrm{RH}$	Tested By	Gavin Wu

Antenna Polarity \& Test Distance: Loop Antenna Open at 3M										
$\left\lvert\, \begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}\right.$	Emission Level (dBuV/m)		$\begin{gathered} \text { Limit } \\ (\mathrm{dBuV} / \mathrm{m}) \end{gathered}$	Margin (dB)	Antenna Factor (dB/m)	$\left\lvert\, \begin{gathered} \text { Cable } \\ \text { Loss }(\mathrm{dB}) \end{gathered}\right.$	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
13.56	68.55	71.93	124	-55.45	37.67	0.31	41.36	100	360	QP

REMARKS: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor (dB)

- Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission level - Limit value.
5. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40 dB per decade of distance)
Example:
$13.56 \mathrm{MHz}=15848 \mathrm{uV} / \mathrm{m} \quad 30 \mathrm{~m}$

$$
\begin{array}{ll}
=84 \mathrm{dBuV} / \mathrm{m} & 30 \mathrm{~m} \\
=84+20 \log (30 / 3)^{2} & 3 \mathrm{~m} \\
=124 \mathrm{dBuV} / \mathrm{m} &
\end{array}
$$

EUT Test Condition		Measurement Detail	
Channel	Channel 1	Frequency Range	$13.553 \sim 13.567 \mathrm{MHz}$
Input Power	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Detector Function	Quasi-Peak
Environmental Conditions	25 deg. C, $65 \% \mathrm{RH}$	Tested By	Gavin Wu

Antenna Polarity \& Test Distance: Loop Antenna Close at 3M										
$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	Emission Level (dBuV/m)		$\left\lvert\, \begin{gathered} \text { Limit } \\ (\mathrm{dBuV} / \mathrm{m}) \end{gathered}\right.$	Margin (dB)	Antenna Factor (dB/m)	$\begin{array}{\|c\|} \text { Cable } \\ \text { Loss }(\mathrm{dB}) \end{array}$	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
13.56	63.27	66.65	124	-60.73	37.67	0.31	41.36	100	0	QP

REMARKS: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor (dB)

- Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission level - Limit value.
5. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)
Example:
$13.56 \mathrm{MHz}=15848 \mathrm{uV} / \mathrm{m} \quad 30 \mathrm{~m}$

$=84 \mathrm{dBuV} / \mathrm{m}$	30 m
$=84+20 \log (30 / 3)^{2}$	3 m
$=124 \mathrm{dBuV} / \mathrm{m}$	

EUT Test Condition		Measurement Detail	
Channel	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Frequency Range	Below 30 MHz
Input Power	25 deg. C, $65 \% \mathrm{RH}$	Tested By	Quasi-Peak
Environmental Conditions		Gavin Wu	

Antenna Polarity \& Test Distance: Loop Antenna Open at 3M										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	$\left\lvert\, \begin{gathered} \text { Limit } \\ (\mathrm{dBuV} / \mathrm{m}) \end{gathered}\right.$	Margin (dB)	Antenna Factor (dB/m)	$\begin{gathered} \text { Cable } \\ \text { Loss }(\mathrm{dB}) \end{gathered}$	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
27.121	23.86	29.26	69.54	-45.68	35.55	0.38	41.33	100	0	QP

REMARKS:

1. Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ Raw Value $(\mathrm{dBuV})+$ Correction Factor $(\mathrm{dB} / \mathrm{m})$
2. Correction Factor $(d B / m)=$ Antenna Factor $(d B / m)+$ Cable Factor $(d B)$

- Pre-Amplifier Factor (dB)

3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission Level - Limit value

EUT Test Condition	Channel 1	Measurement Detail	
Channel	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Frequency Range	Below 30 MHz
Input Power	Detector Function	Quasi-Peak	
Environmental Conditions	Tested By	Gavin Wu	

| Antenna Polarity \& Test Distance: Loop Antenna Close at 3M | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | Emission
 (MHz) | Read
 Level
 $(\mathrm{dBuV} / \mathrm{m})$ | Level
 (dBuV) | Limit
 $(\mathrm{dBuV} / \mathrm{m})$ | Margin
 (dB) | Antenna
 Factor
 $(\mathrm{dB} / \mathrm{m})$ | Preamp
 Coss (dB)
 Factor
 (dB) | Antenna
 Height
 (cm) | Table
 Angle
 $($ Degree) $)$ | Remark |
| 27.121 | 24.44 | 29.84 | 69.54 | -45.1 | 35.55 | 0.38 | 41.33 | 100 | 0 | QP |

REMARKS

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor(dB)

- Pre-Amplifier Factor (dB)

3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission Level - Limit value

EUT Test Condition		Measurement Detail	
Channel	Channel 1	Frequency Range	Below 1000 MHz
Input Power	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Detector Function	Quasi-Peak
Environmental Conditions	25 deg. C, 65% RH	Tested By	Gavin Wu

HORIZONTAL

VERTICAL

Bureau
VERITAS

Antenna Polarity \& Test Distance: Horizontal at 3 m										
$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
79.47	21.05	43.33	40	-18.95	8.37	0.89	31.54	127	121	Peak
135.73	31.44	49.96	43.5	-12.06	12.08	1.14	31.74	130	180	Peak
248.25	28.77	47.8	46	-17.23	11.4	1.48	31.91	119	55	Peak
270.56	32.23	50.61	46	-13.77	12.08	1.55	32.01	126	224	Peak
314.21	31.08	48.05	46	-14.92	13.29	1.67	31.93	110	354	Peak
341.37	30.52	46.66	46	-15.48	13.94	1.74	31.82	114	110	Peak
Antenna Polarity \& Test Distance: Vertical at 3 m										
$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
76.56	27.04	48.7	40	-12.96	9.09	0.87	31.62	110	24	Peak
137.67	29.25	47.58	43.5	-14.25	12.21	1.15	31.69	137	136	Peak
221.09	28.89	48.97	46	-17.11	10.26	1.38	31.72	103	18	Peak
266.68	30.06	48.53	46	-15.94	11.97	1.54	31.98	137	196	Peak
276.38	30.15	48.23	46	-15.85	12.25	1.57	31.9	135	213	Peak
351.07	25.47	41.39	46	-20.53	14.17	1.76	31.85	122	94	Peak

REMARKS:

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor

Margin value $=$ Emission level - Limit value.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
$0.15-0.5$	$66-56$	$56-46$
$0.50-5.0$	56	46
$5.0-30.0$	60	50

Note:

1. The lower limit shall apply at the transition frequencies.
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz .
3. All emanations from a class A / B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 Test Instruments

 Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver ROHDE \& SCHWARZ	ESCI	100613	Nov. 21, 2016	Nov. 20, 2017
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond1-01	Dec. 26, 2015	Dec. 25, 2016
LISN ROHDE \& SCHWARZ (EUT) LISN ROHDE \& SCHWARZ (Peripheral) Software ADT ESH3-Z5 835239/001	Feb. 26, 2016	Feb. 25, 2017		

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in HwaYa Shielded Room 2.
3. The VCCI Site Registration No. is C-2047.

4.2.3 Test Procedures

a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide $50 \mathrm{ohm} / 50 \mathrm{uH}$ of coupling impedance for the measuring instrument.
b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit - 20 dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency $0.15 \mathrm{MHz}-30 \mathrm{MHz}$.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.
2.Both of LISNs (AMN) are $\mathbf{8 0} \mathbf{~ c m}$ from EUT and at least $\mathbf{8 0}$ from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

a. Placed the EUT on the testing table.
b. Set the EUT under transmission condition continuously at specific channel frequency.

4.2.7 Test Results

Frequency Range	$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$	 Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Environmental Conditions	$25^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$
Tested by	Toby Tian	Test Date	$2016 / 12 / 4$

Phase Of Power : Line (L)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		$\begin{gathered} \text { Limit } \\ (\mathrm{dBuV}) \end{gathered}$		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.48678	10.13	37.97	31.94	48.10	42.07	56.22	46.22	-8.12	-4.15
2	0.90463	10.19	22.30	16.49	32.49	26.68	56.00	46.00	-23.51	-19.32
3	1.47602	10.23	22.08	16.45	32.31	26.68	56.00	46.00	-23.69	-19.32
4	2.15192	10.28	21.07	15.24	31.35	25.52	56.00	46.00	-24.65	-20.48
5	4.22813	10.42	20.02	14.27	30.44	24.69	56.00	46.00	-25.56	-21.31
6	13.56130	10.93	38.59	36.85	49.52	47.78	60.00	50.00	-10.48	-2.22

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value $=$ Emission level - Limit value
4. Correction factor $=$ Insertion loss + Cable loss
5. Emission Level $=$ Correction Factor + Reading Value

Frequency Range		$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$			Detector Function \& Resolution Bandwidth			Quasi-Peak (QP) / Average (AV), 9kHz		
Input Power		$120 \mathrm{Vac}, 60 \mathrm{~Hz}$			Environmental Conditions		$25^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$			
Tested by		Toby Tian			Test Date 201			2016/12/4		
Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		$\begin{aligned} & \text { Limit } \\ & (\mathrm{dBuV}) \end{aligned}$		Margin (dB)	
	(MHz)		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.49408	10.14	36.73	31.33	46.87	41.47	56.10	46.10	-9.23	-4.63
2	0.81470	10.19	20.48	14.94	30.67	25.13	56.00	46.00	-25.33	-20.87
3	0.91375	10.20	21.06	15.25	31.26	25.45	56.00	46.00	-24.74	-20.55
4	1.85476	10.27	18.44	12.81	28.71	23.08	56.00	46.00	-27.29	-22.92
5	3.80976	10.42	14.80	6.66	25.22	17.08	56.00	46.00	-30.78	-28.92
6	13.55739	11.02	28.18	25.36	39.20	36.38	60.00	50.00	-20.80	-13.62

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor $=$ Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within $+/-0.01 \%$ of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C .

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

a. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
b. Turned the EUT on and coupled its output to a spectrum analyzer.
c. Turned the EUT off and set the chamber to the highest temperature specified.
d. Allowed sufficient time (approximately 30 min) for the temperature of the chamber to stabilize then turned the EUT on and measured the operating frequency after 2,5 , and 10 minutes.
e. Repeated step 2 and 3 with the temperature chamber set to the lowest temperature.
f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 EUT Operating Conditions

a. Placed the EUT on the testing table.
b. Set the EUT under transmission condition continuously at specific channel frequency.

4.3.7 Test Result

Frequency Stability Versus Temperature									
Temp. (${ }^{\circ} \mathrm{C}$)	Power Supply (Vdc)	0 Minute		2 Minute		5 Minute		10 Minute	
		Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	\%	(MHz)	\%	(MHz)	\%	(MHz)	\%
50	3.85	13.560049	0.00036	13.560053	0.00039	13.56005	0.00037	13.560067	0.00049
40	3.85	13.560036	0.00027	13.560021	0.00015	13.560018	0.00013	13.560021	0.00015
30	3.85	13.560042	0.00031	13.560043	0.00032	13.560039	0.00029	13.560054	0.00040
20	3.85	13.560034	0.00025	13.560043	0.00032	13.560043	0.00032	13.560052	0.00038
10	3.85	13.560029	0.00021	13.560016	0.00012	13.560037	0.00027	13.560017	0.00013
0	3.85	13.559946	-0.00040	13.559944	-0.00041	13.559938	-0.00046	13.559956	-0.00032
-10	3.85	13.560046	0.00034	13.560064	0.00047	13.56006	0.00044	13.560047	0.00035

Frequency Stability Versus Voltage									
Temp. (${ }^{\circ} \mathrm{C}$)	Power Supply (Vdc)	0 Minute		2 Minute		5 Minute		10 Minute	
		Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	\%	(MHz)	\%	(MHz)	\%	(MHz)	\%
20	4.2	13.560036	0.00027	13.560044	0.00032	13.560043	0.00032	13.560051	0.00038
	3.85	13.560034	0.00025	13.560043	0.00032	13.560043	0.00032	13.560052	0.00038
	3.3	13.560036	0.00027	13.560044	0.00032	13.560041	0.00030	13.56005	0.00037

4.420 dB Bandwidth

4.4.1 Limits of 20 dB Bandwidth Measurement

The 20 dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

Refer to section 4.1.5.

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1 kHz RBW and 3 kHz VBW. The 20 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20 dB .

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

a. Placed the EUT on the testing table.
b. Set the EUT under transmission condition continuously at specific channel frequency.

4.4.7 Test Results

$\mathbf{2 0 ~ d B c}$ Point (Low)	$\mathbf{2 0 ~ d B c}$ Point (High)	Operating Frequency Band (MHz)	Pass / Fail
13.5587500 MHz	13.5612500 MHz	$13.553 \sim 13.567$	Pass

Date: 1.DEC.2016 23:57:09

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com
The address and road map of all our labs can be found in our web site also.

