	BUREAU VERITAS
	FCC Test Report
Report No :	RF171012C21-1
-	B32V240M3GBW
	V240m 3GBW
Received Date:	
	Oct. 21, 2017 ~ Nov. 21, 2017
	Nov. 27, 2017
issued Date.	
Applicant:	Verifone, Inc.
Address:	1400 West Stanford Ranch Road, Suite 200 Rocklin, CA 95765 USA
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)
Test Location (1):	No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.
Test Location (2):	No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan, R.O.C
FCC Registration /	427177 / TW0011
Designation Number:	
	Hac-MRA Testing Laboratory
	2021
	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted

only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Re	eleas	e Control Record	4	
1	Cer	tificate of Conformity	5	
2	Sun	nmary of Test Results	6	
	2.1	Measurement Uncertainty	6	
		Modification Record		
3	Ger	tificate of Conformity mmary of Test Results Measurement Uncertainty Modification Record meral Information General Description of EUT Description of Test Modes 3.2.1 Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units 3.4.1 Configuration of System under Test General Description of Applied Standards Star Types and Results Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments 4.1.3 Test Procedures 4.1.4 Deviation from Test Standard 4.1.5 Test Set Up 4.1.6 EUT Operating Conditions 4.1.7 Test Results Conducted Emission Measurement 4.2.1 Limits of Conducted Emission Measurement 4.2.2 Test Instruments 4.2.3 Test Procedures 4.2.4 Deviation from Test Standard 4.2.5 TEST SET UP 4.2.6 EUT Operating Conditions 4.2.7 Test Results 6.6 B Bandwidth Measurement 4.3.1 Limits of 6 dB Bandwidth Measurement 4.3.2 Test Instruments 4.3.3 Test Instruments 4.3.4 Test Procedure 4.3.5 Deviation from Test Standard 4.3.5 Test Set Up 4.3.6 EUT Operating Conditions 4.3.7 Test Results 6.6 B Bandwidth Measurement 4.3.1 Limits of 6 dB Bandwidth Measurement 4.3.2 Test Instruments 4.3.3 Test Instruments 4.3.4 Test Procedure 4.3.5 Deviation fromTest Standard 4.3.5 Deviation fromTest Standard 4.3.6 EUT Operating Conditions 4.3.7 Test Result 5.7 T		
	31	General Description of FUT	7	
	0.2			
	3.3	Duty Cycle of Test Signal		
	3.4	Description of Support Units		
	0.5			
4				
	4.1	Radiated Emission and Bandedge Measurement	12	
		· •		
	4.2			
	4.3	6 dB Bandwidth Measurement	29	
	4.4	Occupied Bandwidth Measurement	31	
	4.5			
4.1.2 Test Instruments134.1.3 Test Procedures144.1.4 Deviation from Test Standard144.1.5 Test Set Up154.1.6 EUT Operating Conditions164.1.7 Test Results174.2 Conducted Emission Measurement254.2.1 Limits of Conducted Emission Measurement254.2.2 Test Instruments254.2.3 Test Procedures254.2.4 Deviation from Test Standard264.2.5 TEST SETUP264.2.6 EUT Operating Conditions264.2.7 Test Results274.3 6 dB Bandwidth Measurement294.3.1 Limits of 6 dB Bandwidth Measurement294.3.2 Test Setup294.3.3 Test Instruments294.3.4 Test Procedure294.3.4 Test Procedure294.3.5 Deviation fromTest Standard294.3.6 EUT Operating Conditions294.3.7 Test Result304.4 Occupied Bandwidth Measurement294.3.7 Test Result304.4 Occupied Bandwidth Measurement314.4.1 Test Setup314.4.2 Test Instruments314.4.3 Test Procedure314.4.4 Test Setup314.4.5 EUT Operating Conditions314.4.6 Test Results324.5 Conducted Output Power Measurement334.5.1 Limits of Conducted Output Power Measurement334.5.2 Test Setup334.5.5 Deviation from Test Standard334.5.5 Deviation from Test Standard33 <td>20</td>		20		

	4.6	 4.6.1 Limits of Power Spectral Density Measurement	 34 34 34 34 34 35 36
		4.7.7 TEST RESULTS	
5	Pict	tures of Test Arrangements	39
Ар	pen	dix – Information on the Testing Laboratories	40

Release Control Record Issue No. Description Date Issued Original Release Nov. 27, 2017 RF171012C21-1

Certificate of Conformity 1

Product:	Point of Sale Terminal
Brand:	Verifone
Test Model:	V240m 3GBW
Sample Status:	Identical Prototype
Applicant:	Verifone, Inc.
Test Date:	Oct. 21, 2017 ~ Nov. 21, 2017
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

20-

Prepared by : Evonne Liu / Specialist

Date: _____ Nov. 27, 2017

Date: Nov. 27, 2017

51

Approved by :

Dylan Chiou / Project Engineer

Report No.: RF171012C21-1

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)								
FCC Clause	Test Item	Result	Remarks						
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -12.16 dB at 0.50972 MHz.						
15.205 & 209	15.205 & 209 Radiated Emissions		Meet the requirement of limit. Minimum passing margin is -10.2 dB at 33.51 MHz.						
15.247(d)	15.247(d) Band Edge Measurement		Meet the requirement of limit.						
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.						
15.247(a)(2)	6 dB Bandwidth	Pass	Meet the requirement of limit.						
	Occupied Bandwidth Measurement	Pass	Reference only						
15.247(b)	Conducted power	Pass	Meet the requirement of limit.						
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.						
15.203 Antenna Requirement		Pass	No antenna connector is used.						

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Padiated Emissions up to 1 CHz	30 MHz ~ 200 MHz	2.0153 dB
Radiated Emissions up to 1 GHz	200 MHz ~1000 MHz	2.0224 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	1.0121 dB
Radiated Emissions above 1 GHZ	18 GHz ~ 40 GHz	1.1508 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product Point of Sale Terminal				
Brand	Verifone			
Test Model	V240m 3GBW			
Status of EUT	Identical Prototype			
Dewer Sumply Deting	5.0 Vdc (adapter)			
Power Supply Rating	3.7 Vdc (Li-ion battery)			
Modulation Type GFSK				
Transfer Rate	1 Mbps			
Operating Frequency	2402 ~ 2480 MHz			
Number of Channel	40			
Output Power	4.14 mW			
Antenna Type PCB antenna with 1.9 dBi gain				
Antenna Connector	N/A			
Accessory Device	Refer to Note as below			
Data Cable Supplied Refer to Note as below				

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
Adapter 1	Verifone		I/P: 100-240 Vac, 50/60 Hz, 500 mA O/P: 5 Vdc, 2.2 A
Adapter 2	Verifone	VF0402/VF0400	I/P: 100-240 Vac, 50/60 Hz, 500 mA O/P: 5 Vdc, 2.2 A
Adapter 3	Verifone	SC1402/SC1400	I/P: 100-240 Vac, 50/60 Hz, 150 mA O/P: 5 Vdc, 1 A
Adapter 4	Verifone	MU06-E050100-A1	I/P: 100-240 Vac, 50/60 Hz, 150 mA O/P: 5 Vdc, 1 A
Battery	Verifone	BPK474-001	3.7 Vdc, 2450 mAh

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To	Deservition		
Mode	RE≥1G	RE<1G	PLC	APCM	Description	
-	\checkmark	\checkmark	\checkmark	\checkmark	-	
Where RE≥1G: Radiated Emission above 1 GHz RE<1G: Radiated Emission below 1 GHz						

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **X-plane**. **Note:** "-"means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	0, 19, 39	GFSK	1

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	39	GFSK	1

Power Line Conducted Emission Test:

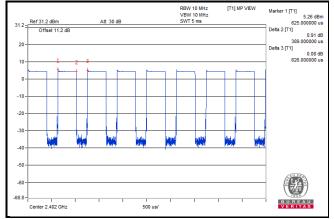
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

	EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
ſ	-	0 to 39	39	GFSK	1

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
- 0 to 39		0, 19, 39	GFSK	1

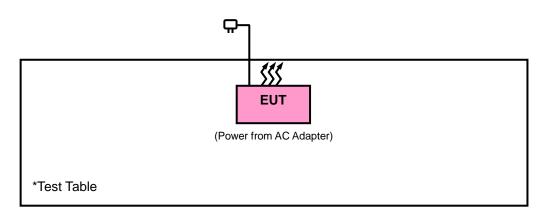

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G 25 deg. C, 65 % RH		120 Vac, 60 Hz	Charles Hsiao
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Charles Hsiao
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Getaz Yang
APCM	25 deg. C, 65 % RH	3.8 Vdc	Carlos Chen

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is < 98 %

Duty cycle = 0.389/0.626 = 0.621, Duty factor = $10 * \log(1/0.621) = 2.07$



3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) 558074 D01 DTS Meas Guidance v04 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent Technologies	N9038A	MY52260177	Jul. 05, 2017	Jul. 04, 2018
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 13, 2016	Dec. 12, 2017
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Dec. 16, 2016	Dec. 15, 2017
HORN Antenna ETS-Lindgren	3117	00143293	Dec. 29, 2016	Dec. 28, 2017
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Dec. 14, 2016	Dec. 13, 2017
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 17, 2017	Apr. 16, 2018
Bluetooth Tester	CBT	100980	Jun. 28, 2017	Jun. 27, 2019
Loop Antenna	HLA 6121	45745	May 19, 2017	May 18, 2018
Preamplifier Agilent	310N	187226	Jun. 23, 2017	Jun. 22, 2018
Preamplifier Agilent	83017A	MY39501357	Jun. 23, 2017	Jun. 22, 2018
Power Meter Anritsu	ML2495A	1012010	Aug. 15, 2017	Aug. 14, 2018
Power Sensor Anritsu	MA2411B	1207333	Nov. 30, 2016	Nov. 29, 2017
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(R FC-SMS-100-SM S-120+RFC-SMS -100-SMS-400)	Jun. 23, 2017	Jun. 22, 2018
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(R FC-SMS-100-SM S-24)	Jun. 23, 2017	Jun. 22, 2018
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

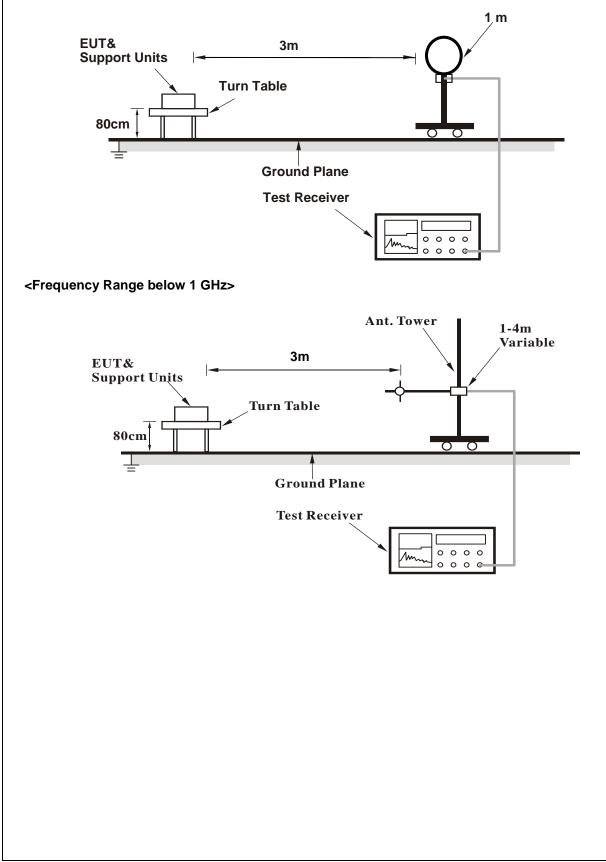
Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HsinTien Chamber 1.
- 3. The horn antenna and preamplifier (model: 83017A) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The IC Site Registration No. is IC7450I-1.

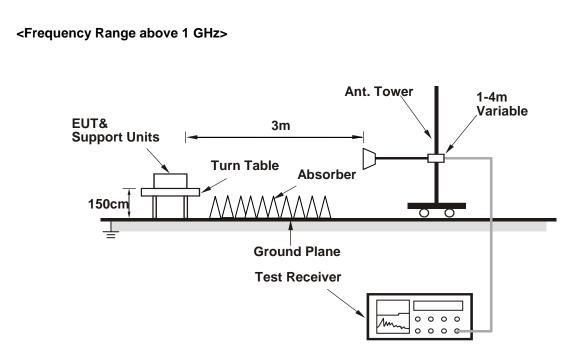
4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz & 360 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1/T for Average (Duty cycle < 98 %) detection at frequency above 1 GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.
- 4.1.4 Deviation from Test Standard

No deviation.

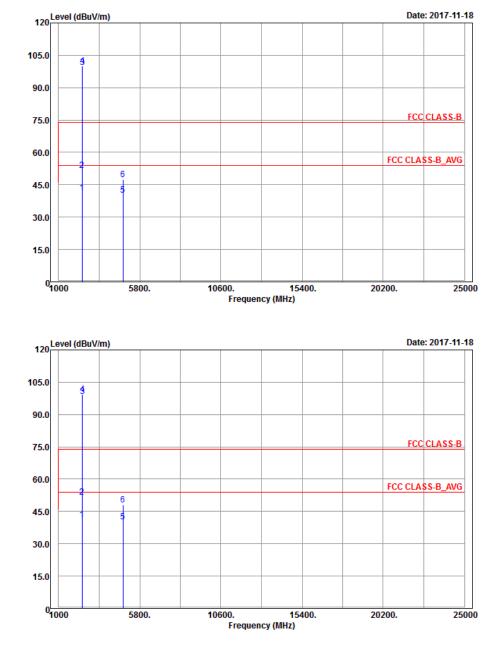


4.1.5 Test Set Up

<Radiated emission below 30 MHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

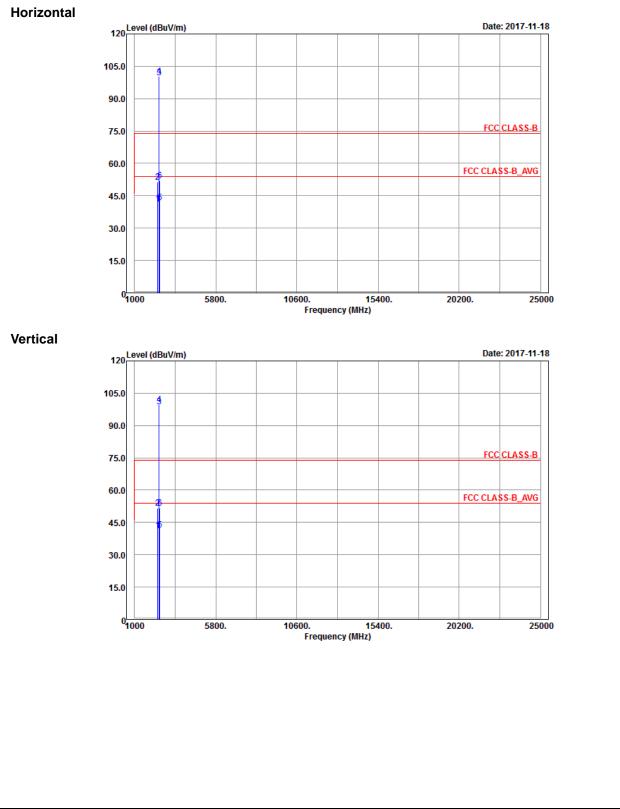

4.1.7 Test Results

Above 1 GHz Data:

EUT Test Condition		Measurement Detail			
Channel	channel 0		1 GHz ~ 25 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao		

Horizontal

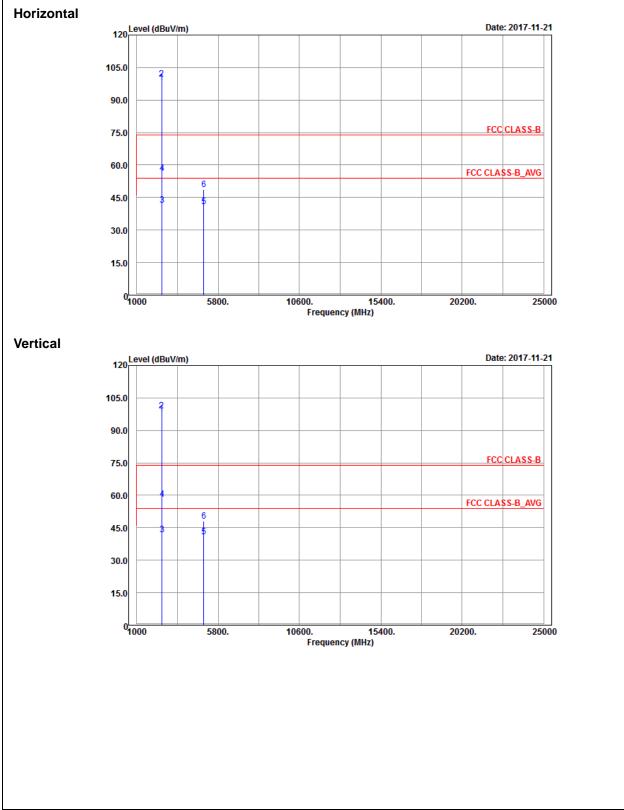
Vertical


	Antennal Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2378.76	41.25	39.59	54	-12.75	31.78	5.37	35.49	160	135	Average
2378.76	51.65	49.99	74	-22.35	31.78	5.37	35.49	160	135	Peak
2402	99.36	97.63			31.8	5.4	35.47	160	135	Average
2402	100.2	98.47			31.8	5.4	35.47	160	135	Peak
4804	40.24	32.15	54	-13.76	33.96	8.25	34.12	131	114	Average
4804	47.43	39.34	74	-26.57	33.96	8.25	34.12	131	114	Peak
		Α	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2389.92	41.06	39.33	54	-12.94	31.8	5.4	35.47	100	164	Average
2389.92	51.78	50.05	74	-22.22	31.8	5.4	35.47	100	164	Peak
2402	98.49	96.76			31.8	5.4	35.47	100	164	Average
2402	99.44	97.71			31.8	5.4	35.47	100	164	Peak
4804	40.26	32.17	54	-13.74	33.96	8.25	34.12	136	207	Average
4804	47.95	39.86	74	-26.05	33.96	8.25	34.12	136	207	Peak

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2402 MHz: Fundamental frequency.

EUT Test Condition		Measurement Detail		
Channel	Channel 19	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	


	Antennal Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2367.42	41.04	39.4	54	-12.96	31.76	5.37	35.49	160	135	Average
2367.42	51.43	49.79	74	-22.57	31.76	5.37	35.49	160	135	Peak
2440	99.74	97.89			31.85	5.46	35.46	160	135	Average
2440	100.27	98.42			31.85	5.46	35.46	160	135	Peak
2497.6	41.81	39.79	54	-12.19	31.9	5.53	35.41	160	135	Average
2497.6	51.98	49.96	74	-22.02	31.9	5.53	35.41	160	135	Peak
		A	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2368.59	41.14	39.48	54	-12.86	31.78	5.37	35.49	100	164	Average
2368.59	51.79	50.13	74	-22.21	31.78	5.37	35.49	100	164	Peak
2440	98.77	96.92			31.85	5.46	35.46	100	164	Average
2440	99.71	97.86			31.85	5.46	35.46	100	164	Peak
2494.84	41.5	39.48	54	-12.5	31.9	5.53	35.41	100	164	Average
2494.84	51.64	49.62	74	-22.36	31.9	5.53	35.41	100	164	Peak

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

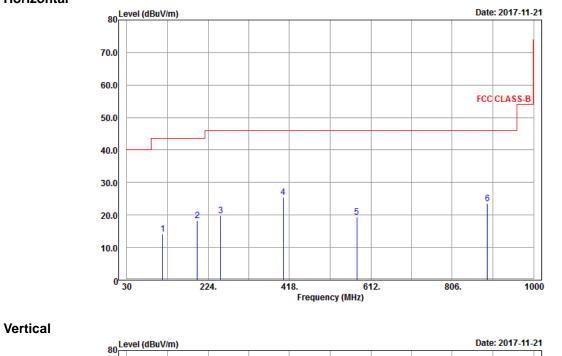
2. 2440 MHz: Fundamental frequency.

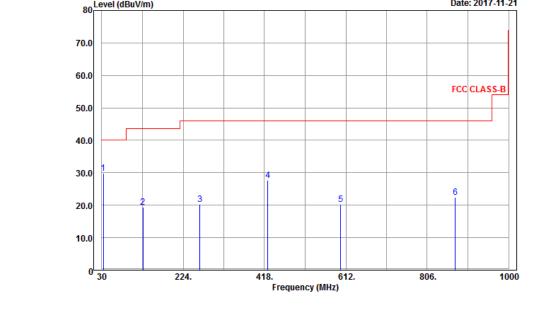
EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

	Antennal Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	98.2	96.24			31.88	5.5	35.42	100	194	Average
2480	99.57	97.61			31.88	5.5	35.42	100	194	Peak
2483.52	41.55	39.59	54	-12.45	31.88	5.5	35.42	100	194	Average
2483.52	56.4	54.44	74	-17.6	31.88	5.5	35.42	100	194	Peak
4960	40.97	32.7	54	-13.03	33.99	8.29	34.01	158	159	Average
4960	48.67	40.4	74	-25.33	33.99	8.29	34.01	158	159	Peak
		Α	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	97.88	95.92			31.88	5.5	35.42	101	169	Average
2480	98.94	96.98			31.88	5.5	35.42	101	169	Peak
2483.64	42	40.04	54	-12	31.88	5.5	35.42	101	169	Average
2483.64	58.26	56.3	74	-15.74	31.88	5.5	35.42	101	169	Peak
4960	40.77	32.5	54	-13.23	33.99	8.29	34.01	139	325	Average
4960	47.93	39.66	74	-26.07	33.99	8.29	34.01	139	325	Peak

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2480 MHz: Fundamental frequency.


9 kHz ~ 30 MHz Data:


The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30 MHz ~ 1 GHz Worst-Case Data:

EUT Test Condition		Measurement Detail			
Channel Channel 39		Frequency Range	30 MHz ~ 1 GHz		
Input Power	120 Vac, 60 Hz	Detector Flinction	Peak (PK) Quasi-peak (QP)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao		

Horizontal

		An	tennal Po	larity & T	est Dista	nce: Horiz	ontal at 3	8 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
115.59	14.24	33.91	43.5	-29.26	11.3	1.28	32.25	189	159	Peak
198.48	18.37	38	43.5	-25.13	11.05	1.61	32.29	110	161	Peak
253.83	19.9	37.67	46	-26.1	12.39	1.94	32.1	152	283	Peak
403.6	25.43	40.27	46	-20.57	15.04	2.34	32.22	150	223	Peak
578.6	19.39	31.15	46	-26.61	17.62	2.82	32.2	193	3	Peak
890.1	23.5	30.15	46	-22.5	21.4	3.49	31.54	180	187	Peak
		Α	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
33.51	29.8	49.47	40	-10.2	11.83	0.74	32.24	133	332	Peak
128.01	19.39	41.04	43.5	-24.11	9.2	1.38	32.23	189	99	Peak
264.36	20.35	37.96	46	-25.65	12.56	1.94	32.11	164	26	Peak
426	27.67	42.16	46	-18.33	15.28	2.41	32.18	142	9	Peak
599.6	20.29	31.69	46	-25.71	17.92	2.87	32.19	119	217	Peak
873.3	22.49	29.43	46	-23.51	21.27	3.44	31.65	183	20	Peak

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

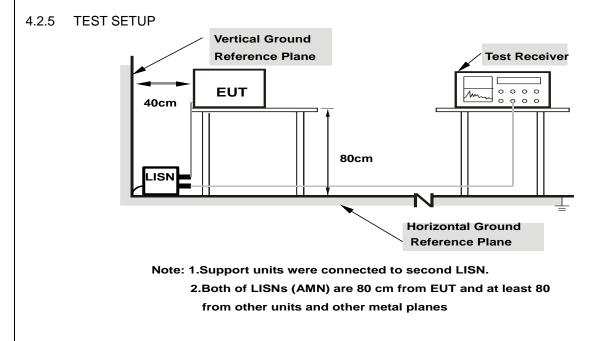
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 21, 2016	Nov. 20, 2017
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond1-01	Sep. 05, 2017	Sep. 04, 2018
LISN/AMN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Mar. 10, 2017	Mar. 09, 2018
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ENV216	101196	Apr. 20, 2017	Apr. 19, 2018
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: All modes of operation were investigated and the worst-case emissions are reported.

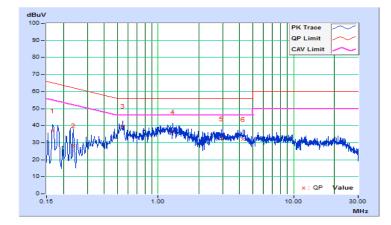
4.2.4 Deviation from Test Standard

No deviation.

- 4.2.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.2.7 Test Results

CONDUCTED WORST-CASE DATA

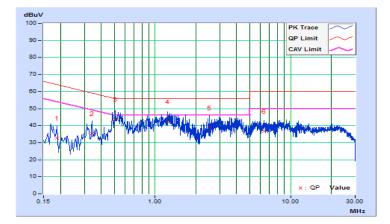

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Getaz Yang	Test Date	2017/11/15

	Phase Of Power : Line (L)										
	Frequency	Correction	Readin	Reading Value		Emission Level		nit	Margin		
No		Factor	(dB	(dBuV)		(dBuV)		uV)	(dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16569	10.39	26.65	13.44	37.04	23.83	65.17	55.17	-28.13	-31.34	
2	0.23602	10.40	18.03	6.05	28.43	16.45	62.24	52.24	-33.81	-35.79	
3	0.54882	10.41	29.24	19.65	39.65	30.06	56.00	46.00	-16.35	-15.94	
4	1.29172	10.43	25.90	19.01	36.33	29.44	56.00	46.00	-19.67	-16.56	
5	2.93783	10.51	21.98	15.70	32.49	26.21	56.00	46.00	-23.51	-19.79	
6	4.23986	10.57	21.41	15.20	31.98	25.77	56.00	46.00	-24.02	-20.23	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Getaz Yang	Test Date	2017/11/15

	Phase Of Power : Neutral (N)										
	Frequency	Correction	Readin	Reading Value		Emission Level		nit	Margin		
No		Factor	(dB	uV)	(dB	(dBuV)		(dBuV)		B)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.18903	10.16	22.64	12.15	32.80	22.31	64.08	54.08	-31.28	-31.77	
2	0.34159	10.17	25.16	16.88	35.33	27.05	59.16	49.16	-23.83	-22.11	
3	0.50972	10.17	33.67	22.35	43.84	32.52	56.00	46.00	-12.16	-13.48	
4	1.23715	10.20	32.20	23.28	42.40	33.48	56.00	46.00	-13.60	-12.52	
5	2.53119	10.26	28.55	20.04	38.81	30.30	56.00	46.00	-17.19	-15.70	
6	6.36690	10.43	26.40	18.00	36.83	28.43	60.00	50.00	-23.17	-21.57	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3.1 Limits of 6 dB Bandwidth Measurement

The minimum of 6 dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

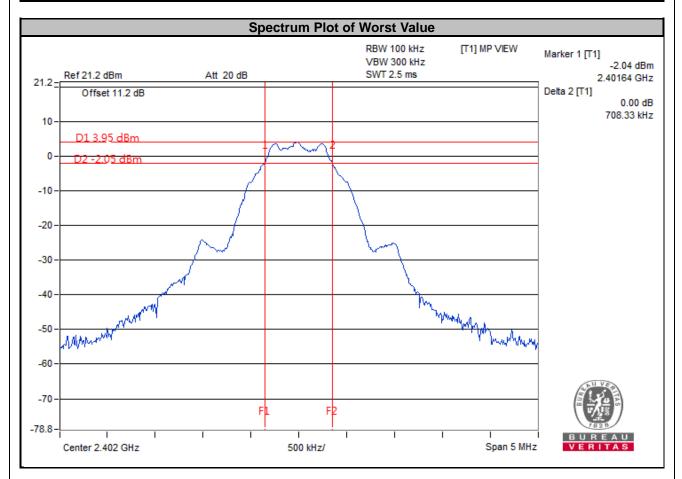
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100 kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation fromTest Standard

No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (MHz)	Frequency (MHz) 6 dB Bandwidth (MHz)		Pass / Fail
0	2402	0.70	0.5	Pass
19	2440	0.70	0.5	Pass
39	2480	0.68	0.5	Pass

4.4 Occupied Bandwidth Measurement

4.4.1 Test Setup

4.4.2 Test Instruments

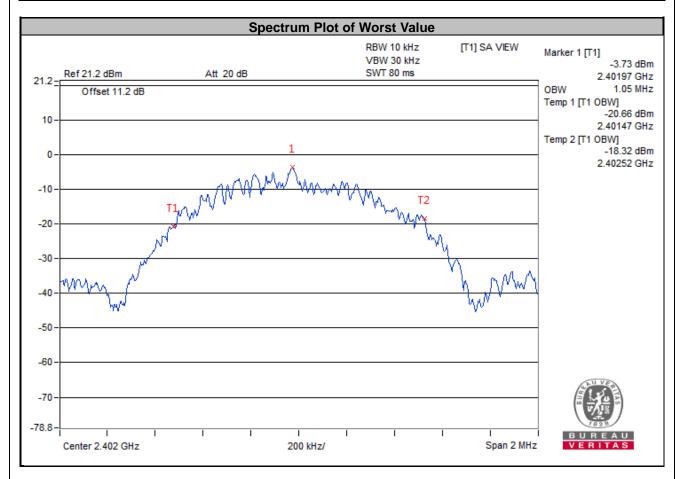
Refer to section 4.1.2 to get information of above instrument.

4.4.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1 % to 5 % of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to PEAK. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.4.4 Deviation From Test Standard

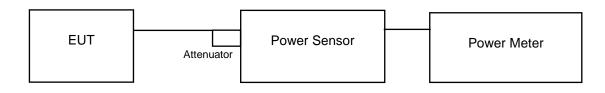
No deviation.


4.4.5 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.4.6 Test Results

Channel	Frequency (MHz)	Occupied Bandwidth (MHz)	Pass / Fail	
0	2402	1.05	Pass	
19	2440	1.05	Pass	
39	2480	1.05	Pass	



4.5 Conducted Output Power Measurement

4.5.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm)

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass / Fail
0	2402	3.631	5.60	30	Pass
19	2440	3.715	5.70	30	Pass
39	2480	4.14	6.17	30	Pass

4.6 Power Spectral Density Measurement

4.6.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8 dBm.

4.6.2 Test Setup

4.6.3 Test Instruments

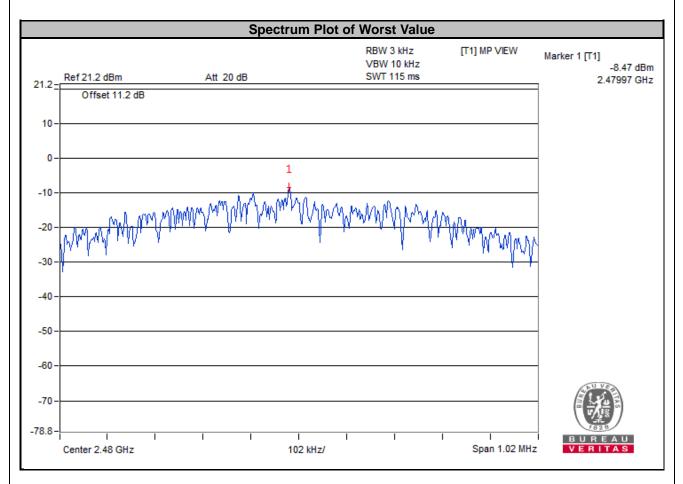
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

- a. Set the RBW = 3 kHz, VBW =10 kHz, Detector = peak.
- b. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- c. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

4.6.5 Deviation from Test Standard

No deviation.


4.6.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.6.7 Test Results

Channel	Frequency (MHz)	PSD (dBm/3 kHz)	Limit (dBm/3 kHz)	Pass / Fail
0	2402	-9.40	8	Pass
19	2440	-9.20	8	Pass
39	2480	-8.47	8	Pass

4.7 Conducted Out of Band Emission Measurement

4.7.1 Limits of Conducted Out of Band Emission Measurement

Below –20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

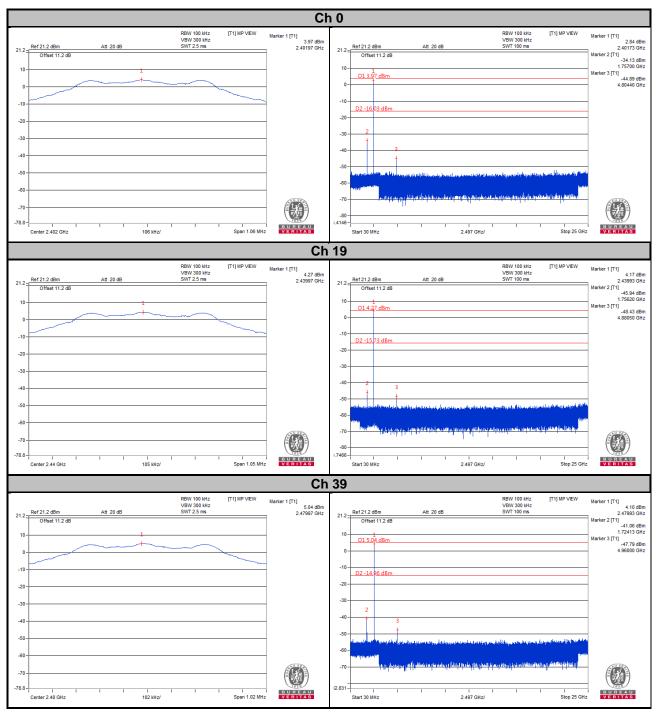
4.7.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.
- 4.7.5 Deviation from Test Standard


No deviation.

4.7.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.7.7 TEST RESULTS

	Ch 0 Band Edge					Ch 39 Band Edge			
Ref 21 2 dBm Offset 11 2 dB D1 3.97 dBm D2 -16.03 dBm	Att 20 d8	RBW 100 MHz VBW 300 MHz SIVT 10 ms		Marker 1 [71] 4.00 dBm 2.40200 GHz Marker 2 [71] -52.12 dBm 2.40000 GHz Harker 3 [71] 4.51.38 dBm 2.39903 GHz Marker 5 [71], 53.34 dBm 2.35383 GHz	21.2 10- 0- -10- -20- -30- -40-	21 2 dBm Offset 11 2 dB 1 1 5 04 dBm 1 4 96 dBm	Att 20 dB	RBW 100 Hrz [T1] MP VEW VBW 300 Hrz SWT 10 ms	Marker 1 [71] 2 47986 (Marker 2 [71] 2 46350 (Marker 2 [71] - 53,42 (2 46353 (Marker 3 [71] - 55,82 (2 55030 (2 55030 (
Center 2.355 GHz	2000 million by an international and the second	1 1 1	F2 F1		-50 -60 -70 -78.8	FL	2 10 M	არფი-რეთ-კარ-რო-იქტიკა-იქორებე-იკრარ 	BUREAU

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---