

### SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For

**Mobile Point of Sale Terminal** 

FCC ID: B32V200TPLUS Model Name: V200t Plus 3G/D/E

Report Number: 11616858-S1V3 Issue Date: 3/6/2018

Prepared for

VERIFONE INC 1400 WEST STANDFORD RANCH RD, SUITE 200 ROCKLIN, CA, 95765 USA

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888



# **Revision History**

| Rev. | Date       | Revisions                                                                                     | Revised By      |
|------|------------|-----------------------------------------------------------------------------------------------|-----------------|
| V1   | 12/14/2017 | Initial Issue                                                                                 |                 |
| V2   | 1/29/2018  | Section 6.1: Updated device dimensions Section 6.2: Updated table Section 10.5: Updated table | Coltyce Sanders |
| V3   | 3/6/2018   | Section 6.2: Updated table                                                                    | Kenneth Mak     |
|      |            |                                                                                               |                 |

### **Table of Contents**

| 1.   | Attestation of Test Results                     | 5  |
|------|-------------------------------------------------|----|
| 2.   | Test Specification, Methods and Procedures      | 6  |
| 3.   | Facilities and Accreditation                    | 6  |
| 4.   | SAR Measurement System & Test Equipment         | 7  |
| 4.1. |                                                 |    |
| 4.2  | SAR Scan Procedures                             | 8  |
| 4.3  | 3. Test Equipment                               | 10 |
| 5.   | Measurement Uncertainty                         | 10 |
| 6.   | Device Under Test (DUT) Information             | 11 |
| 6.1  | . DUT Description                               | 11 |
| 6.2  | . Wireless Technologies                         | 11 |
| 6.3  | 8. Maximum Output Power from Tune-up Procedure  | 12 |
| 7.   | RF Exposure Conditions (Test Configurations)    | 14 |
| 7.1. | . Standalone SAR Test Exclusion Considerations  | 14 |
| 7.2  | Required Test Configurations                    | 15 |
| 8.   | Dielectric Property Measurements & System Check | 16 |
| 8.1. | . Dielectric Property Measurements              | 16 |
| 8.2  | System Check                                    | 18 |
| 9.   | Conducted Output Power Measurements             | 19 |
| 9.1. | . GSM                                           | 19 |
| 9.2  | . W-CDMA                                        | 21 |
| 9.3  | 3. Wi-Fi 2.4GHz (DTS Band)                      | 24 |
| 9.4  | l. Wi-Fi 5GHz (U-NII Bands)                     | 25 |
| 9.5  | 5. Bluetooth                                    | 25 |
| 10.  | Measured and Reported (Scaled) SAR Results      | 26 |
| 10.  | 1. GSM 850 Measured SAR Results                 | 27 |
| 10.  | 2. GSM 1900 Measured SAR Results                | 27 |
| 10.  | 3. W-CDMA Band II Measured SAR Results          | 27 |
| 10.  | 4. W-CDMA Band V Measured SAR Results           | 27 |
| 10.  | 5. Wi-Fi 2.4GHz Measured SAR Results            | 27 |
| 11.  | SAR Measurement Variability                     | 28 |
| 12.  | Simultaneous Transmission SAR Analysis          | 28 |

| Appendixes                                                    | 29 |
|---------------------------------------------------------------|----|
| 11616858-S1V1 Appendix A: SAR Setup Photos                    | 29 |
| 11616858-S1V1 Appendix B: SAR System Check Plots              | 29 |
| 11616858-S1V1 Appendix C: Highest SAR Test Plots              | 29 |
| 11616858-S1V1 Appendix D: SAR Liquid Tissue Ingredients       | 29 |
| 11616858-S1V1 Appendix E: SAR Probe Calibration Certificates  | 29 |
| 11616858-S1V1 Appendix F: SAR Dipole Calibration Certificates | 29 |

### 1. Attestation of Test Results

| Applicant Name         Verifone Inc           FCC ID         B32V200TPLUS           Model Name         V200t Plus 3G/D/E           Applicable Standards         FCC 47 CFR § 2.1093                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                               |              |            |     |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------|--------------|------------|-----|--|--|
| Model Name  V200t Plus 3G/D/E  FCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013  SAR Limits (W/Kg)  Exposure Category  Peak spatial-average (1g of tissue)  General population / Uncontrolled exposure  RF Exposure Conditions  Equipment Class - Highest Reported SAR (W/kg)  PCB  DTS  NII  DSS  Extremity  2.547  0.334  N/A  N/A  Date Tested                                                                                                                                                                                                                               | Applicant Name         | Verifone Inc                                  |              |            |     |  |  |
| Applicable Standards  FCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013  SAR Limits (W/Kg)  Exposure Category  Peak spatial-average (10g of tissue)  General population / Uncontrolled exposure  RF Exposure Conditions  Equipment Class - Highest Reported SAR (W/kg)  PCB DTS NII DSS  Extremity  Date Tested  PCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013  SAR Limits (W/Kg)  Extremities (hands, wrists, ankles, etc.) (10g of tissue)  4  Equipment Class - Highest Reported SAR (W/kg)  PCB DTS NII DSS  Extremity  9/28/2017 to 11/2/2017 | FCC ID                 | B32V200TPLUS                                  | B32V200TPLUS |            |     |  |  |
| Applicable Standards  Published RF exposure KDB procedures IEEE Std 1528-2013  SAR Limits (W/Kg)  Exposure Category  Peak spatial-average (10g of tissue)  General population / (10g of tissue)  Equipment Class - Highest Reported SAR (W/kg)  PCB DTS NII DSS  Extremity  Date Tested  Published RF exposure KDB procedures  IEEE Std 1528-2013  SAR Limits (W/Kg)  Extremities (hands, wrists, ankles, etc.)  (10g of tissue)  Equipment Class - Highest Reported SAR (W/kg)  PCB DTS NII DSS  N/A  N/A  N/A                                                                                            | Model Name             | V200t Plus 3G/D/E                             |              |            |     |  |  |
| Exposure Category  Peak spatial-average (10g of tissue)  Extremities (hands, wrists, ankles, etc.)  Ceneral population / Uncontrolled exposure  RF Exposure Conditions  Equipment Class - Highest Reported SAR (W/kg)  PCB DTS NII DSS  Extremity  Date Tested  Peak spatial-average (10g of tissue)  A  Uncontrolled exposure  Oncomparity  Date Tested                                                                                                                                                                                                                                                   | Applicable Standards   | Published RF exposure KDB procedures          |              |            |     |  |  |
| (1g of tissue)         (10g of tissue)           General population / Uncontrolled exposure         1.6         4           Equipment Class - Highest Reported SAR (W/kg)           PCB         DTS         NII         DSS           Extremity         2.547         0.334         N/A         N/A           Date Tested         9/28/2017 to 11/2/2017                                                                                                                                                                                                                                                   |                        |                                               | SAR Lim      | its (W/Kg) |     |  |  |
| Uncontrolled exposure           Equipment Class - Highest Reported SAR (W/kg)           PCB DTS NII DSS           Extremity         2.547         0.334         N/A         N/A           Date Tested         9/28/2017 to 11/2/2017                                                                                                                                                                                                                                                                                                                                                                       | Exposure Category      |                                               |              |            |     |  |  |
| PCB         DTS         NII         DSS           Extremity         2.547         0.334         N/A         N/A           Date Tested         9/28/2017 to 11/2/2017                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 1.                                            | 6            | 4          | 4   |  |  |
| PCB DTS NII DSS  Extremity 0.334 N/A N/A  Date Tested 9/28/2017 to 11/2/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DE Evenouse Conditions | Equipment Class - Highest Reported SAR (W/kg) |              |            |     |  |  |
| Date Tested 9/28/2017 to 11/2/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RF Exposure Conditions | PCB                                           | DTS          | NII        | DSS |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Extremity              | 2.547 0.334 N/A N/A                           |              |            |     |  |  |
| Test Results Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date Tested            | 9/28/2017 to 11/2/2017                        |              |            |     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test Results           | est Results Pass                              |              |            |     |  |  |

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

| Approved & Released By:       | Prepared By:                  |  |  |  |
|-------------------------------|-------------------------------|--|--|--|
| JenCung                       | Keneth C Mak                  |  |  |  |
| Devin Chang                   | Kenneth C. Mak                |  |  |  |
| Senior Engineer               | Engineer                      |  |  |  |
| UL Verification Services Inc. | UL Verification Services Inc. |  |  |  |

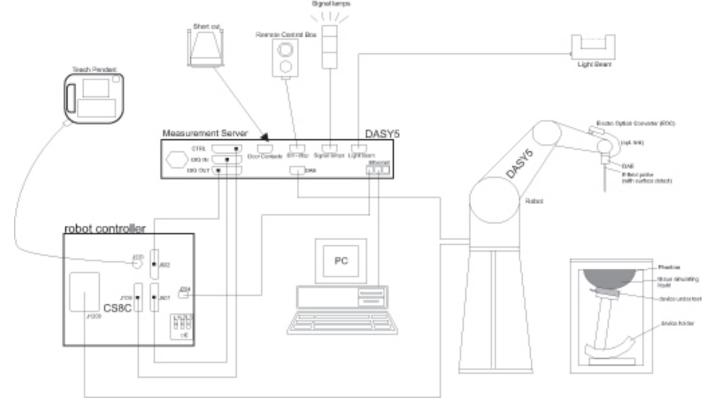
# 2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- o 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01

### 3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at


| 47173 Benicia Street | 47266 Benicia Street |
|----------------------|----------------------|
| SAR Lab A            | SAR Lab 1            |
| SAR Lab B            | SAR Lab 2            |
| SAR Lab C            | SAR Lab 3            |
| SAR Lab D            | SAR Lab 4            |
| SAR Lab E            |                      |
| SAR Lab F            |                      |
| SAR Lab G            |                      |
| SAR Lab H            |                      |

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

## 4. SAR Measurement System & Test Equipment

### 4.1.SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:



- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

#### 4.2.SAR Scan Procedures

### **Step 1: Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

#### Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

|                                                                                                        | ≤ 3 GHz                                                                                                                                                                                                                                                                | > 3 GHz                                                                          |  |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm                                                                                                                                                                                                                                                               | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$                       |  |
| Maximum probe angle from probe axis to phantom surface normal at the measurement location              | 30° ± 1°                                                                                                                                                                                                                                                               | 20° ± 1°                                                                         |  |
|                                                                                                        | ≤ 2 GHz: ≤ 15 mm<br>2 – 3 GHz: ≤ 12 mm                                                                                                                                                                                                                                 | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$<br>$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ |  |
| Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$                            | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be $\leq$ the corresponding x or y dimension of the test device with at least one measurement point on the test device. |                                                                                  |  |

#### Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

|                                                                             |                                                                                                                                                                                                                      |                                          | ≤3 GHz                                                                                                                     | > 3 GHz                                                                                                                      |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Maximum zoom scan spatial resolution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$ |                                                                                                                                                                                                                      |                                          | $\leq$ 2 GHz: $\leq$ 8 mm<br>2 – 3 GHz: $\leq$ 5 mm <sup>*</sup>                                                           | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$                                         |
|                                                                             | uniform grid: $\Delta z_{Zoom}(n)$                                                                                                                                                                                   |                                          | ≤ 5 mm                                                                                                                     | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$<br>$4 - 5 \text{ GHz: } \le 3 \text{ mm}$<br>$5 - 6 \text{ GHz: } \le 2 \text{ mm}$   |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface    | $\begin{array}{c} \Delta Z_{Zoom}(1)\text{: between} \\ 1^{st} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta Z_{Zoom}(n>1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$ | 1st two points closest                   | ≤ 4 mm                                                                                                                     | $3 - 4 \text{ GHz: } \le 3 \text{ mm}$<br>$4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$<br>$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ |
|                                                                             |                                                                                                                                                                                                                      | $\leq 1.5 \cdot \Delta z_{Z_{00m}}(n-1)$ |                                                                                                                            |                                                                                                                              |
| Minimum zoom scan<br>volume                                                 | x, y, z                                                                                                                                                                                                              |                                          | $3 - 4 \text{ GHz}$ : $\geq 28$<br>$\geq 30 \text{ mm}$ $4 - 5 \text{ GHz}$ : $\geq 25$<br>$5 - 6 \text{ GHz}$ : $\geq 22$ |                                                                                                                              |

Note:  $\delta$  is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

#### Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

### Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

### 4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

**Dielectric Property Measurements** 

| Name of Equipment    | Manufacturer    | Type/Model    | Serial No.    | Cal. Due Date |
|----------------------|-----------------|---------------|---------------|---------------|
| PNA Network Analyzer | Keysight        | N5227A        | US51270480    | 7/27/2018     |
| Network Analyzer     | Keysight        | 8753ES        | MY40001647    | 9/15/2018     |
| Dielectric Probe kit | SPEAG           | DAK-3.5       | 1087          | 11/8/2017     |
| Shorting block       | SPEAG           | DAK-3.5 Short | SM DAK 200 BA | 11/8/2017     |
| Thermometer          | Control Company | Traceable     | 170064398     | 1/30/2018     |

**System Check** 

| Name of Equipment            | Manufacturer Type/Model |                        | Serial No. | Cal. Due Date |  |
|------------------------------|-------------------------|------------------------|------------|---------------|--|
| Synthesized Signal Generator | Agilent                 | N5181A                 | MY50140630 | 5/16/2018     |  |
| Power Meter                  | HP                      | 437B                   | 3125U12345 | 8/10/2018     |  |
| Power Meter                  | HP                      | 437B                   | 3125U11347 | 8/15/2018     |  |
| Power Sensor                 | HP                      | 8481A                  | 3318A92374 | 8/15/2018     |  |
| Power Sensor                 | HP                      | 8482A                  | 2349A08568 | 12/5/2017     |  |
| Amplifier                    | MITEQ                   | AMF-4D-00400600-50-30P | 1622052    | N/A           |  |
| Directional coupler          | Werlatone               | C8060-102              | 2141       | N/A           |  |
| DC Power Supply              | Xantrex                 | XHR 60-18              | 27519      | N/A           |  |

Lab Equipment

| Name of Equipment                        | Manufacturer | Type/Model | Serial No. | Cal. Due Date |
|------------------------------------------|--------------|------------|------------|---------------|
| E-Field Probe (SAR Lab A)                | SPEAG        | EX3DV4     | 7463       | 7/5/2018      |
| E-Field Probe (SAR Lab B)                | SPEAG        | EX3DV4     | 7335       | 3/15/2018     |
| Data Acquisition Electronics (SAR Lab A) | SPEAG        | DAE4       | 1434       | 4/19/2018     |
| Data Acquisition Electronics (SAR Lab B) | SPEAG        | DAE4       | 1380       | 7/24/2018     |
| System Validation Dipole                 | SPEAG        | D835V2     | 4d117      | 5/22/2018     |
| System Validation Dipole                 | SPEAG        | D1900V2    | 5d140      | 4/19/2018     |
| System Validation Dipole                 | SPEAG        | D2450V2    | 748        | 2/8/2018      |
| Thermometer (SAR A)                      | Traceable    | 14-650-118 | 160643193  | 7/31/2018     |
| Thermometer (SAR B)                      | EXTECH       | 445703     | T1441      | 4/4/2018      |

<u>Other</u>

| Name of Equipment      | Manufacturer | Type/Model | T Number | Serial No. | Cal. Due Date |
|------------------------|--------------|------------|----------|------------|---------------|
| Power Meter            | Keysight     | N1911A     | T1244    | MY55196008 | 5/12/2018     |
| Power Sensor           | Keysight     | N1921A     | T308     | MY52260009 | 1/5/2018      |
| Base Station Simulator | R&S          | CMW500     | T958     | 134855     | 6/12/2018     |

#### Note

# 5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Page 10 of 29

<sup>\*</sup>Equipment not used past calibration date

# 6. Device Under Test (DUT) Information

# **6.1.DUT Description**

| Device Dimension        | Overall (Length x Width x<br>Overall Diagonal: 198 mm<br>Display Diagonal: 72 mm | Height): 185 mm x 78 mm      | x 54 mm            |
|-------------------------|----------------------------------------------------------------------------------|------------------------------|--------------------|
| Back Cover              |                                                                                  |                              |                    |
| Battery Options         | Standard – Lithium-ion                                                           | pattery, Rating 8.0Vdc, 6.4W | 'h                 |
|                         | S/N                                                                              | IMEI                         | Notes              |
| Test sample information | 401-431-560                                                                      | N/A                          | SAR Conducted unit |
|                         | 401-431-540                                                                      | N/A                          | SAR Radiated unit  |
| Hardware Version        | DVT2                                                                             |                              |                    |
| Software Version        | 30640xxx                                                                         | ·                            |                    |

# 6.2. Wireless Technologies

| Wireless technologies | Frequency bands            | Oper                                                                                                    | rating Mode                                                                                                                    | Duty Cycle used for SAR testing                                                              |
|-----------------------|----------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| GSM                   | 850<br>1900                | GPRS (GMSK) EGPRS (8PSK)                                                                                | GPRS Multi-Slot Class:  ☐ Class 8 - 1 Up, 4 Down ☐ Class 10 - 2 Up, 4 Down ☐ Class 12 - 4 Up, 4 Down ☐ Class 33 - 4 Up, 5 Down | GSM Voice: 12.5%<br>(E)GPRS: 1 Slot: 12.5%<br>2 Slots: 25%<br>3 Slots: 37.5%<br>4 Slots: 50% |
| W-CDMA (UMTS)         | Band II Band V             | DTM (Dual Transfer Mode)?  UMTS Rel. 99 (Voice & Da  HSDPA (Rel. 5)  HSUPA (Rel. 6)                     |                                                                                                                                | 100%                                                                                         |
|                       | 2.4 GHz                    | 802.11b<br>802.11g<br>802.11n (HT20)                                                                    |                                                                                                                                | 98.9% (802.11b)<br>93.3% (802.11g/n 20MHz BW)<br>92.9% (802.11n 20MHz BW)                    |
| Wi-Fi                 | 5 GHz                      | 802.11a<br>802.11n (HT20)<br>802.11n (HT40)<br>802.11ac (VHT20)<br>802.11ac (VHT40)<br>802.11ac (VHT80) |                                                                                                                                | N/A <sup>1</sup>                                                                             |
|                       | Does this device support b | ands 5.60 ~ 5.65 GHz? ⊠ Y                                                                               | ∕es □ No                                                                                                                       |                                                                                              |
|                       | Does this device support B | Band gap channel? $\square$ Yes $\boxtimes$                                                             | 3 No                                                                                                                           |                                                                                              |
| Bluetooth             | 2.4 GHz                    | Version 4.1 LE                                                                                          |                                                                                                                                | N/A <sup>1</sup>                                                                             |

#### Note(s):

1. Wi-Fi 5GHz and Bluetooth qualify for SAR Test exclusion. Refer to §7.1 for SAR Test Exclusion Considerations.

## 6.3. Maximum Output Power from Tune-up Procedure

### Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

| RF Air interface | Mode       | Time  | Max. RF Outpu | ut Power (dBm) |
|------------------|------------|-------|---------------|----------------|
| TO All Interlace | Wode       | Slots | Tune-up Limit | Frame Pwr      |
|                  | Voice/GPRS | 1     | 33.5          | 24.47          |
|                  | GPRS       | 2     | 30.5          | 24.48          |
|                  | GPRS       | 3     | 28.5          | 24.24          |
| GSM850           | GPRS       | 4     | 27.5          | 24.49          |
| GSIVIOSU         | EGPRS      | 1     | 27.5          | 18.47          |
|                  | EGPRS      | 2     | 24.5          | 18.48          |
|                  | EGPRS      | 3     | 23.0          | 18.74          |
|                  | EGPRS      | 4     | 21.5          | 18.49          |
|                  | Voice/GPRS | 1     | 30.5          | 21.47          |
|                  | GPRS       | 2     | 27.5          | 21.48          |
|                  | GPRS       | 3     | 25.0          | 20.74          |
| GSM1900          | GPRS       | 4     | 24.5          | 21.49          |
| G3W1900          | EGPRS      | 1     | 26.5          | 17.47          |
|                  | EGPRS      | 2     | 23.5          | 17.48          |
|                  | EGPRS      | 3     | 22.0          | 17.74          |
|                  | EGPRS      | 4     | 20.5          | 17.49          |

| RF Air interface | Mo    | ode       | Max. RF Output Power (dBm) |
|------------------|-------|-----------|----------------------------|
|                  | Relea | se 99     | 23.5                       |
|                  |       | Subtest 1 | 23.5                       |
|                  | HSDPA | Subtest 2 | 23.5                       |
|                  | HODPA | Subtest 3 | 23.0                       |
| W-CDMA           |       | Subtest 4 | 23.0                       |
| Band II          |       | Subtest 1 | 23.5                       |
|                  |       | Subtest 2 | 21.5                       |
|                  | HSUPA | Subtest 3 | 22.5                       |
|                  |       | Subtest 4 | 21.5                       |
|                  |       | Subtest 5 | 23.5                       |
|                  | Relea | se 99     | 24.0                       |
|                  |       | Subtest 1 | 24.0                       |
|                  | HSDPA | Subtest 2 | 24.0                       |
|                  | HSDFA | Subtest 3 | 23.5                       |
| W-CDMA           |       | Subtest 4 | 23.5                       |
| Band V           |       | Subtest 1 | 24.0                       |
|                  |       | Subtest 2 | 22.0                       |
|                  | HSUPA | Subtest 3 | 23.0                       |
|                  |       | Subtest 4 | 22.0                       |
|                  |       | Subtest 5 | 24.0                       |

## **Maximum Output Power from Tune-up Procedure (continued):**

| RF Air interface | Mode           | Max. RF Output<br>Pow er (dBm) |
|------------------|----------------|--------------------------------|
|                  | 802.11b        | 17.5                           |
| WiFi 2.4 GHz     | 802.11g        | 14.0                           |
|                  | 802.11n HT20   | 13.0                           |
|                  | 802.11a        | 10.0                           |
|                  | 802.11n HT20   | 9.75                           |
| WEE: E 2 OL F    | 802.11n HT40   | 9.75                           |
| WiFi 5.2 GHz     | 802.11ac VHT20 | 9.75                           |
|                  | 802.11ac VHT40 | 9.75                           |
|                  | 802.11ac VHT80 | 9.75                           |
|                  | 802.11a        | 10.0                           |
|                  | 802.11n HT20   | 9.75                           |
| WiFi 5.3 GHz     | 802.11n HT40   | 9.75                           |
| WIFI 5.5 GHZ     | 802.11ac VHT20 | 9.75                           |
|                  | 802.11ac VHT40 | 9.75                           |
|                  | 802.11ac VHT80 | 9.75                           |
|                  | 802.11a        | 10.5                           |
|                  | 802.11n HT20   | 10.25                          |
| WiFi 5.6 GHz     | 802.11n HT40   | 10.25                          |
| WII 1 3.0 GI IZ  | 802.11ac VHT20 | 10.25                          |
|                  | 802.11ac VHT40 | 10.25                          |
|                  | 802.11ac VHT80 | 10.25                          |
|                  | 802.11a        | 10.5                           |
|                  | 802.11n HT20   | 10.25                          |
| WiFi 5.8 GHz     | 802.11n HT40   | 10.25                          |
| VVII 1 3.0 G1 IZ | 802.11ac VHT20 | 10.25                          |
|                  | 802.11ac VHT40 | 10.25                          |
|                  | 802.11ac VHT80 | 10.25                          |
| Blu              | etooth         | 7.5                            |
| Bluet            | ooth LE        | 5.0                            |

# 7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

#### 7.1. Standalone SAR Test Exclusion Considerations

Since the *Dedicated Host Approach* is applied, the standalone SAR test exclusion procedure in KDB 447498 § 4.3.1 is applied to determine the minimum test separation distance:

- When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.
- When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge separation distance is applied to determine SAR test exclusion.

#### **SAR Test Exclusion Calculations for WWAN**

Antennas < 50mm to adjacent edges

| Antenna | Tx           | Frequency | Output | Power |      | Separation Distances (mm) |        |        |              |        | Calculated Threshold Value |                   |         |                   |                  |                   |                       |                   |
|---------|--------------|-----------|--------|-------|------|---------------------------|--------|--------|--------------|--------|----------------------------|-------------------|---------|-------------------|------------------|-------------------|-----------------------|-------------------|
| Antenna | Interface    | (MHz)     | dBm    | mW    | Rear | Edge 1                    | Edge 2 | Edge 3 | Edge 3 Slant | Edge 4 | Front                      | Rear              | Edge 1  | Edge 2            | Edge 3           | Edge 3 Slant      | Edge 4                | Front             |
| WWAN    | GPRS 4 Slots | 848.8     | 27.50  | 281   | 5.00 | 174.92                    | 17.70  | 2.98   | 2.98         | 10.41  | 10.00                      | 518<br>-MEASURE-  | > 50 mm | 14.4<br>-MEASURE- | 518<br>-MEASURE- | 518<br>-MEASURE-  | 25.9<br>-MEASURE-     | 25.9<br>-MEASURE- |
| WWAN    | GPRS 4 Slots | 1909.8    | 24.50  | 141   | 5.00 | 174.92                    | 17.70  | 2.98   | 2.98         | 10.41  | 10.00                      | 39<br>-MEASURE-   | > 50 mm | 10.8<br>-MEASURE- | 39<br>-MEASURE-  | 39<br>-MEASURE-   | 19.5<br>-MEASURE-     | 19.5<br>-MEASURE- |
| WWAN    | W-CDMA 2     | 1907.6    | 23.50  | 224   | 5.00 | 174.92                    | 17.70  | 2.98   | 2.98         | 10.41  | 10.00                      | 619<br>-MEASURE-  | > 50 mm | 17.2<br>-MEASURE- | 619<br>-MEASURE- | 619<br>-MEASURE-  | 30.9<br>-MEASURE-     | 30.9<br>-MEASURE- |
| WWAN    | W-CDMA 5     | 846.6     | 24.00  | 251   | 5.00 | 174.92                    | 17.70  | 2.98   | 2.98         | 10.41  | 10.00                      | 46.2<br>-MEASURE- | > 50 mm | 12.8<br>-MEASURE. | 46.2             | 46.2<br>-MEASURE- | 23.1<br>.M E A SUR E. | 23.1<br>-MEASURE- |

#### Note(s):

According to KDB 447498, if the calculated threshold value is >7.5 then SAR testing is required.

Antennas > 50mm to adjacent edges

| Antenna | Tx              | Frequency | Output | Power |      |        | Separa | ation Dist | ances (mm)   |        |       | Calculated Threshold Value |                       |         |         |              |         |         |
|---------|-----------------|-----------|--------|-------|------|--------|--------|------------|--------------|--------|-------|----------------------------|-----------------------|---------|---------|--------------|---------|---------|
| Antenna | Interface (MHz) |           | dBm    | mW    | Rear | Edge 1 | Edge 2 | Edge 3     | Edge 3 Slant | Edge 4 | Front | Rear                       | Edge 1                | Edge 2  | Edge 3  | Edge 3 Slant | Edge 4  | Front   |
| WWAN    | GPRS 4 Slots    | 848.8     | 27.50  | 281   | 5.00 | 174.92 | 17.70  | 2.98       | 2.98         | 10.41  | 10.00 | < 50 mm                    | 869.7 mW<br>-EXEMPT-  | < 50 mm | < 50 mm | < 50 mm      | < 50 mm | < 50 mm |
| WWAN    | GPRS 4 Slots    | 1909.8    | 24.50  | 141   | 5.00 | 174.92 | 17.70  | 2.98       | 2.98         | 10.41  | 10.00 | < 50 mm                    | 1357.7 mW<br>-EXEMPT- | < 50 mm | < 50 mm | < 50 mm      | < 50 mm | < 50 mm |
| WWAN    | W-CDMA 2        | 1907.6    | 23.50  | 224   | 5.00 | 174.92 | 17.70  | 2.98       | 2.98         | 10.41  | 10.00 | < 50 mm                    | 1357.8 mW<br>-EXEMPT- | < 50 mm | < 50 mm | < 50 mm      | < 50 mm | < 50 mm |
| WWAN    | W-CDMA 5        | 846.6     | 24.00  | 251   | 5.00 | 174.92 | 17.70  | 2.98       | 2.98         | 10.41  | 10.00 | < 50 mm                    | 868.1mW<br>-EXEMPT-   | < 50 mm | < 50 mm | < 50 mm      | < 50 mm | < 50 mm |

#### Note(s):

According to KDB 447498, if the calculated Power threshold is less than the output power then SAR testing is required.

### **SAR Test Exclusion Calculations for WLAN**

Antennas < 50mm to adjacent edges

| Antenna | Tx            | Frequency | Output | Power | Separation Distances (mm) |        |        |        |              |                      |       | Calculated Threshold Value |         |                 |                  |                  |         |                  |  |
|---------|---------------|-----------|--------|-------|---------------------------|--------|--------|--------|--------------|----------------------|-------|----------------------------|---------|-----------------|------------------|------------------|---------|------------------|--|
| Antenna | Interface     | (MHz)     | dBm    | mW    | Rear                      | Edge 1 | Edge 2 | Edge 3 | Edge 3 Slant | Slant Edge 4 Front F |       | Rear                       | Edge 1  | Edge 2          | Edge 3           | Edge 3 Slant     | Edge 4  | Front            |  |
| WLAN    | Wi-Fi 2.4 GHz | 2462      | 17.50  | 56    | 5.00                      | 153.85 | 8.16   | 10.15  | 10.15        | 69.94                | 10.00 | 17.6<br>-MEASURE-          | > 50 mm | 11<br>-MEASURE- | 8.8<br>-MEASURE- | 8.8<br>-MEASURE- | > 50 mm | 8.8<br>-MEASURE- |  |
| WLAN    | Wi-Fi 5.2 GHz | 5240      | 10.00  | 10    | 5.00                      | 153.85 | 8.16   | 10.15  | 10.15        | 69.94                | 10.00 | 4.6<br>-EXEMPT-            | > 50 mm | 2.9<br>-EXEMPT- | 2.3<br>-EXEMPT-  | 2.3<br>-EXEMPT-  | > 50 mm | 2.3<br>-EXEM PT- |  |
| WLAN    | Wi-Fi 5.3 GHz | 5320      | 10.00  | 10    | 5.00                      | 153.85 | 8.16   | 10.15  | 10.15        | 69.94                | 10.00 | 4.6<br>-EXEMPT-            | > 50 mm | 2.9<br>-EXEMPT- | 2.3<br>-EXEMPT-  | 2.3<br>-EXEMPT-  | > 50 mm | 2.3<br>-EXEMPT-  |  |
| WLAN    | Wi-Fi 5.5 GHz | 5700      | 10.50  | 11    | 5.00                      | 153.85 | 8.16   | 10.15  | 10.15        | 69.94                | 10.00 | 5.3<br>-EXEMPT-            | > 50 mm | 3.3<br>-EXEMPT- | 2.6<br>-EXEMPT-  | 2.6<br>-EXEMPT-  | > 50 mm | 2.6<br>-EXEMPT-  |  |
| WLAN    | Wi-Fi 5.8 GHz | 5825      | 10.50  | 11    | 5.00                      | 153.85 | 8.16   | 10.15  | 10.15        | 69.94                | 10.00 | 5.3<br>-EXEMPT-            | > 50 mm | 3.3<br>-EXEMPT- | 2.7<br>-EXEMPT-  | 2.7<br>-EXEMPT-  | > 50 mm | 2.7<br>-EXEMPT-  |  |
| WLAN    | Bluetooth     | 2480      | 7.50   | 6     | 5.00                      | 153.85 | 8.16   | 10.15  | 10.15        | 69.94                | 10.00 | 19<br>-EXEMPT-             | > 50 mm | 12<br>-EXEMPT-  | 0.9<br>-EXEMPT-  | 0.9<br>-EXEMPT-  | > 50 mm | 0.9<br>-EXEMPT-  |  |

### Note(s):

According to KDB 447498, if the calculated threshold value is >7.5 then SAR testing is required.

Antennas > 50mm to adjacent edges

| Antenna | Tx            | Frequency | Output | Power | Separation Distances (mm) |        |                                     |        |       |       |            | Calculated Threshold Value |                       |              |         |         |                       |         |
|---------|---------------|-----------|--------|-------|---------------------------|--------|-------------------------------------|--------|-------|-------|------------|----------------------------|-----------------------|--------------|---------|---------|-----------------------|---------|
| Antenna | Interface     | (MHz)     | dBm    | mW    | Rear                      | Edge 1 | dge 1 Edge 2 Edge 3 Edge 3 Slant Ed | Edge 4 | Front | Rear  | Rear Slant | Edge 2                     | Edge 3                | Edge 3 Slant | Edge 4  | Front   |                       |         |
| WLAN    | Wi-Fi 2.4 GHz | 2462      | 17.50  | 56    | 5.00                      | 153.85 | 8.16                                | 10.15  | 10.15 | 69.94 | 10.00      | < 50 mm                    | 1134.1mW<br>-EXEMPT-  | < 50 mm      | < 50 mm | < 50 mm | 295 mW<br>-EXEMPT-    | < 50 mm |
| WLAN    | Wi-Fi 5.2 GHz | 5240      | 10.00  | 10    | 5.00                      | 153.85 | 8.16                                | 10.15  | 10.15 | 69.94 | 10.00      | < 50 mm                    | 1104 mW<br>-EXEMPT-   | < 50 mm      | < 50 mm | < 50 mm | 264.9 mW<br>-EXEMPT-  | < 50 mm |
| WLAN    | Wi-Fi 5.3 GHz | 5320      | 10.00  | 10    | 5.00                      | 153.85 | 8.16                                | 10.15  | 10.15 | 69.94 | 10.00      | < 50 mm                    | 1103.5 mW<br>-EXEMPT- | < 50 mm      | < 50 mm | < 50 mm | 264.4 mW<br>-EXEMPT-  | < 50 mm |
| WLAN    | Wi-Fi 5.5 GHz | 5700      | 10.50  | 11    | 5.00                      | 153.85 | 8.16                                | 10.15  | 10.15 | 69.94 | 10.00      | < 50 mm                    | 1101.3 mW<br>-EXEMPT- | < 50 mm      | < 50 mm | < 50 mm | 262.2 mW<br>-EXEMPT-  | < 50 mm |
| WLAN    | Wi-Fi 5.8 GHz | 5825      | 10.50  | 11    | 5.00                      | 153.85 | 8.16                                | 10.15  | 10.15 | 69.94 | 10.00      | < 50 mm                    | 1100.7 mW<br>-EXEMPT- | < 50 mm      | < 50 mm | < 50 mm | 2616 mW<br>-EXEMPT-   | < 50 mm |
| WLAN    | Bluetooth     | 2480      | 7.50   | 6     | 5.00                      | 153.85 | 8.16                                | 10.15  | 10.15 | 69.94 | 10.00      | < 50 mm                    | 1133.8 mW<br>-EXEMPT- | < 50 mm      | < 50 mm | < 50 mm | 294.7 mW<br>-EXEM PT- | < 50 mm |

#### Note(s):

According to KDB 447498, if the calculated Power threshold is less than the output power then SAR testing is required.

### 7.2. Required Test Configurations

The table below identifies the standalone test configurations required for this device according to the findings in Section 7.1:

| Antenna | Test Configurations | Rear | Edge 1     | Edge 2       | Edge 3        | Edge 3 Slant  | Edge 4      | Front |
|---------|---------------------|------|------------|--------------|---------------|---------------|-------------|-------|
| Antenna | rest Configurations | Real | (Top Edge) | (Right Edge) | (Bottom Edge) | (Bottom Edge) | (Left Edge) | FIOIL |
|         | GSM 850             | Yes  | No         | Yes          | Yes           | Yes           | Yes         | Yes   |
| WWAN    | GSM 1900            | Yes  | No         | Yes          | Yes           | Yes           | Yes         | Yes   |
| VVVVAIN | W-CDMA Band 2       | Yes  | No         | Yes          | Yes           | Yes           | Yes         | Yes   |
|         | W-CDMA Band 5       | Yes  | No         | Yes          | Yes           | Yes           | Yes         | Yes   |
|         | Wi-Fi 2.4 GHz       | Yes  | No         | Yes          | Yes           | Yes           | No          | Yes   |
|         | Wi-Fi 5.2 GHz       | No   | No         | No           | No            | No            | No          | No    |
| WLAN    | Wi-Fi 5.3 GHz       | No   | No         | No           | No            | No            | No          | No    |
| WLAIN   | Wi-Fi 5.6 GHz       | No   | No         | No           | No            | No            | No          | No    |
|         | Wi-Fi 5.8 GHz       | No   | No         | No           | No            | No            | No          | No    |
|         | Bluetooth           | No   | No         | No           | No            | No            | No          | No    |

### Note(s):

Yes = Testing is required.

No = Testing is not required.

# 8. Dielectric Property Measurements & System Check

### **8.1. Dielectric Property Measurements**

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within  $\pm$  2°C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant ( $\epsilon$ r) and conductivity ( $\sigma$ ) of typical tissue-equivalent media recipes are expected to be within  $\pm$  5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for  $\epsilon$ r and  $\sigma$  may be relaxed to  $\pm$  10%. This is limited to frequencies  $\leq$  3 GHz.

#### **Tissue Dielectric Parameters**

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

| Target Frequency (MHz) | Н              | lead    | Boo                | Body    |  |  |
|------------------------|----------------|---------|--------------------|---------|--|--|
| raiget Frequency (MHZ) | ε <sub>r</sub> | σ (S/m) | $\epsilon_{\rm r}$ | σ (S/m) |  |  |
| 150                    | 52.3           | 0.76    | 61.9               | 0.80    |  |  |
| 300                    | 45.3           | 0.87    | 58.2               | 0.92    |  |  |
| 450                    | 43.5           | 0.87    | 56.7               | 0.94    |  |  |
| 835                    | 41.5           | 0.90    | 55.2               | 0.97    |  |  |
| 900                    | 41.5           | 0.97    | 55.0               | 1.05    |  |  |
| 915                    | 41.5           | 0.98    | 55.0               | 1.06    |  |  |
| 1450                   | 40.5           | 1.20    | 54.0               | 1.30    |  |  |
| 1610                   | 40.3           | 1.29    | 53.8               | 1.40    |  |  |
| 1800 – 2000            | 40.0           | 1.40    | 53.3               | 1.52    |  |  |
| 2450                   | 39.2           | 1.80    | 52.7               | 1.95    |  |  |
| 3000                   | 38.5           | 2.40    | 52.0               | 2.73    |  |  |
| 5000                   | 36.2           | 4.45    | 49.3               | 5.07    |  |  |
| 5100                   | 36.1           | 4.55    | 49.1               | 5.18    |  |  |
| 5200                   | 36.0           | 4.66    | 49.0               | 5.30    |  |  |
| 5300                   | 35.9           | 4.76    | 48.9               | 5.42    |  |  |
| 5400                   | 35.8           | 4.86    | 48.7               | 5.53    |  |  |
| 5500                   | 35.6           | 4.96    | 48.6               | 5.65    |  |  |
| 5600                   | 35.5           | 5.07    | 48.5               | 5.77    |  |  |
| 5700                   | 35.4           | 5.17    | 48.3               | 5.88    |  |  |
| 5800                   | 35.3           | 5.27    | 48.2               | 6.00    |  |  |

### IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

### **Dielectric Property Measurements Results:**

| SAR |           | Band  | Tissue | Frequency | Relat    | ive Permittivi | ty (єr)      | C        | onductivity ( | <b>7</b> )   |
|-----|-----------|-------|--------|-----------|----------|----------------|--------------|----------|---------------|--------------|
| Lab | Date      | (MHz) | Туре   | (MHz)     | Measured | Target         | Delta<br>(%) | Measured | Target        | Delta<br>(%) |
|     |           |       |        | 835       | 53.21    | 55.20          | -3.61        | 0.97     | 0.97          | 0.39         |
| Α   | 9/28/2017 | 835   | Body   | 805       | 53.46    | 55.33          | -3.39        | 0.94     | 0.97          | -2.40        |
|     |           |       |        | 905       | 52.43    | 55.00          | -4.67        | 1.03     | 1.05          | -2.04        |
|     |           |       |        | 1900      | 52.33    | 53.30          | -1.82        | 1.52     | 1.52          | 0.07         |
| Α   | 10/4/2017 | 1900  | Body   | 1850      | 52.51    | 53.30          | -1.48        | 1.47     | 1.52          | -3.29        |
|     |           |       |        | 1920      | 52.28    | 53.30          | -1.91        | 1.54     | 1.52          | 1.05         |
|     |           |       |        | 2450      | 52.12    | 52.70          | -1.10        | 2.03     | 1.95          | 4.10         |
| Α   | 11/1/2017 | 2450  | Body   | 2400      | 52.24    | 52.77          | -1.01        | 1.97     | 1.90          | 3.95         |
|     |           |       |        | 2480      | 52.06    | 52.66          | -1.14        | 2.07     | 1.99          | 3.81         |
|     |           |       |        | 835       | 53.82    | 55.20          | -2.50        | 0.98     | 0.97          | 0.71         |
| В   | 10/5/2017 | 835   | Body   | 805       | 54.03    | 55.33          | -2.36        | 0.94     | 0.97          | -2.38        |
|     |           |       |        | 905       | 53.15    | 55.00          | -3.36        | 1.03     | 1.05          | -1.85        |

### 8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

### **System Performance Check Measurement Conditions:**

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
  marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
  phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
  center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
   For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
   For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

#### **System Check Results**

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

| CAD | SAR Bata  | Tissue | Dinala Tima              | Dinala                  | Measured Results for 1g SAR |                  |                        |                | Measured Results for 10g SAR |                     |                        |                | Plot |
|-----|-----------|--------|--------------------------|-------------------------|-----------------------------|------------------|------------------------|----------------|------------------------------|---------------------|------------------------|----------------|------|
| Lab | Date      | Type   | Dipole Type<br>_Serial # | Dipole<br>Cal. Due Data | ata Zoom Scan Norr          | Normalize to 1 W | Target<br>(Ref. Value) | Delta<br>±10 % | Zoom Scan<br>to 100 mW       | Normalize<br>to 1 W | Target<br>(Ref. Value) | Delta<br>±10 % | No.  |
| Α   | 9/28/2017 | Body   | D835V2 SN:4d117          | 5/22/2018               | 0.990                       | 9.90             | 10.39                  | -4.72          | 0.654                        | 6.54                | 6.76                   | -3.25          | 1,2  |
| Α   | 10/4/2017 | Body   | D1900V2 SN:5d140         | 4/19/2018               | 3.890                       | 38.90            | 41.20                  | -5.58          | 2.060                        | 20.60               | 21.52                  | -4.28          | 3,4  |
| Α   | 11/1/2017 | Body   | D2450V2 SN:748           | 2/8/2018                | 5.180                       | 51.80            | 51.30                  | 0.97           | 2.370                        | 23.70               | 23.90                  | -0.84          | 5,6  |
| В   | 10/5/2017 | Body   | D835V2 SN:4d117          | 5/22/2018               | 0.946                       | 9.46             | 10.39                  | -8.95          | 0.625                        | 6.25                | 6.76                   | -7.54          | 7,8  |

# 9. Conducted Output Power Measurements

### 9.1.GSM

**GSM850 Measured Results** 

|      |        | Coding                                                                                                                                | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Freq  | Measured       | d Max Pwr      |
|------|--------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|----------------|
| Band | Mode   | Scheme                                                                                                                                | Slots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ch No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (MHz) | Burst<br>(dBm) | Frame<br>(dBm) |
|      |        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 824.2 | 32.3           | 23.3           |
|      |        |                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 836.6 | 32.4           | 23.4           |
|      |        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 848.8 | 32.3           | 23.3           |
|      |        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 824.2 | 29.6           | 23.6           |
|      |        |                                                                                                                                       | Cheme Slots Ch No. (MHz)  128 824.2 1 190 836.6 251 848.8 128 824.2 2 190 836.6 251 848.8 128 824.2 3 190 836.6 251 848.8 128 824.2 4 190 836.6 251 848.8 128 824.2 1 190 836.6 251 848.8 128 824.2 1 190 836.6 251 848.8 128 824.2 2 190 836.6 251 848.8 128 824.2 3 190 836.6 251 848.8 128 824.2 4 190 836.6 251 848.8 128 824.2 1 190 836.6 251 848.8 128 824.2 1 190 836.6 251 848.8 128 824.2 1 190 836.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 836.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.6  | 23.6           |                |
|      | GPRS   | 001                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ch No.         Freq. (MHz)         Burst (dBm)         I           128         824.2         32.3           190         836.6         32.4           251         848.8         32.3           128         824.2         29.6           190         836.6         29.6           251         848.8         29.5           128         824.2         27.7           190         836.6         27.8           251         848.8         27.7           128         824.2         26.6           190         836.6         26.6           251         848.8         26.6           128         824.2         26.7           190         836.6         26.8           251         848.8         26.7           190         836.6         23.7           251         848.8         23.6           190         836.6         23.7           251         848.8         23.6           190         836.6         21.8           190         836.6         21.8           128         824.2         21.8           190         836.6               | 23.5  |                |                |
|      | (GMSK) | CST                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ne obts         Ch No.         Freq. (MHz)         Burst (dBm)           1 128         824.2         32.3           1 90         836.6         32.4           251         848.8         32.3           1 128         824.2         29.6           2 190         836.6         29.6           251         848.8         29.5           1 128         824.2         27.7           1 190         836.6         27.8           251         848.8         27.7           1 128         824.2         26.6           2 190         836.6         26.6           2 251         848.8         26.7           1 190         836.6         26.8           2 251         848.8         26.7           1 190         836.6         26.8           2 251         848.8         26.7           1 28         824.2         23.6           2 190         836.6         23.7           2 251         848.8         23.6           2 190         836.6         23.7           2 251         848.8         23.6           3 190         836.6         21.8 | 27.7  | 23.4           |                |
|      |        |                                                                                                                                       | Scheme Slots Ch  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 836.6 | 27.8           | 23.5           |
|      |        | 1   2   3   4   1   2   2   3   4   1   2   2   3   3   4   4   1   2   3   3   4   3   4   4   5   5   5   5   5   5   5   6   5   5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 848.8 | 27.7           | 23.4           |
|      |        |                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 824.2 | 26.6           | 23.6           |
|      |        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 836.6 | 26.6           | 23.6           |
| 850  |        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 848.8 | 26.6           | 23.6           |
| 650  |        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 824.2 | 26.7           | 17.7           |
|      |        |                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 836.6 | 26.8           | 17.8           |
|      |        |                                                                                                                                       | 2 190 836.6 251 848.8 128 824.2 4 190 836.6 251 848.8 128 824.2 4 190 836.6 251 848.8 128 824.2 1 190 836.6 251 848.8 128 824.2 1 190 836.6 251 848.8 128 824.2 2 190 836.6 251 848.8 128 824.2 2 190 836.6 251 848.8 128 824.2 2 190 836.6 251 848.8 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 128 824.2 | 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.7  |                |                |
|      |        | 128<br>3 190<br>251<br>128<br>4 190<br>251<br>128<br>1 190<br>251<br>128<br>2 190<br>251                                              | 824.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.6  |                |                |
|      |        |                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 836.6 | 23.7           | 17.7           |
|      | EGPRS  | MOSE                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 848.8 | 23.6           | 17.6           |
|      | (8PSK) | IVICOO                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 824.2 | 21.8           | 17.5           |
|      |        |                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 836.6 | 21.8           | 17.5           |
|      |        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 848.8 | 21.8           | 17.5           |
|      |        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 824.2 | 20.5           | 17.5           |
|      |        |                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 836.6 | 20.6           | 17.6           |
|      |        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 848.8 | 20.6           | 17.6           |

#### Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- GMSK (GPRS) mode with 4 time slots, based on the Tune-up Procedure. Refer to §6.3.
- SAR is not required for EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4db higher than GMSK GPRS or the adjusted SAR of the highest reported SAR of GMSK GPRS is ≤ 3W/kg.

### **GSM1900 Measured Results**

| Dand | Mada                            | Coding                                                                                                                                                                                                                                                                                                                                                                                            | Time   | Oh Nie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Freq.  | Measured       | l Max. Pwr     |
|------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|----------------|
| Danu | Mode                            | Scheme                                                                                                                                                                                                                                                                                                                                                                                            | Slots  | CIT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (MHz)  | Burst<br>(dBm) | Frame<br>(dBm) |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |        | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1850.2 | 28.7           | 19.7           |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   | 1      | 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1880.0 | 28.7           | 19.7           |
|      | GPRS (GMSK)  1900  EGPRS (8PSK) |                                                                                                                                                                                                                                                                                                                                                                                                   |        | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1909.8 | 28.7           | 19.7           |
|      |                                 | Scheme Slots Cn No.                                                                                                                                                                                                                                                                                                                                                                               | 1850.2 | 25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.8   |                |                |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   | 2      | Ch No.         (MHz)         Burst (dBm) (dBm) (dBm) (dBm)           512         1850.2         28.7         19.7           661         1880.0         28.7         19.7           810         1909.8         28.7         19.7           512         1850.2         25.8         19.8           661         1880.0         25.9         19.9           810         1909.8         25.9         19.9           512         1850.2         24.0         19.7           661         1880.0         24.1         19.8           810         1909.8         24.1         19.8           512         1850.2         22.8         19.9           810         1909.8         24.1         19.8           661         1880.0         22.9         19.9           810         1909.8         22.9         19.9           512         1850.2         24.7         15.7           661         1880.0         24.8         15.8           810         1909.8         24.8         15.8           512         1850.2         21.8         15.8           661         1880.0         21.9         15.9 <td>19.9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.9   |                |                |
|      |                                 | CS1                                                                                                                                                                                                                                                                                                                                                                                               |        | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1909.8 | 25.9           | 19.9           |
|      | (GMSK)                          | CST                                                                                                                                                                                                                                                                                                                                                                                               |        | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1850.2 | 24.0           | 19.7           |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   | 3      | 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1880.0 | 24.1           | 19.8           |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |        | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1909.8 | 24.1           | 19.8           |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |        | (MHz) Burst (dBm) | 19.8   |                |                |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   | 4      | 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1880.0 | 22.9           | 19.9           |
| 1000 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |        | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1909.8 | 22.9           | 19.9           |
| 1900 |                                 | Scheme Slots  1                                                                                                                                                                                                                                                                                                                                                                                   |        | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1850.2 | 24.7           | 15.7           |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   | 661    | 1880.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.8   | 15.8           |                |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |        | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1909.8 | 24.8           | 15.8           |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |        | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1850.2 | 21.8           | 15.8           |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   | 2      | Second   | 15.9   |                |                |
|      |                                 | GPRS (GMSK)                                                                                                                                                                                                                                                                                                                                                                                       | 810    | 1909.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.9   | 15.9           |                |
|      | (8PSK)                          | CS1  1 661 1880.0 810 1909.8 512 1850.2 2 661 1880.0 810 1909.8 512 1850.2 3 661 1880.0 810 1909.8 512 1850.2 4 661 1880.0 810 1909.8 512 1850.2 4 661 1880.0 810 1909.8 512 1850.2 1 661 1880.0 810 1909.8 512 1850.2 2 661 1880.0 810 1909.8 512 1850.2 3 661 1880.0 810 1909.8 512 1850.2 4 661 1880.0 810 1909.8 512 1850.2 512 1850.2 512 1850.2 512 1850.2 512 1850.2 512 1850.2 512 1850.2 | 20.0   | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                |                |
|      | MCSE                            |                                                                                                                                                                                                                                                                                                                                                                                                   | 3      | 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1880.0 | 20.0           | 15.7           |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |        | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1909.8 | 20.0           | 15.7           |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |        | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1850.2 | 18.8           | 15.8           |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   | 4      | 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1880.0 | 18.8           | 15.8           |
|      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |        | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1909.8 | 18.8           | 15.8           |

### Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- GMSK (GPRS) mode with 4 time slots, based on the Tune-up Procedure. Refer to §6.3.
- SAR is not required for EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4db higher than GMSK GPRS or the adjusted SAR of the highest reported SAR of GMSK GPRS is ≤ 3W/kg.

### 9.2.W-CDMA

### Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

| Mode                   | Subtest                 | Rel99        |
|------------------------|-------------------------|--------------|
|                        | Loopback Mode           | Test Mode 2  |
| WCDMA Conoral Cottings | Rel99 RMC               | 12.2kbps RMC |
| WCDMA General Settings | Power Control Algorithm | Algorithm2   |
|                        | βc/βd                   | 8/15         |

### **HSDPA Setup Procedures used to establish the test signals**

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

|                     | Mode                                 | HSDPA        | HSDPA | HSDPA    | HSDPA |
|---------------------|--------------------------------------|--------------|-------|----------|-------|
|                     | Subtest                              | 1            | 2     | 3        | 4     |
|                     | Loopback Mode                        | Test Mode 1  |       |          |       |
|                     | Rel99 RMC                            | 12.2kbps RMC |       |          |       |
|                     | HSDPA FRC                            | H-Set 1      |       |          |       |
| \A\ OD\A            | Power Control Algorithm              | Algorithm 2  |       |          |       |
| W-CDMA              | βс                                   | 2/15         | 11/15 | 15/15    | 15/15 |
| General<br>Settings | βd                                   | 15/15        | 15/15 | 8/15     | 4/15  |
| Settings            | Bd (SF)                              | 64           |       |          |       |
|                     | βc/βd                                | 2/15         | 11/15 | 15/8     | 15/4  |
|                     | βhs                                  | 4/15         | 24/15 | 30/15    | 30/15 |
|                     | MPR (dB)                             | 0            | 0     | 0.5      | 0.5   |
|                     | D <sub>ACK</sub>                     | 8            |       |          |       |
|                     | D <sub>NAK</sub>                     | 8            |       |          |       |
| HSDPA               | DCQI                                 | 8            |       |          |       |
| Specific            | Ack-Nack repetition factor           | 3            |       |          |       |
| Settings            | CQI Feedback (Table 5.2B.4)          | 4ms          |       |          |       |
|                     | CQI Repetition Factor (Table 5.2B.4) | 2            |       | <u> </u> |       |
|                     | Ahs=βhs/βc                           | 30/15        |       |          |       |

### HSPA (HSDPA & HSUPA) Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to Release 6 procedures in table C,11.1.3 of 3GPP TS 34.121-1 v13. A summary of these settings are illustrated below:

|          | Mode                                 | HSPA         |       |       |       |             |
|----------|--------------------------------------|--------------|-------|-------|-------|-------------|
|          | Subtest                              | 1            | 2     | 3     | 4     | 5           |
|          | Loopback Mode                        | Test Mode 1  |       |       |       |             |
|          | Rel99 RMC                            | 12.2 kbps RM | /IC   |       |       |             |
|          | HSDPA FRC                            | H-Set 1      |       |       |       |             |
|          | HSUPA Test                           | HSPA         |       |       |       |             |
|          | Power Control Algorithm              | Algorithm 2  |       |       |       | Algorithm 1 |
| WCDMA    | βc                                   | 11/15        | 6/15  | 15/15 | 2/15  | 15/15       |
| General  | βd                                   | 15/15        | 15/15 | 9/15  | 15/15 | 0           |
| Settings | βec                                  | 209/225      | 12/15 | 30/15 | 2/15  | 5/15        |
|          | βc/βd                                | 11/15        | 6/15  | 15/9  | 2/15  | -           |
|          | βhs                                  | 22/15        | 12/15 | 30/15 | 4/15  | 5/15        |
|          | βed                                  | 1309/225     | 94/75 | 47/15 | 56/75 | 47/15       |
|          | CM (dB)                              | 1            | 3     | 2     | 3     | 1           |
|          | MPR (dB)                             | 0            | 2     | 1     | 2     | 0           |
|          | DACK                                 | 8            |       | •     |       | 0           |
|          | DNAK                                 | 8            |       |       |       | 0           |
| HSDPA    | DCQI                                 | 8            |       |       |       | 0           |
| Specific | Ack-Nack repetition factor           | 3            |       |       |       | •           |
| Settings | CQI Feedback (Table 5.2B.4)          | 4ms          |       |       |       |             |
| _        | CQI Repetition Factor (Table 5.2B.4) | 2            |       |       |       |             |
|          | Ahs = βhs/βc                         | 30/15        |       |       |       |             |
|          | E-DPDCCH                             | 6            | 8     | 8     | 5     | 0           |
|          | DHARQ                                | 0            | 0     | 0     | 0     | 0           |
|          | AG Index                             | 20           | 12    | 15    | 17    | 12          |
|          | ETFCI (from 34.121 Table C.11.1.3)   | 75           | 67    | 92    | 71    | 67          |
|          | Associated Max UL Data Rate kbps     | 242.1        | 174.9 | 482.8 | 205.8 | 308.9       |
|          | Reference E-TFCIs                    | 5            | 5     | 2     | 5     | 1           |
|          | Reference E-TFCI                     | 11           | 11    | 11    | 11    | 67          |
| HSUPA    | Reference E-TFCI PO                  | 4            | 4     | 4     | 4     | 18          |
| Specific | Reference E-TFCI                     | 67           | 67    | 92    | 67    | 67          |
| Settings | Reference E-TFCI PO                  | 18           | 18    | 18    | 18    | 18          |
| •        | Reference E-TFCI                     | 71           | 71    | 71    | 71    | 71          |
|          | Reference E-TFCI PO                  | 23           | 23    | 23    | 23    | 23          |
|          | Reference E-TFCI                     | 75           | 75    | 75    | 75    | 75          |
|          | Reference E-TFCI PO                  | 26           | 26    | 26    | 26    | 26          |
|          | Reference E-TFCI                     | 81           | 81    | 81    | 81    | 81          |
|          | Reference E-TFCI PO                  | 27           | 27    | 27    | 27    | 27          |
|          | Maximum Channelization Codes         | 2xSF2        |       | L     | 1     | SF4         |

### W-CDMA Band II Measured Results

| Band              |        | Mode           | UL Ch No. | Freq.<br>(MHz) | MPR<br>(dB) | Max. Meas. Avg<br>Pwr<br>(dBm) |
|-------------------|--------|----------------|-----------|----------------|-------------|--------------------------------|
|                   |        |                | 9262      | 1852.4         | N/A         | 22.9                           |
|                   | Rel 99 | RMC, 12.2 kbps | 9400      | 1880.0         | N/A         | 22.6                           |
|                   |        |                | 9538      | 1907.6         | N/A         | 22.4                           |
|                   |        |                | 9262      | 1852.4         | 0           | 22.8                           |
|                   |        | Subtest 1      | 9400      | 1880.0         | 0           | 22.4                           |
|                   |        |                | 9538      | 1907.6         | 0           | 22.3                           |
|                   |        |                | 9262      | 1852.4         | 0           | 21.9                           |
|                   |        | Subtest 2      | 9400      | 1880.0         | 0           | 21.5                           |
|                   | HSDPA  |                | 9538      | 1907.6         | 0           | 21.5                           |
|                   | порра  |                | 9262      | 1852.4         | 0.5         | 21.7                           |
|                   |        | Subtest 3      | 9400      | 1880.0         | 0.5         | 21.3                           |
|                   |        |                | 9538      | 1907.6         | 0.5         | 21.1                           |
| Su                |        | 9262           | 1852.4    | 0.5            | 21.5        |                                |
|                   |        | Subtest 4      | 9400      | 1880.0         | 0.5         | 21.1                           |
| W-CDMA<br>Band II |        |                | 9538      | 1907.6         | 0.5         | 21.0                           |
| Band II           |        |                | 9262      | 1852.4         | 0           | 22.3                           |
|                   |        | Subtest 1      | 9400      | 1880.0         | 0           | 22.3                           |
|                   |        |                | 9538      | 1907.6         | 0           | 22.4                           |
|                   |        |                | 9262      | 1852.4         | 2           | 20.3                           |
|                   |        | Subtest 2      | 9400      | 1880.0         | 2           | 20.3                           |
|                   |        |                | 9538      | 1907.6         | 2           | 20.4                           |
|                   |        |                | 9262      | 1852.4         | 1           | 21.6                           |
|                   | HSUPA  | Subtest 3      | 9400      | 1880.0         | 1           | 21.8                           |
|                   |        |                | 9538      | 1907.6         | 1           | 21.7                           |
|                   |        |                | 9262      | 1852.4         | 2           | 21.4                           |
|                   |        | Subtest 4      | 9400      | 1880.0         | 2           | 21.2                           |
|                   |        |                | 9538      | 1907.6         | 2           | 20.4                           |
|                   |        |                | 9262      | 1852.4         | 0           | 22.7                           |
|                   |        | Subtest 5      | 9400      | 1880.0         | 0           | 22.2                           |
|                   |        |                | 9538      | 1907.6         | 0           | 22.1                           |

### W-CDMA Band V Measured Results

| Band   |           | Mode           | UL Ch No. | Freq.<br>(MHz) | MPR<br>(dB) | Max. Meas. Avg<br>Pwr<br>(dBm) |
|--------|-----------|----------------|-----------|----------------|-------------|--------------------------------|
|        |           |                | 4132      | 826.4          | N/A         | 23.9                           |
|        | Rel 99    | RMC, 12.2 kbps | 4183      | 836.6          | N/A         | 23.8                           |
|        |           |                | 4233      | 846.6          | N/A         | 23.7                           |
|        |           |                | 4132      | 826.4          | 0           | 23.8                           |
|        |           | Subtest 1      | 4183      | 836.6          | 0           | 23.7                           |
|        |           |                | 4233      | 846.6          | 0           | 23.6                           |
|        |           |                | 4132      | 826.4          | 0           | 22.9                           |
|        |           | Subtest 2      | 4183      | 836.6          | 0           | 22.8                           |
|        | HSDPA     |                | 4233      | 846.6          | 0           | 22.8                           |
|        | ПОПРА     |                | 4132      | 826.4          | 0.5         | 22.5                           |
|        |           | Subtest 3      | 4183      | 836.6          | 0.5         | 22.5                           |
|        |           |                | 4233      | 846.6          | 0.5         | 22.5                           |
|        |           | Subtest 4      | 4132      | 826.4          | 0.5         | 22.3                           |
|        |           |                | 4183      | 836.6          | 0.5         | 22.2                           |
| W-CDMA |           |                | 4233      | 846.6          | 0.5         | 22.2                           |
| Band V |           |                | 4132      | 826.4          | 0           | 22.0                           |
|        | Subtest 1 | 4183           | 836.6     | 0              | 22.0        |                                |
|        |           |                | 4233      | 846.6          | 0           | 22.0                           |
|        |           |                | 4132      | 826.4          | 2           | 20.0                           |
|        |           | Subtest 2      | 4183      | 836.6          | 2           | 20.0                           |
|        |           |                | 4233      | 846.6          | 2           | 21.1                           |
|        |           |                | 4132      | 826.4          | 1           | 22.2                           |
|        | HSUPA     | Subtest 3      | 4183      | 836.6          | 1           | 22.8                           |
|        |           |                | 4233      | 846.6          | 1           | 22.8                           |
|        |           |                | 4132      | 826.4          | 2           | 21.0                           |
|        |           | Subtest 4      | 4183      | 836.6          | 2           | 21.6                           |
|        |           |                | 4233      | 846.6          | 2           | 21.1                           |
|        |           |                | 4132      | 826.4          | 0           | 22.8                           |
|        |           | Subtest 5      | 4183      | 836.6          | 0           | 22.7                           |
|        |           |                | 4233      | 846.6          | 0           | 22.7                           |

# 9.3.Wi-Fi 2.4GHz (DTS Band)

### **Measured Results**

| Micasarc      | a recounte        |           |     |                |                        |                           |                      |  |
|---------------|-------------------|-----------|-----|----------------|------------------------|---------------------------|----------------------|--|
| Band<br>(GHz) | Mode              | Data Rate | Ch# | Freq.<br>(MHz) | Meas. Avg Pwr<br>(dBm) | Max Output<br>Power (dBm) | SAR Test<br>(Yes/No) |  |
|               |                   |           | 1   | 2412           | 15.5                   |                           |                      |  |
|               | 802.11b           | 1 Mbps    | 6   | 2437           | 15.8                   | 17.5                      | Yes                  |  |
|               |                   |           | 11  | 2462           | 15.7                   |                           |                      |  |
|               |                   | 6 Mbps    | 1   | 2412           | 12.5                   |                           |                      |  |
| 2.4           | 802.11g           |           | 6   | 2437           | 13.0                   | 14.0                      | No                   |  |
|               |                   |           | 11  | 2462           | 13.0                   |                           |                      |  |
|               | 000 44            |           | 1   | 2412           | 11.9                   |                           |                      |  |
|               | 802.11n<br>(HT20) | 6.5 Mbps  | 6   | 2437           | 12.4                   | 13.0                      | No                   |  |
|               | (11120)           |           | 11  | 2462           | 12.6                   |                           |                      |  |

### Note(s):

1. SAR not required for 802.11g/n modes when the adjusted SAR for 802.11b is < 3 W/kg (10-g Extremity).

### 9.4. Wi-Fi 5GHz (U-NII Bands)

Maximum tune-up tolerance limit is 10.0 dBm for Wi-Fi 5.2 & 5.3GHz and 10.5 dBm for Wi-Fi 5.5 & 5.8GHz. These power levels qualify for exclusion of SAR testing. Refer to §7.1 Standalone SAR Test Exclusion Considerations.

### 9.5. Bluetooth

Maximum tune-up tolerance limit is 7.5 dBm. This power level qualifies for exclusion of SAR testing. Refer to §7.1 Standalone SAR Test Exclusion Considerations.

## 10. Measured and Reported (Scaled) SAR Results

#### SAR Test Reduction criteria are as follows:

#### KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

#### KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is  $\leq \frac{1}{4}$  dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is  $\leq 1.2$  W/kg, SAR measurement is not required for the secondary mode

#### KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the <u>initial test position(s)</u> by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The <u>initial test position(s)</u> is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the <u>reported SAR</u> for the <u>initial test position</u> is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the *reported* SAR is ≤ 0.8 W/kg or all required test positions are tested.
  - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
  - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported SAR</u> is ≤ 1.2 W/kg or all required test channels are considered.
  - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII
  2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not
  required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the <u>initial test position</u>, Area Scans were performed to determine the position with the <u>Maximum Value of SAR</u> (measured). The position that produced the highest <u>Maximum Value of SAR</u> is considered the worst case position; thus used as the <u>initial test position</u>.

Page 26 of 29

### 10.1. GSM 850 Measured SAR Results

| DE Evnosure               |                 | Dist. |               |       | Freq. | Power            | (dBm) | 10-g SA | R (W/kg) | Plot |
|---------------------------|-----------------|-------|---------------|-------|-------|------------------|-------|---------|----------|------|
| RF Exposure<br>Conditions | Mode            | (mm)  | Test Position | Ch #. | (MHz) | Tune-up<br>limit | Meas. | Meas.   | Scaled   | No.  |
|                           |                 |       | Rear          | 190   | 836.6 | 27.5             | 26.6  | 0.296   | 0.364    |      |
|                           | GPRS<br>4 Slots |       | Front         | 190   | 836.6 | 27.5             | 26.6  | 0.369   | 0.454    |      |
| Extremity                 |                 | 0     | Edge 2        | 190   | 836.6 | 27.5             | 26.6  | 0.745   | 0.917    |      |
| Latienity                 |                 | U     | Edge 3        | 190   | 836.6 | 27.5             | 26.6  | 0.761   | 0.936    |      |
|                           |                 |       | Edge 3 Slant  | 190   | 836.6 | 27.5             | 26.6  | 0.797   | 0.981    | 1    |
|                           |                 |       | Edge 4        | 190   | 836.6 | 27.5             | 26.6  | 0.305   | 0.375    |      |

### 10.2. GSM 1900 Measured SAR Results

| RF Exposure |                 | Dist.   |               |       | Freq.  | Power            | (dBm) | 10-g SA | Plot   |     |
|-------------|-----------------|---------|---------------|-------|--------|------------------|-------|---------|--------|-----|
| Conditions  | Mode            | (mm)    | Test Position | Ch #. | (MHz)  | Tune-up<br>limit | Meas. | Meas.   | Scaled | No. |
|             | GPRS<br>4 Slots |         | Rear          | 661   | 1880.0 | 24.5             | 22.9  | 0.255   | 0.369  |     |
|             |                 |         | Front         | 661   | 1880.0 | 24.5             | 22.9  | 0.136   | 0.197  |     |
| Extremity   |                 | 0       | Edge 2        | 661   | 1880.0 | 24.5             | 22.9  | 0.079   | 0.114  |     |
| LXIIemity   |                 | 4 Slots | Edge 3        | 661   | 1880.0 | 24.5             | 22.9  | 1.010   | 1.460  | 2   |
|             |                 |         | Edge 3 Slant  | 661   | 1880.0 | 24.5             | 22.9  | 0.691   | 0.999  |     |
|             |                 |         | Edge 4        | 661   | 1880.0 | 24.5             | 22.9  | 0.223   | 0.322  |     |

### 10.3. W-CDMA Band II Measured SAR Results

| RF Exposure |                                | Dist. |               |       | Freq.  | Power            | (dBm) | 10-g SA | R (W/kg) | Plot |
|-------------|--------------------------------|-------|---------------|-------|--------|------------------|-------|---------|----------|------|
| Conditions  | Mode                           | (mm)  | Test Position | Ch #. | (MHz)  | Tune-up<br>limit | Meas. | Meas.   | Scaled   | No.  |
|             | Release 99<br>RMC<br>12.2 kbps |       | Rear          | 9400  | 1880.0 | 23.5             | 22.6  | 0.546   | 0.672    |      |
|             |                                |       | Front         | 9400  | 1880.0 | 23.5             | 22.6  | 0.287   | 0.353    |      |
|             |                                |       | Edge 2        | 9400  | 1880.0 | 23.5             | 22.6  | 0.180   | 0.221    |      |
| Extremity   |                                | 0     | Edge 3        | 9262  | 1852.4 | 23.5             | 22.9  | 1.800   | 2.067    |      |
| LXIIGITIII  |                                | "     |               | 9400  | 1880.0 | 23.5             | 22.6  | 2.070   | 2.547    | 3    |
|             |                                |       |               | 9538  | 1907.6 | 23.5             | 22.4  | 1.960   | 2.525    |      |
|             |                                |       | Edge 3 Slant  | 9400  | 1880.0 | 23.5             | 22.6  | 1.600   | 1.968    |      |
|             |                                |       | Edge 4        | 9400  | 1880.0 | 23.5             | 22.6  | 0.490   | 0.603    |      |

### 10.4. W-CDMA Band V Measured SAR Results

| RF Exposure<br>Conditions | Mode                           | Dist.<br>(mm) | Test Position | Ch #. | Freq.<br>(MHz) | Power (dBm)      |       | 10-g SAR (W/kg) |        | Plot |
|---------------------------|--------------------------------|---------------|---------------|-------|----------------|------------------|-------|-----------------|--------|------|
|                           |                                |               |               |       |                | Tune-up<br>limit | Meas. | Meas.           | Scaled | No.  |
|                           | Release 99<br>RMC<br>12.2 kbps | 0             | Rear          | 4183  | 836.6          | 24.0             | 23.8  | 0.284           | 0.297  |      |
|                           |                                |               | Front         | 4183  | 836.6          | 24.0             | 23.8  | 0.432           | 0.452  |      |
| Extremity                 |                                |               | Edge 2        | 4183  | 836.6          | 24.0             | 23.8  | 0.779           | 0.816  |      |
|                           |                                |               | Edge 3        | 4183  | 836.6          | 24.0             | 23.8  | 0.817           | 0.856  |      |
|                           |                                |               | Edge 3 Slant  | 4183  | 836.6          | 24.0             | 23.8  | 0.820           | 0.859  | 4    |
|                           |                                |               | Edge 4        | 4183  | 836.6          | 24.0             | 23.8  | 0.329           | 0.345  |      |

### 10.5. Wi-Fi 2.4GHz Measured SAR Results

| ١, | Frequency<br>Band |                   | RF Exposure | Dist.<br>(mm) | Test Position | Ch #.  | Freq.<br>(MHz) | Duty Cycle | Power (dBm)      |       | 10-g SAR (W/kg) |        | Plot |
|----|-------------------|-------------------|-------------|---------------|---------------|--------|----------------|------------|------------------|-------|-----------------|--------|------|
|    |                   | Mode              |             |               |               |        |                |            | Tune-up<br>limit | Meas. | Meas.           | Scaled | No.  |
|    |                   | 802.11b<br>1 Mbps | Extremity   | 0             | Rear          | 6      | 2437.0         | 98.9%      | 17.5             | 15.8  | 0.034           | 0.051  |      |
|    | 2.4GHz            |                   |             |               | Front         | 6      | 2437.0         | 98.9%      | 17.5             | 15.8  | 0.049           | 0.073  |      |
|    |                   |                   |             |               | Edge 2        | 6      | 2437.0         | 98.9%      | 17.5             | 15.8  | 0.223           | 0.334  | 5    |
|    | 1 IVIDPS          |                   |             | Edge 3        | 6             | 2437.0 | 98.9%          | 17.5       | 15.8             | 0.023 | 0.035           |        |      |
|    |                   |                   |             | Edge 3 Slant  | 6             | 2437.0 | 98.9%          | 17.5       | 15.8             | 0.026 | 0.039           |        |      |

# 11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.</li>
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

| Frequency<br>Band<br>(MHz) |                   |                        | Test Position | Repeated<br>SAR<br>(Yes/No) | Highest<br>Measured<br>SAR (W/kg) | First<br>Repeated         |                                     | Second<br>Repeated        |                                     | Third<br>Repeated         |
|----------------------------|-------------------|------------------------|---------------|-----------------------------|-----------------------------------|---------------------------|-------------------------------------|---------------------------|-------------------------------------|---------------------------|
|                            | Air Interface     | RF Exposure Conditions |               |                             |                                   | Measured<br>SAR<br>(W/kg) | Largest to<br>Smallest<br>SAR Ratio | Measured<br>SAR<br>(W/kg) | Largest to<br>Smallest<br>SAR Ratio | Measured<br>SAR<br>(W/kg) |
| 850                        | GSM 850           | Extremity              | Edge 3 Slant  | No                          | 0.797                             | N/A                       | N/A                                 | N/A                       | N/A                                 | N/A                       |
|                            | WCDMA Band V      | Extremity              | Edge 3 Slant  | No                          | 0.820                             | N/A                       | N/A                                 | N/A                       | N/A                                 | N/A                       |
| 1900                       | GSM 1900          | Extremity              | Edge 3        | No                          | 1.010                             | N/A                       | N/A                                 | N/A                       | N/A                                 | N/A                       |
|                            | WCDMA Band II     | Extremity              | Edge 3        | Yes                         | 2.070                             | 2.010                     | 1.03                                | N/A                       | N/A                                 | N/A                       |
| 2400                       | Wi-Fi 802.11b/g/n | Extremity              | Edge 2        | No                          | 0.223                             | N/A                       | N/A                                 | N/A                       | N/A                                 | N/A                       |

#### Note(s):

Second repeated measurement not required since the ratio of largest to smallest SAR

# 12. Simultaneous Transmission SAR Analysis

This device does not support Simultaneous Transmission.

# **Appendixes**

Refer to separated files for the following appendixes.

11616858-S1V1 Appendix A: SAR Setup Photos

11616858-S1V1 Appendix B: SAR System Check Plots

11616858-S1V1 Appendix C: Highest SAR Test Plots

11616858-S1V1 Appendix D: SAR Liquid Tissue Ingredients

11616858-S1V1 Appendix E: SAR Probe Calibration Certificates

11616858-S1V1 Appendix F: SAR Dipole Calibration Certificates

**END OF REPORT** 

Doc. No.: 1.0