

FCC TEST REPORT

REPORT NO.: RF150717C12-2
 MODEL NO.: V200c Plus
 FCC ID: B32V200CP
 RECEIVED: Jul. 17, 2015
 TESTED: Jul. 27, 2015 ~ Aug. 04, 2015
 ISSUED: Aug. 12, 2015

APPLICANT: Verifone, Inc.

ADDRESS: 1400 West Stanford Ranch Road Suite 200 Rocklin CA 95765 USA

- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)
- **TEST LOCATION:** No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

TABLE OF CONTENTS

	SE CONTROL RECORD	
1. CEF	RTIFICATION	5
2. SUN	/MARY OF TEST RESULTS	6
	MEASUREMENT UNCERTAINTY	
	NERAL INFORMATION	
	GENERAL DESCRIPTION OF EUT	
3.2	DESCRIPTION OF TEST MODES	
	3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	
3.3	DESCRIPTION OF SUPPORT UNITS	12
	3.3.1 CONFIGURATION OF SYSTEM UNDER TEST	
	GENERAL DESCRIPTION OF APPLIED STANDARDS	
	T TYPES AND RESULTS (FOR BLUETOOTH EDR)	
4.1	RADIATED EMISSION AND BANDEDGE MEASUREMENT	
	4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	
	4.1.2 TEST INSTRUMENTS	
	4.1.3 TEST PROCEDURES	
	4.1.4 DEVIATION FROM TEST STANDARD	
	4.1.5 TEST SETUP	
	4.1.6 EUT OPERATING CONDITIONS	17
	4.1.7 TEST RESULTS	
4.2	CONDUCTED EMISSION MEASUREMENT	
	4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT	22
	4.2.2 TEST INSTRUMENTS	22
	4.2.3 TEST PROCEDURES	23
	4.2.4 DEVIATION FROM TEST STANDARD	23
	4.2.5 TEST SETUP	24
	4.2.6 EUT OPERATING CONDITIONS	24
	4.2.7 TEST RESULTS	25
4.3	NUMBER OF HOPPING FREQUENCY USED	27
	4.3.1 LIMIT OF HOPPING FREQUENCY USED	27
	4.3.2 TEST SETUP	27
	4.3.3 TEST INSTRUMENTS	27
	4.3.4 TEST PROCEDURE	27
	4.3.5 DEVIATION FROM TEST STANDARD	
	4.3.6 TEST RESULTS	
4.4	DWELL TIME ON EACH CHANNEL	
	4.4.1 LIMITS OF DWELL TIME USED	
	4.4.2 TEST SETUP	
	4.4.3 TEST INSTRUMENTS	
	4.4.4 TEST PROCEDURES	
	4.4.5 DEVIATION FROM TEST STANDARD	
	4.4.6 TEST RESULTS	
4.5	CHANNEL BANDWIDTH	
1.0	4.5.1 LIMITS OF CHANNEL BANDWIDTH	
	4.5.2 TEST SETUP	
	4.5.3 TEST INSTRUMENTS	
	4.5.4 TEST PROCEDURE	
	4.5.5 DEVIATION FROM TEST STANDARD	
	4.5.6 EUT OPERATING CONDITION	
	4.5.7 TEST RESULTS	
16	HOPPING CHANNEL SEPARATION	
4.0	4.6.1 LIMITS OF HOPPING CHANNEL SEPARATION	
	4.0.1 LIMITS OF FINS CHANNEL SEFARATION	55

		_	
	4.6.2	TEST SETUP	35
	4.6.3	TEST INSTRUMENTS	35
	4.6.4	TEST PROCEDURE	35
	4.6.5	DEVIATION FROM TEST STANDARD	35
	4.6.6	TEST RESULTS	36
4.7	MAXIN	IUM OUTPUT POWER	37
	4.7.1	LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT	37
	4.7.2	TEST SETUP	37
	4.7.3	TEST INSTRUMENTS	37
	4.7.4	TEST PROCEDURE	37
	4.7.5	DEVIATION FROM TEST STANDARD	37
	4.7.6	EUT OPERATING CONDITION	37
	4.7.7	TEST RESULTS	38
4.8	COND	UCTED OUT OF BAND EMISSION MEASUREMENT	39
	4.8.1	LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT	39
	4.8.2	TEST INSTRUMENTS	39
	4.8.3	TEST PROCEDURE	
	4.8.4	DEVIATION FROM TEST STANDARD	39
	4.8.5	EUT OPERATING CONDITION	
	4.8.6	TEST RESULTS	
5. PHC	DTOGR/	APHS OF THE TEST CONFIGURATION	43
		ION ON THE TESTING LABORATORIES	
		A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE	-
THE	E LAB		45

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF150717C12-2	Original release	Aug. 12, 2015

1. CERTIFICATION

PRODUCT: Point of Sale Terminal
MODEL NO.: V200c Plus
BRAND: Verifone
APPLICANT: Verifone, Inc.
TESTED: Jul. 27, 2015 ~ Aug. 04, 2015
TEST SAMPLE: Identical Prototype
STANDARDS: FCC Part 15, Subpart C (Section 15.247) ANSI C63.10-2013

The above equipment (model: V200c Plus) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY	: Evonne Liu / Specialist	, DATE : _	Aug. 12, 2015
APPROVED BY	:Kay Wu Kay Wu / Supervisor	, DATE :	Aug. 12, 2015

2. SUMMARY OF TEST RESULTS

APPLIED STANDARD: FCC Part 15, Subpart C (Bluetooth EDR)							
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -21.92dB at 0.15800MHz.				
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.				
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.				
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	PASS	Meet the requirement of limit.				
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.				
15.247(d)	Transmitter Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -4.58dB at 313.24MHz.				
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.				
15.203	Antenna Requirement	PASS	No antenna connector is used.				

The EUT has been tested according to the following specifications:

NOTE: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	2.93 dB
Radiated emissions	200MHz ~1000MHz	2.95 dB
	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Point of Sale Terminal			
MODEL NO.	V200c Plus			
POWER SUPPLY	11.6Vdc (adapter)			
MODULATION TYPE	Bluetooth EDR	GFSK, π /4-DQPSK, 8DPSK		
TRANSFER RATE	Bluetooth EDR	1/2/3Mbps		
OPERATING FREQUENCY	2402 ~ 2480MHz			
NUMBER OF CHANNEL	Bluetooth EDR 79			
CHANNEL SPACING	Bluetooth EDR	1MHz		
OUTPUT POWER	Bluetooth EDR	10.691mW		
ANTENNA TYPE	PIFA antenna with 1.4	8dBi gain		
ANTENNA CONNECTOR	NA			
DATA CABLE	Refer to Note as below			
I/O PORTS	Refer to user's manua	I		
ACCESSORY DEVICES	Refer to Note as below	V		

NOTE:

1. The EUT contains following accessory devices.

ITEM	BRAND	MODEL	SPECIFICATION
Adapter 1	Verifone	A124-2116167U	I/P: 100-240Vac, 50/60Hz, 0.5A O/P: 11.6Vdc, 1.55A 1.8m Non-shielded cable w/o core
Adapter 2	Verifone	VF0102	I/P: 100-240Vac, 50/60Hz, 0.5A O/P: 11.6Vdc, 1.55A 1.8m Non-shielded cable w/o core

2. The above EUT information is declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Bluetooth EDR:

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

BLUETOOTH EDR

EUT CONFIGURE		APPLIC	ABLE TO			ESCRIPTION
MODE	RE≥1G	RE<1G	PLC	APCN		DESCRIPTION
-	\checkmark	\checkmark	\checkmark	\checkmark	-	
nere RI	E≥1G: Radiated	Emission abov	ve 1GHz	RE<10	: Radiated Emission bel	low 1GHz
Pl	-C: Power Line	Conducted Em	ission	APCM	: Antenna Port Conducte	ed Measurement
therefore	chosen for the f	inal test and p	resented in the	test report.		d found GFSK was the worse and when positioned on X-plar
ADIATED E	MISSION TE	EST (ABOV	E 1GHz):			
Pre-Scan	has been co	nducted to	determine th	e worst-o	ase mode from all p	possible combinations
between a	available moo	dulations, da	ata rates and	antenna	a ports (if EUT with a	antenna diversity
architectu	ire).					
Following	channel(s) v	vas (were) s	elected for the	he final t	est as listed below.	
FUT		-		NEL	MODULATION TYP	PE PACKET TYPE
EUT CONFIGURE MODE	AVAILABI CHANNE		ESTED CHAN			PACKETTIFE
ADIATED E	CHANNE 0 to 78 MISSION TE has been co available mod	EST (BELO)	0, 39, 78 W 1GHz): determine th	e worst-o	GFSK	DH5
ADIATED E Pre-Scan between a architectu	CHANNE 0 to 78 MISSION TE has been co available mod available mod	EST (BELO) nducted to o dulations, da	0, 39, 78 W 1GHz): determine th ata rates and	e worst-o I antenna	GFSK case mode from all p	DH5
ADIATED E ADIATED E Pre-Scan between a architectu Following EUT	CHANNE 0 to 78 MISSION TE has been co available mod available mod	EST (BELO) nducted to o dulations, da vas (were) s	0, 39, 78 W 1GHz): determine th ata rates and	e worst-o d antenna he final to	GFSK case mode from all p a ports (if EUT with a	DH5 possible combinations antenna diversity
ADIATED E Detween a architectur Following EUT CONFIGURE	CHANNE 0 to 78 MISSION TE has been co available mod ire). channel(s) v AVAILABI	EST (BELO) nducted to o dulations, da vas (were) s	0, 39, 78 W 1GHz): determine th ata rates and selected for th	e worst-o d antenna he final to	GFSK case mode from all p a ports (if EUT with a est as listed below.	DH5 possible combinations antenna diversity
CONFIGURE MODE - CADIATED E Pre-Scan between a architectu Following EUT CONFIGURE MODE - POWER LINI Pre-Scan between a architectu	CHANNE 0 to 78 MISSION TE has been co available mod ire). channel(s) v AVAILABI CHANNE 0 to 78 E CONDUCT has been co available mod available mod	EST (BELO) nducted to o dulations, da vas (were) s L ED EMISSI nducted to o dulations, da	0, 39, 78 W 1GHz): determine the ata rates and selected for the rested chan 78 ON TEST: determine the ata rates and	e worst-o d antenna he final to NEL e worst-o d antenna	GFSK case mode from all p a ports (if EUT with a est as listed below. MODULATION TYP GFSK case mode from all p a ports (if EUT with a	DH5 DDH5 DDH5 DDH5 DDH5 DDH5 DDH5 DDH5
CONFIGURE MODE ADIATED E ADIATED E CONFIGURE MODE CONFIGURE MODE - COWER LINI Pre-Scan between a architectu Following COWER LINI CONFIGURE MODE	CHANNE 0 to 78 MISSION TE has been co available mod ire). channel(s) v AVAILABI CHANNE 0 to 78 E CONDUCT has been co available mod available mod available mod	EST (BELO) nducted to o dulations, da vas (were) s ED EMISSI nducted to o dulations, da vas (were) s	0, 39, 78 W 1GHz): determine the ata rates and selected for the rested chan 78 ON TEST: determine the ata rates and	e worst-o d antenna he final to NEL e worst-o d antenna	GFSK case mode from all p a ports (if EUT with a est as listed below. MODULATION TYP GFSK	DH5 DDH5 DDH5 DDH5 DDH5 DDH5 DDH5 DDH5
CONFIGURE MODE ADIATED E ADIATED E Pre-Scan between a architectu Following EUT CONFIGURE MODE - POWER LINI Pre-Scan between a architectu	CHANNE 0 to 78 MISSION TE has been co available mod ire). channel(s) v AVAILABI CHANNE 0 to 78 E CONDUCT has been co available mod available mod	E E E E E E E E E E E E E E E E E E E	0, 39, 78 W 1GHz): determine the ata rates and selected for the rested chan 78 ON TEST: determine the ata rates and	e worst-o d antenna he final to NEL e worst-o d antenna he final to	GFSK case mode from all p a ports (if EUT with a est as listed below. MODULATION TYP GFSK case mode from all p a ports (if EUT with a	DH5 DDH5 DDH5 DDH5 DDH5 DDH5 DDH5 DDH5

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

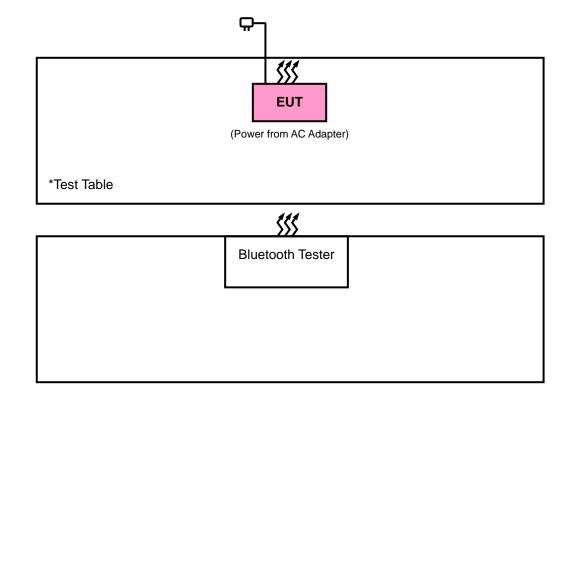
EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
-	0 to 78	0, 39, 78	GFSK	DH5
-	0 to 78	0, 39, 78	π /4-DQPSK	DH5
-	0 to 78	0, 39, 78	8DPSK	DH5

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Gavin Wu
RE<1G	25deg. C, 65%RH	120Vac, 60Hz	Gavin Wu
PLC	25deg. C, 65%RH	120Vac, 60Hz	Toby Tian
АРСМ	25deg. C, 65%RH	120Vac, 60Hz	Taylor Liu

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Bluetooth Tester	R&S	CBT	100870	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A

NOTE: 1. All power cords of the above support units are non shielded (1.8m).

2. Item 1 as a communication partner to transfer data.

3.3.1 CONFIGURATION OF SYSTEM UNDER TEST

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) ANSI C63.10-2013 FCC Public Notice DA 00-705

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4. TEST TYPES AND RESULTS (FOR BLUETOOTH EDR)

4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION	
Test Receiver Agilent	N9038A	MY51210203	Jan.21, 2015	Jan.21, 2016	
Spectrum Analyzer Agilent	N9010A	MY52220314	Sep.03, 2014	Sep.02, 2015	
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 10, 2014	Dec. 09, 2015	
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Feb. 04, 2015	Feb. 04, 2016	
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Feb. 09, 2015	Feb. 09, 2016	
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Feb. 04, 2015	Feb. 04, 2016	
Loop Antenna	EM-6879	269	Aug.13, 2014	Aug.12, 2015	
Preamplifier EMCI	EMC 012645	980115	Dec. 12, 2014	Dec. 11, 2015	
Preamplifier EMCI	EMC 184045	980116	Jan. 09, 2015	Jan. 08, 2016	
Preamplifier EMCI	EMC 330H	980112	Dec. 27, 2014	Dec. 26, 2015	
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4 2950114	Oct. 18, 2014	Oct. 17, 2015	
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 18, 2014	Oct. 17, 2015	
RF signal cable Worken	RG-213	NA	Nov. 07, 2014	Nov. 06, 2015	
Software BV ADT	E3 6.120103	NA	NA	NA	
Antenna Tower MF	MFA-440H	NA	NA	NA	
Turn Table MF	MFT-201SS	NA	NA	NA	
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA	
Bluetooth Tester	CBT	100870	Jan. 28, 2015	Jan. 27, 2016	
Power Meter	ML2495A	1232002	Sep. 17, 2014	Sep. 16, 2015	
Power Sensor	MA2411B	1207325	Sep. 17, 2014	Sep. 16, 2015	

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The calibration interval of the loop antenna is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

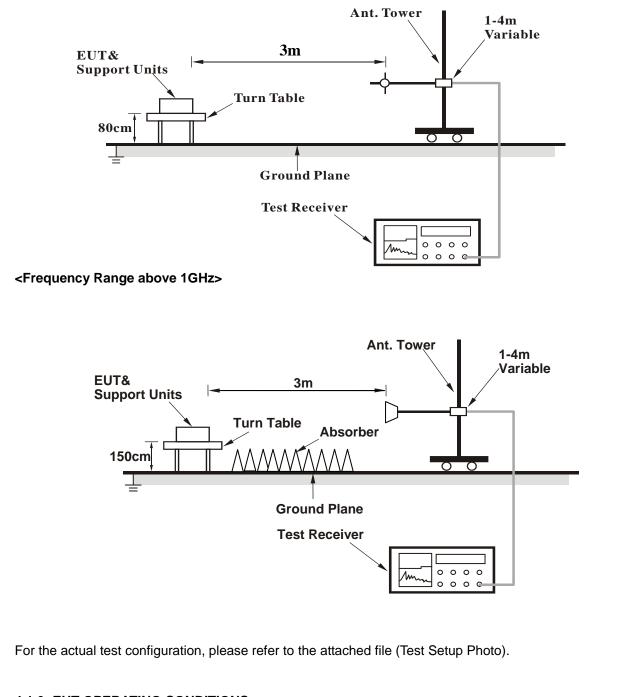
- 3. The test was performed in HwaYa Chamber 10.
- 4. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 5. The FCC Site Registration No. is 690701.
- 6. The IC Site Registration No. is IC 7450F-10.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.


4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

<Frequency Range 30MHz ~ 1GHz>

4.1.6 EUT OPERATING CONDITIONS

- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

4.1.7 TEST RESULTS

ABOVE 1GHz WORST-CASE DATA GFSK

EUT TEST CONDITION		MEASUREMENT DETAIL				
CHANNEL	Channel 0	FREQUENCY RANGE	1GHz ~ 25GHz			
INPUT POWER	120Vac, 60 Hz		Peak (PK) Average (AV)			
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Gavin Wu			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK	
2368	33.38	40	54	-20.62	26.81	4.07	37.5	172	142	Average	
2368	56.6	63.22	74	-17.4	26.81	4.07	37.5	172	142	Peak	
2402	91.68	98.2			26.91	4.09	37.52	172	142	Average	
2402	103.84	110.36			26.91	4.09	37.52	172	142	Peak	
2500	33.74	39.63	54	-20.26	27.2	4.16	37.25	172	142	Average	
2500	56.59	62.48	74	-17.41	27.2	4.16	37.25	172	142	Peak	
		ANTEN		RITY & T	EST DIST/	ANCE: V	ERTICAL	. AT 3 M			
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK	
2368	33.39	40.01	54	-20.61	26.81	4.07	37.5	102	54	Average	
2368	57.4	64.02	74	-16.6	26.81	4.07	37.5	102	54	Peak	
2402	92.79	99.31			26.91	4.09	37.52	102	54	Average	
2402	105.48	112			26.91	4.09	37.52	102	54	Peak	
2498	33.72	39.61	54	-20.28	27.2	4.16	37.25	102	54	Average	
2498	57.1	62.99	74	-16.9	27.2	4.16	37.25	102	54	Peak	

REMARKS:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2402MHz: Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL				
CHANNEL	Channel 39	FREQUENCY RANGE	1GHz ~ 25GHz			
INPUT POWER	120Vac, 60 Hz		Peak (PK) Average (AV)			
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Gavin Wu			

	Α	NTENN		TY & TE	ST DISTA	NCE: HO	RIZONTA	AL AT 3 M		ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK										
2360	33.33	39.96	54	-20.67	26.81	4.05	37.49	138	132	Average										
2360	56.71	63.34	74	-17.29	26.81	4.05	37.49	138	132	Peak										
2441	90.65	96.86			27.06	4.12	37.39	138	132	Average										
2441	103.73	109.94			27.06	4.12	37.39	138	132	Peak										
2492	34.22	40.11	54	-19.78	27.2	4.16	37.25	138	132	Average										
2492	57.61	63.5	74	-16.39	27.2	4.16	37.25	138	132	Peak										
		ANTEN		RITY & T	EST DIST/	ANCE: V	/ERTICAL	. AT 3 M												
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK										
2374	33.18	39.75	54	-20.82	26.86	4.07	37.5	101	61	Average										
2374	56.74	63.31	74	-17.26	26.86	4.07	37.5	101	61	Peak										
2441	92.59	98.8			27.06	4.12	37.39	101	61	Average										
2441	105.19	111.4			27.06	4.12	37.39	101	61	Peak										
2500	33.74	39.63	54	-20.26	27.2	4.16	37.25	101	61	Average										
2500	57.26	63.15	74	-16.74	27.2	4.16	37.25	101	61	Peak										

REMARKS:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2441MHz: Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL				
CHANNEL	Channel 78	FREQUENCY RANGE	1GHz ~ 25GHz			
INPUT POWER	120Vac, 60 Hz		Peak (PK) Average (AV)			
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Gavin Wu			

	Α	NTENN		TY & TE	ST DISTA	NCE: HO	RIZONTA	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2370	33.09	39.66	54	-20.91	26.86	4.07	37.5	118	150	Average
2370	57.23	63.8	74	-16.77	26.86	4.07	37.5	118	150	Peak
2480	91.13	97.15			27.15	4.15	37.32	118	150	Average
2480	103.72	109.74			27.15	4.15	37.32	118	150	Peak
2484	37.4	43.42	54	-16.6	27.15	4.15	37.32	118	150	Average
2484	58.07	64.09	74	-15.93	27.15	4.15	37.32	118	150	Peak
		ANTEN		RITY & T	EST DIST/	ANCE: V	ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2376	33.1	39.67	54	-20.9	26.86	4.07	37.5	100	74	Average
2376	57.06	63.63	74	-16.94	26.86	4.07	37.5	100	74	Peak
2480	92.39	98.41			27.15	4.15	37.32	100	74	Average
2480	105.26	111.28			27.15	4.15	37.32	100	74	Peak
2484	37.51	43.53	54	-16.49	27.15	4.15	37.32	100	74	Average
2484	58.09	64.11	74	-15.91	27.15	4.15	37.32	100	74	Peak

REMARKS:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2480MHz: Fundamental frequency.

BELOW 1GHz WORST-CASE DATA:

EUT TEST CONDITION		MEASUREMENT DETAIL					
CHANNEL Channel 78		FREQUENCY RANGE	30MHz ~ 1GHz				
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Quasi-peak (QP)				
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Gavin Wu				

	Α	NTENNA		TY & TE	ST DISTA	NCE: HO	RIZONTA	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
286.08	36.34	53.94	46	-9.66	12.54	1.59	31.73	106	4	Peak
313.24	41.42	58.42	46	-4.58	13.26	1.67	31.93	107	211	Peak
352.04	34.98	50.9	46	-11.02	14.19	1.76	31.87	104	55	Peak
475.23	30.72	43.72	46	-15.28	16.83	2.04	31.87	131	334	Peak
642.07	30.37	39.99	46	-15.63	20.12	2.34	32.08	109	304	Peak
679.9	31.34	40.19	46	-14.66	20.57	2.42	31.84	116	240	Peak
		ANTEN		RITY & T	EST DIST/	ANCE: V	/ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
30	32.26	50.84	40	-7.74	11.98	0.58	31.14	109	53	Peak
42.61	33.7	50.54	40	-6.3	13.58	0.66	31.08	126	322	Peak
64.92	25.28	44.68	40	-14.72	11.35	0.84	31.59	140	29	Peak
295.78	28.26	45.58	46	-17.74	12.83	1.62	31.77	124	229	Peak
373.38	27.4	42.8	46	-18.6	14.7	1.83	31.93	111	151	Peak
458.74	28.31	41.8	46	-17.69	16.5	2	31.99	123	54	Peak

REMARKS: Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

4.2 CONDUCTED EMISSION MEASUREMENT

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)				
	Quasi-peak	Average			
0.15 ~ 0.5	66 to 56	56 to 46			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

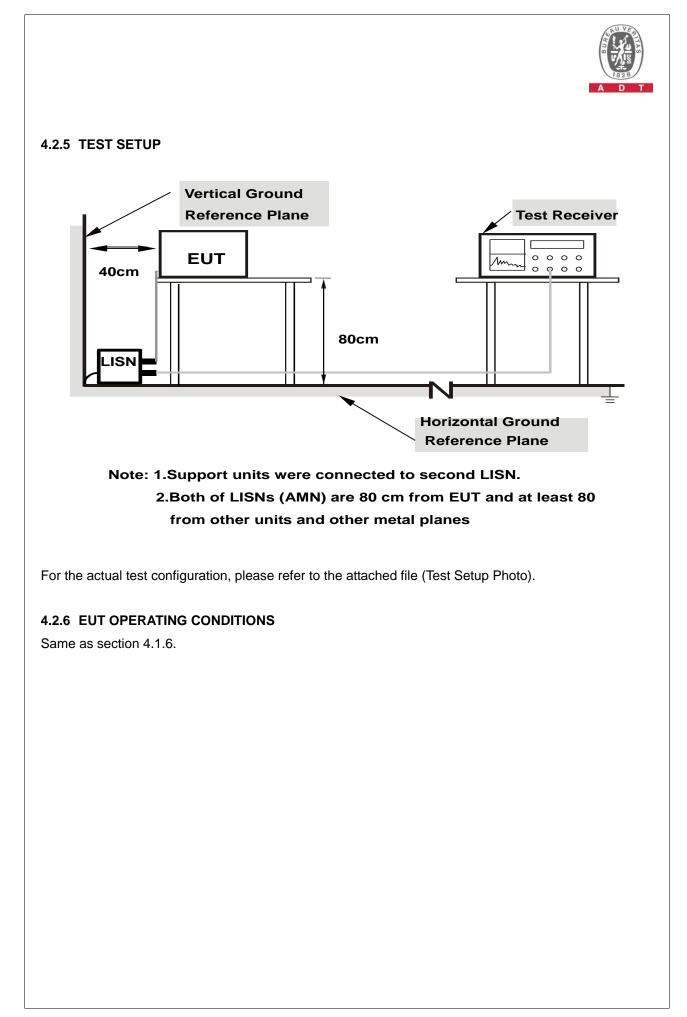
4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 11, 2014	Nov. 10, 2015
RF signal cable Woken	5D-FB	Cable-HYC01-01	Dec. 26, 2014	Dec. 25, 2015
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Mar. 02, 2015	Mar. 01, 2016
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 24, 2015	Jul. 23, 2016
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 2.

3. The VCCI Site Registration No. is C-2047.


4.2.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

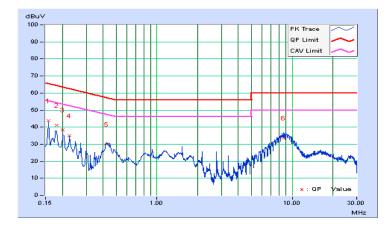
4.2.7 TEST RESULTS

CONDUCTED WORST-CASE DATA :

Frequency Range	150kHz ~ 30MHz	X. RACOULTION	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2015/7/27

	Phase Of Power : Line (L)									
	Frequency	Correction	Readin	g Value	Emissic	Emission Level		nit	Margin	
No		Factor	(dBuV)		(dB	uV)	(dB	uV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15800	0.05	43.60	31.58	43.65	31.63	65.57	55.57	-21.92	-23.94
2	0.18037	0.06	40.91	30.14	40.97	30.20	64.47	54.47	-23.50	-24.27
3	0.20201	0.06	38.20	28.47	38.26	28.53	63.53	53.53	-25.27	-25.00
4	0.22600	0.06	35.03	26.09	35.09	26.15	62.60	52.60	-27.51	-26.45
5	0.42577	0.06	29.78	21.05	29.84	21.11	57.33	47.33	-27.49	-26.22
6	8.67400	0.39	33.31	26.49	33.70	26.88	60.00	50.00	-26.30	-23.12

Remarks:

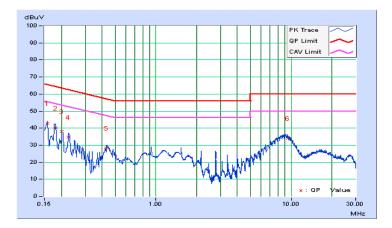

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

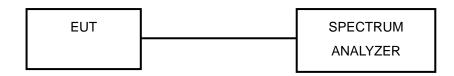


Frequency Range	150kHz ~ 30MHz		Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2015/7/27

	Phase Of Power : Neutral (N)									
	Frequency	Correction	Readin	g Value	Emissic	Emission Level		nit	Margin	
No		Factor	(dBuV)		(dB	uV)	(dB	uV)	(dB)	
	(MHz) (dB)		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15800	0.05	42.80	30.51	42.85	30.56	65.57	55.57	-22.72	-25.01
2	0.18037	0.05	40.14	28.19	40.19	28.24	64.47	54.47	-24.28	-26.23
3	0.20201	0.05	38.16	27.62	38.21	27.67	63.53	53.53	-25.32	-25.86
4	0.22600	0.05	34.71	24.62	34.76	24.67	62.60	52.60	-27.83	-27.92
5	0.43256	0.06	28.35	20.72	28.41	20.78	57.20	47.20	-28.79	-26.42
6	9.39000	0.40	33.71	27.43	34.11	27.83	60.00	50.00	-25.89	-22.17

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 NUMBER OF HOPPING FREQUENCY USED

4.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

4.3.2 TEST SETUP

4.3.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.3.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

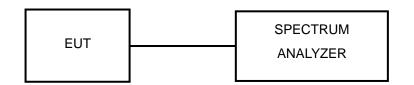
4.3.5 DEVIATION FROM TEST STANDARD

No deviation.

4.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plot, it shows that the hopping frequencies are equally spaced.

							A	
4.5 - Ref 24.5 dBm 20 - Offset 14.5 dB 10	Att 20 dB	RBW 1 MHz VBW 1 MHz SWT 500 ms	[T1] MP MAXH	24.5 - Ref 24.5 dBm 20 - Offset 14.5 dB 10	Att 20 dB	RBW 1 MHz VBW 1 MHz SWT 500 ms	[T1] MP MAXH	
				0- -10- -20- -30- -40-				
10	4.1 MH2/		I I Stop 2.441 GHz	-50		I I MHz/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A D T



4.4 DWELL TIME ON EACH CHANNEL

4.4.1 LIMITS OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 TEST SETUP

4.4.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

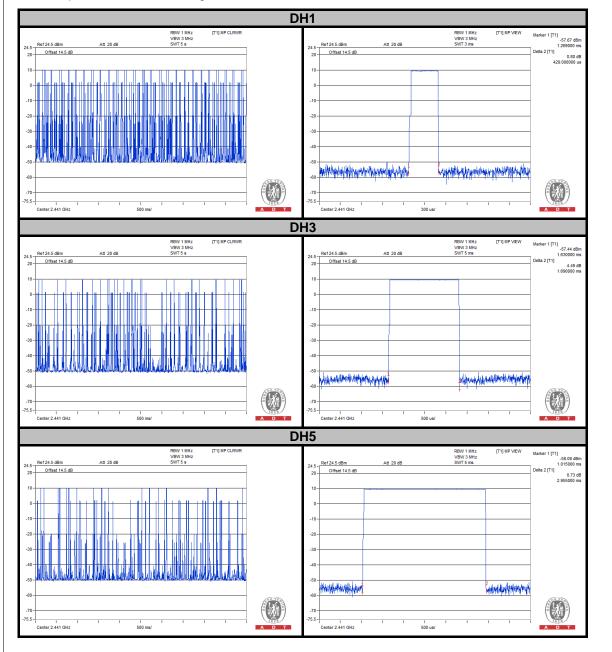
4.4.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 DEVIATION FROM TEST STANDARD

No deviation.

4.4.6 TEST RESULTS

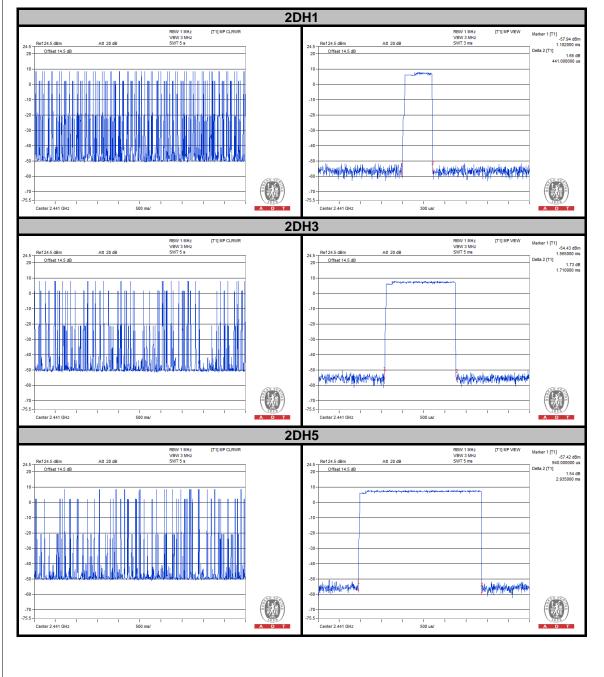

GFSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
DH1	10.00	429.00	0.14	0.4
DH3	5.00	1690.00	0.27	0.4
DH5	3.40	2955.00	0.32	0.4

NOTE:

1. Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time

- 2. 79 channels come from the Hopping Channel number
- 3. Average Hopping Channel = hops/sweep time
- 4. t: Package Transfer Time(us)
- 5. Test plots of the transmitting time slot are shown as below.

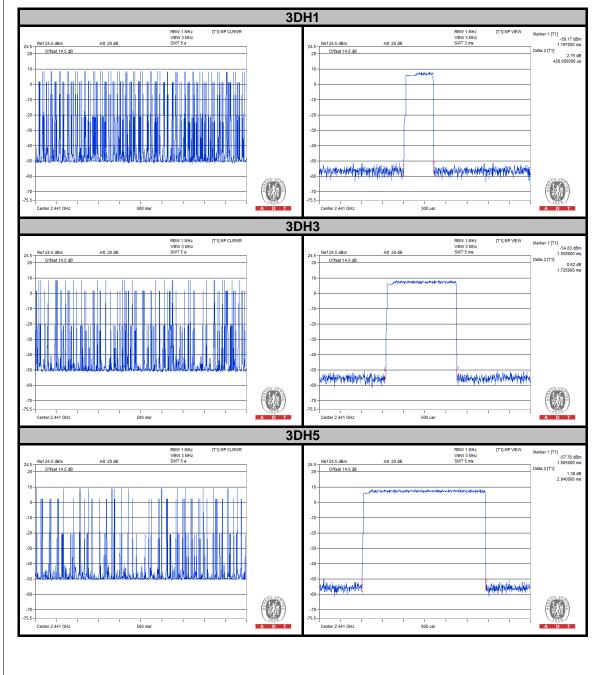

π/4-DQPSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
2DH1	10.20	441.00	0.14	0.4
2DH3	5.00	1710.00	0.27	0.4
2DH5	3.60	2935.00	0.33	0.4

NOTE:

Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
 79 channels come from the Hopping Channel number
 Average Hopping Channel = hops/sweep time
 t: Package Transfer Time(us)

5. Test plots of the transmitting time slot are shown as below.

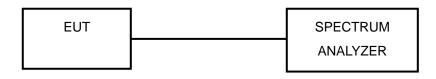

8DPSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
3DH1	10.00	429.00	0.14	0.4
3DH3	5.20	1725.00	0.28	0.4
3DH5	3.20	2940.00	0.30	0.4

NOTE:

Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
 79 channels come from the Hopping Channel number
 Average Hopping Channel = hops/sweep time
 t: Package Transfer Time(us)

5. Test plots of the transmitting time slot are shown as below.



4.5 CHANNEL BANDWIDTH

4.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

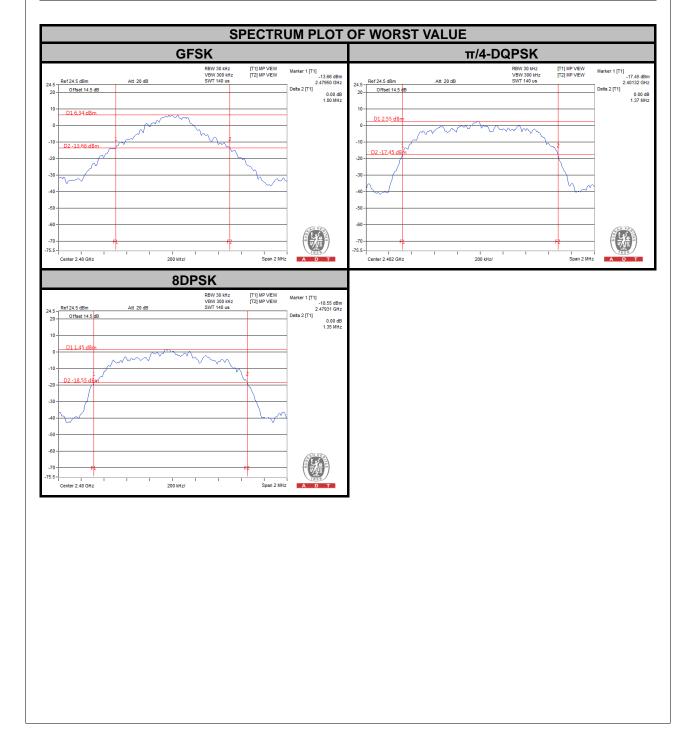
Refer to section 4.1.2 to get information of above instrument.

4.5.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 DEVIATION FROM TEST STANDARD

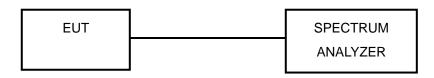
No deviation.


4.5.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 TEST RESULTS

CHANNEL	FREQUENCY	20dB BANDWIDTH (MHz)						
01/11/122	(MHz)	GFSK	π/4-DQPSK	8DPSK				
0	2402	1.00	1.37	1.34				
39	2441	0.98	1.37	1.34				
78	2480	1.00	1.37	1.35				



4.6 HOPPING CHANNEL SEPARATION

4.6.1 LIMITS OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 TEST SETUP

4.6.3 TEST INSTRUMENTS

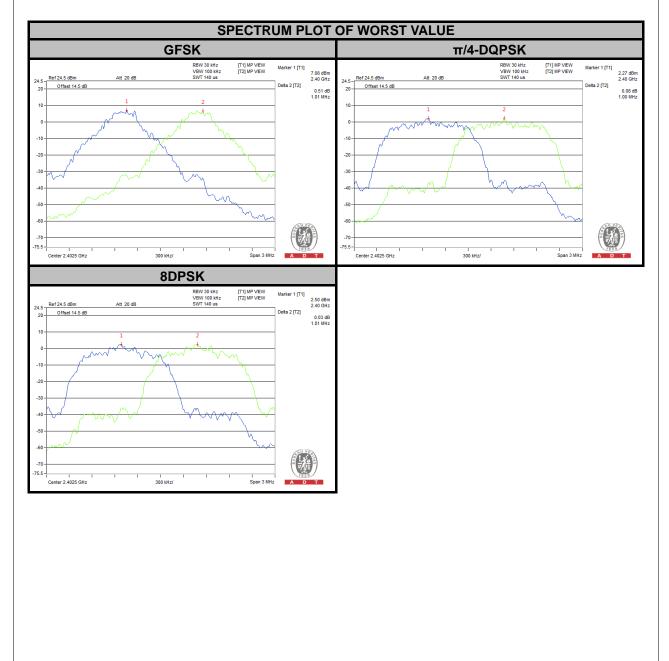
Refer to section 4.1.2 to get information of above instrument.

4.6.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.6.5 DEVIATION FROM TEST STANDARD

No deviation.



4.6.6 TEST RESULTS

CHAN.	FREQ. (MHz)	-	ADJACENT CHANNEL SEPARATION (MHz)			20dB BANDWIDTH (MHz)			MINIMUM LIMIT (MHz)			PASS / FAIL
		GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK		
0	2402	1.01	1.00	1.01	1.00	1.37	1.34	0.663	0.913	0.893	PASS	
39	2441	1.01	1.00	1.01	0.98	1.37	1.34	0.655	0.913	0.893	PASS	
78	2480	1.00	1.00	1.01	1.00	1.37	1.35	0.667	0.913	0.900	PASS	

NOTE:

1. The minimum limit is two-third 20dB bandwidth.

4.7 MAXIMUM OUTPUT POWER

4.7.1 LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT

The Maximum Output Power Measurement is 125mW.

4.7.2 TEST SETUP

4.7.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.7.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.7.5 DEVIATION FROM TEST STANDARD

No deviation.

4.7.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 TEST RESULTS

	CHANNEL	FREQUENCY (MHz)	OUTPUT POWER (mW)			OUTPUT POWER (dBm)			POWER LIMIT	PASS / FAIL
			GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	(mW)	
	0	2402	10.304	7.638	8.650	10.13	8.83	9.37	125	PASS
	39	2441	10.691	7.244	7.889	10.29	8.60	8.97	125	PASS
I	78	2480	10.093	7.211	7.762	10.04	8.58	8.90	125	PASS

GFSK π/4-DQPSK
Market / FUI Market / FUI Strike Control Strike Control Strike Control Strike Control Strike Control Strike Strike
40
BBW 3 MHz [T1] MP VEW Marker 1 [T1] VEW 10 MHz 9.37 dBm 20 0 Offset 14.5 dB 20 1 1 1
VBW 10 MHz 9.37 dBm 2.401980 GHz 2.401980 GHz 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
60

4.8 CONDUCTED OUT OF BAND EMISSION MEASUREMENT

4.8.1 LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

4.8.2 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.8.3 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

4.8.4 DEVIATION FROM TEST STANDARD

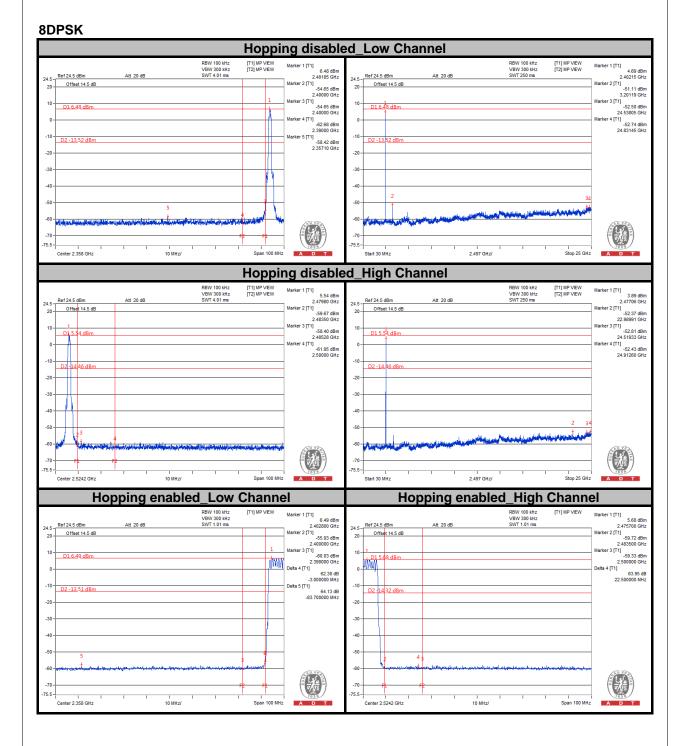
No deviation.

4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit continuously.

4.8.6 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.



GFSK Hopping disabled_Low Channel RBW 100 kHz VBW 300 kHz SWT 4.01 ms RBW 100 kHz VBW 300 kHz SWT 250 ms [T1] MP VIEW [T1] MP VIEW er 1 [T1] 9.78 dBm 2.40200 GHz rr 2 [T1] -51.40 dBm 2.40000 GHz rr 3 [T1] Marker 1 [T1] Att 20 dB Att 20 dB Ref 24.5 dBm Ref 24.5 dBn 24.5-24.5 Offset 14.5 dB Offset 14.5 dB 20 20 1 یہ ہو (۲۱) -52.52 dBm 24.56927 GHz Varker 4 (۲۱) -51.40 dBm 2.40000 GHz ker 4 [T1] 1] -62.20 dBm 2.39000 GHz [T1] -52.68 dBm 24.95006 GHz 2.39000 GHz 5 [T1] -58.54 dBm 2.36607 GHz -10 -20 -20 -30 -21 -40 -50 -5/ مره الادفية ميه واليتما المنهمة -60 -60 -70 -70 75.5 75.5 I Stop 25 GHz 1 2.497 GHz/ Center 2.358 GHz 10 MHz/ Span 100 MHz A Start 30 MHz Hopping disabled_High Channel RBW 100 kHz VBW 300 kHz SWT 4.01 ms RBW 100 kHz VBW 300 kHz SWT 250 ms [T1] MP VIEW [T2] MP VIEW [T1] MP VIEW [T2] MP VIEW ker 1 [T1] 9.37 dBm 2.47995 GHz (er 2 [T1] -56.65 dBm 2.48350 GHz (er 3 [T1] -56.65 dBm Marker 1 [T1] Marker 1 [T1] Marker 1 [T1] 8.63 dBm 2.47706 GHz -52.60 dBm 24.41945 GHz Marker 3 [T1] -52.12 dBm 24.56927 GHz Marker 4 [T1] -52.99 dBm Ref 24.5 dBm Att 20 dB Ref 24.5 dBr Att 20 dB Offset 14.5 dB Offset 14.5 dB 1 3 [T1] -56.65 dBm 2.48350 GHz 4 [T1] 10 -61.54 dBm 2.50000 GHz [T1] -52.99 dBm 24.76903 GHz -10 -10 -20 -20 -30 -40 -40 -50 -50 فالرافيدمهن فيالي فالأراب -60 -60 -70 -70 1 75.5 75.5 -I Stop 25 GHz Span 100 MHz 10 MHz/ 2 497 GHz/ Center 2 5242 GHz A Start 30 MHz • Hopping enabled_High Channel Hopping enabled_Low Channel RBW 100 kHz VBW 300 kHz SWT 1.01 ms RBW 100 kHz VBW 300 kHz SWT 1.01 ms IT11 MP VIEW IT11 MP VIEW Marker 1 [T1] Marker 1 [T1] Marker 1 [T1] 9.50 dBm 2.475000 GHz Marker 2 [T1] -58.70 dBm 2.483500 GHz Marker 3 [T1] -60.05 dBm 2.500000 GHz Delta 4 [T1] ker 1 [T1] 9.90 dBm 2.405200 GHz ker 2 [T1] -52.41 dBm 2.400000 GHz ker 3 [T1] Att 20 dB Ref 24.5 dBm Att 20 dB Ref 24.5 dBr 24.5-24.5 Offset 14.5 dB Offset 14.5 dB 20 1 [T1] -59.33 dBm 2.390000 GHz -5.200000 MHz Delta 5 [T1] MIR 11 Delta 4 IT11 67.52 dB 10.400000 MHz D2 -10 10 dBm -10 66.82 dB -20.000000 MHz -20 -20 -30 -40 -50 -51 -60 -60 -70 -70 -75.5 -75.5 -I Span 100 MHz Center 2.358 GHz 10 MHz/ Span 100 MHz 10 MHz/ A D Center 2.5242 GHz A

π/4-DQPSK Hopping disabled_Low Channel RBW 100 kHz VBW 300 kHz SWT 4.01 ms RBW 100 kHz VBW 300 kHz SWT 250 ms [T1] MP VIEW [T2] MP VIEW [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] Marker 1 [T1] Marker 1 [T1] 5.85 dBm 2.40215 GHz Marker 2 [T1] -50.98 dBm 3.20119 GHz Marker 3 [T1] 23.62665 GHz Marker 4 [T1] ker 1 [T1] 6.36 dBm 2.40215 GHz ker 2 [T1] -53.82 dBm 2.40000 GHz ker 3 [T1] Ref 24.5 dBm Att 20 dB 24.5 - Ref 24.5 dBm Att 20 dB 24.5 Offset 14.5 dB Offset 14.5 dB 20 20 10 -53.82 dBm 2.40000 GHz D1 6.36 dBm dBm 1 Marker 4 [T1] arker 4 [T1] [1] -61.22 dBm 2.39000 GHz [T1] -52.68 dBm 24.96254 GHz -10 5 (T1) -10 D2 -13.64 dB -58.98 dBm 2.37745 GHz -20 -20 -30 -21 -40 -50 -5/ k المتياليين والمعادي والمعادي والمعادين -60 -60 -70 -70 V. 75.5 75.5 I Stop 25 GHz 1 2.497 GHz/ Center 2.358 GHz 10 MHz/ Span 100 MHz A Start 30 MHz Hopping disabled_High Channel RBW 100 kHz VBW 300 kHz SWT 4.01 ms RBW 100 kHz VBW 300 kHz SWT 250 ms [T1] MP VIEW [T2] MP VIEW [T1] MP VIEW [T2] MP VIEW ker 1 [T1] 5.02 dBm 2.47998 GHz ker 2 [T1] 59.00 dBm 2.48350 GHz ker 3 [T1] 57.79 dBm 2.48378 GHz ker 4 [T1] -61.48 dBm Marker 1 [T1] 3.27 dBm 2.47706 GHz Marker 2 [T1] -53.30 dBm 24.43818 GHz Marker 3 [T1] -52.15 dBm 24.67539 GHz Marker 4 [T1] -52.56 dBm 24.95630 GHz Marker 1 [T1] Marker 1 [T1] Ref 24.5 dBm Att 20 dB Ref 24.5 dBr Att 20 dB Offset 14.5 dB Offset 14.5 dB 10 D1 5.02 dBm D1 5.02 dBm -61.48 dBm 2.50000 GHz -10 -10 D2 -14 dBm D2 -14.98 dl -20 -20 -30 1 -40 -40 -50 -50 المراجع الماجا الماج المحاجة ا And the second -60 a fin a feater and a second product of the state of the second second second second second second second second -60 --70 -70 М. 75.5 75.5 -I Stop 25 GHz Span 100 MHz 10 MHz/ 2 497 GHz/ Center 2 5242 GHz A Start 30 MHz • Hopping enabled_Low Channel Hopping enabled_High Channel RBW 100 kHz VBW 300 kHz SWT 1.01 ms RBW 100 kHz VBW 300 kHz SWT 1.01 ms IT11 MP VIEW IT11 MP VIEW Marker 1 [T1] Marker 1 [T1] Marker 1 [T1] 5.65 dBm 2.478700 GHz Marker 2 [T1] -58.88 dBm 2.483500 GHz Marker 3 [T1] -58.60 dBm 2.500000 GHz Delta 4 [T1] Marker 1 [T1] 6.48 dBm 2.404200 GHz Marker 2 [T1] -55.82 dBm 2.400000 GHz Marker 3 [T1] Att 20 dB 24.5 - Ref 24.5 dBn Att 20 dB Ref 24.5 dBr 24.5 Offset 14.5 dB Offset 14.5 dB 20 -59.41 dBm 2,390000 GHz Delta 4 [T1] 10 D1 6.48 dBm dB MW WW Delta 4 IT11 1] 63.50 dB 5.400000 MHz -10 -10 D2 -13.52 d 64.34 dB -16.600000 MHz D2 -1 -20 -20 -30 -40 -50 -51 -60 -60 -70 -70 -75.5 -75.5 -Center 2.358 GHz 10 MHz/ Span 100 MHz 10 MHz/ Span 100 MHz A D Center 2.5242 GHz A

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---