

FCC RF Test Report

APPLICANT	:	Verifone, Inc.
EQUIPMENT	:	Point of Sale Terminal
BRAND NAME	:	Verifone
MODEL NAME	:	T650c
FCC ID	:	B32T650C
STANDARD	:	FCC Part 15 Subpart C §15.225
CLASSIFICATION	:	(DXX) Low Power Communication Device Transmitter

The product was received on Dec. 11, 2019 and testing was completed on Mar. 24, 2020. We, Sporton International (ShenZhen) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (ShenZhen) Inc., the test report shall not be reproduced except in full.

Dorque Chens

Reviewed by: Derreck Chen / Supervisor

File Shih

Approved by: Eric Shih / Manager

Sporton International (ShenZhen) Inc. 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

TABLE	E OF CONTENTS	2
REVIS	ION HISTORY	3
SUMM	ARY OF THE TEST RESULT	4
1. GEN	VERAL DESCRIPTION	5
1.1	Applicant	5
1.2	Manufacturer	5
1.3	Product Feature of Equipment Under Test	5
1.4	Product Specification of Equipment Under Test	6
1.5	Modification of EUT	6
1.6	Testing Location	7
1.7	Test Software	7
1.8	Applicable Standards	
2. TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
2.1	Descriptions of Test Mode	8
2.2	Connection Diagram of Test System	9
2.3	Table for Supporting Units	
2.4		
3. TES	T RESULTS	
3.1	AC Power Line Conducted Emissions Measurement	
3.2	20dB and 99% OBW Spectrum Bandwidth Measurement	
3.3	Frequency Stability Measurement	
3.4	Field Strength of Fundamental Emissions and Mask Measurement	
3.5	Radiated Emissions Measurement	17
3.6	Antenna Requirements	-
	F OF MEASURING EQUIPMENT	
5. UNC	CERTAINTY OF EVALUATION	22
APPE	NDIX A. TEST RESULTS OF CONDUCTED EMISSION TEST	
APPE	NDIX B. TEST RESULTS OF CONDUCTED TEST ITEMS	
B1.	. Test Result of 20dB Spectrum Bandwidth	

B2. Test Result of Frequency Stability

APPENDIX C. TEST RESULTS OF RADIATED TEST ITEMS

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

APPEDNIX D. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR9D1105D	Rev. 01	Initial issue of report	Mar. 30, 2020

SUMMARY OF THE TEST RESULT

Report Section	FCC Rule	Description of Test	Result	Remark
3.1	15.207	AC Power Line Conducted Emissions	Complies	Under limit 13.76 dB at 0.440MHz
	15.215(c)	20dB Spectrum Bandwidth	Complies	-
3.2	-	99% OBW Spectrum Bandwidth	Complies	-
3.3	15.225(e)	Frequency Stability	Complies	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Complies	Max level 69.66 dBµV/m at 13.56 MHz
3.5	15.225(d) & 15.209	Radiated Spurious Emissions	Complies	Under limit 10.96 dB at 67.83MHz
3.6	15.203	Antenna Requirements	Complies	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1. General Description

1.1 Applicant

Verifone, Inc.

Suite 200 1400 W Stanford Ranch Rd Rocklin CA 95765 USA

1.2 Manufacturer

Verifone Systems (China) Inc.

Rm 318, south of Bld C18, Startup Headquarters Base, North of Fuyuan Road, Wuqing Development Area, Tianjin, China, 301700

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment Point of Sale Terminal			
Brand Name	Verifone		
Model Name T650c			
FCC ID	B32T650C		
	WLAN 2.4GHz 802.11b/g/n HT20/HT40		
FUT supports Padias application	WLAN 5GHz 802.11a/n HT20/HT40		
EUT supports Radios application	Bluetooth BR/EDR/LE		
	NFC		
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	13.553 ~ 13.567MHz		
Channel Number	1		
20dBW	2.58 KHz		
99%OBW	2.19 KHz		
Antenna Type	electric wire Antenna		
Type of Modulation	ASK		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Shenzhen) Inc. is accredited to ISO/IEC 17025:2017 by American Association

for Laboratory Accreditation with Certificate Number 5145.01.

Test Site	Sporton International (Shenzhen) Inc.							
Test Site Location	518055 People's TEL: +86-755-86	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595						
Test Site No.	Sportor	n Site No.	FCC Designation No.	FCC Test Firm Registration No.				
	TH01-SZ	CO01-SZ						
Test Engineer	Sam Zheng	LiuDaLin						
Temperature	22-24 ℃	22~25 ℃	CN1256	421272				
Relative Humidity	53-55%							

Test Site	Sporton International (Shenzhen) Inc.				
Test Site Location	No. 3 Bldg the third floor of south, Shahe River west, Fengzeyuan Warehouse, Nanshan Shenzhen, 518055 People's Republic of China TEL: +86-755-33202398				
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
	03CH03-SZ				
Test Engineer	Fuquan wu				
Temperature	emperature 24~25℃ CN1256 42				
Relative Humidity	48~49%				

1.7 Test Software

ltem	Site	Manufacture	Name	Version
1.	03CH03-SZ	AUDIX	E3	6.2009-8-24
2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.225
- ANSI C63.10-2013

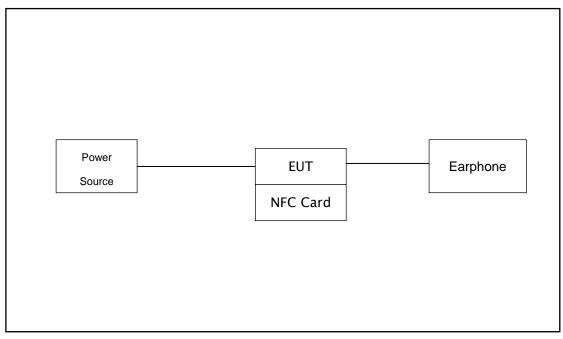
2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

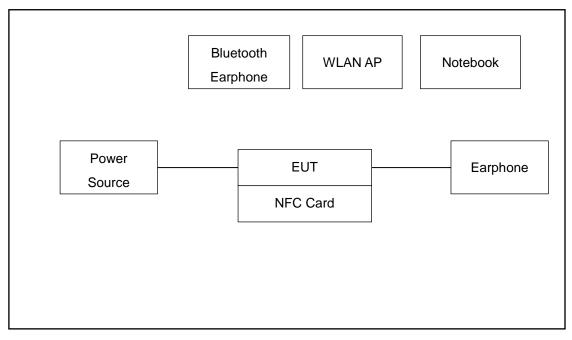
Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.

Test Items				
AC Power Line Conducted Emissions	Field Strength of Fundamental Emissions			
20dB Spectrum Bandwidth	Frequency Stability			
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz			


The EUT pre-scanned in four NFC type, A, B. The worst type (type A) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (X plane as worst plane) from all possible combinations.

	Test Cases					
AC						
Conducted	Mode 1: Bluetooth Link + WLAN Link (2.4G) + NFC Tx + Charging from Adapter					
Emission						
Remark: Fo	Remark: For Radiated Test Cases, The tests were performed with Adapter and Earphone.					



2.2 Connection Diagram of Test System

For Radiation Spurious Emission

For AC Conducted Emission

2.3 Table for Supporting Units

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Samsung	EO-MG900	N/A	N/A	N/A
2.	WLAN AP	D-Link	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	E540	FCC DoC	N/A	AC I/P : Unshielded, 1.2m DC O/P : Shielded, 1.8m
4.	Earphone	Apple	MC690ZP/A	N/A	Shielded, 1.0m	Earphone
5.	NFC Card	N/A	N/A	N/A	N/A	N/A

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 3 cm gap to the EUT.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

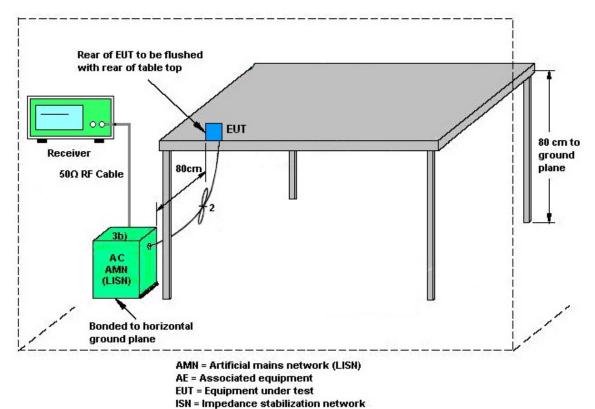
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

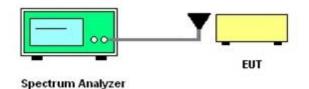
3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

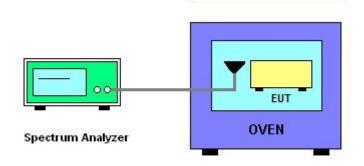
3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

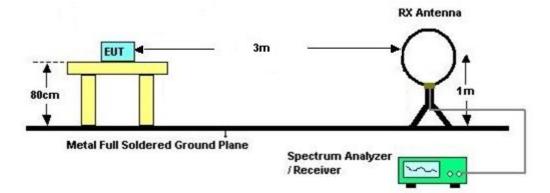
3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225								
Description	Compliance with th	Compliance with the spectrum mask is tested with RBW set to 9kHz.							
	Field Strength	Field Strength	Field Strength	Field Strength					
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m					
1.705~13.110	30	29.5	48.58	69.5					
13.110~13.410	106	40.5	59.58	80.5					
13.410~13.553	334	50.5	69.58	90.5					
13.553~13.567	15848	84.0	103.08	124.0					
13.567~13.710	334	50.5	69.58	90.5					
13.710~14.010	106	40.5	59.58	80.5					
14.010~30.000	30	29.5	48.58	69.5					

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.



3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- Compliance with the spectrum mask is tested with RBW set to 9kHz.
 Note: Emission level (dBμV/m) = 20 log Emission level (μV/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

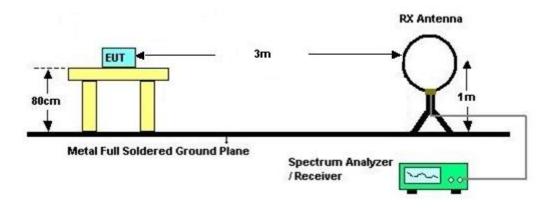
See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

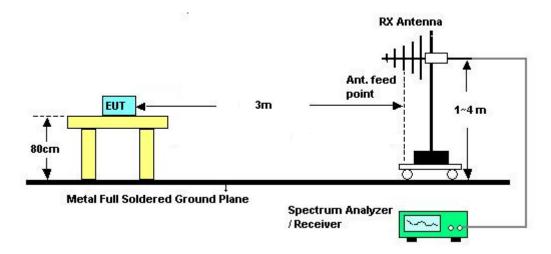
The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. Antenna Requirements



3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Remark: There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 18, 2019	Mar. 24, 2020	Apr. 17, 2020	Conducted (TH01-SZ)
Thermal Chamber	Ten Billion Hongzhangroup	LP-150U	H20140818 03	-40~+150°C	Dec. 26, 2019	Mar. 24, 2020	Dec. 25, 2020	Conducted (TH01-SZ)
EMI Test Receiver&SA	KEYSIGHT	N9038A	MY544500 83	20Hz~8.4GHz	Apr. 18, 2019	Jan. 14, 2020	Apr. 17, 2020	Radiation (03CH03-SZ)
EXA Spectrum Anaiyzer	KEYSIGHT	N9010A	MY551502 46	10Hz~44GHz;	Apr. 18, 2019	Jan. 14, 2020	Apr. 17, 2020	Radiation (03CH03-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 29, 2019	Jan. 14, 2020	May 28, 2020	Radiation (03CH03-SZ)
Bilog Antenna	TeseQ	CBL6112D	35408	30MHz-2GHz	Apr. 19, 2019	Jan. 14, 2020	Apr. 18, 2020	Radiation (03CH03-SZ)
Amplifier	Burgeon	BPA-530	102210	0.01Hz ~3000MHz	Oct. 18, 2019	Jan. 14, 2020	Oct. 17, 2020	Radiation (03CH03-SZ)
AC Power Source	Chroma	61601	616010001 985	N/A	NCR	Jan. 14, 2020	NCR	Radiation (03CH03-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Jan. 14, 2020	NCR	Radiation (03CH03-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Jan. 14, 2020	NCR	Radiation (03CH03-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Dec. 26, 2018	Dec. 22, 2019	Dec. 25, 2019	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Oct. 17, 2019	Dec. 22, 2019	Oct. 16, 2020	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Dec. 27, 2018	Dec. 22, 2019	Dec. 26, 2019	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 23, 2019	Dec. 22, 2019	Jul. 22, 2020	Conduction (CO01-SZ)

NCR: No Calibration Required

5. Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

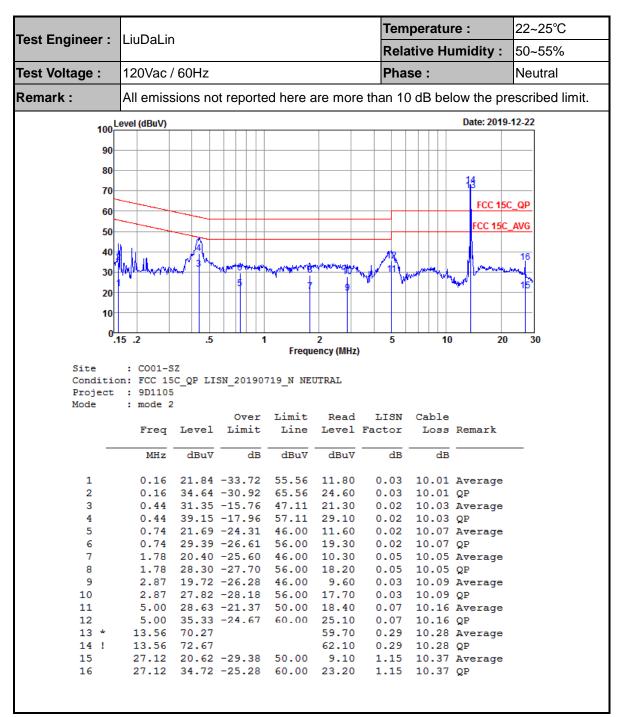
Measuring Uncertainty for a Level of Confidence	2.6 dB
of 95% (U = 2Uc(y))	2.0 UB

Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.8 dB
of 95% (U = 2Uc(y))	2.0 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

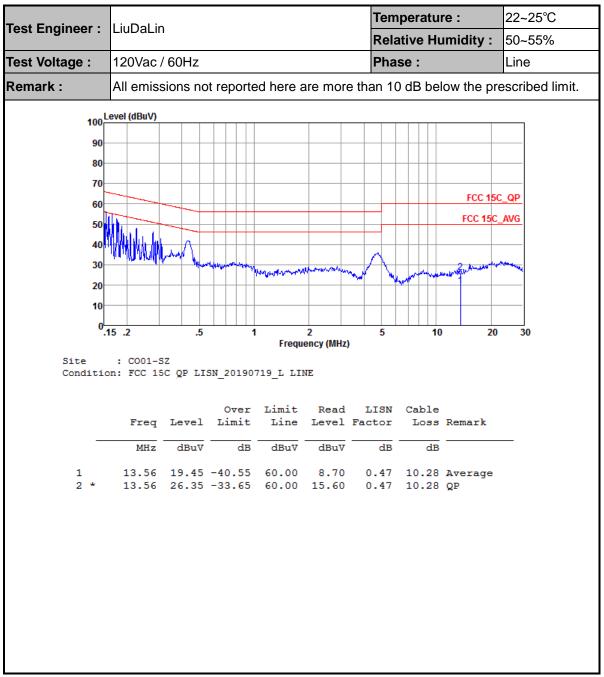
Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB


Appendix A. Test Results of Conducted Emission Test

Tost Engineer	LiuDalia					Tem	peratu	re :	22~25 ℃
Test Engineer :	LiuDaLin	l 				Rela	tive Hu	umidity :	50~55%
Test Voltage :	120Vac /	[/] 60Hz				Pha	se :		Line
Remark :	All emiss	sions no	ot reporte	ed here a	are more	e than 10) dB be	low the pre	escribed limit.
100-	evel (dBuV)							Date: 2019-	12-22
90-									
80								19	
70									
60								FCC 150	<u>_QP</u>
								FCC 15C	MG
50									
40									
P		M 3 m			. all added.	<u>A</u> 2			
30	A when the	Ma 1	w ritring w	M'Way and a	10 M	W 11.	manuturt	A low man and	Mar 10
20			- 5					1,47	
20	1								
10									
0									
0	15 .2	.5	1		2 ency (MHz)	5	10	20	30
0. Site	15 .2 : CO01-S on: FCC 15	Z	SN_201907	Frequ	ency (MHz) NE			20	30
0. Site	: CO01-S on: FCC 15	Z C_QP LI:	SN_201907 Over	Frequ 719_L LII Limit	ency (MHz) NE Read	LISN	Cable		30
0. Site	: CO01-S on: FCC 15	Z C_QP LI:	SN_201907	Frequ 719_L LII Limit	ency (MHz) NE Read		Cable	Remark	30
0. Site	: CO01-S on: FCC 15	Z C_QP LI:	SN_201907 Over	Frequ 719_L LII Limit	ency (MHz) NE Read	LISN	Cable		 30
0. Site	: CO01-S on: FCC 15 Freq	Z C_QP LI: Level dBuV	SN_201907 Over Limit	Frequ 719_L LII Limit Line dBuV	NE Read Level	LISN Factor	Cable Loss dB	Remark	 30
Site Conditio	: CO01-S on: FCC 15 Freq MHz	Z C_QP LI: Level dBuV 14.94	SN_20190 Over Limit dB	Frequ 719_L LII Limit Line dBuV 64.77	Read Level dBuV 4.90	LISN Factor dB	Cable Loss dB	Remark 	 30
Site Conditio	: CO01-S pn: FCC 15 Freq MHz 0.17 0.17	Z C_QP LI: Level dBuV 14.94 31.84	5N_20190 Over Limit dB -49.83	Frequ 719_L LII Limit Line dBuV 64.77 64.77	Read Level dBuV 4.90	LISN Factor dB 0.03 0.03	Cable Loss dB 10.01 10.01	Remark 	
Site Conditio	: CO01-S on: FCC 15 Freq MHz 0.17 0.17 0.44	Z C_QP LI: Level dBuV 14.94 31.84 31.76	Over Limit dB 32.93	Frequ 719_L LII Limit Line dBuV 64.77 64.77 57.02	Read Level dBuV 4.90 21.80	LISN Factor dB 0.03 0.03	Cable Loss dB 10.01 10.01 10.03	Remark Average QP Average	
Site Condition 1 2 3 4 5	: CO01-S : FCC 15 Freq MHz 0.17 0.17 0.44 0.44 0.71	Z C_QP LI: dBuV 14.94 31.84 31.76 43.26 18.09	Over Limit 	Frequ 719_L LII Limit Line dBuV 64.77 64.77 57.02 57.02 56.00	Read Level dBuV 4.90 21.80 21.70	LISN Factor dB 0.03 0.03 0.03 0.03 0.03	Cable Loss dB 10.01 10.01 10.03 10.03	Remark Average QP Average	30
Site Conditio	: CO01-S on: FCC 15 Freq MHz 0.17 0.17 0.44 0.44 0.71 0.71	Z C_QP LI: dBuV 14.94 31.84 31.76 43.26 18.09 28.59	Over Limit 	Frequ 719_L LII Limit Line dBuV 64.77 64.77 57.02 57.02 56.00 56.00	Read Level dBuV 4.90 21.80 21.70 33.20 8.00 18.50	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.02 0.02	Cable Loss dB 10.01 10.03 10.03 10.03 10.07	Remark Average QP Average QP Average QP	30
0. Site Conditio 1 2 3 4 5 6 7	: CO01-S on: FCC 15 Freq MHz 0.17 0.17 0.44 0.44 0.71 0.71 1.58	Z C_QP LI: dBuV 14.94 31.84 31.76 43.26 18.09 28.59 17.15	Over Limit 	Frequ 719_L LII Limit Line dBuV 64.77 64.77 57.02 57.02 56.00 56.00 56.00	Read Level dBuV 4.90 21.70 33.20 8.00 18.50 7.00	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02	Cable Loss dB 10.01 10.03 10.03 10.03 10.07 10.07	Remark Average QP Average QP Average QP Average	
0. Site Conditio 1 2 3 4 5 6 7 8	: CO01-S on: FCC 15 Freq MHz 0.17 0.17 0.44 0.44 0.71 0.71 1.58 1.58	Z C_QP LI: dBuV 14.94 31.84 31.76 43.26 18.09 28.59 17.15 27.05	Over Limit dB -49.83 -32.93 -25.26 -13.76 -37.91 -27.41 -38.85 -28.95	Frequ 719_L LII Limit Line dBuV 64.77 64.77 57.02 57.02 56.00 56.00 56.00 56.00	Read Level dBuV 4.90 21.80 21.70 33.20 8.00 18.50 7.00 16.90	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02	Cable Loss dB 10.01 10.03 10.03 10.03 10.07 10.07 10.05 10.05	Average QP Average QP Average QP Average QP	
5 5 1 2 3 4 5 6 7 8 9	: CO01-S Son: FCC 15 Freq MHz 0.17 0.17 0.44 0.71 0.71 1.58 1.58 2.64	Z C_QP LI: dBuV 14.94 31.84 31.76 43.26 18.09 28.59 17.15 27.05 17.32	Over Limit dB -49.83 -32.93 -25.26 -13.76 -37.91 -27.41 -38.85 -28.95 -38.68	Frequ 719_L LII Limit Line dBuV 64.77 64.77 57.02 57.02 56.00 56.00 56.00 56.00 56.00	Read Level dBuV 4.90 21.80 21.70 33.20 8.00 18.50 7.00 16.90 7.10	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02	Cable Loss dB 10.01 10.03 10.03 10.07 10.07 10.05 10.05 10.08	Remark Average QP Average QP Average QP Average QP Average	
5 5 6 7 8 9 10	: CO01-S Son: FCC 15 Freq MHz 0.17 0.17 0.44 0.44 0.71 0.71 1.58 1.58 2.64 2.64	Z C_QP LI: dBuV 14.94 31.84 31.76 43.26 18.09 28.59 17.15 27.05 17.32 27.22	Over Limit dB -49.83 -32.93 -25.26 -13.76 -37.91 -27.41 -38.85 -28.95 -38.68 -28.78	Frequ 719_L LII Limit Line dBuV 64.77 64.77 57.02 57.02 57.02 56.00 56.00 56.00 56.00 56.00 56.00	Read Level dBuV 4.90 21.80 21.70 33.20 8.00 18.50 7.00 16.90 7.10 17.00	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Cable Loss dB 10.01 10.03 10.03 10.03 10.07 10.05 10.05 10.08 10.08	Remark Average QP Average QP Average QP Average QP Average QP	
0 Site Conditio 1 2 3 4 5 6 7 8 9 10 11	: CO01-S pn: FCC 15 Freq MHz 0.17 0.17 0.44 0.44 0.71 0.71 1.58 1.58 2.64 2.64 5.06	Z C_QP LI: dBuV 14.94 31.84 31.76 43.26 18.09 28.59 17.15 27.05 17.32 27.22 24.55	Over Limit dB -49.83 -32.93 -25.26 -13.76 -37.91 -27.41 -38.85 -28.95 -38.68 -28.78 -35.45	Frequ 719_L LII Limit Line dBuV 64.77 64.77 57.02 57.02 56.00	Read Level dBuV 4.90 21.80 21.70 33.20 8.00 18.50 7.00 16.90 7.10 17.00 14.20	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.10 0.10 0.10 0.14 0.14 0.19	Cable Loss dB 10.01 10.03 10.03 10.03 10.07 10.05 10.05 10.08 10.08 10.08	Remark Average QP Average QP Average QP Average QP Average QP Average	
Site Condition 1 2 3 4 5 6 7 8 9 10 11 12	: CO01-S pn: FCC 15 Freq MHz 0.17 0.44 0.44 0.71 0.71 1.58 1.58 2.64 2.64 5.06 5.06	Z C_QP LI: dBuV 14.94 31.84 31.76 43.26 18.09 28.59 17.15 27.05 17.32 27.22 24.55 32.75	Over Limit dB -49.83 -32.93 -25.26 -13.76 -37.91 -27.41 -38.85 -28.95 -38.68 -28.78	Frequ 719_L LII Limit Line dBuV 64.77 64.77 57.02 57.02 56.00	Read Level dBuV 4.90 21.80 21.70 33.20 8.00 18.50 7.00 16.90 7.10 17.00 14.20 22.40	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.10 0.10 0.10 0.14 0.14 0.19 0.19	Cable Loss dB 10.01 10.03 10.03 10.03 10.07 10.05 10.05 10.05 10.08 10.08 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP	
Site Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 !	: CO01-S pn: FCC 15 Freq MHz 0.17 0.17 0.44 0.44 0.71 0.71 1.58 1.58 2.64 2.64 5.06 5.06 13.56	Z C_QP LI: dBuV 14.94 31.84 31.76 43.26 18.09 28.59 17.15 27.05 17.32 27.22 24.55 32.75 76.55	Over Limit dB -49.83 -32.93 -25.26 -13.76 -37.91 -27.41 -38.85 -28.95 -38.68 -28.78 -35.45 -27.25	Frequ 719_L LII Limit Line dBuV 64.77 64.77 57.02 57.02 56.00	Read Level dBuV 4.90 21.80 21.70 33.20 18.50 7.00 16.90 7.10 17.00 14.20 22.40 65.80	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.10 0.10 0.14 0.14 0.19 0.19 0.47	Cable Loss dB 10.01 10.03 10.03 10.03 10.07 10.05 10.05 10.05 10.08 10.08 10.16 10.16 10.28	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average	
Site Condition 1 2 3 4 5 6 7 8 9 10 11 12	: CO01-S Dn: FCC 15 Freq MHz 0.17 0.17 0.44 0.44 0.71 1.58 1.58 2.64 2.64 5.06 5.06 13.56 13.56	Z C_QP LI: dBuV 14.94 31.84 31.76 43.26 18.09 28.59 17.15 27.05 17.32 27.22 24.55 32.75 76.55 77.25	Over Limit dB -49.83 -32.93 -25.26 -13.76 -37.91 -27.41 -38.85 -28.95 -38.68 -28.78 -35.45 -27.25	Frequ 719_L LII Limit Line dBuV 64.77 64.77 57.02 57.02 56.00 56.00 56.00 56.00 56.00 56.00 60.00 60.00	Read Level dBuV 4.90 21.80 21.70 33.20 18.50 7.00 16.90 7.10 17.00 14.20 22.40 65.80 66.50	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.10 0.10 0.10 0.14 0.19 0.19 0.47 0.47	Cable Loss dB 10.01 10.03 10.03 10.03 10.07 10.05 10.05 10.05 10.08 10.16 10.16 10.28 10.28	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average	

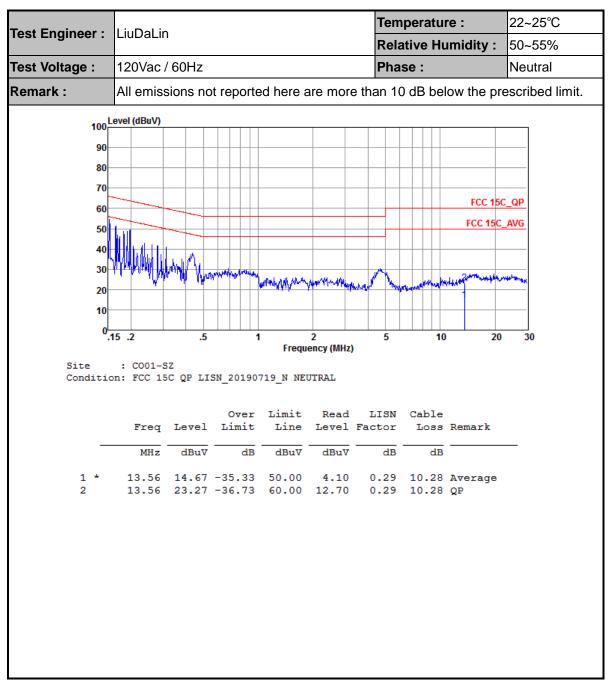
(1) with antenna

Remark: 13.560MHz is the NFC RF fundamental signal.



(1) with antenna

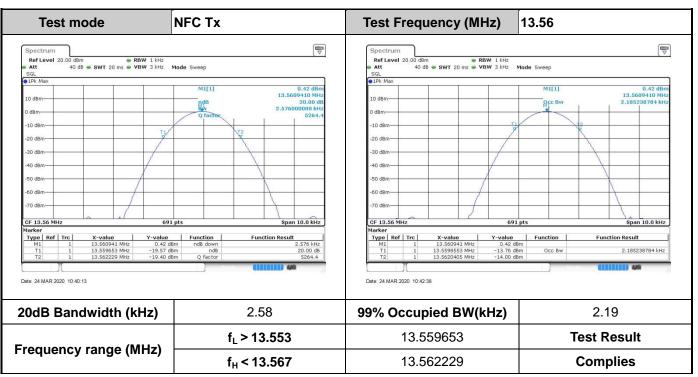
Remark: 13.560MHz is the NFC RF fundamental signal.



(2) With dummy load

Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.

(2) With dummy load

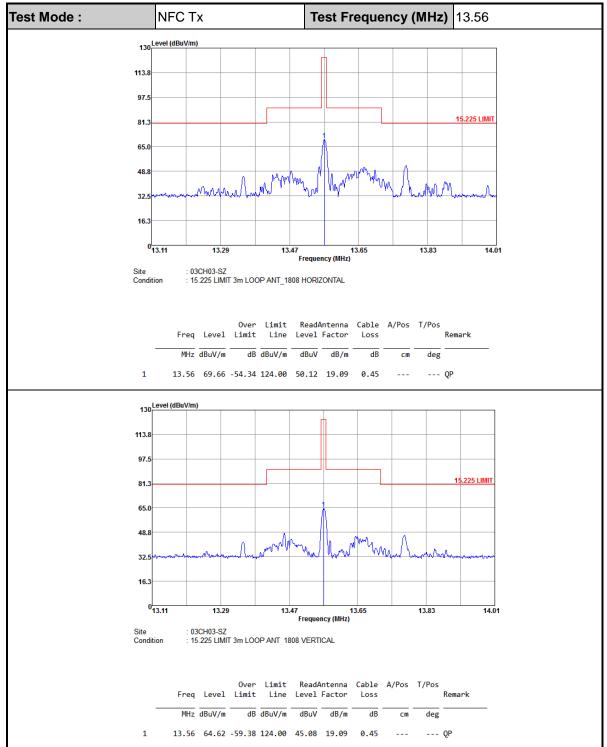

Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.

Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix B. Test Results of Conducted Test Items

B1. Test Result of 20dB Spectrum Bandwidth


Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

Voltage vs. Frequ	ency Stability	Temperature vs. Fr	equency Stability
Voltage (Vdc)	Voltage (Vdc) Frequency (MHz)		Measurement Frequency (MHz)
8.55	13.560926	-20	13.560926
9	13.560948	-10	13.560926
9.45	13.560926	0	13.560992
-	-	10	13.560970
-	-	20	13.560963
-	-	30	13.560963
-	-	40	13.560941
-	-	50	13.560919
Max.Deviation (MHz)	0.000948	Max.Deviation (MHz)	0.000991
Max.Deviation (ppm)	69.9115	Max.Deviation (ppm)	73.1195
Limit	FS < ±100 ppm	Limit	FS < ±100 ppm
Test Result	PASS	Test Result	PASS

B2. Test Result of Frequency Stability

Appendix C. Test Results of Radiated Test Items

C1. Test Result of Field Strength of Fundamental Emissions

Note:

- 1. Level(dBµV/m) = Read Level(dBµV) + Antenna Factor(dB/m) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

Test Mode : NFC Tx			Polariz	ation :	Ver	tical			
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Pos (cm)	Pos (deg)	
0.04552	64.55	-49.89	114.44	44.69	19.8	0.06	-	-	Average
0.06417	56.57	-54.89	111.46	37.21	19.3	0.06	-	-	Average
0.09141	59.76	-48.62	108.38	40.09	19.6	0.07	-	-	QP
0.13698	46.76	-58.11	104.87	27.09	19.59	0.08	-	-	Average
0.15	57.93	-46.15	104.08	38.26	19.57	0.1	-	-	Average
2.096	37.52	-32.48	70	17.83	19.51	0.18	-	-	QP
9.376	36.49	-33.51	70	16.58	19.53	0.38	-	-	QP
24.901	36.38	-33.62	70	16.19	19.6	0.59	-	-	QP
29.5	36.3	-33.7	70	16.85	18.78	0.67	-	-	QP

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

Test Mode	NFC Tx			Polariz	ation :	Ve	ertical		
Frequency	Level	Over	Limit	Read	Antenna	Cable		Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Pos (cm)	Pos (deg)	
0.04557	64.46	-49.97	114.43	44.6	19.8	0.06	-	-	Average
0.06621	52.84	-58.35	111.19	33.48	19.3	0.06	-	-	Average
0.09102	57.43	-50.99	108.42	37.76	19.6	0.07	-	-	QP
0.13662	44.54	-60.35	104.89	24.87	19.59	0.08	-	-	Average
0.1537	57.58	-46.29	103.87	37.91	19.57	0.1	-	-	Average
2.126	38.02	-31.98	70	18.32	19.51	0.19	-	-	QP
8.272	35.96	-34.04	70	16.02	19.59	0.35	-	-	QP
21.913	36.92	-33.08	70	16.58	19.79	0.55	-	-	QP
26.315	36.22	-33.78	70	16.1	19.51	0.61	-	-	QP

Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

Test Mode : NFC Tx			Pc	larization	Horizontal					
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m		(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
30	23.41	-16.59	40	30.26	25.2	0.45	32.5	-	-	Peak
176.47	27.9	-15.6	43.5	43.18	15.48	1.09	31.85	135	70	Peak
285.11	27.01	-18.99	46	38.32	19.25	1.38	31.94	-	-	Peak
392.78	28.45	-17.55	46	36.82	21.71	1.64	31.72	-	-	Peak
474.26	27.99	-18.01	46	34.34	23.34	1.91	31.6	-	-	Peak
911.73	29.33	-16.67	46	30.99	26.87	2.56	31.09	-	-	Peak

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Test Mode : NFC Tx			Polarization :			Vertical				
Frequency	Level	Over Limit	Limit Line	Read	Antenna Factor	Cable	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m		(dBµV/m)			(dB)	(dB)	(cm)	(deg)	
59.1	27.48	-12.52	40	46.56	12.68	0.64	32.4	-	-	Peak
67.83	29.04	-10.96	40	48.24	12.5	0.7	32.4	112	301	Peak
176.47	24.82	-18.68	43.5	40.1	15.48	1.09	31.85	-	-	Peak
285.11	25.43	-20.57	46	36.74	19.25	1.38	31.94	-	-	Peak
744.89	27.95	-18.05	46	31.5	25.83	2.36	31.74	-	-	Peak
976.72	29.93	-24.07	54	31.26	27.37	2.7	31.4	-	-	Peak

Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.