FCC PART 22 TYPE APPROVAL EMI MEASUREMENT AND TEST REPORT

For

VeriFone Inc.

3755 Atherton Road Rocklin, CA 95765

FCC ID: B32OMNI3600C

2003-06-05

This Report Concerns: **Equipment Type:** Original Report Wireless Point of Sale Terminal Benjamin Jing / Bonjami Ja **Test Engineer:** Report No.: R0305222 **Test Date:** 2003-05-23 Reviewed By: Hans Mellberg / Prepared By: Bay Area Compliance Laboratory Corporation (BACL) 230 Commercial Street Sunnyvale, CA 94085 Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is specially limited to the above client company and the product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

1 - GENERAL INFORMATION	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 OBJECTIVE	
1.3 RELATED SUBMITTAL(S)/GRANT(S)	
1.5 TEST METHODOLOGY	
1.6 REMOTE SUPPORT EQUIPMENT LIST AND DETAILS	
2 - SYSTEM TEST CONFIGURATION	6
2.1 JUSTIFICATION	
2.2 BLOCK DIAGRAM	
2.3 EQUIPMENT MODIFICATIONS	
2.4 TEST SETUP BLOCK DIAGRAM	
3 - SUMMARY OF TEST RESULTS	7
4 - EFFECTIVE RADIATED POWER	
4.1 APPLICABLE STANDARD	
4.2 TEST PROCEDURE	
4.3 TEST EQUIPMENT	
5 - OCCUPIED BANDWIDTH	
5.1 A PPLICABLE STANDARD	
5.1 APPLICABLE STANDARD	
5.3 TEST EQUIPMENT	
5.4 TEST RESULTS	10
6 - MODULATION CHARACTERISTIC	12
6.1 APPLICABLE STANDARD	
6.2 TEST PROCEDURE	
6.3 TEST EQUIPMENT	
7 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
7.1 APPLICABLE STANDARD	
7.3 TEST FROCEDORE 7.3 TEST EQUIPMENT	
7.4 TEST RESULTS.	
8 – BAND EDGE	16
8.1 A PPLICABLE STANDARD	
8.2 TEST PROCEDURE	
8.3 TEST EQUIPMENT	
9 - RADIATED SPURIOUS EMISSION	
9.1 APPLICABLE STANDARD	
9.2 TEST PROCEDURE	
9.3 TEST EQUIPMENT	
9.4 TEST RESULT	21
10 - FREQUENCY STABILITY	
10.1 APPLICABLE STANDARD	
10.2 TEST PROCEDURE	
10.3 TEST EQUIPMENT	
11 - CONDUCTED OUTPUT POWER	25

VeriFone Inc.	FCC ID: B320MNI36000
---------------	----------------------

11.1 A PPLICABLE STANDARD	25
11.2 TEST PROCEDURE	25
11.3 TEST EQUIPMENT	25
11 4 Test Results	25

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

The *VeriFone Inc.*'s product, model: *OMNI 3600C* or the "EUT" as referred to in this report is a wireless point of sale terminal. The EUT measures approximately 8.9"L x 3.6"W x 2.8"H.

1.2 Objective

This type approval report is prepared on behalf of *VeriFone Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A and B, and Part 22 Subpart H, of the Federal Communication Commissions rules.

It is also prepared in accordance with Part 2, Subpart J, Part 15, Subparts A and B, and Part 22 Subpart H, of the Federal Communication Commissions rules.

The objective of the manufacturer is to demonstrate compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, spurious emission at antenna terminal, field strength of spurious radiation, frequency stability, and conducted and radiated margin.

1.3 Related Submittal(s)/Grant(s)

No Related Submittals

1.4 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 15 Subpart B – Unintentional Radiators Part 22 Subpart H - Public Mobile Services

Applicable Standards: TIA EIA 137-A, TIA EIA 98-C, ANSI 63.4-1992, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.5 Test Facility

The Open Area Test site used by BACL Corp. to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

^{*} The test data was only good for test sample. It may have deviation for other product samples.

Test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-1992.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACLa is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, CISPR 22: 1997, Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods.

1.6 Remote Support Equipment List and Details

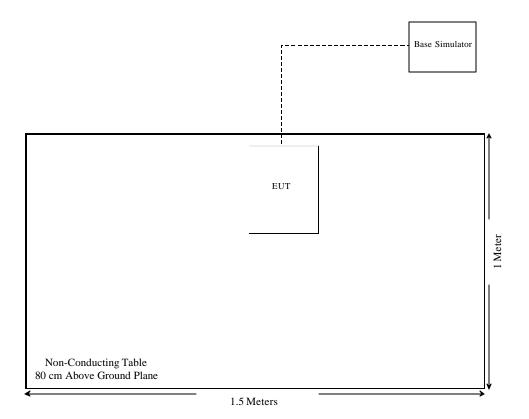
Manufacturer	Description	Model	Serial Number	Cal.Date
Anritsu	Base Simulator	MT8802A	6200035807	2003-09-10

2 - SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was configured for testing in a typical fashion (as normally used in a typical application).

The final qualification test was performed with the EUT operating at normal mode.


2.2 Block Diagram

Please refer to Exhibit D.

2.3 Equipment Modifications

No modifications were necessary for the EUT to comply with the applicable limits and requirements.

2.4 Test Setup Block Diagram

3 - SUMMARY OF TEST RESULTS

FCC RULE	DESCRIPTION OF TEST	RESULT
§ 2.1046, § 22.913 (a)	RF power output	Compliant
2.1047	Modulation Characteristics	Compliant
\$ 2.1049 \$ 22.917 \$ 22.905	Out of Band Emission, Occupied Bandwidth	Compliant
§ 22.917	Band Edge	
§ 2.1051, § 22.917	Spurious emissions at antenna terminals	Compliant
§ 2.1053	Field strength of spurious radiation	Compliant
§ 2.1055 (a) § 2.1055 (d) § 22.355	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant
§ 15.107	AC Line Conducted emission	Compliant
§ 15.109	Radiated Emission Limit (Digital Portion)	Compliant

4 - EFFECTIVE RADIATED POWER

4.1 Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

4.2 Test Procedure

- 1. On a test site, the EUT shall be placed at 1.5m height on a turn table, and in the position closest to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3m from EUT to correspond to the frequency of the transmitter.
- 3. The output of the test antenna shall be connected to the measuring receiver and the quasi-peak detector is used for the measurement.
- 4. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 5. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6. The transmitter shall then the rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8. The maximum signal level detected by the measuring receiver shall be noted.
- 9. The transmitter shall be replaced by a tuned dipole (substitution antenna).
- 10. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- 11. The substitution antenna shall be connected to a calibrated signal generator.
- 12. In necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 14. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 15. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

16. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

17. The measure of the effective radiated power is the large of the two levels recorded, at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.

4.3 Test Equipment

EMCO Biconical Antennas, Calibration Due Date: 2003-09-11 EMCO Log Periodic Antenna, Calibration Due Date: 2003-08-11 A.H. Systems SAS200 Horn Antenna, Calibration Due Date: 2003-05-31 Hewlett Packard HP 8564E Spectrum Analyzer, Calibration Due Date: 2003-08-01 Preamplifiers, Calibration Due Date: 2004-03-14 Non-radiating Load

4.4 Test Results

Channel	Output Power in dBm	Output Power in W	Limit in W
824.73	18.5	0.071	7
836.54	19.4	0.087	7
848.19	20.1	0.102	7

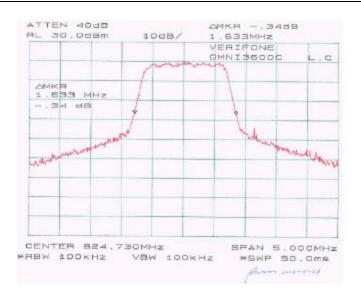
5 - OCCUPIED BANDWIDTH

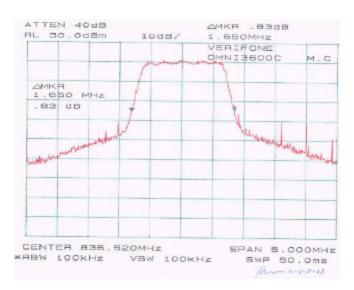
5.1 Applicable Standard

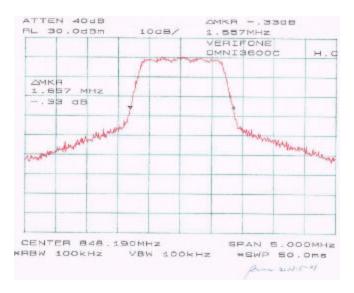
Requirements: CFR 47, Section 2.1049, Section 22.901, and Section 22.917.

5.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.


The resolution bandwidth of the spectrum analyzer was set at 100 KHz and the 26 dB bandwidth was recorded.


5.3 Test Equipment


Hewlett Packard HP8564E Spectrum Analyzer, Calibration Due Date: 2003-08-01. Hewlett Packard HP 7470A Plotter, Calibration not required.

5.4 Test Results

Please refer to the following plots.

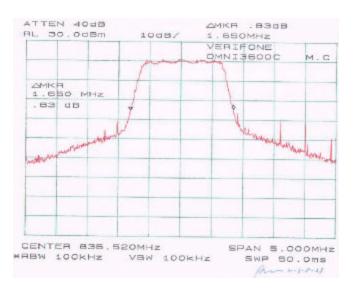
6 - MODULATION CHARACTERISTIC

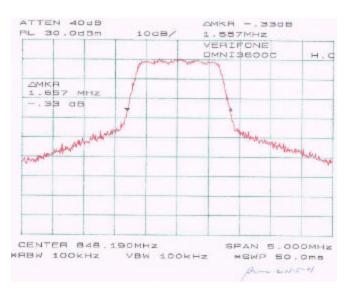
6.1 Applicable Standard

Requirement: FCC § 2.1047.

6.2 Test Procedure

CDMA digital mode is used by EUT.


6.3 Test Equipment


Hewlett Packard HP8564E Spectrum Analyzer, Calibration Due Date:2003-08-01 Hewlett Packard HP 7470A Plotter, Calibration not required.

6.4 Test Results

Please refer to the hereinafter plots.

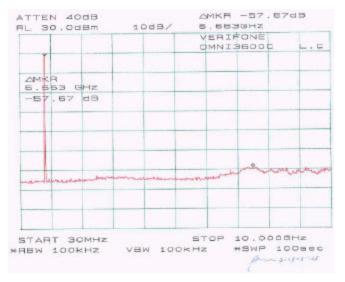
7 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

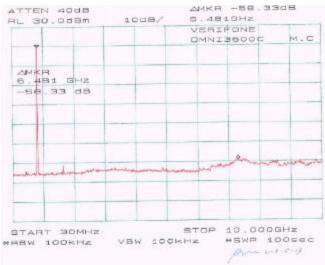
7.1 Applicable Standard

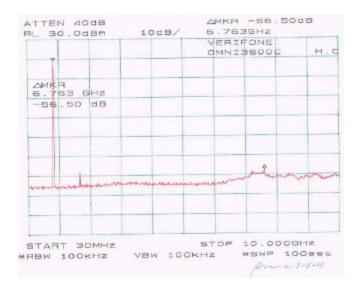
Requirements: CFR 47, § 2.1051.

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1057.

7.2 Test Procedure


The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.


7.3 Test Equipment


Hewlett Packard HP 8564E Spectrum Analyzer, Calibration Due Date: 2003-08-01 HP 7470A Plotter, Calibration not required.

7.4 Test Results

Please refer to the hereinafter plots.

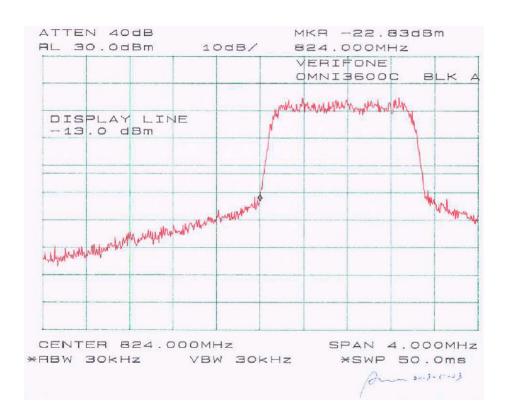
8 – BAND EDGE

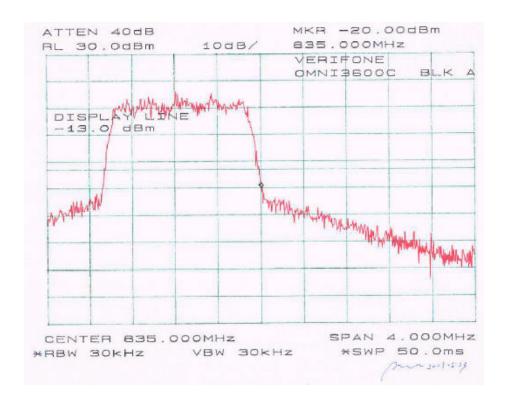
8.1 Applicable Standard

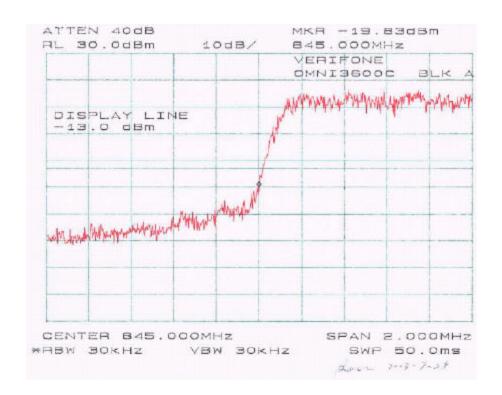
Requirement: § 22.917.

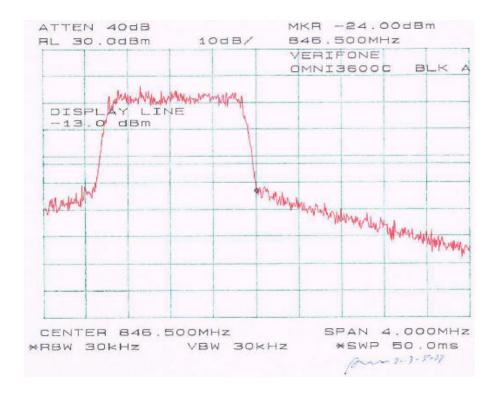
8.2 Test Procedure

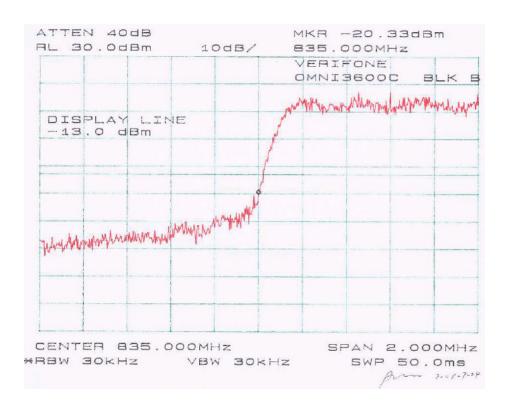
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

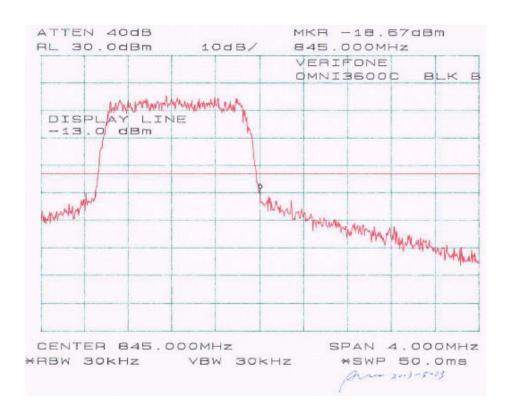

The center of the spectrum analyzer was set to block edge frequency, RBW set to 30KHz.

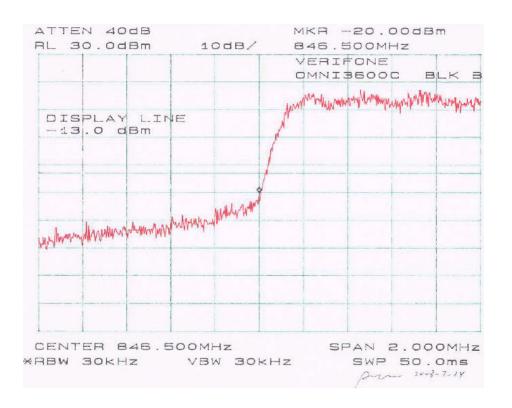

8.3 Test Equipment

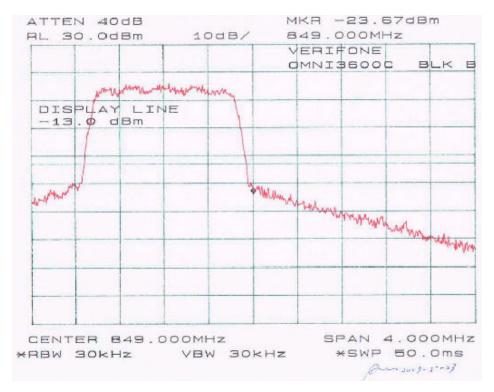

Hewlett Packard HP8564E Spectrum Analyzer, Calibration Due Date: 2003-08-01. Hewlett Packard HP 7470A Plotter, Calibration not required.


8.4 Test Results


Please refer to the following plots.







9 - RADIATED SPURIOUS EMISSION

9.1 Applicable Standard

Requirements: CFR 47, § 2.1053.

9.2 Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

9.3 Test Equipment

EMCO Biconical Antennas, Calibration Due Date: 2003-09-11 EMCO Log Periodic Antenna, Calibration Due Date: 2003-08-11 A.H. Systems SAS200 Horn Antenna, Calibration Due Date: 2003-05-31 Hewlett Packard HP 8564E Spectrum Analyzer, Calibration Due Date: 2003-08-01 Preamplifiers, Calibration Due Date: 2004-03-14 Non-radiating Load

9.4 Test Result

Low Frequency: -10.8dB at 1649.46MHz Middle Frequency: -9.8dB at 1673.2MHz High Frequency: -11.6dB at 1696.38MHz

Compliance Statement

According to FCC Part 15, at 3-meter distance the emission from an intentional radiator shall not exceed the field strength level 40dBuV/m within 30-88MHz, 43.5dBuV/m within 88-216MHz, 46dBuV/m within 226-960MHz, 54dBuV/m above 960MHz. The level of any unwanted emissions shall not exceed the level of the fundamental frequency.

The levels of unwanted emission of this device were below the above limits. This device was compliant with the FCC Part 15.

PMS Band

Run # 1 :Primary scan 800MHz -10GHz (Low CH)

Indicated		Table	Test An	tenna	Subs	tituted	0	Antenna	Cable	Absolute	Limit	Margin
Frequency MHz	Ampl. dBuV/m	Angle Degree	Height Meter	Polar H/V	Frequency MHz	Level dBm	Polar H/V	Gain Correction	Loss dB	Leval dBm	dBm	dB
824.73	106.2	110	2.5	٧	824.73	18.6	V	0	0.1	18.5		
824.73	105.9	60	1.5	h	824.73	17.4	h	0	0.1	17.3		8
1649.46	44.2	0	1.2	٧	1649.46	-30.3	V	6.8	0.3	-23.8	-13	-10.8
1649.46	43.5	90	1.5	h	1649.46	-35.8	h	6.8	0.3	-29.3	-13	-16.3
2474.19	30.3	180	1.2	٧	2474.19	-38.1	V	7.3	0.5	-31.3	-13	-18.3
2474.19	29.8	150	1	h	0	-39.9	h	7.3	0.5	-33.1	-13	-20.1

Run # 2 :Primary scan 800MHz - 10GHz (Mid CH)

Indicated		Table	Test An	tenna	Subs	tituted		Antenna	Cable	Absolute	Limit	Margin
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar	Gain	Loss	Leval		- AND
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm	HAV	Correction	dB	dBm	dBm	dB
836.6	107.3	180	2.5	٧	836.6	19.5	V	0	0.1	19.4		
836.6	106.9	210	1.5	h	836.6	18.9	h	0	0.1	18.8		
1673.2	44.3	90	1.8	٧	1673.2	-29.3	V	6.8	0.3	-22.8	-13	-9.8
1673.2	43.8	270	1.5	h	1673.2	-34.5	h	6.8	0.3	-28	-13	-15
2509.8	30.5	180	1.5	٧	2509.8	-37.7	٧	7.3	0.5	-30.9	-13	-17.9
2509.8	30.1	230	1.2	h	2509.8	-39.4	h	7.3	0.5	-32.6	-13	-19.6

Run #3: Primary scan 800MHz - 10 GHz (High CH.)

Indicated		Table	Test Ant	tenna	Subs	tituted		Antenna	Cable	Absolute	Limit	Margir
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar	Gain	Loss	Leval		1000000000
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm	H/V	Correction	dB	dBm	dBm	dB
848.19	108.2	330	1.5	٧	848.19	20.2	٧	0	0.1	20.1		
848.19	106.7	30	1.2	h	848.19	18.7	h	0	0.1	18.6		
1696.38	40.9	150	1.2	٧	1696.38	-31.1	٧	6.8	0.3	-24.6	-13	-11.6
1696.38	41.2	90	1.5	h .	1696.38	-36.6	h	6.8	0.3	-30.1	-13	-17.1
2544.57	29.3	110	2	V.	2544.57	-39.2	V	7.3	0.5	-32.4	-13	-19.4
2544.57	29.8	160	1.2	ĥ .	2544.57	-39.8	h	7,3	0.5	-33	-13	-20

10 - FREQUENCY STABILITY

10.1 Applicable Standard

Requirements: FCC § 2.1055 (a) and § 2.1055 (d).

10.2 Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

10.3 Test Equipment

Temperature Chamber –50^o to +100^oC Hewlett Packard 5383A Frequency Counter Goldstar DC Power Supply, GR303

10.4 Test Results

Frequency Stability Versus Input Voltage

Reference Frequency: 836.500 MHz, Limit: 2.5ppm									
Environment Temperature	Power Supplied	Frequency	Measure with Time Elapsed						
(°C)	(Vdc)	MCF (MHz)	PPM Error						
50	19	836.502	2.3						
40	19	836.502	2.3						
30	19	836.501	1.1						
20	19	836.500	0.0						
10	19	836.500	0.0						
0	19	836.499	-1.2						

Frequency Stability Versus Input Voltage

	Reference Frequency: 836.500 MHz, Limit: 2.5ppm						
D C1:- 4	Frequency Measure with Time Elapsed						
Power Supplied	5 Min	nutes	10 Minutes				
(Vdc)	MHz	PPM	MHz	PPM			
16.15Vdc	836.500	0	836.499	-1.2			

Battery end point: 16.15 Vdc

11 - CONDUCTED OUTPUT POWER

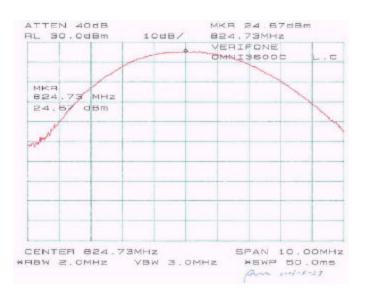
11.1 Applicable Standard

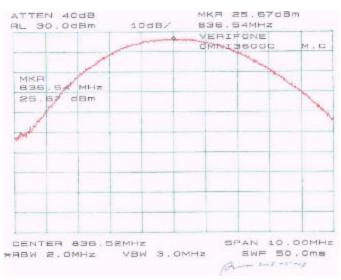
According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

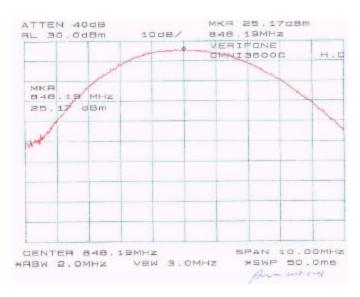
11.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

11.3 Test Equipment


Hewlett Packard HP8564E Spectrum Analyzer, Calibration Due Date: 2003-08-01.


Hewlett Packard HP 7470A Plotter, Calibration not required.


A.H. Systems SAS200 Horn Antenna, Calibration Due Date: 2003-05-31 Com-Power AB-100 Dipole Antenna, Calibration Due Date: 2003-09-05

11.4 Test Results

Channel	Output Power in dBm	Output Power in W	Limit in W
824.73	24.67	0.293	7
836.54	25.67	0.369	7
848.19	25.17	0.329	7

