

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard:	47 CFR FCC Part 15, Subpart C (Section 15.247)
Report No.:	RFBCUG-WTW-P23030303
FCC ID:	B32M4250
Product:	Point of Sale Terminal
Brand:	Verifone
Model No.:	M425-1
Received Date:	2023/3/9
Test Date:	2023/4/11 ~ 2023/4/25
Issued Date:	2023/5/8
Applicant:	Verifone, Inc.
Address:	1400 West Stanford Ranch Road Suite 150 Rocklin CA 95765 USA
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
Test Location(1):	No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kewi Shan Dist., Taoyuan City 33383, Taiwan
Test Location (2):	B2F., No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan
FCC Registration /	788550 / TW0003
Designation Number:	427177 / TW0011

Approved by:

Jerem .

Jeremy Lin / Project Engineer

r

Date:

This test report consists of 28 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

2023/5/8

Prepared by : Gina Liu / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/us-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the report contents.

Table of Contents

R	elease Control Record3			
1	Certificate			
2		Summary of Test Results	5	
	2.1 2.2	Measurement Uncertainty Supplementary Information		
3		General Information	6	
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	General Description Antenna Description of EUT Channel List Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Test Program Used and Operation Descriptions Connection Diagram of EUT and Peripheral Devices Configuration of Peripheral Devices and Cable Connections	7 7 8 8 9	
4		Test Instruments	10	
	4.1 4.2 4.3 4.4	RF Output Power AC Power Conducted Emissions Unwanted Emissions below 1 GHz Unwanted Emissions above 1 GHz	10 11	
5		Limits of Test Items	13	
	5.1 5.2 5.3 5.4	RF Output Power AC Power Conducted Emissions Unwanted Emissions below 1 GHz Unwanted Emissions above 1 GHz	13 13	
6		Test Arrangements	14	
	6.1 6.1. 6.2 6.2 6.3 6.3 6.3 6.3 6.4 6.4	 2 Test Procedure	14 14 14 15 15 16 17 17	
7		Test Results of Test Item	18	
	7.1 7.2 7.3 7.4	RF Output Power AC Power Conducted Emissions Unwanted Emissions below 1 GHz Unwanted Emissions above 1 GHz	20 22	
8		Pictures of Test Arrangements	27	
9		Information of the Testing Laboratories	28	

Release Control Record

Issue No.	Description	Date Issued
RFBCUG-WTW-P23030303	Original release.	2023/5/8

1 Certificate

Product:	Point of Sale Terminal
Brand:	Verifone
Test Model:	M425-1
Sample Status:	Engineering sample
Applicant:	Verifone, Inc.
Test Date:	2023/4/11 ~ 2023/4/25
Standard:	47 CFR FCC Part 15, Subpart C (Section 15.247)
Measurement	ANSI C63.10-2013
procedure:	KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)			
Standard / Clause Test Item Result Remark			
15.247(b)	RF Output Power	Pass	Meet the requirement of limit.
15.247(e)	Power Spectral Density	NA	Refer to note
15.247(a)(2)	6 dB Bandwidth	NA	Refer to note
15.247(d)	Conducted Out of Band Emissions	NA	Refer to note
15.207	AC Power Conducted Emissions	Pass	Minimum passing margin is -18.31 dB at 0.39000 MHz
15.205 / 15.209 / 15.247(d)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -4.4 dB at 34.15 MHz
15.205 / 15.209 / 15.247(d)	Unwanted Emissions above 1 GHz	Pass	Minimum passing margin is -2.0 dB at 2390.00, 2483.50 MHz
15.203	Antenna Requirement	Pass	Antenna connector is ipex not a standard connector.

Note:

 This report is a supplementary report. Therefore, only Output Power, AC Power Conducted Emissions and Radiated Emissions were verified and recored in this report. Other testing data please refer to the original BV CPS report no.: RFBCUG-WTW-P23030304.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (±)
AC Power Conducted Emissions	9 kHz ~ 30 MHz	2.79 dB
Unwanted Emissions below 1 GHz	9 kHz ~ 30 MHz	2.44 dB
Unwanted Emissions below 1 GHz	30 MHz ~ 1 GHz	2.02 dB
Unwanted Emissions above 1 GHz	1 GHz ~ 18 GHz	1.01 dB
	18 GHz ~ 40 GHz	1.15 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 General Information

3.1 General Description

Product	Point of Sale Terminal
Brand	Verifone
Test Model	M425-1
Status of EUT	Engineering sample
Power Supply Rating	12 Vdc
Madulation Turas	CCK, DQPSK, DBPSK for DSSS
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM
Modulation Technology	DSSS, OFDM
	802.11b:11/5.5/2/1Mbps
Transfer Rate	802.11g: 54/48/36/24/18/12/9/6Mbps
	802.11n: up to 72.2Mbps
Operating Frequency	2.412 GHz ~ 2.462 GHz
Number of Channel	802.11b, 802.11g, 802.11n (HT20):11
Output Power	137.721 mW (21.39 dBm)

Note:

1. This report is issued as a supplementary report to BV CPS report no. RFBCUG-WTW-P23030304. The difference compared with original report is changing model name (M450-1 change to M425-1 (the model differenence refer to note 2)), therefore the EUT is verified on the worst case of the original report.

2. The model differenence as below.

Brand	Model	Difference
	M450-1	A. Model M425-1 and M450-1 are identical, except for enclosure shape, panel size and NFC antenna- Use same main board, WiFi-BT
Verifone	M425-1	module, antenna of WiFi-BT and NFC chip IC. B. TX setup power different by software, the NFC power of M450-1 will be larger than that of M425-1 NFC Power.

3. The accessory devices of EUT, please refer to external photo.

4. There are Bluetooth and WLAN (2.4 GHz & 5 GHz) technology used for the EUT. WLAN (2.4 GHz & 5 GHz) and Bluetooth technology cannot transmit at the same time, but use time slot technology to transmit at the same time.

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

		Gain (dBi)			
Antenna No.	2400 MHz	2440 MHz	2500 MHz	Antenna Type	Connector Type
1	1.2	1.8	1.7	PCB	ipex(MHF)

* Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

2. The EUT incorporates a SISO function:

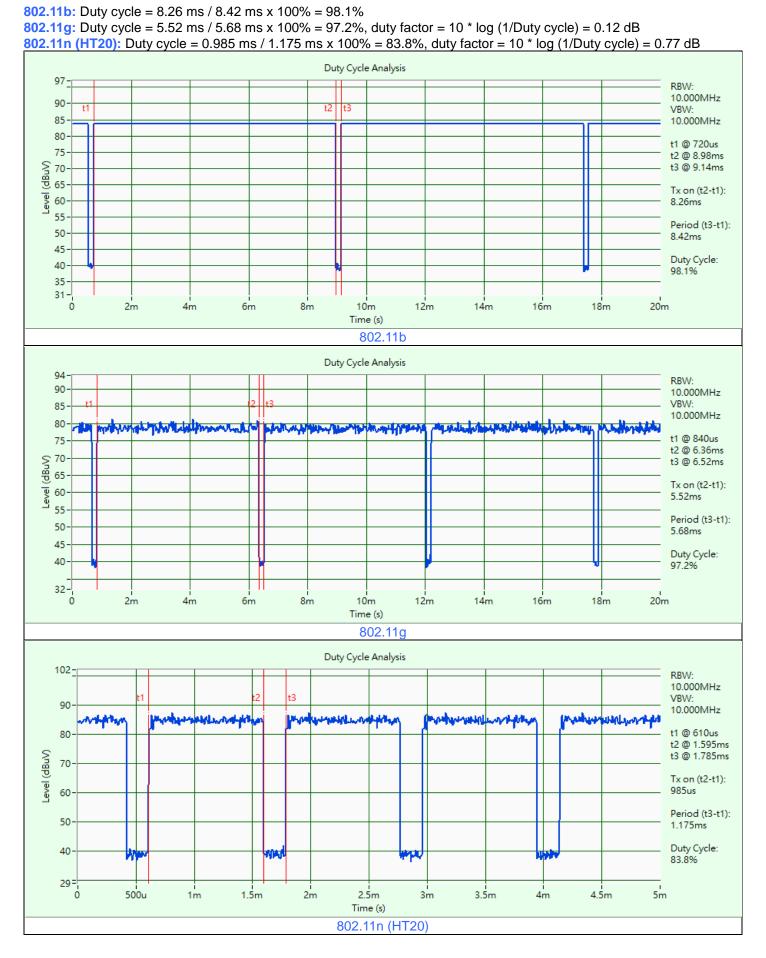
2.4 GHz Band		
Modulation Mode	TX & RX C	onfiguration
802.11b	1TX	1RX
802.11g	1TX	1RX
802.11n (HT20)	1TX	1RX

3.3 Channel List

11 channels are provided for 802.11b, 802.11g, 802.11n (HT20):

Channel	Frequency	Channel	Frequency
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

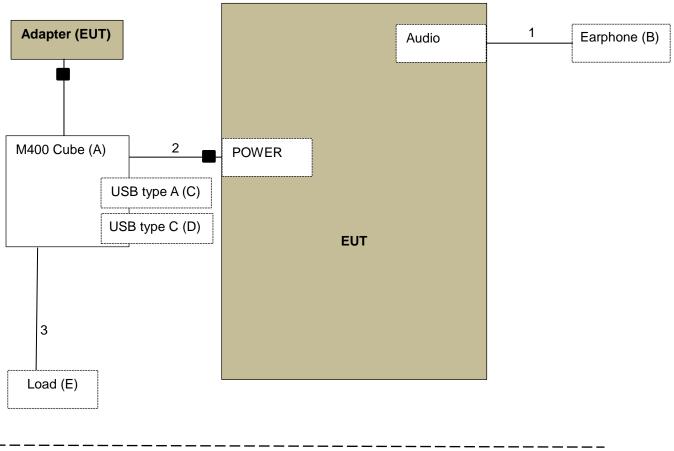
3.4 Test Mode Applicability and Tested Channel Detail


Pre-Scan.	1. EUT can be used in the following ways: X-axis/ Y-axis/ Z-axis. Pre-scan these ways and find the worst case as a representative test condition.
Worst Case:	1. X-axis/ Y-axis/ Z-axis Worst Condition: Z-axis

Following channel(s) was (were) selected for the final test as listed below:

Test Item	Mode	Signal Mode	Tested Channel	Modulation	Data Rate Parameter
	802.11b	CDD	1, 6, 11	DBPSK	1Mb/s
RF Output Power	802.11g	CDD	1, 6, 11	BPSK	6Mb/s
	802.11n (HT20)	CDD	1, 6, 11	BPSK	MCS0
AC Power Conducted Emissions	802.11n (HT20)	CDD	11	BPSK	MCS0
Unwanted Emissions below 1 GHz	802.11n (HT20)	CDD	11	BPSK	MCS0
Unwanted Emissions above 1 GHz	802.11n (HT20)	CDD	1, 11	BPSK	MCS0

3.5 Duty Cycle of Test Signal



3.6 Test Program Used and Operation Descriptions

Controlling software QRCT3.0_00303 has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.7 Connection Diagram of EUT and Peripheral Devices

Under Table

3.8 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
А	M400 Cube	VeriFone	N/A	N/A	N/A	Supplied by applicant
В	Earphone	apple	MB77PFEB	N/A	N/A	Provided by Lab
С	USB Dongle	SanDisk	SDDDC3-032G	N/A	N/A	Provided by Lab
D	USB Dongle	SanDisk	SDDDC3-032G	N/A	N/A	Provided by Lab
Е	Load	N/A	N/A	N/A	N/A	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	Audio Cable	1	1.0	Ν	0	Provided by Lab
2	USB Cable	1	1.3	Y	1	Supplied by applicant
3	LAN Cable	2	1.5	Ν	0	Provided by Lab

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 RF Output Power

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
USB Wideband Power Sensor KEYSIGHT	U2021XA	MY55050005/MY55190004/MY55190007/MY55210005	2022/7/13	2023/7/12

Notes:

1. The test was performed in Oven room.

2. Tested Date: 2023/4/25

4.2 AC Power Conducted Emissions

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
DC-LISN SCHWARZBECK MESS- ELETRONIK	NNBM 8126G	8126G-069	2022/11/9	2023/11/8
LISN	ESH2-Z5	100100	2023/3/7	2024/3/6
R&S	ESH3-Z5	100116	2023/2/15	2024/2/14
LISN Schwarzbeck	NNLK 8121	8121-731	2022/5/26	2023/5/25
RF Coaxial Cable WORKEN	5D-FB	Cable-cond2-01	2022/9/3	2023/9/2
Software BVADT	BVADT_Cond_ V7.3.7.4	N/A	N/A	N/A
Test Receiver R&S	ESR3	102783	2022/12/21	2023/12/20
V-LISN Schwarzbeck	NNBL 8226-2	8226-142	2022/8/31	2023/8/30

Notes:

1. The test was performed in HY - Conduction 2.

2. Tested Date: 2023/4/20

4.3 **Unwanted Emissions below 1 GHz**

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower Max-Full	UNAT_5+	PAD-CH6-01	N/A	N/A
Antenna Tower Controller Max-Full	MF-7802	N/A	N/A	N/A
Bi_Log Antenna Schwarzbeck	VULB9168	9168-616	2022/10/26	2023/10/25
Loop Antenna EMCI	EM-6879	269	2022/9/19	2023/9/18
Loop Antenna TESEQ	HLA 6121	45745	2022/7/27	2023/7/26
Pre-amplifier EMCI	EMC001340	980201	2022/9/23	2023/9/22
Preamplifier Agilent	310N	187226	2022/6/14	2023/6/13
RF Coaxial Cable EMCI	5D-NM-BM	140903+140902	2023/1/7	2024/1/6
RF Coaxial Cable	EMC104-SM-SM-10000	Cable-CH1-01(RFC-SMS- 100-SMS-120+RFC-SMS- 100-SMS-4	2022/6/14	2023/6/13
ETS-Lindgren	RFC-SMS-100-SMS-24- IN	Cable-CH1-02(RFC-SMS- 100-SMS-24)	2022/6/14	2023/6/13
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Test Receiver Agilent	N9038A	MY52260177	2022/9/19	2023/9/18
Turn Table Max-Full	TT-1510	N/A	N/A	N/A
Turn Table Controller Max-Full	MF-7802	N/A	N/A	N/A

Notes:

The test was performed in XD - 966 chamber 6.
 Tested Date: 2023/4/11

4.4 **Unwanted Emissions above 1 GHz**

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower Max-Full	UNAT_5+	PAD-CH6-01	N/A	N/A
Antenna Tower Controller Max-Full	MF-7802	N/A	N/A	N/A
Boresight antenna tower fixture BV	BAF-02	8	N/A	N/A
Horn Antenna ETS-Lindgren	3117	00143293	2022/11/13	2023/11/12
Horn Antenna Schwarzbeck	BBHA 9170	BBHA9170241	2022/10/20	2023/10/19
Pre-Ammlifier EMCI	EMC 184045	980116	2022/10/1	2023/9/30
Preamplifier Agilent	83017A	MY39501373	2022/6/14	2023/6/13
RF Coaxial Cable	EMC104-SM-SM-10000	Cable-CH1-01(RFC-SMS- 100-SMS-120+RFC-SMS- 100-SMS-4	2022/6/14	2023/6/13
ETS-Lindgren	RFC-SMS-100-SMS-24- IN	Cable-CH1-02(RFC-SMS- 100-SMS-24)	2022/6/14	2023/6/13
RF Coaxial Cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(250795/4)	2023/1/7	2024/1/6
RF Coaxial Cable HUBER+SUHNER&EMCI	SUCOFLEX 104& EMC104-SM-SM8000	CABLE-CH9-02 (248780+171006)	2023/1/7	2024/1/6
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Test Receiver Agilent	N9038A	MY52260177	2022/9/19	2023/9/18
Turn Table Max-Full	TT-1510	N/A	N/A	N/A
Turn Table Controller Max-Full	MF-7802	N/A	N/A	N/A

Notes:

The test was performed in XD - 966 chamber 6.
 Tested Date: 2023/4/19

5 Limits of Test Items

5.1 RF Output Power

For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt (30 dBm)

5.2 AC Power Conducted Emissions

Frequency (MHz)	Conducted Limit (dBuV)		
Frequency (MHZ)	Quasi-peak	Average	
0.15 - 0.5	66 - 56	56 - 46	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.3 Unwanted Emissions below 1 GHz

Radiated emissions up to 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

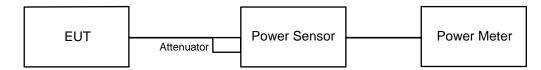
- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

5.4 Unwanted Emissions above 1 GHz

Radiated emissions above 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
Above 960	500	3

Notes:


- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

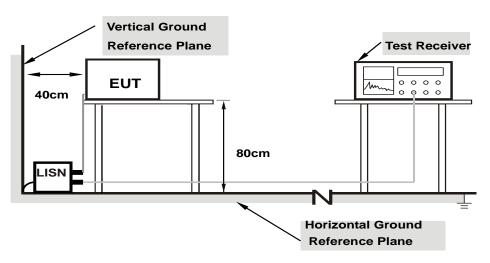
6 Test Arrangements

6.1 RF Output Power

6.1.1 Test Setup

6.1.2 Test Procedure

Peak Power:


A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average Power:

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

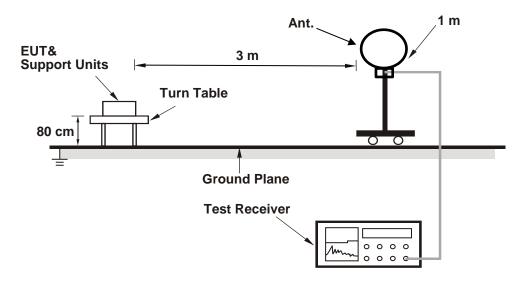
6.2 AC Power Conducted Emissions

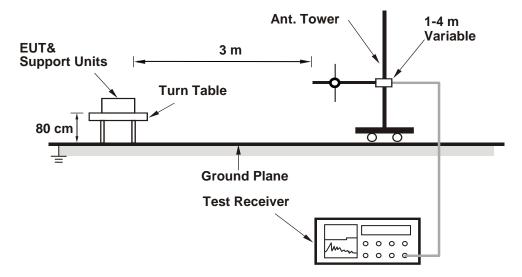
6.2.1 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.2.2 Test Procedure


- a. The EUT was placed on a 0.8 meter to the top of table and placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz-30 MHz.


6.3 Unwanted Emissions below 1 GHz

6.3.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.3.2 Test Procedure

For Radiated emission below 30 MHz

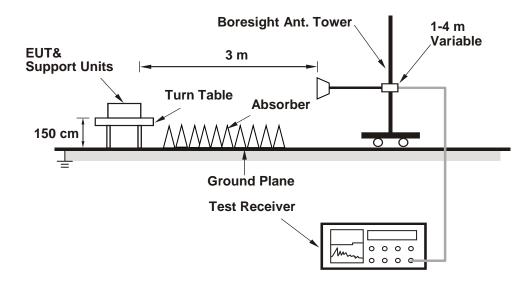
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
- 3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.


Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

6.4 Unwanted Emissions above 1 GHz

6.4.1 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.4.2 Test Procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Notes:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- For fundamental and harmonic signal measurement, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10 Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1 GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

7 Test Results of Test Item

7.1 RF Output Power

Input Power: 120 Vac, 60	Environmental Conditions:	25°C, 60% RH	Tested By:	Alan Wu, Edison Lee
--------------------------	------------------------------	--------------	------------	---------------------

For Peak Power

802.11b

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Test Result
1	2412	52.119	17.17	30	Pass
6	2437	57.412	17.59	30	Pass
11	2462	55.847	17.47	30	Pass

Note: The antenna gain is 1.8 dBi < 6 dBi, so the output power limit shall not be reduced.

802.11g

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Test Result
1	2412	110.662	20.44	30	Pass
6	2437	137.721	21.39	30	Pass
11	2462	72.611	18.61	30	Pass

Note: The antenna gain is 1.8 dBi < 6 dBi, so the output power limit shall not be reduced.

802.11n (HT20)

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Test Result
1	2412	100	20.00	30	Pass
6	2437	126.183	21.01	30	Pass
11	2462	67.143	18.27	30	Pass

Note: The antenna gain is 1.8 dBi < 6 dBi, so the output power limit shall not be reduced.

For Average Power

802.11b

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)	
1	2412	27.353	14.37	
6	2437	28.973	14.62	
11	2462	28.576	14.56	

802.11g

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)	
1	2412	23.878	13.78	
6	2437	28.973	14.62	
11	2462	15.346	11.86	

802.11n (HT20)

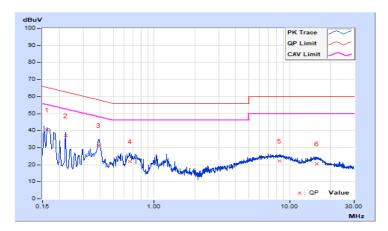
Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)	
1	2412	19.999	13.01	
6	2437	22.387	13.50	
11	2462	12.942	11.12	

7.2 AC Power Conducted Emissions

RF Mode	802.11n (HT20)	Channel	CH 11:2462 MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	23.5°C, 72.3% RH
Tested By	Thomas Cheng		

	Phase Of Power : Line (L)									
No				Emission Level Limit (dBuV) (dBuV)		Margin (dB)				
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16200	10.11	30.18	15.28	40.29	25.39	65.36	55.36	-25.07	-29.97
2	0.22200	10.13	26.75	10.06	36.88	20.19	62.74	52.74	-25.86	-32.55
3	0.39000	10.14	21.18	19.61	31.32	29.75	58.06	48.06	-26.74	-18.31
4	0.66600	10.15	11.90	6.08	22.05	16.23	56.00	46.00	-33.95	-29.77
5	8.39800	10.26	11.85	5.62	22.11	15.88	60.00	50.00	-37.89	-34.12
6	15.90200	10.37	10.30	4.35	20.67	14.72	60.00	50.00	-39.33	-35.28

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

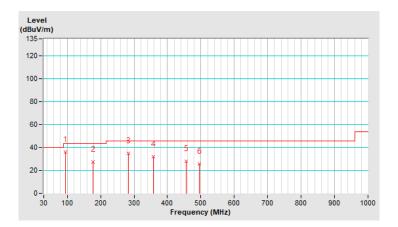
5. Emission Level = Correction Factor + Reading Value

RF Mode	802.11n (HT20)	Channel	CH 11:2462 MHz
Frequency Range	150kHz ~ 30MHz		Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	23.5°C, 72.3% RH
Tested By	Thomas Cheng		

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor		Reading Value (dBuV)Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15800	10.12	32.65	17.24	42.77	27.36	65.57	55.57	-22.80	-28.21
2	0.18133	10.14	28.46	12.51	38.60	22.65	64.42	54.42	-25.82	-31.77
3	0.39400	10.16	19.20	16.51	29.36	26.67	57.98	47.98	-28.62	-21.31
4	0.65763	10.17	12.69	6.55	22.86	16.72	56.00	46.00	-33.14	-29.28
5	11.95000	10.41	12.05	4.16	22.46	14.57	60.00	50.00	-37.54	-35.43
6	21.52600	10.56	8.62	1.87	19.18	12.43	60.00	50.00	-40.82	-37.57

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value


7.3 Unwanted Emissions below 1 GHz

RF Mode	802.11n (HT20)	Channel	CH 11:2462 MHz
Frequency Range	13() MH7 ~ 1 (GH7	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 60% RH
Tested By	Karl Lee		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	94.55	35.8 QP	43.5	-7.7	1.35 H	22	53.9	-18.1		
2	176.63	27.6 QP	43.5	-15.9	1.92 H	206	41.3	-13.7		
3	284.04	34.9 QP	46.0	-11.1	1.27 H	62	47.4	-12.5		
4	357.65	31.8 QP	46.0	-14.2	1.77 H	119	42.6	-10.8		
5	456.21	28.3 QP	46.0	-17.7	1.39 H	267	36.5	-8.2		
6	495.27	25.7 QP	46.0	-20.3	1.63 H	174	33.4	-7.7		

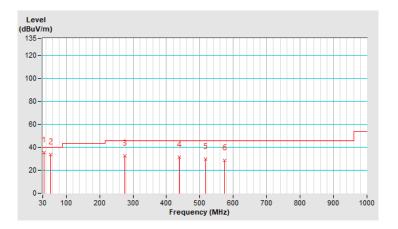
Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

			VENTIAS
RF Mode	802.11n (HT20)	Channel	CH 11:2462 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 60% RH
Tested By	Karl Lee		

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	34.15	35.6 QP	40.0	-4.4	1.25 V	317	49.7	-14.1	
2	54.01	33.8 QP	40.0	-6.2	1.29 V	341	46.8	-13.0	
3	274.68	32.5 QP	46.0	-13.5	1.04 V	116	45.5	-13.0	
4	437.59	31.4 QP	46.0	-14.6	1.74 V	305	40.0	-8.6	
5	517.61	29.7 QP	46.0	-16.3	1.51 V	149	37.0	-7.3	
6	574.63	28.7 QP	46.0	-17.3	1.08 V	24	34.8	-6.1	

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

7.4 Unwanted Emissions above 1 GHz

RF Mode	802.11n (HT20)	Channel	CH 1:2412 MHz		
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 kHz		
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 60% RH		
Tested By	Karl Lee				

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	60.8 PK	74.0	-13.2	1.42 H	121	54.2	6.6
2	2390.00	50.2 AV	54.0	-3.8	1.42 H	121	43.6	6.6
3	*2412.00	104.7 PK			1.42 H	121	66.6	38.1
4	*2412.00	96.3 AV			1.42 H	121	58.2	38.1
5	4824.00	48.8 PK	74.0	-25.2	1.92 H	61	37.2	11.6
6	4824.00	41.6 AV	54.0	-12.4	1.92 H	61	30.0	11.6
			Antenna Pola	rity & Test Dis	stance : Vertic	al at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	67.8 PK	74.0	-6.2	1.28 V	209	61.2	6.6
2	2390.00	52.0 AV	54.0	-2.0	1.28 V	209	45.4	6.6
3	*2412.00	106.0 PK			1.28 V	209	67.9	38.1
4	*2412.00	98.6 AV			1.28 V	209	60.5	38.1
5	4824.00	49.1 PK	74.0	-24.9	2.16 V	185	37.5	11.6
6	4824.00	41.8 AV	54.0	-12.2	2.16 V	185	30.2	11.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

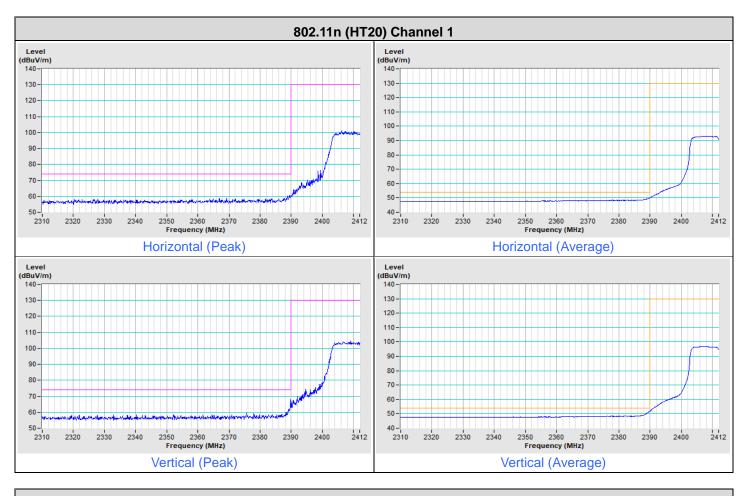
			VENTING		
RF Mode	802.11n (HT20)	Channel	CH 11:2462 MHz		
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 kHz		
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 60% RH		
Tested By	Karl Lee				

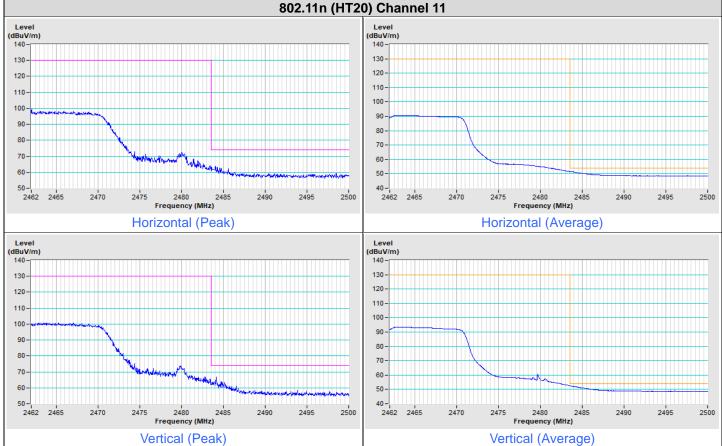
	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2462.00	101.6 PK			1.41 H	136	63.7	37.9	
2	*2462.00	93.2 AV			1.41 H	136	55.3	37.9	
3	2483.50	64.7 PK	74.0	-9.3	1.41 H	136	58.1	6.6	
4	2483.50	50.8 AV	54.0	-3.2	1.41 H	136	44.2	6.6	
5	4924.00	49.3 PK	74.0	-24.7	1.55 H	84	37.6	11.7	
6	4924.00	42.0 AV	54.0	-12.0	1.55 H	84	30.3	11.7	
			Antenna Pola	rity & Test Dis	stance : Vertic	al at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2462.00	103.6 PK			1.28 V	212	65.7	37.9	
2	*2462.00	95.3 AV			1.28 V	212	57.4	37.9	
3	2483.50	66.6 PK	74.0	-7.4	1.28 V	212	60.0	6.6	
4	2483.50	52.0 AV	54.0	-2.0	1.28 V	212	45.4	6.6	
5	4924.00	49.2 PK	74.0	-24.8	1.29 V	260	37.5	11.7	
6	4924.00	41.8 AV	54.0	-12.2	1.29 V	260	30.1	11.7	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)


3. Margin value = Emission Level – Limit value


4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

Plot of Band Edge

Report No.: RFBCUG-WTW-P23030303

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@bureauveritas.com</u> Web Site: <u>http://ee.bureauveritas.com.tw</u>

The address and road map of all our labs can be found in our web site also.

--- END ----