

## **TEST REPORT**

Report Number: 102971715MPK-003B Project Number: G102971715 October 06, 2017

Testing performed on the M445-403-01-NAA-4 Model Number: M400 WIFI/BT FCC ID: B32M400WIFIBT IC: 787C-M400WIFIBT

> to FCC Part 15, Subpart E RSS-247 Issue 2

> > For

Verifone, Inc.

Test Performed by: Intertek 1365 Adams Court Menlo Park, CA 94025 USA

Test Authorized by: Verifone, Inc. 1400 W Stanford Ranch Rd. Rocklin, CA 95765 USA

Prepared by:

Reviewed by:

Anderson Soungpanya

Krishna K Vemuri

**Date:** October 06, 2017

**Date:** October 06, 2017

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.



## VERIFICATION OF COMPLIANCE Report No. 102971715MPK-003B

Verification is hereby issued to the named APPLICANT and is VALID ONLY for the equipment identified hereon for use under the rules and regulations listed below.

Equipment Under Test: Trade Name: Model No.:

Applicant: Contact: Address:

Country

Tel. Number: Email:

**Applicable Regulation**:

M445-403-01-NAA-4 Verifone, Inc. M400 WIFI/BT

Verifone, Inc. Edwin Mandapat 1400 W Stanford Ranch Rd. Rocklin, CA 95765 USA

(916) 630-0550 Edwin\_M1@Verifone.com

FCC Part 15, Subpart E RSS-247 Issue 2

Date of Test:

May 01 to July 19, 2017

We attest to the accuracy of this report:

Anderson Soungpanya EMC Project Engineer

Krishna K Vemuri Engineering Team Lead



## TABLE OF CONTENTS

| 1.0 | Intro                 | duction                                                                 | 4  |  |  |  |
|-----|-----------------------|-------------------------------------------------------------------------|----|--|--|--|
|     | 1.1                   | Summary of Tests                                                        | 4  |  |  |  |
| 2.0 | General Description   |                                                                         |    |  |  |  |
|     | 2.1                   | Product Description                                                     |    |  |  |  |
|     | 2.2                   | Related Submittal(s) Grants                                             | 6  |  |  |  |
|     | 2.3                   | Test Methodology                                                        | 6  |  |  |  |
|     | 2.4                   | Test Facility                                                           | 6  |  |  |  |
|     | 2.5                   | Measurement Uncertainty                                                 | 6  |  |  |  |
| 3.0 | Syste                 | m Test Configuration                                                    | 7  |  |  |  |
|     | 3.1 Support Equipment |                                                                         |    |  |  |  |
|     | 3.2                   | Block Diagram of Test Setup                                             | 7  |  |  |  |
|     | 3.3                   | Justification                                                           | 8  |  |  |  |
|     | 3.4                   | Mode of Operation During Test                                           | 8  |  |  |  |
|     | 3.5                   | Modifications required for Compliance                                   | 8  |  |  |  |
|     | 3.6                   | Additions, deviations and exclusions from standards                     | 8  |  |  |  |
| 4.0 | Meas                  | urement Results                                                         | 9  |  |  |  |
|     | 4.1                   | Emission Bandwidth and 99% Occupied Bandwidth                           | 9  |  |  |  |
|     |                       | 4.1.1 Procedure                                                         | 9  |  |  |  |
|     |                       | 4.1.2 Test Result                                                       | 10 |  |  |  |
|     | 4.2                   | Maximum Conducted Output Power                                          | 19 |  |  |  |
|     |                       | 4.2.1 Requirement                                                       | 19 |  |  |  |
|     |                       | 4.2.2 Procedure                                                         | 19 |  |  |  |
|     |                       | 4.2.3 Test Results                                                      | 20 |  |  |  |
|     | 4.3                   | Peak Power Spectral Density                                             |    |  |  |  |
|     |                       | 4.3.1 Requirement                                                       | 29 |  |  |  |
|     |                       | 4.3.2 Procedure                                                         | 29 |  |  |  |
|     |                       | 4.3.3 Test Result                                                       |    |  |  |  |
|     | 4.4                   | Frequency stability                                                     |    |  |  |  |
|     |                       | 4.4.1 Requirement                                                       |    |  |  |  |
|     |                       | 4.4.2 Procedure                                                         |    |  |  |  |
|     | 15                    | 4.4.5 Kesult                                                            | 40 |  |  |  |
|     | 4.5                   | I ransmitter Radiated Emissions                                         | 41 |  |  |  |
|     |                       | 4.5.1 Requirement                                                       | 41 |  |  |  |
|     |                       | 4.5.2 Fioled Strongth Calculation                                       |    |  |  |  |
|     |                       | 4.5.5 Fleta Strength Calculation                                        | 43 |  |  |  |
|     |                       | 4.5.4 American Procedure for conducted measurements in restricted hands |    |  |  |  |
|     |                       | 4.5.0 General Flocedure for conducted measurements in restricted bands  |    |  |  |  |
|     |                       | 4.5.8 Test setup photographs                                            |    |  |  |  |
| 5.0 | List 4                | of Test Equipment                                                       | 74 |  |  |  |
| 2.0 | 1.50                  |                                                                         |    |  |  |  |
| 6.0 | Docu                  | ment History                                                            | 75 |  |  |  |
| EMO | C Repor               | t for Verifone. Inc. on the M445-403-01-NAA-4                           |    |  |  |  |

# intertek

Total Quality. Assured.

#### 1.0 Introduction

#### 1.1 Summary of Tests

| Test                              | Reference          | Reference      | Result            |
|-----------------------------------|--------------------|----------------|-------------------|
|                                   | FCC                | K55-247        |                   |
| 26 dB Emission Band width and     | 15.407(a)(1)(2)(3) | RSS-247, 6.2.1 | Complies          |
| 99% Occupied Bandwidth            |                    |                |                   |
| Conducted Output Power            | 15.407(a)(1)(2)(3) | RSS-247, 6.2.1 | Complies          |
| Peak Power Spectral Density       | 15.407(a)(1)(2)(3) | RSS-247, 6.2.1 | Complies          |
| Undesirable Emissions             | 15.407(b)(1-8)     | RSS-247, 6.2.1 | Complies          |
| Transmitter Radiated Emissions    | 15.407(b)(1-8)     | RSS-247, 6.2.1 | Complies          |
|                                   | 15.209, 15.205     |                |                   |
| Frequency stability               | 15.407(g)          | RSS-Gen        | Complies          |
| Dynamic Frequency Selection (DFS) | 15.407(h)          | RSS-247, 6.3   | Complies*         |
| Antenna Requirement               | 15.203             | RSS-Gen        | Complies. The EUT |
|                                   |                    |                | uses internal     |
|                                   |                    |                | antenna.          |

\*see test results in report #102971715MPK-003C

| April 07, 2017                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The pre-production version of the EUT was received in good condition<br>with no apparent damage. As declared by the Applicant, it is identical to<br>the production units. |
| May 1, 2017                                                                                                                                                                |
| July 19, 2017                                                                                                                                                              |
|                                                                                                                                                                            |

The test results in this report pertain only to the item tested.



Total Quality. Assured.

#### 2.0 General Description

2.1 Product Description

Verifone, Inc. supplied the following description of the EUT:

The M400 is an Electronic Payment/POS Terminal for Retail. For more information, see user's manual provided by the manufacturer.

The information about the 5GHz radio, installed in the model M400 WIFI/BT, is presented below.

| Applicant               | Verifone, Inc.                                 |
|-------------------------|------------------------------------------------|
| Model No.               | M400 WIFI/BT                                   |
| FCC ID                  | B32M400WIFIBT                                  |
| IC                      | 787C-M400WIFIBT                                |
| Use of Product          | Point of Sale Terminal                         |
| Rated RF Output         | 10.10 dBm for 5260~5320 MHz                    |
| Master or Client Device | Client                                         |
| Frequency Range         | U-NII 2A: 5250 – 5350 MHz                      |
| <b>Operating Mode</b>   | Client Mode without DFS detection capabilities |
| Type of modulation      | OFDM                                           |
| Antenna(s) & Gain       | Internal Antenna, 3.0 dBi peak gain            |
| Manufacturer Name &     | Verifone, Inc.                                 |
| Address                 | 1400 W Stanford Ranch Rd.                      |
|                         | Rocklin, CA 95765                              |
|                         | USA                                            |

The EUT supports the following configurations:

| Channels in 5250 – 5350 MHz band |                |                |        |              |         |  |
|----------------------------------|----------------|----------------|--------|--------------|---------|--|
| Number                           | Frequency, MHz | 802            | .11a/n | 802.11       | n 40MHz |  |
|                                  |                | 20MHz Channels |        | Cha          | annels  |  |
| 52                               | 5260           | $\checkmark$   | Х      |              |         |  |
| 54                               | 5270           |                |        | $\checkmark$ | Х       |  |
| 56                               | 5280           | $\checkmark$   |        |              |         |  |
| 60                               | 5300           | $\checkmark$   | Х      |              |         |  |
| 62                               | 5310           |                |        |              | X       |  |
| 64                               | 5320           |                | Х      |              |         |  |

List of channels:  $\sqrt{-}$  available



#### 2.2 Related Submittal(s) Grants

None.

#### 2.3 Test Methodology

Antenna conducted measurements were performed according to the FCC documents "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E" (789033 D02 General U-NII Test Procedures New Rules v01r04 & 905462 D02 UNII DFS Compliance Procedures New Rules v02).

Both AC mains line-conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4. Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Data Sheet**" of this Application.

All other measurements were made in accordance with the procedures in part 2 of CFR 47.

#### 2.4 Test Facility

The test site used to collect the radiated data is site 1 (10-m semi-anechoic chamber). This test facility and site measurement data have been fully placed on file with the FCC, IC and A2LA accredited.

#### 2.5 Measurement Uncertainty

Compliance with the limits was based on the results of the measurements and doesn't take into account the measurement uncertainty.

| Measurement                                    | Expand           | ed Uncertainty (k=2 | 2)     |
|------------------------------------------------|------------------|---------------------|--------|
|                                                | 0.15 MHz – 1 GHz | 1 GHz – 6 GHz       | >6 GHz |
| RF Power and Power Density – antenna conducted | 1.1 dB           | 1.5 dB              |        |
| Unwanted emissions - antenna conducted         | 1.2 dB           | 1.7 dB              | 2.0 dB |
| Bandwidth – antenna conducted                  | 50 Hz            | 100 Hz              | -      |
| Radiated emissions                             | 4.2 dB           | 5.4 dI              | 3      |
| AC mains conducted emissions                   | 2.4 dB           | -                   | -      |

#### Estimated Measurement Uncertainty

# intertek

Total Quality. Assured.

## 3.0 System Test Configuration

### 3.1 Support Equipment

| Description            | Manufacturer       | Model No./ Part No. |  |
|------------------------|--------------------|---------------------|--|
| Laptop                 | HP                 | EliteBook 8470p     |  |
| Communication Adapter  | Verifone           | NA                  |  |
| AC/DC<br>Power Adapter | I.T.E Power Supply | AU112106u           |  |

### 3.2 Block Diagram of Test Setup

| Equipment Under Test                             |          |              |             |  |  |
|--------------------------------------------------|----------|--------------|-------------|--|--|
| DescriptionManufacturerModel NumberSerial Number |          |              |             |  |  |
| Electronic Payment<br>Terminal                   | Verifone | M400 WIFI/BT | 401-148-349 |  |  |

Antenna was removed and co-axial connector with a cable was installed for Conducted Measurements.



| $\mathbf{S} = $ Shielded            | $\mathbf{F} = $ With Ferrite                                      |
|-------------------------------------|-------------------------------------------------------------------|
| $\mathbf{U} = \mathbf{U}$ nshielded | $\mathbf{m} = \mathbf{M}\mathbf{e}\mathbf{t}\mathbf{e}\mathbf{r}$ |



#### 3.3 Justification

Preliminary testing was performed for all modulation/data rate modes. The following modes, in which the highest power was detected, were selected for final measurements:

OFDM, 6MB/s - for 802.11a OFDM, MCS0 - for 802.11n 20MHz OFDM, MCS0 - for 802.11n 40MHz

#### 3.4 Mode of Operation During Test

During transmitter testing, the transmitter was setup to transmit continuously using the maximum RF power setting. Their corresponding output power in dBm can be found in section 4.2 of this report.

#### 3.5 Modifications required for Compliance

Intertek installed no modifications during compliance testing in order to bring the product into compliance.

#### 3.6 Additions, deviations and exclusions from standards

No additions, deviations or exclusion have been made from standard.



Total Quality. Assured.

#### 4.0 Measurement Results

4.1 Emission Bandwidth and 99% Occupied Bandwidth

15.407(a)(1)(2)

4.1.1 Procedure

The Procedure, described in the FCC Publication 789033 D02 General U-NII Test Procedures New Rules v01r04, was used. Specifically Section C for Emission Bandwidth and Minimum Emission Bandwidth for the band 5.725-5.850 GHz. Section D was used for 99% Occupied Bandwidth.

The antenna port of the EUT was connected to the input of a spectrum analyzer (SA). For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier.

The Occupied bandwidth was measured using the build-in spectrum analyzer facility for 99% power bandwidth measurement.

| Tested By: | Anderson Soungpanya |
|------------|---------------------|
| Test Date: | May 1, 2017         |



#### 4.1.2 Test Result

Refer to the following plots for the test result:

| Mode    | Channel | Frequency,<br>MHz | 26-dB Bandwidth,<br>MHz | Occupied Bandwidth,<br>MHz | Plot # |
|---------|---------|-------------------|-------------------------|----------------------------|--------|
|         | 52      | 5260              | 21.79                   | 17.098                     | 1.1    |
| 802.11a | 60      | 5300              | 21.65                   | 17.133                     | 1.2    |
|         | 64      | 5320              | 21.62                   | 17.028                     | 1.3    |
|         | 52      | 5260              | 21.69                   | 18.148                     | 1.4    |
| 802.11n | 60      | 5300              | 21.48                   | 18.148                     | 1.5    |
| 20MHZ   | 64      | 5320              | 21.73                   | 18.130                     | 1.6    |
| 802.11n | 54      | 5270              | 40.38                   | 36.420                     | 1.7    |
| 40MHz   | 62      | 5310              | 40.75                   | 36.480                     | 1.8    |



#### 802.11a 5260MHz



Date: 1.MAY.2017 08:44:43



#### 802.11a 5300MHz



Date: 1.MAY.2017 08:47:21



#### 802.11a 5320MHz



Date: 1.MAY.2017 08:49:10





### 802.11n 20MHz, 5260MHz

Date: 1.MAY.2017 09:11:42





802.11n 20MHz, 5300MHz

Date: 1.MAY.2017 09:14:05





802.11n 20MHz, 5320MHz

Date: 1.MAY.2017 09:16:28



#### 802.11n 40MHz, 5270MHz



Date: 1.MAY.2017 10:11:41







Date: 1.MAY.2017 10:25:35



#### 4.2 Maximum Conducted Output Power FCC Rule 15.407(a)(1)(iv)

#### 4.2.1 Requirement

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### 4.2.2 Procedure

The Procedure, described in the FCC Publication 789033 D02 General U-NII Test Procedures New Rules v01r04, was used. Specifically Section E (2) (c) Method SA-1 Alternative for Maximum Conducted Output Power

The antenna port output of the EUT was connected to the input of a spectrum analyzer to measure the Maximum Conducted Transmitter Output Power.

| Tested By: | Anderson Soungpanya |
|------------|---------------------|
| Test Date: | June 7-8, 2017      |



#### 4.2.3 Test Results

Refer to the following plots for the test result:

| Mode             | Channel | Frequency,<br>MHz | Conducted power<br>(average) dBm | Conducted power<br>Limit<br>dBm | Plot # |
|------------------|---------|-------------------|----------------------------------|---------------------------------|--------|
| 802.11a          | 52      | 5260              | 9.51                             | 24                              | 2.1    |
|                  | 60      | 5300              | 10.00                            | 24                              | 2.2    |
|                  | 64      | 5320              | 10.10                            | 24                              | 2.3    |
| 802.11n<br>20MHz | 52      | 5260              | 9.25                             | 24                              | 2.4    |
|                  | 60      | 5300              | 9.54                             | 24                              | 2.5    |
|                  | 64      | 5320              | 9.48                             | 24                              | 2.6    |
| 802.11n<br>40MHz | 54      | 5270              | 9.21                             | 24                              | 2.7    |
|                  | 62      | 5310              | 9.36                             | 24                              | 2.8    |



## 802.11a, 5260MHz



Date: 7.JUN.2017 14:26:12



#### 802.11a, 5300MHz



Date: 8.JUN.2017 11:13:22



#### 802.11a, 5320MHz



Date: 8.JUN.2017 11:25:26



#### 802.11n 20MHz, 5260MHz



Date: 8.JUN.2017 12:05:40



#### 802.11n 20MHz, 5300MHz



Date: 8.JUN.2017 12:09:47



#### 802.11n 20MHz, 5320MHz



Date: 8.JUN.2017 12:11:52



#### 802.11n 40MHz, 5270MHz



Date: 8.JUN.2017 12:56:42



#### 802.11n 40MHz, 5310MHz



Date: 8.JUN.2017 13:00:28



4.3 Peak Power Spectral Density FCC Rule 15.407(a)(1)(iv)

#### 4.3.1 Requirement

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### 4.3.2 Procedure

Each antenna port of the EUT was connected to the input of a spectrum analyzer to measure the Peak Power Spectral Density (PPSD) and recorded.

The Procedure, described in the FCC Publication 789033 D02 General U-NII Test Procedures New Rules v01r04, was used. Specifically procedure from Section F was utilized for Maximum Power Spectral Density (PSD).

| Tested By: | Anderson Soungpanya |
|------------|---------------------|
| Test Date: | June 9, 2017        |



#### 4.3.3 Test Result

Refer to the following plots for the test result:

| Mode             | Channel | Frequency,<br>MHz | PSD(Peak)<br>dBm | PSD Limit<br>dBm | Plot # |
|------------------|---------|-------------------|------------------|------------------|--------|
| 802.11a          | 52      | 5260              | -0.64            | 11               | 3.1    |
|                  | 60      | 5300              | -0.40            | 11               | 3.2    |
|                  | 64      | 5320              | -0.14            | 11               | 3.3    |
| 802.11n<br>20MHz | 52      | 5260              | -1.19            | 11               | 3.4    |
|                  | 60      | 5300              | -0.98            | 11               | 3.5    |
|                  | 64      | 5320              | -0.95            | 11               | 3.6    |
| 802.11n<br>40MHz | 54      | 5270              | -4.20            | 11               | 3.7    |
|                  | 62      | 5310              | -4.02            | 11               | 3.8    |







Date: 9.JUN.2017 10:48:21







Date: 9.JUN.2017 10:49:48







Date: 9.JUN.2017 10:51:44



#### 802.11n 20MHz, 5260MHz



Date: 9.JUN.2017 11:08:52



#### 802.11n 20MHz, 5300MHz



Date: 9.JUN.2017 11:10:30



#### 802.11n 20MHz, 5320MHz



#### Date: 9.JUN.2017 11:12:00


#### Plot 3. 15

## 802.11n 40MHz, 5270MHz



Date: 9.JUN.2017 11:53:13



# Plot 3. 16

802.11n 40MHz, 5310MHz



Date: 9.JUN.2017 11:59:05



# 4.4 Frequency stability FCC 15.407(g)

#### 4.4.1 Requirement

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

#### 4.4.2 Procedure

The EUT was placed in a temperature chamber and setup to transmit. Procedures for frequency stability in ANSIC63.10:2013 section 6.8 was utilized.

The carrier frequency was measured with the spectrum analyzer with resolution bandwidth of 1 kHz. The temperature was varied from  $-20^{\circ}$ C to  $75^{\circ}$ C, as stated in the user manual.

The radio module in this report is powered by 12.0VDC which was varied to 85% and 115% for testing. Testing was performed at a temperature of  $20^{\circ}$  C.

After the temperature stabilized for approximately 20 minutes, the transmitting frequency was measured.

| Tested By: Anderson Soungpanya |               |
|--------------------------------|---------------|
| Test Date:                     | July 19, 2017 |



#### 4.4.3 Result

| Temperature, <sup>0</sup> C | -26dB Band Edge at nominal voltage,<br>(MHz) | Maximum deviation<br>from frequency at 20°C, ppm |  |  |
|-----------------------------|----------------------------------------------|--------------------------------------------------|--|--|
| Nominal Frequency: 5        | 5320 MHz                                     |                                                  |  |  |
| 75                          | 5330.887871                                  | 25.124                                           |  |  |
| 70                          | 5330.877038                                  | 23.092                                           |  |  |
| 60                          | 5330.853765                                  | 18.726                                           |  |  |
| 50                          | 5330.846756                                  | 17.411                                           |  |  |
| 40                          | 5330.807148                                  | 9.981                                            |  |  |
| 30                          | 5330.766746                                  | 2.402                                            |  |  |
| 20                          | 5330.753940                                  | 0.000                                            |  |  |
| 10                          | 5330.747095                                  | 1.284                                            |  |  |
| 0                           | 5330.719031                                  | 6.549                                            |  |  |
| -10                         | 5330.706590                                  | 8.883                                            |  |  |
| -20                         | 5330.685900                                  | 12.764                                           |  |  |
| Voltage at $20^{\circ}$ C   | -26dB Band Edge at nominal voltage,          | Maximum deviation                                |  |  |
| voltage at 20 C             | (MHz)                                        | from frequency at 20°C, ppm                      |  |  |
| 12V - 15%                   | 5330.768040                                  | 2.645                                            |  |  |
| 12V + 15%                   | 5330.769045                                  | 2.834                                            |  |  |



# 4.5 Transmitter Radiated Emissions FCC Rule 15.407(b) (1-8) 15.209, 15.205

#### 4.5.1 Requirement

(b) Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Emissions which fall in the restricted bands, as defined in §15.205(a), must comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz.

Note: An out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit.



#### 4.5.2 Procedure

Radiated emission measurements were performed from 30 MHz to 40 GHz according to the procedure described in ANSI C64.10. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz for frequencies above 1000 MHz. Above 1000 MHz Peak and Average measurements were performed.

The EUT is placed on a plastic turntable that is 80 cm in height for below 1000MHz and 1.5m in height for above 1GHz. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst-case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at 3 meters for frequencies above 1 GHz and at 10 meters for frequencies below 1 GHz.

Measurements made from 30 MHz to 40 GHz were measured with 50 ohm terminator on the output of the EUT RF port. A preamp was used from 30MHz to 40GHz.

All measurements were made with a Peak Detector and compared to QP limits for 30MHz - 1GHz and Average limits for 1GHz - 40 GHz.

EUT was positioned vertically and horizontally and emissions were measured. Data and pictures recorded below is the worst-case configuration (the configuration which resulted in the highest emission levels).



# 4.5.3 Field Strength Calculation

#### Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG; if measurement is performed at a distance other than specified in the rule, a Distance Correction Factor (DCF) shall be added.

Where FS = Field Strength in  $dB(\mu V/m)$ RA = Receiver Amplitude (including preamplifier) in  $dB(\mu V)$ ; AF = Antenna Factor in dB(1/m)CF = Cable Attenuation Factor in dB; AG = Amplifier Gain in dB

Assume a receiver reading of 52.0 dB( $\mu$ V) is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB( $\mu$ V/m). This value in dB( $\mu$ V/m) was converted to its corresponding level in  $\mu$ V/m.

$$\begin{split} &RA = 52.0 \ dB(\mu V) \\ &AF = 7.4 \ dB(1/m) \\ &CF = 1.6 \ dB \\ &AG = 29.0 \ dB \\ &FS = 52.0 + 7.4 + 1.6 - 29.0 = 32 \ dB(\mu V/m). \\ &Level in \ \mu V/m = Common \ Antilogarithm \ [(32 \ dB\mu V/m)/20] = 39.8 \ \mu V/m. \end{split}$$



#### 4.5.4 Antenna-port conducted measurements

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

4.5.6 General Procedure for conducted measurements in restricted bands

a) Measure the conducted output power (in dBm) using the detector specified for determining quasi-peak, peak, and average conducted output power, respectively.

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)

c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies  $\leq$  30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (*e.g.*, Watts, mW).

e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:  $E = EIRP - 20\log D + 104.8$ 

where:

 $E = electric field strength in dB\mu V/m$ ,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

f) Compare the resultant electric field strength level to the applicable limit.

g) Perform radiated spurious emission test

#### 4.5.7 Test Results

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance where emissions are within 3dB of the limit.

All conducted antenna port plots are corrected with the consideration of a 3.0 dBi Antenna Gain.

Radiated emission measurements were performed up to 40GHz. No Emissions were identified when scanned from 18-40 GHz.



#### Test Results: 15.209/15.205 Restricted Band Emissions at Antenna Port

| Tested By: | Anderson Soungpanya |
|------------|---------------------|
| Test Date: | June 9-20, 2017     |

## Out-of-Band Spurious Emissions at the Band Edge - 802.11a, 5320 MHz









# Out-of-Band Spurious Emissions at the Band Edge - 802.11n 20MHz, 5320 MHz





# Out-of-Band Spurious Emissions at the Band Edge - 802.11n 40MHz, 5310 MHz

| Frequency | Corrected<br>Amplitude | Limit  | Margin | Detector | Results |  |
|-----------|------------------------|--------|--------|----------|---------|--|
| GHz       | dBµV/m                 | dBµV/m | dB     |          |         |  |
| 5.350     | 71.5                   | 74     | -2.5   | Peak     | Pass    |  |



# **Out-of-Band Conducted Spurious Emissions (at Antenna Port)**



Tx @ 5260MHz 802.11a









Tx @ 5300MHz 802.11a Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz







Tx @ 5320MHz 802.11a Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz







Tx @ 5260MHz 802.11n 20MHz Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz







Tx @ 5300MHz 802.11n 20MHz Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz







Tx @ 5320MHz 802.11n 20MHz Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz







Tx @ 5270MHz 802.11n 40MHz Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz







Tx @ 5310MHz 802.11n 40MHz Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz





#### **Out-of-Band Radiated Spurious Emissions (Cabinet Radiation)**

| Tested By: | Anderson Soungpanya |
|------------|---------------------|
| Test Date: | June 13-16, 2017    |

### **Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 802.11a 5260MHz** Radiated Spurious Emissions 30 MHz - 1000 MHz



Model: ; Client: ; Comments: ; Test Date: 06/16/2017 06:24









Note: Radiated emission measurements were performed up to 40GHz. No Emissions were identified when scanned from 18-40 GHz



# **Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 802.11a 5300MHz** Radiated Spurious Emissions 30 MHz - 1000 MHz











Note: Radiated emission measurements were performed up to 40GHz. No Emissions were identified when scanned from 18-40 GHz



# **Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 802.11a 5320MHz** Radiated Spurious Emissions 30 MHz - 1000 MHz



| Frequency | Peak     | Lim. QP  | Margin | Height | Angle  | Comment    | Correction |
|-----------|----------|----------|--------|--------|--------|------------|------------|
| (MHz)     | (dBµV/m) | (dBµV/m) | (dB)   | (m)    | (°)    |            | (dB)       |
| 323.716   | 28.04    | 35.5     | -7.46  | 2      | 240.25 | Horizontal | -6.3       |





Note: Radiated emission measurements were performed up to 40GHz. No Emissions were identified when scanned from 18-40 GHz



**Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 802.11n 20MHz 5260MHz** Radiated Spurious Emissions 30 MHz - 1000 MHz











Model: ; Client: ; Comments: ; Test Date: 06/13/2017 11:51

Note: Radiated emission measurements were performed up to 40GHz. No Emissions were identified when scanned from 18-40 GHz



**Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 802.11n 20MHz 5300MHz** Radiated Spurious Emissions 30 MHz - 1000 MHz











Note: Radiated emission measurements were performed up to 40GHz. No Emissions were identified when scanned from 18-40 GHz



**Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 802.11n 20MHz 5320MHz** Radiated Spurious Emissions 30 MHz - 1000 MHz



| Frequency | Peak     | Lim. QP  | Margin | Height | Angle | Comment    | Correction |
|-----------|----------|----------|--------|--------|-------|------------|------------|
| (MHz)     | (dBµV/m) | (dBµV/m) | (dB)   | (m)    | (°)   |            | (dB)       |
| 408.009   | 27.95    | 35.5     | -7.55  | 2.0    | 217   | Horizontal | -3.97      |





Model: ; Client: ; Comments: ; Test Date: 06/13/2017 12:07

Note: Radiated emission measurements were performed up to 40GHz. No Emissions were identified when scanned from 18-40 GHz



**Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 802.11n 40MHz 5270MHz** Radiated Spurious Emissions 30 MHz - 1000 MHz



Model: ; Client: ; Comments: ; Test Date: 06/16/2017 08:20

| Frequency | Peak     | Lim. QP  | Margin | Height | Angle | Comment    | Correction |
|-----------|----------|----------|--------|--------|-------|------------|------------|
| (MHz)     | (dBµV/m) | (dBµV/m) | (dB)   | (m)    | (°)   |            | (dB)       |
| 408.009   | 29.27    | 35.5     | -6.23  | 2      | 197   | Horizontal | -3.97      |





Model., Client., Comments., Test Date. 00/14/2017 07.59

Note: Radiated emission measurements were performed up to 40GHz. No Emissions were identified when scanned from 18-40 GHz



**Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 802.11n 40MHz 5310MHz** Radiated Spurious Emissions 30 MHz - 1000 MHz











Note: Radiated emission measurements were performed up to 40GHz. No Emissions were identified when scanned from 18-40 GHz



# 4.5.8 Test setup photographs

The following photographs show the testing configurations used.




## 4.5.8 Test Setup Photographs



## 5.0 List of Test Equipment

intertek

Total Quality. Assured.

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

| Equipment                | Manufacturer      | Model/Type           | Asset #   | Cal Int | Cal Due  |
|--------------------------|-------------------|----------------------|-----------|---------|----------|
| Spectrum Analyzer        | Rohde and Schwarz | FSU                  | ITS 00913 | 12      | 01/12/18 |
| Pyramidal Horn Antenna   | EMCO              | 3160-09              | ITS 00571 | #       | #        |
| Pre-Amplifier (18-40GHz) | Miteq             | Miteq TTA1840-35-S-M |           | 12      | 04/18/18 |
| Pre-Amplifier (1-18GHz)  | Miteq             | AMF-4D-001180-24-10P | ITS 00526 | 12      | 09/29/17 |
| Horn Antenna             | ETS-Lindgren      | 3117                 | ITS 01325 | 12      | 09/07/17 |
| EMI Receiver             | Rohde and Schwarz | ESU                  | ITS 00961 | 12      | 07/10/18 |
| BI-Log Antenna           | Antenna Research  | LPB-2513             | ITS 00355 | 12      | 09/09/17 |
| Pre-Amplifier            | Sonoma Instrument | 310                  | ITS 01493 | 12      | 09/28/17 |
| RF Cable                 | TRU Corporation   | TRU CORE 300         | ITS 01462 | 12      | 08/19/18 |
| RF Cable                 | TRU Corporation   | TRU CORE 300         | ITS 01465 | 12      | 08/19/18 |
| RF Cable                 | TRU Corporation   | TRU CORE 300         | ITS 01470 | 12      | 08/19/18 |
| Attenuator               | Mini Circuits     | BW-N3W5+             | ITS 01315 | 12      | 10/19/17 |
| Notch Filter             | MICRO-TRONICS     | BRM50702             | ITS 01166 | 12      | 12/08/18 |
| Attenuator               | Narda             | FSCM99899            | ITS 01583 | 12      | 08/31/18 |
| RF Cable                 | Megaphase         | EMC1-K1K1-236        | ITS 01538 | 12      | 06/13/18 |
| RF Cable                 | Megaphase         | EMC1-K1K1-19         | ITS 01482 | 12      | 08/25/17 |
| RF Cable                 | Megaphase         | TM40-K1K1-19         | ITS 01154 | 12      | 01/26/18 |
| Transient Limiter        | COM-POWER         | LIT-153A             | ITS 01452 | 12      | 06/19/18 |
| RF Cable                 | TRU Corporation   | TRU CORE 300         | ITS 01462 | 12      | 08/24/17 |
| RF Cable                 | Megaphase         | TM40-K1K1-59 RF      | ITS 01156 | 12      | 01/26/18 |
| Environmental Chamber    | Espec             | BTX-475              | ITS 01436 | 12      | 09/06/17 |

# No Calibration required

Software used for emission compliance testing utilized the following:

| Name         | Manufacturer   | Version   | Template/Profile                                                         |
|--------------|----------------|-----------|--------------------------------------------------------------------------|
| Tile         | Quantum Change |           | Conducted Restricted Band Edge_Avg                                       |
|              |                | 3.4.K.22  | Conducted Restricted Band Edge_Peak<br>Conducted Restricted Band_1-40GHz |
|              |                |           | Conducted Restricted Band_30M-1GHz                                       |
|              |                |           | Conducted Spurious_30M-40GHz                                             |
| BAT-EMC      | Nexio          | 3.16.0.64 | 102971715_Verifone.bpp                                                   |
| RS Commander | Rohde Schwarz  | 1.6.4     | Not Applicable (Screen grabber)                                          |



## 6.0 Document History

| Revision/<br>Job Number | Writer<br>Initials | Reviewer<br>Initials | Date             | Change            |
|-------------------------|--------------------|----------------------|------------------|-------------------|
| 1.0 / G102971715        | AS                 | KV                   | October 06, 2017 | Original document |