

Page 1 of 27 Tel: +886 2 26099301 Fax: +886 2 26099303

FCC 15.247 & RSS-247 2.4GHz Test Report

for

FUTABA Corporation

1080 YabutsukaChosei-son Chosei-gun Chiba, 299-4395 Japan.

Brand	:	Futaba
Product Name	:	Radio Control
Model Name	:	T4PM
FCC ID	:	AZPT4PM-24G
IC	:	2914D-T4PM

Prepared by:

: AUDIX Technology Corporation, EMC Department

TESTING NVLAP LAB CODE 200077-0

The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

File Number: C1M1811153

Report Number: EM-F180565

Page 2 of 27 Tel: +886 2 26099301 Fax: +886 2 26099303

TABLE OF CONTENTS

De	scrip	tion	Page
TE	ST RE	PORT CERTIFICATION	
1.	REV	ISION RECORD OF TEST REPORT	
2.		IMARY OF TEST RESULTS	
3.		ERAL INFORMATION	
5.	3.1.	Description of Application	
	3.2.	Description of Application	
	3.3.	Antenna Information	
	3.4.	EUT Specifications Assessed in Current Report	
	3.5.	Test Configuration	
	3.6.	Tested Supporting System List	
	3.7.	Setup Configuration	
	3.8.	Operating Condition of EUT	
	3.9.	Description of Test Facility	
		Measurement Uncertainty	
4.	MEA	ASUREMENT EQUIPMENTLIST	
	4.1.	Radiated Emission Measurement	
	4.2.	RF Conducted Measurement	
5.	CON	DUCTED EMISSION MEASUREMET	
6.	RAL	DIATED EMISSION MEASUREMENT	
	6.1.	Block Diagram of Test Setup	
	6.2.	Radiated Emission Limits	
	6.3.	Test Procedure	
	6.4.	Measurement Result Explanation	
	6.5.	Test Results	
7.	20dH	BANDWIDTH MEASUREMENT	
	7.1.	Block Diagram of Test Setup	
	7.2.	Specification Limits	
	7.3.	Test Procedure	
	7.4.	Test Results	
8.	CAR	RIER FREQUENCY SEPARATION MEASUREMENT	
	8.1.	Block Diagram of Test Setup	
	8.2.	Specification Limits	
	8.3.	Test Procedure	
	8.4.	Test Results	
9.	TIM	E OF OCCUPANCY MEASUREMENT	
	9.1.	Block Diagram of Test Setup	
	9.2.	Specification Limits	
	9.3.	Test Procedure	
	9.4.	Test Results	
10.	NUN	IBER OF HOPPING CHANNELS MEASUREMENT	
		Block Diagram of Test Setup	
		Specification Limits	
		Test Procedure	
File	Numb	er: C1M1811153	Report Number: EM-F180565

Audix Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244,Taiwan *Tel:* +886 2 26099301 *Fax:* +886 2 26099303

Page 3 of 27

	10.4. Test Results	
11.	MAXIMUM PEAK OUTPUT POWER MEASUREMENT	
	11.1. Block Diagram of Test Setup	
	11.2. Specification Limits	
	11.3. Test Procedure	
	11.4. Test Results	
12.	EMISSION LIMITATIONS MEASUREMENT	
	12.1. Block Diagram of Test Setup	
	12.2. Specification Limits	
	12.3. Test Procedure	
	12.4. Test Results	
13.	DEVIATION TO TEST SPECIFICATIONS	

APPENDIX A TEST DATA AND PLOTS APPENDIX B TEST PHOTOGRAPHS

File Number: C1M1811153

TEST REPORT CERTIFICATION

Applicant	:	FUTABA Corporation
Manufacture	:	FUTABA Corporation
EUT Description		
(1) Product	:	Radio Control
(2) Model	:	T4PM
(3) Brand	:	Futaba
(4) Power Rating	:	DC 4.5V

Applicable Standards:

47 CFR FCC Part 15 Subpart C RSS-Gen (Issue 5), April 2018 RSS-247 (Issue 2), February 2017 ANSI C63.10:2013

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. *Audix Technology Corp.* does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Report: 2019. 01. 07

Reviewed by:

Tim I dring Ben Cheng

(Tina Huang/Administrator)

Approved by:

(Ben Cheng/Manager)

File Number: C1M1811153

Report Number: EM-F180565

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Data	Revision Summary	Report Number
0	2019. 01. 07	Original Report.	EM-F180565

2. SUMMARY OF TEST RESULTS

R	ule	Description	Results	
FCC	IC	Description	KUSUIUS	
15.207	RSS-Gen §8.8	Conducted Emission	N/A, NOTE	
15.247(d)/15.205	RSS-Gen §8.9 RSS-247 §5.5	Radiated Band Edge and Radiated Spurious Emission	PASS	
15.247(a)(1)	RSS-247 §5.1(a)	20dB Bandwidth	PASS	
15.247(a)(1)	RSS-247 §5.1(B)	Carrier Frequency Separation	PASS	
15.247(a)(1)(iii)	RSS-247 §5.1(d)	Time of Occupancy	PASS	
15.247(a)(1)(iii)	RSS-247 §5.1(d)	Number of Hopping Channels	PASS	
15.247(b)(1)	RSS-247 §5.1(b)	Maximum Peak Output Power	PASS	
15.247(d)	RSS-247 §5.5	Conducted Band Edges and Conducted Spurious Emission	PASS	
15.203	RSS-Gen §8.3	Antenna Requirement	Compliance	
Note: The EUT only	employs battery power	er for operation, so it is unnecessary	to test.	

3. GENERAL INFORMATION

3.1. Description of Application

Applicant	FUTABA Corporation 1080 Yabutsuka Chosei-mura Chosei-gun Chiba-ken, 299-4395 Japan.
Manufacturer	FUTABA Corporation 1080 Yabutsuka Chosei-mura Chosei-gun Chiba-ken, 299-4395 Japan.
Product	Radio Control
Model	T4PM
Brand	Futaba

3.2. Description of Application

Test Model	T4PM
Serial Number	N/A
Power Rating	DC 4.5V
Firmware Version	N/A
RF Features	FHSS (S-FHSS, T-FHSS, T-FHSS SR)
Transmit Type	1T1R
Sample Status	Production
Date of Receipt	2018. 11. 20
Date of Test	2018. 11. 24 ~ 2019. 01. 04
Interface Ports of EUT	None
Accessories Supplied	None

File Number: C1M1811153

Report Number: EM-F180565

3.3. Antenna Information

No.	Antenna Part Number	Manufacture	Antenna Type	Frequency	Max Gain (dBi)
1	ANTB24-094A0	SANSEI ELECTRIC CO., LTD	$1/2 \lambda$ di-pole type antenna	2.4GHz	2.14

3.4. EUT Specifications Assessed in Current Report

Mode	Fundamental Range (MHz)	Channel Number	Modulation	Data Rate (kbps)
FHSS	2403.250 to 2447.500	60	S-FHSS	128
FHSS	2407.500 to 2467.500	31	T-FHSS	128
FHSS	2407.500 to 2467.500	31	T-FHSS SR	384

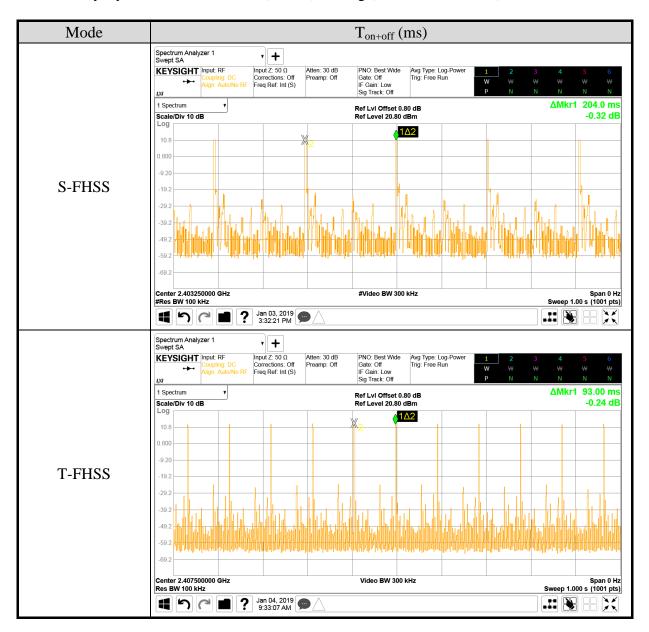
S-FHSS						
	Channel List					
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	
1	2403.25	21	2418.25	41	2433.25	
2	2404.00	22	2419.00	42	2434.00	
3	2404.75	23	2419.75	43	2434.75	
4	2405.50	24	2420.50	44	2435.50	
5	2406.25	25	2421.25	45	2436.25	
6	2407.00	26	2422.00	46	2437.00	
7	2407.75	27	2422.75	47	2437.75	
8	2408.50	28	2423.50	48	2438.50	
9	2409.25	29	2424.25	49	2439.25	
10	2410.00	30	2425.00	50	2440.00	
11	2410.75	31	2425.75	51	2440.75	
12	2411.50	32	2426.50	52	2441.50	
13	2412.25	33	2427.25	53	2442.25	
14	2413.00	34	2428.00	54	2443.00	
15	2413.75	35	2428.75	55	2443.75	
16	2414.50	36	2429.50	56	2444.50	
17	2415.25	37	2430.25	57	2445.25	
18	2416.00	38	2431.00	58	2446.00	
19	2416.75	39	2431.75	59	2446.75	
20	2417.50	40	2432.50	60	2447.50	

File Number: C1M1811153

Report Number: EM-F180565

Tel: +886 2 26099301 Fax: +886 2 26099303

Page 9 of 27


T-FHSS and T-FHSS SR					
Channel List					
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)		
1	2407.5	17	2439.5		
2	2409.5	18	2441.5		
3	2411.5	19	2443.5		
4	2413.5	20	2445.5		
5	2415.5	21	2447.5		
6	2417.5	22	2449.5		
7	2419.5	23	2451.5		
8	2421.5	24	2453.5		
9	2423.5	25	2455.5		
10	2425.5	26	2457.5		
11	2427.5	27	2459.5		
12	2429.5	28	2461.5		
13	2431.5	29	2463.5		
14	2433.5	30	2465.5		
15	2435.5	31	2467.5		
16	2437.5				

Page 10 of 27

3.5. Test Configuration

Modulation	T _{on} (ms)	T_{on+off} (ms)	Duty Cycle Correction Factor (dB)
S-FHSS	1.445	204	-36.80 Note 1
T-FHSS	0.4176	93	-46.95 Note 2
T-FHSS SR	0.4224	37	-38.85 Note 2

Note 1: Duty Cycle Correction Factor (DCCF)= $20\log (TX_{on}/100ms)$ Note 2: Duty Cycle Correction Factor (DCCF)= $20\log (TX_{on}/TX_{on+off}ms)$

File Number: C1M1811153

Report Number: EM-F180565

Tel: +886 2 26099301 *Fax:* +886 2 26099303

Page 11 of 27

Page 12 of 27

Tel: +886 2 26099301 Fax: +886 2 26099303

	Item	Modulation	Test Channel
		S-FHSS	1/60
	Radiated Band Edge ^{Note1}	T-FHSS	1/31
Radiated		T-FHSS SR	1/31 Note A
Test Case		S-FHSS	1/30/60
	Radiated Spurious Emission	T-FHSS	1/16/31
		T-FHSS SR	1/15/31 Note A
		S-FHSS	1/30/60
	20dB Bandwidth	T-FHSS	1/16/31
	Continue Encourage Seconding	S-FHSS	1/30/60
	Carrier Frequency Separation	T-FHSS	1/16/31
	Time of Occupancy	S-FHSS	1/30/60
		T-FHSS	1/16/31
		T-FHSS SR	1/15/31 Note A
Conducted	Number of Hopping Channels	S-FHSS	1/30/60
Test Case		T-FHSS	1/16/31
	Maximum Peak Output Power	S-FHSS	1/30/60
		T-FHSS	1/16/31
	Tower	T-FHSS SR	1/15/31 Note A
	D 101	S-FHSS	1/60
	Band Edges	T-FHSS	1/31
		S-FHSS	1/30/60
	Spurious Emission	T-FHSS	1/16/31
1.2r be to	s system is similar to T-FHSS sys ns.The purpose of this change is t est.		

Note 1: Mobile Device

Portable Device, and 3 axis were assessed. The worst scenario for Radiated Spurious Emission as follow: Lie Side Stand

Note 2: After pre-tested, the T-FHSS is worst case and present test data in the report.

Page 13 of 27 Tel: +886 2 26099301 Fax: +886 2 26099303

3.6. Tested Supporting System List

None

3.7. Setup Configuration

3.7.1. EUT Configuration for Radiated Emission

3.7.2. EUT Configuration for RF Conducted Test Items

3.8. Operating Condition of EUT

Press the button of the EUT is used for enabling EUT RF function under continues transmitting and choosing mode/channel.

File Number: C1M1811153

Report Number: EM-F180565

Page 14 of 27

Tel: +886 2 26099301 *Fax:* +886 2 26099303

3.9. Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website : www.audixtech.com Contact e-mail: attemc_report@audixtech.com
Accreditations	 The laboratory is accredited by following organizations under ISO/IEC 17025:2005 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724
Test Facilities	 FCC OET Designation Number under APEC MRA by NCC is : TW1724 (1) Semi-Anechoic Chamber (IC Test Site Registration No.:5183B-1) (2) Fully Anechoic Chamber (IC Test Site Registration No.:5183B-4)

3.10.Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	
Radiation Test	30MHz~1000MHz	± 3.68dB	
(Distance: 3m)	Above 1GHz	± 5.82dB	

Remark : Uncertainty = $ku_c(y)$

Test Item	Uncertainty		
20dB Bandwidth	±0.2kHz		
Carrier Frequency Separation	±0.2kHz		
Time of Occupancy	±0.03sec		
Maximum peak Output power	± 0.52dB		
Conducted Emission Limitations	± 0.13dB		

File Number: C1M1811153

Report Number: EM-F180565

4. MEASUREMENT EQUIPMENTLIST

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2018. 09. 12	1 Year
2.	Spectrum Analyzer	Agilent	N9030A-526	MY53310269	2018. 02. 01	1 Year
3.	Test Receiver	R & S	ESCS30	100338	2018.06.20	1 Year
4.	Amplifier	HP	8447D	2944A06305	2018. 01. 30	1 Year
5.	Amplifier	HP	8449B	3008A02678	2018. 03. 06	1 Year
6.	Bilog Antenna	CHASE	CBL6112D	33821	2018. 01. 21	1 Year
7.	Loop Antenna	R&S	HFH2-Z2	891847/27	2017. 12. 18	2 Year
8.	Double-Ridged Waveguide Horn	ETS-Lindgren	3117	00135902	2018. 03. 08	1 Year
9.	Horn Antenna	COM-POWER	AH-840	101092	2018.05.07	1 Year
10.	2.4GHz Notch Filter	K&L	7NSL10-244 1.5E130.5-00	1	2018. 07. 24	1 Year
11.	High-Pass Filter	Microwave	H3G018G1	484796	2018. 08. 22	1 Year
12.	Digital Thermo-Hygro Meter	IMax	HTC-1	No.1 3m A/C	2018. 04. 20	1 Year
13.	Digital Thermo-Hygro Meter	EVERY DAY	E-512	RF-02	2018. 04. 20	1 Year
14.	Test Software	Audix	e3	V.6.110601	N.C.R.	N.C.R.
15.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2018.09.12	1 Year

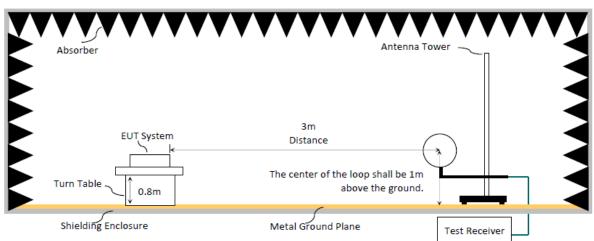
4.1. Radiated Emission Measurement

4.2. RF Conducted Measurement

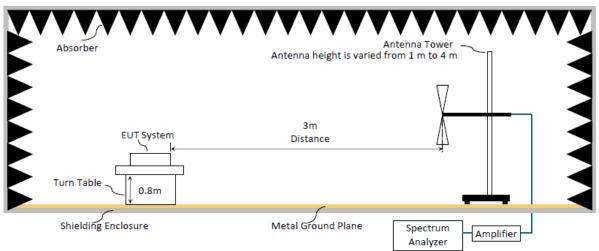
Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Keysight	N9010B-544	MY55460198	2018. 04. 26	1 Year

Report Number: EM-F180565

Page 16 of 27 Tel: +886 2 26099301 Fax: +886 2 26099303

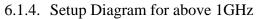

5. CONDUCTED EMISSION MEASUREMET

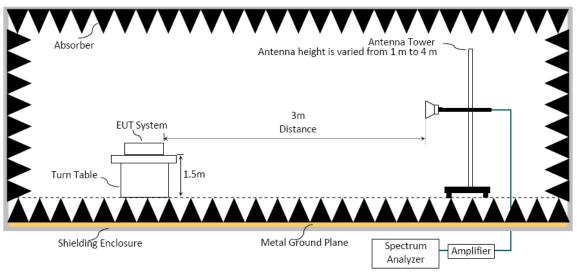
[The EUT only employs battery power for operation, no conductive emission limits are required according to FCC 15.207 and RSS-Gen §8.8]


6. RADIATED EMISSION MEASUREMENT

6.1. Block Diagram of Test Setup

- 6.1.1. Block Diagram of connection between EUT and simulators Indicated as section 3.7
- 6.1.2. Setup Diagram for 9kHz-30MHz


6.1.3. Setup Diagram for 30-1000 MHz



File Number: C1M1811153

Report Number: EM-F180565

6.2. Radiated Emission Limits

In any 100kHz bandwidth outside the frequency band, the radio frequency power produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205/RSS-Gen Section 8.10 table 6, must also comply with the radiated emission limits specified as below.

Fraguency (MHz)	Distance (m)	Limits		
Frequency (MHz)	Distance (III)	dBµV/m	$\mu V/m$	
0.009 - 0.490	300	67.6-20 log f(kHz)	2400/f kHz	
0.490 - 1.705	30	87.6-20 log f(kHz)	24000/f kHz	
1.705 - 30	30	29.5	30	
30 - 88	3	40.0	100	
88-216	3	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	
Above 1000	3	74.0 dBμV/m (Peak) 54.0 dBμV/m (Average)		

Remark : (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement

File Number: C1M1811153 Report Num

Report Number: EM-F180565

Page 19 of 27 Tel: +886 2 26099301 Fax: +886 2 26099303

6.3. Test Procedure

Frequency Range 9kHz~30MHz:

The EUT setup on the turn table which has 0.8 m height to the ground. The turn table rotated 360 degrees and antenna fixed to 1 m to find the maximum emission level. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

- (1) RBW = 9kHz with peak and average detector.
- (2) Detector: average and peak (9kHz-490kHz)

Q.P. (490kHz-30MHz)

Frequency Range 30MHz ~ 25GHz:

The EUT setup on the turn table which has 80 cm (for 30-1000 MHz) and 1.5m (for above 1GHz) height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

Frequency below 1GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1) RBW = 120KHz
- (2) $VBW \ge 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required, otherwise using Q.P. for final measurement.

Frequency above 1GHz to 10th harmonic:

Peak Measurement:

- (1) RBW = 1 MHz
- (2) $VBW \ge 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the average detector is not required, otherwise using average for final measurement.

Page 20 of 27 Tel: +886 2 26099301

Tel: +886 2 26099301 *Fax:* +886 2 26099303

Average Measurement:

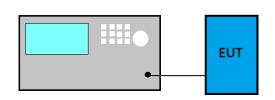
Option 1:

- (1) RBW = 1 MHz
- (2) VBW =1/T, where T is Tx-on presented in Appendix A.4.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

Option 2:

Average Emission Level= Peak Emission Level+ D.C.C.F.

6.4. Measurement Result Explanation


- Peak Emission Level=Antenna Factor + Cable Loss + Meter Reading
- Average Emission Level l=Antenna Factor + Cable Loss + Meter Reading
- Average Emission Level= Peak Emission Level+ DCCF
- Duty Cycle Correction Factor (DCCF)= 20log (TX _{on}/100ms) presented in section 3.5 [ERP= Peak Emission Level-95.2dB-2.14dB]

6.5. Test Results

Please refer to Appendix A.

7. 20dB BANDWIDTH MEASUREMENT

7.1. Block Diagram of Test Setup

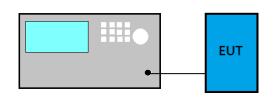
7.2. Specification Limits

Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10-2013:

- (1) Set RBW close to1% to 5% of OBW.
- (2) Set VBW≥3xRBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.
- (6) Allow the trace to stabilize.
- (7) Setting channel bandwidth function x dB to -20 dB to record the final bandwidth.


7.4. Test Results

Please refer to Appendix A

File Number: C1M1811153

8. CARRIER FREQUENCY SEPARATION MEASUREMENT

8.1. Block Diagram of Test Setup

8.2. Specification Limits

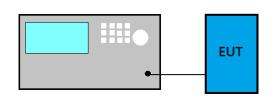
Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

8.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10-2013:

- (1) Span = Wide enough to capture the peaks of two adjacent channels
- (2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- (3) $VBW \ge RBW$
- (4) Sweep = Auto
- (5) Detector function = Peak
- (6) Trace = Max hold
- (7) Allow the trace to stabilize.

8.4. Test Results


Please refer to Appendix A

File Number: C1M1811153

Report Number: EM-F180565

9. TIME OF OCCUPANCY MEASUREMENT

9.1. Block Diagram of Test Setup

9.2. Specification Limits

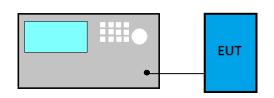
Frequency hopping systems in the 2400-2483.5MHz shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by number of hopping channels employed.

9.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Span: Zero span, centered on a hopping channel.
- (2) RBW shall be \leq channel spacing and where possible RBW should be set >> 1/T, where T is the expected dwell time per channel.
- (3) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- (4) Detector function = Peak
- (5) Trace = Max hold

9.4. Test Results


Please refer to Appendix A

File Number: C1M1811153

Report Number: EM-F180565

10.NUMBER OF HOPPING CHANNELS MEASUREMENT

10.1.Block Diagram of Test Setup

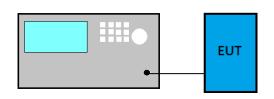
10.2.Specification Limits

Frequency hopping systems which use fewer than 20 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels.

10.3.Test Procedure

Following measurement procedure is reference to ANSI C63.10-2013:

- (1) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- (2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- (3) $VBW \ge RBW$
- (4) Sweep = Auto
- (5) Detector function = Peak
- (6) Trace = m=Max hold
- (7) Allow the trace to stabilize.


10.4.Test Results

Please refer to Appendix A

File Number: C1M1811153

11. MAXIMUM PEAK OUTPUT POWER MEASUREMENT

11.1.Block Diagram of Test Setup

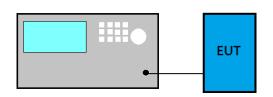
11.2.Specification Limits

The Limits of maximum Peak Output Power for frequency hopping systems in 2400-2483.5MHz is: 0.125Watt. (21dBm)

11.3.Test Procedure

Following measurement procedure is reference to ANSI C63.10-2013:

- (a) Use the following spectrum analyzer settings
 - (1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - (2) RBW > 20 dB bandwidth of the emission being measured.
 - (3) $VBW \ge RBW$
 - (4) Sweep: Auto
 - (5) Detector function: Peak
 - (6) Trace: Max hold
- (b) Allow trace to stabilize.
- (c) Use the marker-to-peak function to set the marker to the peak of the emission.


11.4. Test Results

Please refer to Appendix A

File Number: C1M1811153

12.EMISSION LIMITATIONS MEASUREMENT

12.1.Block Diagram of Test Setup

12.2.Specification Limits

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, that the required attenuation shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in FCC Section 15.209(a) and RSS-Gen Section 8.9 table 4 is not required. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205(a) and RSS-Gen Section 8.10 table 6, must also comply with the radiated emission limits specified in Section 15.209(a) and RSS-Gen Section 8.9 table 4 (See Section 15.205(c)).

12.3.Test Procedure

Following measurement procedure is reference to ANSI C63.10-2013:

- (1) Set span wide enough to capture the peak level of the in-band emission and all spurious emissions; up to 10th harmonic.
- (2) RBW = 100 kHz
- (3) $VBW \ge RBW$
- (4) Sweep = auto
- (5) Detector function = peak
- (6) Trace = max hold

12.4.Test Results

Please refer to Appendix A

Tel: +886 2 26099301 Fax: +886 2 26099303

Page 27 of 27

13.DEVIATION TO TEST SPECIFICATIONS

[NONE]

APPENDIX A

Tel: +886 2 26099301 *Fax:* +886 2 26099303

APPDNDIX A

TEST DATA AND PLOTS

(Model: T4PM)

APPENDIX B

Tel: +886 2 26099301 *Fax:* +886 2 26099303

APPDNDIX B

TEST PHOTOGRAPHS

(Model: T4PM)