

FCC 15.247 & RSS-247 2.4 GHz Test Report

for

FUTABA Corporation

1080 YabutsukaChosei-son Chosei-gun, Chiba-ken, 299-4395 Japan.

Product Name: Radio Control

Model Name : CGY770R2

Brand : Futaba

FCC ID : AZPCGY770R2-24G

IC : 2914D-CGY770R2

Prepared by: : AUDIX Technology Corporation, EMC Department

The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo.

TABLE OF CONTENTS

<u>De</u>	Description Pag			
TES	ST RE	EPORT	4	
1.		ISION RECORD OF TEST REPORT		
2.	SUM	IMARY OF TEST RESULTS	6	
3.		VERAL INFORMATION		
٠.	3.1.	Description of Application		
	3.2.	Description of EUT		
	3.3.	Description of EUT.		
	3.4.	Description of Key Components		
	3.5.	Antenna Information		
	3.6.	EUT Specifications Assessed in Current Report	8	
	3.7.	Test Configuration	9	
	3.8.	Output Power Setting		
	3.9.	Tested Supporting System List		
	3.10.			
		Operating Condition of EUT		
		Description of Test Facility		
		Measurement Uncertainty		
4.		ASUREMENT EQUIPMENTLIST		
	4.1.	Radiated Emission Measurement		
_	4.2.	RF Conducted Measurement		
5.		NDUCTED EMISSION		
6.	RAD	DIATED EMISSION		
	6.1.	Block Diagram of Test Setup		
	6.2.	Radiated Emission Limits		
	6.3.	Test Procedure		
	6.4.	Measurement Result Explanation		
_	6.5.	Test Results		
7.	20dF	B/OCCUPIED BANDWIDTH		
	7.1.	Block Diagram of Test Setup		
	7.2.	Specification Limits		
	7.3.	Test Procedure		
	7.4.	Test Results		
8.	CAR	RRIER FREQUENCY SEPARATION		
	8.1.	Block Diagram of Test Setup		
	8.2.	Specification Limits		
	8.3.	Test Procedure		
	8.4.	Test Results		
9.	TIM	E OF OCCUPANCY		
	9.1.	Block Diagram of Test Setup		
	9.2.	Specification Limits		
	9.3.	Test Procedure		
	9.4.	Test Results		
10.		IBER OF HOPPING CHANNELS		
		Block Diagram of Test Setup		
		Specification Limits		
	10.3.	Test Procedure	26	

Audix Technology Corp. No. 491, Zhongfu Rd., Linkou Dist., New Taipei City244, Taiwan

Tel:	+886 2	26099301
Fax:	+886 2	26099303

	10.4. Test Results	26
11.	MAXIMUM PEAK OUTPUT POWER	27
	11.1. Block Diagram of Test Setup	27
	11.2. Specification Limits	
	11.3. Test Procedure	27
	11.4. Test Results	27
12.	EMISSION LIMITATIONS	28
	12.1. Block Diagram of Test Setup	28
	12.2. Specification Limits	
	12.3. Test Procedure	
	12.4. Test Results	28
13.	DTS/OCCUPIED BANDWIDTH	29
	13.1. Block Diagram of Test Setup	29
	13.2. Specification Limits	
	13.3. Test Procedure	
	13.4. Test Results	29
14.	POWER SPECTRAL DENSITY	30
	14.1. Block Diagram of Test Setup	30
	14.2. Specification Limits	
	14.3. Test Procedure	30
	14.4. Test Results	30
15	DEVIATION TO TEST SPECIFICATIONS	31

APPENDIX A TEST DATA AND PLOTS APPENDIX B TEST PHOTOGRAPHS

TEST REPORT

Applicant : FUTABA Corporation Manufacturer : FUTABA Corporation

EUT Description

(1) Product : Radio Control (2) Model : CGY770R2 (3) Brand : Futaba

(4) Power Supply : DC 3.7V ~ 7.4V (Battery)

Applicable Standards:

Title 47 CFR FCC Part 15 Subpart C RSS-Gen (Issue 5), Amendment 2, February 2021 RSS-247 (Issue 3), August 2023

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. Audix Technology Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Report: 2024. 10. 30

Reviewed by: Approved by:

| Sabrina Wang/Administrator |
| Sabrina Wang/Administrator |
| Approved by: | Johnny Hsueh/Section Manager |

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Date	Revision Summary	Report Number
0	2024. 10. 30	Original Report	EM-F240483

2. SUMMARY OF TEST RESULTS

R	ule	Description	Results
FCC	IC	Description	Results
15.207	RSS-Gen §8.8	Conducted Emission	N/A, NOTE 3
15.247(d)/15.205	RSS-Gen §8.9 RSS-247 §5.5	Radiated Band Edge and Radiated Spurious Emission	PASS
15.247(a)(1)	RSS-247 §5.1(2)	20dB Bandwidth	PASS
15.247(a)(1)	RSS-247 §5.1(2)	Carrier Frequency Separation	PASS
15.247(a)(1)(iii)	RSS-247 §5.1(4)	Time of Occupancy	PASS
15.247(a)(1)(iii)	RSS-247 §5.1(4)	Number of Hopping Channels	PASS
15.247(b)(1)	RSS-247 §5.1(2)	Maximum Peak Output Power	PASS
15.247(b)(3)	RSS-247 §5.4(4)	Maximum Peak Output Power	PASS
15.247(d)	RSS-247 §5.5	Conducted Band Edges and Conducted Spurious Emission	PASS
15.247(f)	RSS-247 §5.3	DTS/Occupied Bandwidth	PASS
15.247(f)	RSS-247 §5.3	Peak Power Spectral Density	PASS
15.203		Antenna Requirement	Compliance

Note: 1. Decision rule according to the limit of the test standard chapter, the test value is lower than the limit specified in the test chapter, and it is judged as Pass.

- 2. The uncertainties value is not used in determining the result.
- 3. The EUT only employs battery power for operation, so it is unnecessary to test.

3. GENERAL INFORMATION

3.1. Description of Application

Applicant	FUTABA Corporation 1080 Yabutsuka Chosei-mura Chosei-gun Chiba-ken, 299-4395 Japan.
Manufacturer	FUTABA Corporation 1080 Yabutsuka Chosei-mura Chosei-gun Chiba-ken, 299-4395 Japan.
Product	Radio Control
Model	CGY770R2
Brand	Futaba

3.2. Description of EUT

Test Model	CGY770R2						
Serial Number	or N/A						
Software Version	N/A						
Power Rating	DC 3.7V ~ 7.4	V (Battery)					
RF Features	FASSTest, T-F	FHSS					
Transmit Type							
Test Sample	Sample No. 01	Firmware N/A					
Sample Status	Trial sample						
Date of Receipt	2024. 10. 08						
Date of Test	2024. 10. 14 ~ 18						
Interface Ports of EUT	None						
Accessories Supplied	None						

Note: Pursuant ISO 17025:2017 section 7.8.2, Audix Technology Corp. does not assume responsibility for all EUT's information including RF features, transmit type, antenna information...etc are provided by customer.

3.3. Description of EUT

ANSI C63.10:2013

3.4. Description of Key Components

None

3.5. Antenna Information

Ant	Antenna Type		Manufacture Antenna Part Number		Max Gain (dBi)
ANT A	1/4λ antenna	SANSEI	ANTC32-072A0	2400-2500	-5.16
ANT B	1/4λ antenna	SANSEI	ANTC32-072A0	2400-2500	-5.16

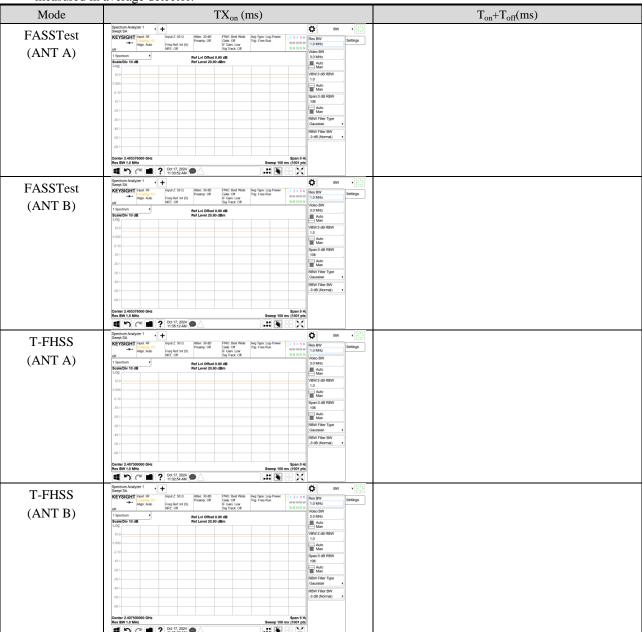
3.6. EUT Specifications Assessed in Current Report

Mode	Mode Fundamental Range (MHz) Chan		Modulation	Data Rate (kbps)
FASSTest	2405.376 to 2472.960	23	Hybrid	136
T-FHSS	2407.500 to 2467.500	31	Frequency Hopping	128

	Mode: FASSTest									
	Channel List									
Channel Number	Frequency (MHz)									
00	2405.376	06	2423.808	12	2442.240	18	2460.672			
01	2408.448	07	2426.880	13	2445.312	19	2463.744			
02	2411.520	08	2429.952	14	2448.384	20	2466.816			
03	2414.592	09	2433.024	15	2451.456	21	2469.888			
04	2417.664	10	2436.096	16	2454.528	22	2472.960			
05	2420.736	11	2439.168	17	2457.600					

	Mode: T-FHSS									
	Channel List									
Channel Number	Frequency (MHz)									
01	2407.5	09	2423.5	17	2439.5	25	2455.5			
02	2409.5	10	2425.5	18	2441.5	26	2457.5			
03	2411.5	11	2427.5	19	2443.5	27	2459.5			
04	2413.5	12	2429.5	20	2445.5	28	2461.5			
05	2415.5	13	2431.5	21	2447.5	29	2463.5			
06	2417.5	14	2433.5	22	2449.5	30	2465.5			
07	2419.5	15	2435.5	23	2451.5	31	2467.5			
08	2421.5	16	2437.5	24	2453.5					

Note: Test modes are presented at section 3.7.


File Number: C1M2410033 Report Number: EM-F240483

3.7. Test Configuration

Mode	TX _{on} (ms)	TX _{on+off} (ms)	1/TX _{on} (kHz)	Duty Cycle (x)	Duty Cycle Factor [10log(1/x)] (dB)
FASSTest (ANT A)	N/A	N/A	N/A	1	N/A
FASSTest (ANT B)	N/A	N/A	N/A	1	N/A
T-FHSS (ANT A)	N/A	N/A	N/A	1	N/A
T-FHSS (ANT B)	N/A	N/A	N/A	1	N/A

Note: When duty cycle is less than 98% (0.98) that duty cycle factor $10\log(1/x)$ is needed to add in conducted test items measured in average detector.

	Item		Test Frequency
	Radiated Spurious Emission	FASSTest	2472.960MHz
	(30MHz~1GHz)	T-FHSS	2467.500MHz
			2405.376MHz
		FASSTest	2408.448MHz
	Radiated Band Edge ^{Note}	FASSTest	2469.888MHz
			2472.960MHz
Radiated		T-FHSS	2407.500MHz
Test Case			2467.500MHz
	Radiated Spurious Emission Note	FASSTest	2405.376MHz
			2439.168MHz
			2472.960MHz
		T-FHSS	2407.500MHz
			2437.500MHz
			2467.500MHz

Note: ☑ Mobile Device	□ Portab	le Device	and 3 ax	is were a	assessed.	The wors	st scenario	for Ra	adiated	Spurious
Emission as follow	⁄: ☑ Lie	\square Side	□Stand							

	Item		Test Frequency
			2405.376MHz
		FASSTest (ANT A)	2439.168MHz
			2472.960MHz
			2405.376MHz
		FASSTest (ANT B)	2439.168MHz
		(ANT D)	2472.960MHz
	20dB Bandwidth		2407.500MHz
		T-FHSS (ANT A)	2437.500MHz
		1-11133 (AIVI A)	2467.500MHz
			2407.500MHz
		T-FHSS (ANT B)	2437.500MHz
		I-IIISS (ANT D)	2467.500MHz
			2405.376MHz
		EASSToot (ANT A)	
		FASSTest (ANT A)	2439.168MHz
			2472.960MHz 2405.376MHz
		EACCT(ANTED)	
		FASSTest (ANT B)	2439.168MHz
	Carrier Frequency Separation		2472.960MHz
		T-FHSS (ANT A) T-FHSS (ANT B)	2407.500MHz
			2437.500MHz
			2467.500MHz
			2407.500MHz
			2437.500MHz
			2467.500MHz
			2405.376MHz
Conducted		FASSTest (ANT A)	2439.168MHz
Test Case			2472.960MHz
		FASSTest (ANT B)	2405.376MHz
			2439.168MHz
	Time of Occupancy		2472.960MHz
	Time of occupancy	T-FHSS (ANT A)	2407.500MHz
			2437.500MHz
			2467.500MHz
		T-FHSS (ANT B)	2407.500MHz
			2437.500MHz
			2467.500MHz
		FASSTest (ANT A)	2439.168MHz
	Number of Hopping Channels	FASSTest (ANT B)	2439.168MHz
	tunion of fropping chambers	T-FHSS (ANT A)	2437.500MHz
		T-FHSS (ANT B)	2437.500MHz
			2405.376MHz
		FASSTest (ANT A)	2439.168MHz
			2472.960MHz
			2405.376MHz
		FASSTest (ANT B)	2439.168MHz
	Maximum Peak Output Power		2472.960MHz
	Cak Output I Owel		2407.500MHz
		T-FHSS (ANT A)	2437.500MHz
			2467.500MHz
			2407.500MHz
		T-FHSS (ANT B)	2437.500MHz
		` '	2467.500MHz

	Item		Test Frequency
		EAGGE (ANTE A)	2405.376MHz
		FASSTest (ANT A)	2472.960MHz
		EACCT(ANT D)	2405.376MHz
	Dand Edges	FASSTest (ANT B)	2472.960MHz
	Band Edges	T-FHSS (ANT A)	2407.500MHz
		I-FRSS (ANT A)	2467.500MHz
		T-FHSS (ANT B)	2407.500MHz
		I-IIISS (ANI D)	2467.500MHz
			2405.376MHz
		FASSTest (ANT A)	2439.168MHz
			2472.960MHz
	Spurious Emission		2405.376MHz
		FASSTest (ANT B)	2439.168MHz
			2472.960MHz
		T-FHSS (ANT A)	2407.500MHz
Conducted			2437.500MHz
Test Case			2467.500MHz
		T-FHSS (ANT B)	2407.500MHz
			2437.500MHz
			2467.500MHz
			2405.376MHz
		FASSTest (ANT A)	2439.168MHz
	DTS/Occupied Bandwidth		2472.960MHz
	D15/Occupied Bandwidth		2405.376MHz
		FASSTest (ANT B)	2439.168MHz
			2472.960MHz
			2405.376MHz
		FASSTest (ANT A)	2439.168MHz
	Peak Power Spectral Density		2472.960MHz
	a cak i ower spectral Delisity		2405.376MHz
		FASSTest (ANT B)	2439.168MHz
			2472.960MHz

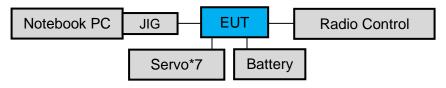
3.8. Output Power Setting

Mode	Centre Frequency	Power Setting
	2405.376MHz	Default
FASSTest	2439.168MHz	Default
	2472.960MHz	Default
	2407.500MHz	Default
T-FHSS	2437.500MHz	Default
	2467.500MHz	Default

3.9. Tested Supporting System List

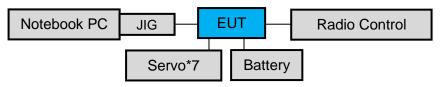
3.9.1. Support Peripheral Unit

No.	Product	Brand	Model No.	Serial No.	Approval
1.	Notebook PC	Acer	N22Q3	NHQGETA002255FD7600	Contains FCC ID: HLZMT7921
2.	Test Jig	Futaba	CIU-3	N/A	N/A
3.	Radio Control	Futaba	GPB-1	N/A	N/A
4.	Battery (DC 6.0V)	Futaba	HT5F1700B	N/A	N/A
5.	Servo*7	Parallax	900-00005	N/A	N/A


3.9.2. Cable Lists

No.	Cable Description Of The Above Support Units
	Adapter: LITEON, M/N PA-1900-32
1.	DC Power Cord
	Shielded, Undetachable, 1.7m, Bonded a ferrite core
2.	Power Wire: Unshielded, Undetectable, 0.45m
3.	Power Wire: Unshielded, Undetectable, 0.30m
4.	Power Wire: Unshielded, Undetectable, 0.30m
5.	Power Wire: Unshielded, Undetectable, 0.45m*7

3.10. Setup Configuration


3.10.1. EUT Configuration for Radiated Emission

Maximum Workload Configuration

3.10.2. EUT Configuration for RF Conducted Test Items

Maximum Workload Configuration

3.11. Operating Condition of EUT

The GPB-1 connected to the EUT is used to enter Test Mode, and then the "Futaba Term" testing program is used to control the RF function under continued transmission and channel selection.

3.12.Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 491, Zhongfu Rd., Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website: www.audixtech.com Contact e-mail: attemc_report@audixtech.com
Accreditations	The laboratory is accredited by following organizations under ISO/IEC 17025:2017 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724
Test Facilities	FCC OET Designation Number under APEC MRA by NCC is: TW1724 ISED CAB Identifier Number under APEC TEL MRA by NCC is TW1724 (1) No.1 3m Semi Anechoic Chamber

3.13. Measurement Uncertainty

The measurement uncertainty levels have been estimated as specified in ETSI TR 100 028-2001

		•	ave been estimated as specified in ETSI I	
le le	st It	ems/Facilities	Frequency Range	Uncertainty
		No. 7 Shielded Room	9kHz-150kHz	±3.6dB
Conduction			150kHz-30MHz	±3.3dB
Test		No. 8 Shielded Room	9kHz-150kHz	±3.7dB
			150kHz-30MHz	±3.4dB
			30MHz-200MHz, 3m, Horizontal	±3.8dB
			200MHz-1000MHz, 3m, Horizontal	±4.2dB
	V	No.1 3m Semi	30MHz-200MHz, 3m, Vertical	±4.7dB
	ب	Anechoic Chamber	200MHz-1000MHz, 3m, Vertical	±4.8dB
			1GHz-6GHz, 3m	±4.8dB
			6GHz-18GHz, 3m	±4.3dB
			30MHz-200MHz, 3m, Horizontal	±3.9dB
			200MHz-1000MHz, 3m, Horizontal	±4.2dB
		No.3 3m Semi Anechoic Chamber	30MHz-200MHz, 3m, Vertical	±4.7dB
			200MHz-1000MHz, 3m, Vertical	±4.8dB
			1GHz-6GHz, 3m	±4.5dB
			6GHz-18GHz, 3m	±4.0dB
Radiation			30MHz-200MHz, 3m, Horizontal	±3.9dB
Test		No.4 3m Semi Anechoic Chamber	200MHz-1000MHz, 3m, Horizontal	±4.3dB
			30MHz-200MHz, 3m, Vertical	±4.8dB
			200MHz-1000MHz, 3m, Vertical	±4.9dB
			1GHz-6GHz, 3m	±4.2dB
			6GHz-18GHz, 3m	±3.8dB
			30MHz-200MHz, 3m, Horizontal	±3.9dB
			200MHz-1000MHz, 3m, Horizontal	±4.1dB
		No.5 3m Semi	30MHz-200MHz, 3m, Vertical	±4.8dB
	Ш	Anechoic Chamber	200MHz-1000MHz, 3m, Vertical	±4.7dB
			1GHz-6GHz, 3m	±4.8dB
			6GHz-18GHz, 3m	±4.6dB
		Radiated emissions (18GHz-40GHz)	18GHz-40GHz, 3m	±3.4dB

Remark : Uncertainty = $ku_c(y)$

Test Item	Uncertainty
20dB Bandwidth	±0.2kHz
6dB Bandwidth	± 0.05kHz
99% Occupied Bandwidth	±0.38%
Carrier Frequency Separation	±0.2kHz
Time of Occupancy	±0.03sec
Maximum peak Output power	± 0.52dB
Conducted Emission Limitations	± 0.13dB
Power spectral density	± 0.13dB

4. MEASUREMENT EQUIPMENTLIST

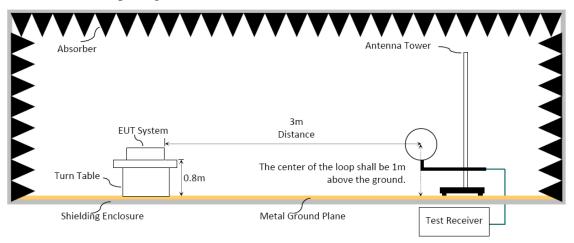
4.1. Radiated Emission Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2024.08.12	1 Year
2.	Spectrum Analyzer	Keysight	N9010B-544	MY55460198	2024.03.21	1 Year
3.	Test Receiver	R&S	ESCS30	100338	2024.06.18	1 Year
4.	Amplifier	HP	8447D	2944A06305	2023.12.20	1 Year
5.	Microwave Preamplifier	НР	8449B	3008A01284	2024.06.11	1 Year
6.	Microwave Amplifier	Keysight	83051A	MY56480113	2024.09.11	1 Year
7.	Bilog Antenna	TESEQ	CBL6112D	33821	2024.02.17	1 Year
8.	Double-Ridged Waveguide Horn	EMCO	3115	9112-3775	2024.04.30	1 Year
9.	Horn Antenna	COM-POWER	AH-840	101092	2024.01.12	1 Year
10.	2.4GHz Notch Filter	K&L Microwave	7NSL10-2441.5/ E130.5-O/O	2	2024.04.11	1 Year
11.	High-Pass Filter	Microwave	H3G018G1	484796	2024.04.11	1 Year
12.	Coaxial Cable	MIYAZAKI	5D2W	RE-11	2024.01.05	1 Year
13.	. Coaxial Cable HUBER+SUHNE		SUCOFLEX 106	RE-14	2024.01.05	1 Year
14.	Coaxial Cable	axial Cable HUBER+SUHNER		RE-30	2024.08.20	1 Year
15.	Digital Thermo-Hygro Meter	iMax	HTC-1	No.1 3m A/C	2024.04.11	1 Year
16.	Test Software	Audix	e3	V9 18621a	N.C.R.	N.C.R.

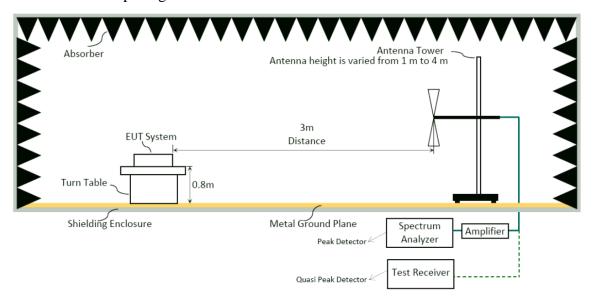
4.2. RF Conducted Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Keysight	N9010B	MY59071380	2024.03.29	1 Year
2.	Digital Thermo-Hygro Meter	iMax	HTC-1	RF-03	2024.04.11	1 Year

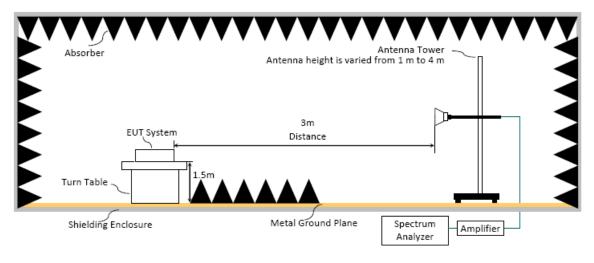
File Number: C1M2410033 Report Number: EM-F240483


5. CONDUCTED EMISSION

[The EUT only employs uses DC power for operation, no conductive emission limits are required according to FCC Part 15 Section §15.207 and RSS-Gen §8.8]


6. RADIATED EMISSION

6.1. Block Diagram of Test Setup


- 6.1.1. Block Diagram of EUT Indicated as section 3.10
- 6.1.2. Setup Diagram for 9kHz-30MHz

6.1.3. Setup Diagram for 30-1000MHz

6.1.4. Setup Diagram for above 1GHz

6.2. Radiated Emission Limits

In any 100kHz bandwidth outside the frequency band, the radio frequency power produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205/RSS-Gen Section 8.10 table 6, must also comply with the radiated emission limits specified as below.

Frequency (MHz)	Distance(m)	Limits	
		dBµV/m	μV/m
0.009 - 0.490	300	67.6-20 log f(kHz)	2400/f kHz
0.490 - 1.705	30	87.6-20 log f(kHz)	24000/f kHz
1.705 - 30	30	29.5	30
30 - 88	3	40.0	100
88- 216	3	43.5	150
216- 960	3	46.0	200
Above 960	3	54.0	500
Above 1000	3	74.0 dBμV/m (Peak) 54.0 dBμV/m (Average)	

Remark : (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

6.3. Test Procedure

Frequency Range 9kHz~30MHz:

The EUT setup on the turntable which has 0.8 m height to the ground. The turn table rotated 360 degrees and antenna fixed to 1 m to find the maximum emission level. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

- (1) RBW = 9kHz with peak and average detector.
- (2) Detector: average and peak (9kHz-490kHz)

Q.P. (490kHz-30MHz)

Frequency Range 30MHz ~ 25GHz:

The EUT setup on the turn table which has 80cm (for 30-1000MHz) and 1.5m (for above 1GHz) height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

Frequency below 1GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1)RBW = 120KHz
- (2)VBW $\geq 3 \times RBW$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- Note 1: When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required, otherwise using Q.P. for final measurement.
- Note 2: When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

Frequency above 1GHz to 10th harmonic(up to 25 GHz): Peak Detector:

- (1)RBW = 1MHz
- (2)VBW $\geq 3 \times RBW$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

Note: When peak-detected value is lower than limit that the measurement using the average detector is not required, otherwise using average detector for final measurement.

Average Detector:

Option 1:

(1)RBW = 1MHz

(2)VBW $\geq 1/$ T. (Duty Cycle < 98%)

(3) VBW = 10Hz (Duty Cycle $\geq 98\%$, when duty cycle presented in section 3.7)

Modulation Type	VBW Setting (VBW ≥ 1/ T)
T-FHSS	10 Hz

(4)Detector = Peak.

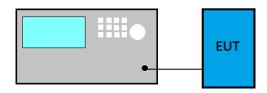
(5)Sweep time = auto.

(6) Trace mode = \max hold.

(7) Allow sweeps to continue until the trace stabilizes.

Option 2:

Average Emission Level= Peak Emission Level+ D.C.C.F.


6.4. Measurement Result Explanation

Peak Emission Level($dB\mu V/m$)=Antenna Factor(dB/m) + Cable Loss (dB)– Pream	np
Gain (dB)+ Reading(dB μ V).	
\square Average Emission Level(dB μ V/m)= Antenna Factor(dB/m) + Cable Loss (dB)-	
Preamp Gain (dB)+ Reading(dB μ V).	
Average Emission Level($dB\mu V/m$)= Peak Emission Level($dB\mu V/m$)+ DCCF(dB)	
Duty Cycle Correction Factor (DCCF)(dB)= 20log(TX on/TX on+off) presented in	
section 3.7.	
\square ERP(dBm)= Peak Emission Level(dB μ V/m) -95.2dB-2.14dB	

6.5. Test Results

7. 20dB/OCCUPIED BANDWIDTH

7.1. Block Diagram of Test Setup

7.2. Specification Limits

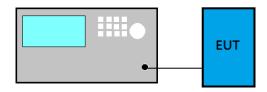
Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

For 20dB Bandwidth

- (1) Set Span range 2~5 times the OBW
- (2) Set VBW≥3xRBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.
- (6) Allow the trace to stabilize.
- (7) Setting channel bandwidth function x dB to -20 dB to record the final bandwidth.


For 99% Occupied Bandwidth

- (8) Set Span range 1.5~5 times the OBW
- (9) Set RBW close to 1% to 5% of OBW.
- (10) Set VBW≥3xRBW.
- (11) Detector = Peak.
- (12) Trace mode = Max hold
- (13) Sweep = Auto couple.
- (14) Allow the trace to stabilize.

7.4. Test Results

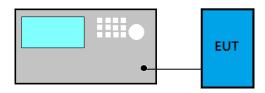
8. CARRIER FREQUENCY SEPARATION

8.1. Block Diagram of Test Setup

8.2. Specification Limits

Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output no greater than 125mW.

8.3. Test Procedure


Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Span = Wide enough to capture the peaks of two adjacent channels
- (2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- (3) VBW≥RBW
- (4) Sweep = Auto
- (5) Detector function = Peak
- (6) Trace = Max hold
- (7) Allow the trace to stabilize.

8.4. Test Results

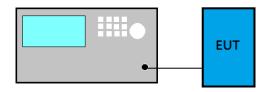
9. TIME OF OCCUPANCY

9.1. Block Diagram of Test Setup

9.2. Specification Limits

Frequency hopping systems in the 2400-2483.5MHz shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by number of hopping channels employed.

9.3. Test Procedure


Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Span: Zero span, centered on a hopping channel.
- (2) RBW shall be \leq channel spacing and where possible RBW should be set >> 1/T, where T is the expected dwell time per channel.
- (3) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- (4) Detector function = Peak
- (5) Trace = Max hold

9.4. Test Results

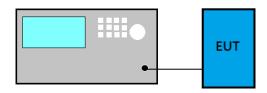
10.NUMBER OF HOPPING CHANNELS

10.1.Block Diagram of Test Setup

10.2. Specification Limits

Frequency hopping systems which use fewer than 20 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels.

10.3.Test Procedure


Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- (2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- (3) $VBW \ge RBW$
- (4) Sweep = Auto
- (5) Detector function = Peak
- (6) Trace = m=Max hold
- (7) Allow the trace to stabilize.

10.4. Test Results

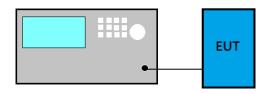
11.MAXIMUM PEAK OUTPUT POWER

11.1.Block Diagram of Test Setup

11.2. Specification Limits

The Limits of maximum Peak Output Power for frequency hopping systems in 2400-2483.5MHz is: 0.125Watt. (21dBm)

11.3.Test Procedure


Following measurement procedure is reference to ANSI C63.10:2013:

- (a) Use the following spectrum analyzer settings
 - (1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - (2) RBW > 20 dB bandwidth of the emission being measured.
 - (3) $VBW \ge RBW$
 - (4) Sweep: Auto
 - (5) Detector function: Peak
 - (6) Trace: Max hold
- (b) Allow trace to stabilize.
- (c) Use the marker-to-peak function to set the marker to the peak of the emission.

11.4.Test Results

12.EMISSION LIMITATIONS

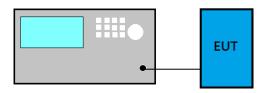
12.1.Block Diagram of Test Setup

12.2. Specification Limits

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, that the required attenuation shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in Section 15.209(a)/ RSS-Gen Section 8.9 table 4 is not required. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205(a)/RSS-Gen Section 8.10 table 6, must also comply with the radiated emission limits specified in Section 15.209(a)/RSS-Gen Section 8.9 table 4. (See Section 15.205(c)).

12.3.Test Procedure


Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Set span wide enough to capture the peak level of the in-band emission and all spurious emissions; up to 10th harmonic.
- (2) RBW = 100 kHz
- (3) $VBW \ge RBW$
- (4) Sweep = Auto
- (5) Detector function = Peak
- (6) Trace = Max hold

12.4.Test Results

13.DTS/OCCUPIED BANDWIDTH

13.1.Block Diagram of Test Setup

13.2. Specification Limits

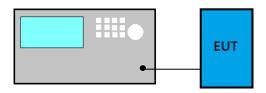
The minimum bandwidth shall be at least 500kHz.

13.3.Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

For DTS Bandwidth

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) \geq 3 × RBW.
- (3) Detector = Peak.
- (4) Trace mode = max hold.
- (5) Sweep = auto couple.
- (6) Allow the trace to stabilize.
- (7) Setting channel bandwidth function x to -6dB power to record the final bandwidth...


For 99% Occupied Bandwidth

- (15) Set Span range 1.5~5 times the OBW
- (16) Set RBW close to 1% to 5% of OBW.
- (17) Set VBW≥3xRBW.
- (18) Detector = Peak.
- (19) Trace mode = Max hold
- (20) Sweep = Auto couple.
- (21) Allow the trace to stabilize.

13.4.Test Results

14. POWER SPECTRAL DENSITY

14.1.Block Diagram of Test Setup

14.2. Specification Limits

The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band.

14.3.Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

Method PKPSD (peak PSD)

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = max hold.
- (8) Allow trace to fully stabilize.
- (9) Use the peak marker function to determine the maximum amplitude level.
- (10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Method AVGPSD-2

- (1) Using peak PSD procedure step 1 to step 4.
- (2) Detector= RMS detector
- (3) Sweep time = auto couple
- (4) Trace mode = trace averaging over a minimum of 100 traces
- (5) Use the peak marker function to determine the maximum amplitude level.
- (6) Duty cycle factor is added when duty cycle presented in section 3.7< 98%.
- (7) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

14.4.Test Results

15.DEVIATION TO TEST SPECIFICATIONS

[NONE]

APPENDIX A

TEST DATA AND PLOTS

(Model: CGY770R2)

APPENDIX B

TEST PHOTOGRAPHS

(Model: CGY770R2)