<SPECIFICATION> 1. GENERAL

One-way communication		
429.2500 - 429.7375 MHz		
Synthesizer controlled by crystal resonator		
Digital code transmission		
2,400bps		
ID code 16 bits (65536 codes)		
(ID code is set at the factory and cannot be changed by the user.)		
100 m or greater (However, the range may be shorter depending upon the surrounding, radio wave environment.)		
-10 - DEG. C (Excluding battery)		
90% RH or less (No condensation)		
-20 - DEG. C (Excluding battery)		
90% RH or less (No condensation)		

2. Transmitter

Type of emission	F1D
RF output power	10,797 [micro V/m] or less (3 m distance)
Frequency tolerance	4 ppm
Modulation	FM-FSK
Supply Voltage	"AA" x 4 (DC 4.0 - 7.0 V)
Current Consumption	50 mA or less (power supply voltage 6 V)
Automatic power off	shut down in approximately 4 seconds
Antenna	Built-in antenna
Antenna	Built-in antenna

3. Receiver

Receiving sensitivity Intermediate frequency	-100 dBm or les 1ST IF 2ND IF	ss (normal temperature) 21.7 MHz 450 kHz	
Supply Voltage Current Consumption Antenna	DC 9 - 31 V 1.2 A or less (Excluding load current) 1/4 wave-length whip antenna (flexible, length approx. 160 mm)		

Description of RF module

Type of emission	F1D
Frequency range	429.2500 - 429.7375 MHz

Transmit frequency synthesizer

The frequency synthesizer is a "pulse-swallowing" type using a TB31213FN integrated circuit. It uses a 21.250 MHz TCXO for its reference source. This IC is programmed to select the individual frequency steps. Programming of this IC is accomplished at power-on time and is controlled by the microprocessor. After receiver selects an unused frequency, it enables the transmitter to begin transmission on that frequency. The operation frequency is selected from predetermined group of ten frequencies listed in the following table:

Programmed Frequency Table						
Step	Group1	Group2	Group3	Group4		
1	429.5000	429.2500	429.5125	429.6250 MHz		
2	429.3750	429.2625	429.3875	429.6375 MHz		
3	429.2750	429.4000	429.5250	429.6500 MHz		
4	429.2875	429.4125	429.5375	429.6625 MHz		
5	429.3000	429.4250	429.5500	429.6750 MHz		
6	429.3125	429.4375	429.5625	429.6875 MHz		
7	429.3250	429.4500	429.5750	429.7000 MHz		
8	429.3375	429.4625	429.5875	429.7125 MHz		
9	429.3500	429.4750	429.6000	429.7250 MHz		
10	429.3625	429.4875	429.6125	429.7375 MHz		

Frequency stabilizing circuitry:

X101 FTA3001A TCXO (Reference clock of PLL) I101 TB31213FN PLL synthesizer IC I401 TK11227M Voltage stabilizer

Transmitter signal path

The serial data from microprocessor (logic unit) passes a low-pass filter, and it directly modulates to VCO in PLL. The modulated signal passes a buffer and amplified with RF amplifier. Then, it passes a low path filter to eliminate undesired emissions, and finally transmit from an antenna.

Modulation restrictions

Although it is made the composition which gives direct frequency modulation to a voltage controlled oscillator with an modulation signal, a variable resister adjusts an modulation level and it is made to maintain the suitable degree of modulation.

Power restrictions

A variable resister adjusts the degree of amplification of a final stage amplifier, and it is made to maintain suitable transmitted electric power.

Suppressor of spurious radiation

low-pass filter C101 CH 8pF C102 CH 12pF C103 CH 18pF L101 15nH L102 15nH

Receiver signal path

The signal received with the antenna is amplified with a low noise amplifier. Then, it is changed into the first intermediate frequency with a mixer. The signal of the first intermediate frequency is further amplified with a low noise amplifier, and is inputted into FM detection IC. Inside this IC, FM demodulation signal is carried out, after changing into the second intermediate frequency. And it is inputted into a microprocessor as receiving data.

Description of modulation

The modulation signal consists of 16 bits of Identification code, 16 bits operation channel data and 32 bits of error check code. These 64bits are biphase encoded to make 128bits of transmitted data. Eight bits of synchronization code are inserted before the 128 bits data packet.

Control system

One microprocessor is controlling generation of the transmitting data by the input of control of a high frequency circuit, switch operation, etc. alone. About control of a high frequency circuit, processing of a frequency setup of a phase lock loop (PLL), a change of transmission and reception, etc. has become main especially.

Transmitter antenna

An internal "printed-circuit-board" type antenna is used. There are no provision to attach an external antenna.

Receiver antenna

1/4 wave-length whip antenna with RG-58/U cable is used. Receiver antenna terminal is M type connecter.

Function of each active device

Q201 2SC5065 RF amplifier (Receiver block) Q202 2SC5065 1ST IF buffer (Receiver block) Q301 2SC5065 RF amplifier (Transmitter block) Q302 2SC5065 RF amplifier (Transmitter block) Q401 DTA143ZUA Transmitter block power supply control Q402 DTA143ZUA Receiver block (RF block) power supply control Q403 DTA143ZUA Receiver block (IF block) power supply control I101 TB31213FN PLL synthesizer IC I201 TA31136FN Demodulator I401 TK11227M Voltage stabilizer