

Page : 1 of 40

SAR TEST REPORT

Test Report No. 13734841S-A-R3

Customer	Canon Inc.
Description of EUT	Built-in Wireless module with Bluetooth in Flat Panel Detector
Model Number of EUT	WM01B
FCC ID	AZDWM01B
Test Regulation	FCC 47CFR Part 2 (2.1093)
Test Result	Complied (Refer to SECTION 3)
Issue Date	July 28, 2022
Remarks	This SAR tested report is evaluation for the host platforms of WM01B. The past host platforms SAR results refer to section 3.1 in this report.

Representative Test Engineer	Approved By
H. Naka	T. Amamura
Hiroshi Naka	Toyokazu Imamura Leader
Engineer	Leader
	ACCREDITED CERTIFICATE 1266.03
The testing in which "Non-accreditation" is displayed is outside	the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	
Form	LILID 002522 (DCS:12 EM E0020) Iograph 200 (SAB Davision v20 00020220522)

Form-ULID-003532 (DCS:13-EM-F0429) Issue# 20.0 (SAR Revision v20.0sar20220523)

Test Report No.: 13734841S-A-R3
Page : 2 of 40

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the applicant for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 13734841S-A

This report is a revised version of 13734841S-A-R2. 13734841S-A-R2 is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	13734841S-A	June 10, 2022	-
-R1	13734841S-A-R1	July 6, 2022	(p32) Added "KSDA-01" to table of "Equipment used".
-R2	13734841S-A-R2	•	(p9, 3.6) Added comment for Step 4 Zoom Scan (3dB check of Δx, Δy). "For 5 GHz band, SEMCAD Plot shows 4 mm, but the 3 dB point was tested at a distance greater than 4 mm in horizontally (which is step size of Δx, Δy)." "For 2.4 GHz band, SEMCAD Plot shows 5 mm, but the 3 dB point was tested at a distance greater than 5 mm in
			horizontally (which is step size of Δx, Δy)." (p11) Replaced (updated) KDB number of "*1". KDB 447498 D01 (v07)-> KDB 447498 D04 (v01) (p11) Corrected ERP calculation formula and calculated results in table. (was: "-2.54"->new: "-2.15") (p13) 108 4 3 3 2
-R3	13734841S-A-R3	July 28, 2022	Semiliarous \$48(3) GHs WLAN-BTLE 50 \$0.100-1 \$100 Extends \$100

Page : 3 of 40

Reference: Abbreviations (Including words undescribed in this report) (radio_r0v09s02_211221)

A2LA The American Association for Laboratory Accreditation Intermediate Frequency ILAC Alternating Current International Laboratory Accreditation Conference AFH ISED Innovation, Science and Economic Development Canada Adaptive Frequency Hopping AM Amplitude Modulation ISO International Organization for Standardization Amp, AMP Amplifier JAB Japan Accreditation Board American National Standards Institute Local Area Network ANSI LAN Ant, ANT Antenna LIMS Laboratory Information Management System AP Access Point MCS Modulation and Coding Scheme ASK Amplitude Shift Keying MIMO Multiple Input Multiple Output (Radio) Atten., ATT Attenuator MRA Mutual Recognition Arrangement MU-MIMO Average Multi-User Multiple Input Multiple Output (Radio) BPSK Binary Phase-Shift Keying N/A Not Applicable, Not Applied BR Bluetooth Basic Rate NII National Information Infrastructure (Radio) Bluetooth NIST National Institute of Standards and Technology BTLE Bluetooth Low Energy NS No signal detect. BWBandWidth NSA Normalized Site Attenuation Cal Int Calibration Interval OBW Occupied Band Width Complementary Code Keying CCK OFDM Orthogonal Frequency Division Multiplexing Cyclic Delay Diversity CDD P/M Power meter Printed Circuit Board Ch., CH Channel PCB CISPR Comite International Special des Perturbations Radioelectriques PER Packet Error Rate CWContinuous Wave PHY Physical Layer DBPSK Differential BPSK PK Peak DC Direct Current PN Pseudo random Noise D-factor Distance factor PRBS Pseudo-Random Bit Sequence DFS Dynamic Frequency Selection PSD Power Spectral Density **DQPSK** Differential QPSK QAM Quadrature Amplitude Modulation DSSS Direct Sequence Spread Spectrum QΡ Quasi-Peak **QPSK** Quadrature Phase Shift Keying DUT Device Under Test **EDR** Enhanced Data Rate RBW Resolution Band Width EIRP, e.i.r.p. Equivalent Isotropically Radiated Power RDS Radio Data System ElectroMagnetic Compatibility RE **EMC** Radio Equipment RF EMI ElectroMagnetic Interference Radio Frequency Root Mean Square European Norm RMS ΕN ERP, e.r.p. Effective Radiated Power RSS Radio Standards Specifications European Telecommunications Standards Institute **ETSI** Rx Receiving SA, S/A ΕU European Union Spectrum Analyzer EUT Equipment Under Test SAR Specific Absorption Rate Fac. SISO Single Input Single Output (Radio) FCC Federal Communications Commission SG Signal Generator **FHSS** Frequency Hopping Spread Spectrum SPLSR SAR to Peak Location Separation Ratio Frequency Modulation SVSWR Site-Voltage Standing Wave Ratio FM T/R Freq. Frequency Test Receiver FSŔ Frequency Shift Keying Transmitting Tx Gaussian Frequency-Shift Keying **GFSK** U-NII Unlicensed National Information Infrastructure (Radio) Global Navigation Satellite System **GNSS** VBW Video BandWidth **GPS** Global Positioning System Vert. Vertical Hori. Horizontal WLAN Wireless LAN Interference-Causing Equipment Standard ICES IFC International Electrotechnical Commission

IEEE

Institute of Electrical and Electronics Engineers

Test Report No.: 13734841S-A-R3
Page : 4 of 40

CONTENTS PAGE ANNOUNCEMENT......2 REVISION HISTORY2 CONTENTS......4 Customer information.....5 **SECTION 1:** Equipment under test (EUT)......5 **SECTION 2:** Identification of EUT and host platform......5 2.2 Product Description (Radio specification)......5 2.3 Host platform information......6 SAR test consideration of this host platform......6 **SECTION 3:** Maximum SAR value, test specification and procedures......7 Summary of Maximum SAR Value7 3.1 Test specification 8
Exposure limit 8 3.3 3.4 3.5 Test location8 3.6 SAR measurement procedure9 **SECTION 4:** Operation of EUT during testing10 4 1 4.2 **SECTION 5:** Confirmation before testing......12 **SECTION 6:** 6.1 SAR results 15
Simultaneous transmission evaluation 16
SAR Measurement Variability (Repeated measurement requirement) 16 6.2 6.3 6.4 6.5 Device holder perturbation verification 16 Contents of appendixes Photographs of test setup17 **APPENDIX 1:** Appendix 1-1 Appendix 1-2 EUT and support equipment 19 Appendix 1-3 **APPENDIX 2:** Appendix 2-1 Appendix 2-2 Test instruments 32 **APPENDIX 3:** Appendix 3-1 Equipment used 32 Appendix 3-2 Configuration and peripherals 33 Appendix 3-3 Appendix 3-4 Appendix 3-5 Appendix 3-6 Appendix 3-7 Appendix 3-8

5 of 40 Page

SECTION 1: Customer information

Company Name	Canon Inc.
Address	9-1, Imaikamicho, Nakahara-ku, Kawasaki, Kanagawa 211-8501, Japan
Telephone Number	+81-3-3758-2111
Contact Person	Tetsuo Watanabe

The information provided from the customer is as follows;

- Customer name, Company name, Type of Equipment, Model No., FCC ID on the cover and other relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT)
- SECTION 4: Operation of EUT during testing
- Appendix 1: The part of Antenna location information, Description of EUT and Support Equipment
- The laboratory is exempted from liability of any test results affected from the above information in SECTION 2, SECTION 4 and Appendix 1.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT and host platform

	EUT	Host platform
Type	Built-in Wireless Module with Bluetooth	Flat Panel Detector
Model Number	WM01B	WM5B05 (*2)
Serial Number	34:9F:7B:EF:DB:20	21MED-0327
Rating	DC 3.3 V supplied form the platform.	DC 22 V ~ DC 24 V
Condition of sample	Engineering prototype (*1)	Engineering prototype (*1)
Receipt Date of sample	September 28, 2021 (for power measurement) (*. No modifi April 12, 2022 (for SAR test) (*. No modification by the Lab.)	
Test Date	April 19~22, 2022	
SAR Category Identified	Portable device	
Feature of EUT	The EUT is a Built-in Wireless Module with Blueto platform as "Flat Panel Detector".	both, model: WM01B which installs into the specified
SAR Accessory	None	

^{*1.} Not for sale: The sample is equivalent to mass-produced items.

Product Description (Radio specification)

Model Number	WM01B								
Equipment type	Transceiver	nsceiver							
Frequency of operation	*. The operation frequency in each operation band refer to remarks in	below.							
Channel spacing	BT-LE: 2MHz / WLAN: 5 MHz (2.4 GHz band), 20 MHz (5 GHz b	and)							
Bandwidth	BT-LE: 79 MHz (FHSS) / WLAN: 20 MHz (11b, 11g, 11a, 11n20, 1	1ac20), 40 MHz (11n40, 11ac40), 80 MHz (11ac80)							
Type of modulation	BT-LE: GFSK / WLAN: DSSS: DBPSK, DQPSK, CCK (11b), WI 11ac20, 11n40, 11ac40, 11ac80), 256QAM (11ac80)	AN: OFDM: BPSK, QPSK, 16QAM, 64QAM (11g, 11a, 11n20,							
Typical power and tune-up limit (maximum) power		The specification of typical and maximum transmit power (which may occur) refer to remarks in below. The measured output power (conducted) as SAR reference power refers to section 5 in this report.							
Antenna quantity	2 pcs. (*3)								
Antenna model	Antenna 2: ANT2444-16B/M-AB-125	Antenna 1: ANT2444-16B/M-AB-125							
Antenna cable length	125 mm	125 mm							
Antenna gain (*. max.peak)	3.33 dBi (2.4 GHz band), 3.79 dBi (5 GHz band) (*including 125 mm cable loss)	3.33 dBi (2.4 GHz band), 3.79 dBi (5 GHz band) (*including 125 mm cable loss)							
Antenna type / connector type	Monopole (1/4λ)/PCB side: MHF, Antenna side: soldered	Monopole (1/4λ)/PCB side: MHF, Antenna side: soldered							

Monopole $(1/4\lambda)$ / PCB side: MHF, Antenna side: soldered Antenna type / connector type A transmission is performed from one of antenna 2 or antenna 1 (diversity). A transmission of WLAN(2.4 GHz) and BT-LE is time-division-processing. Therefore, simultaneously transmitted SAR was only considered for the WLAN(5 GHz) and BT-LE.

Typical power and tune-up limit power (as "maximum power")

	D-44-	Oı	Output power (Typical and maximum) [dBm] (*. The measured output power (conducted) refers to section 5 in this report.)													
Tx Mode Data rate		2.4 GHz band			U-NII-1 (5.2GHz band)			U-NII-2A (5.3GHz band)		U-NII-2C (5.6GHz band)			U-NII-3 (5.8GHz band)		and)	
	IVICS IIICA	F[MHz]	Typical	Max.	F[MHz]	Typical	Max.	F [MHz]	Typical	Max.	F[MHz]	Typical	Max.	F[MHz]	Typical	Max.
BT-LE	(1~2) M-PHY	2402~2480	3	5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
11b	(1~11) Mbps	2412~2462	12	14	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
11g	(6~54) Mbps	2412~2462	12	14	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
11a	(6~54) Mbps	N/A	N/A	N/A	5180~5240	11	13	5260~5320	11	13	5500~5580, 5660~5700	11	13	5745~5825	11	13
11n20-SISO	MCS0~7	2412~2462	12	14	5180~5240	11	13	5260~5320	11	13	5500~5580, 5660~5700	11	13	5745~5825	11	13
11ac20-SISO	MCS0~8	N/A	N/A	N/A	5180~5240	11	13	5260~5320	11	13	5500~5580, 5660~5700	11	13	5745~5825	11	13
11n40-SISO	MCS0~7	2422~2452	11	13	5190, 5230	11	13	5270, 5310	11	13	5510, 5550, 5670	11	13	5755, 5795	11	13
11ac40-SISO	MCS0~9	N/A	N/A	N/A	5190, 5230	11	13	5270, 5310	11	13	5510, 5550, 5670	11	13	5755, 5795	11	13
11ac80-SISO	MCS0~9	N/A	N/A	N/A	5210	8.5	10.5	5290	8.5	10.5	5530	8.5	10.5	5775	8.5	10.5
* E E	> 1	NT/A . NT-	4	1.1. /	- J-> 111- TET	TE 000	111. 11.	TEEE 000 1	11 - 11 -	TEEE	900 11a 11a 20 CICO, IE	EE OOO	11/OOT	FT CICO 11.	. AO CICO	· TEEE

F: Frequency; Max.: maximum; N/A: Not applicable; (mode) 11b: IEEE 802.11b, 11g: IEEE 802.11g, 11a: IEEE 802.11a, 11n20-SISO: IEEE 802.11n(20HT)-SISO, 11n40-SISO: IEEE 802.11n(20HT)-SISO, 11ac40-SISO: IEEE 802.11n(40HT)-SISO, 11ac80-SISO: IEEE 802.11ac(80VHT)-SISO, 11ac40-SISO: IEEE 802.11ac(80VHT)-SISO.

^{*2.} Another name for the model WM5B05 is AR-E2735W or CXDI-820C Wireless.

The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity." The EUT only supports BT-LE, does not support BR/EDR even though the EUT supports Bluetooth 5.2.

Maximum tune-up tolerance limit is conducted burst average power and is defined by a customer as Duty cycle 100% (continuous transmitting).

6 of 40 Page

2.3 Host platform information

This EUT (Built-in Wireless Module with Bluetooth, model: WM01B) is installed into the following "Flat Panel Detector" series models. The host platform has the following "Model number" and specified "Medical equipment model number."

- 1	ът	TD C : 4	M 11 1	M 1 1 1	11 1	1	D 1	CAD too
				Host platform	information			
							1	

			SAR test information			
No.	Type of equipment	Model number	Medical equipment model number	Remarks	SAR test status	Reference SAR test report
1	Flat Panel Detector	WM5B04	CXDI-720C Wireless, AR-E3543W	14"×17" detector, Wireless High-end model	Tested	14033664S-A (latest version)
2	Flat Panel Detector	WM5B06	CXDI-420C Wireless, AR-E4343W	17"×17" detector, Wireless High-end model	Tested	13734845S-A (latest version)
3	Flat Panel Detector	WM5B05	CXDI-820C Wireless, AR-E2735W	11"×14" detector, Wireless High-end model	Tested	13734841S-A (this report)

2.4 SAR test consideration of this host platform

This platform is a large-sized transportable equipment and has a part coming in contact directly with a patient. An operator (a patient become an operator uncommonly) maintains EUT by hand. (Refer to photographs of Appendix 1-3: Usage example) Because there is not the KDB for the product which is such a design specifications, we decide the SAR test method in below.

Physical characteristics of platform: WM5B05

Dimensions: $308 \times 384 \times 15.5$ mm

- This platform is a transportable equipment, but, because it is a large-sized equipment, an operator (or a patient) fixes the edge of platform to stands and pushes or supports platform to a patient's body part (head, body, arm, hand, foot, etc.) by hand at the time of
 - The X-ray imaging by platform changes the imaging part of the patient's body at every imaging after having needed several minutes for setting.
- The image transfer time (continuous transfer time) per one imaging is two or three seconds, it is short enough.
 - The imaging of the same part can be performed consecutively several times.
 - In the case of serial imaging, the image transfer time (continuous transfer time) occupies two or three seconds among the image intervals of 15 seconds. (Duty Cycle: < 20 %)
- On this account, the time when an operator (or patient) is really exposed to RF energy is short.
- In addition, an operator is only a doctor or a legally certified person because platform is medical equipment.
 - Explanatory note in the manual-
 - "Only a physician or a legally certified operation should use the product."

In consideration of the terms of use mentioned above, we decide the SAR examination as the following contents.

The front (imaging area side) and side edge of platform carries out the Partial-body SAR examination.

The front of platform comes in contact with a patient directly. In addition, consecutive RF energy may be exposed to the same neighborhood part of the patient although duty cycle is less than 20%.

Because the front of platform comes in contact with a patient directly, we measure the Partial-body SAR at the position of the touch to a phantom around the antenna of the front and side-edge of platform with continuous transmission in 100% duty cycle as a worse condition.

b) The back of platform carries out the Hand SAR examination.

An operator (or a patient) fixes the edge of platform to stands and pushes or supports platform to a patient's body part (head, body, arm, hand, foot, etc.) by hand and by holding back of platform at the time of use.

In addition, consecutive RF energy may be exposed to the same neighborhood part of the patient although duty cycle is less than

We measure the Hand SAR at the position of the touch to a phantom around the antenna of the back of platform with continuous transmission in 100% duty cycle as a worse condition.

- *. In addition, because the following instructions for the operator are mentioned in a manual, the physical part of the operator does not touch directly the antenna part of the back.
 - Explanatory note in the manual -
 - "Please do not adhere to your hands and body to an antenna part to restrain exposure of the RF energy when conducting an X-ray examination."

Page : 7 of 40

SECTION 3: Maximum SAR value, test specification and procedures

3.1 Summary of Maximum SAR Value

				Sun	ported SAR [W/kg]			
			Body-v	vom	Extr	emity	Head	
	Band	power	(Separation 0 mm	, Flat phantom)	(Separation 0 m	m, Flat phantom)	(Separation 0 mn	n, SAM phantom)
		[dBm]	SAR ((1g)	SAR	(10g)		
			Antenna 1	Antenna 2	Antenna 1	Antenna 2	Antenna 1	Antenna 2
DTS, 2	2.4 GHz WLAN	14	0.22	< 0.10	0.31	0.29	N/A	N/A
U-NII-1	, 5.2 GHz WLAN	13	0.38	< 0.10	0.72	0.58	N/A	N/A
U-NII-2A	A, 5.3 GHz WLAN	13	0.48	< 0.10	0.75	0.52	N/A	N/A
U-NII-20	C, 5.6 GHz WLAN	13	0.31	< 0.10	0.46	0.43	N/A	N/A
U-NII-3	3, 5.8 GHz WLAN	13	0.40	< 0.10	0.43	0.42	N/A	N/A
DI	ΓS, Bluetooth	5	< 0.10	< 0.10	< 0.10	< 0.10	N/A	N/A
Simultaneou	us SAR (5 GHz WLAN + BT (Refer to Clause 6.3)	LE)	0.50	< 0.10	0.78	0.61	N/A	N/A
Criteria	Partial body (head & body): 1.6 W/I	kg (SAR (1g)), Extrem	ity: 4.0 W/kg (SAF	(10g)) for general p	opulation/uncontrol	led exposure is spe	cified in FCC 47
	CFR part 2 (2.1093).							
Test Procedure	SAR measurement: KDB	447498 I	004, KDB 248227 D0	1, KDB 865664 DO	1, IEC Std. 1528,			
	UL Japan's SAR Work Pr	ocedures	No.13-EM-W0429 ar	nd 13-EM-W0430.				
Category	FCC 47CFR §2.1093 (Por	table dev	ice)			•		·
SAR type	Partial-body (SAR (1g)), H	Hands (SA	AR(10g))			•		

^{*.} A transmission is performed from one of antenna 2 or antenna 1 (diversity). A transmission of 2.4 GHz WLAN and BT-LE is time-division-processing. Therefore, simultaneously transmitted SAR was only considered for the 5 GHz WLAN and BT-LE.

<u>Test outline:</u> Where the EUT is built into this new platform, it was verified whether multi-platform conditions can be suited in according with clause 4.2.4 in KDB 447498 D04 (v01).

Consideration of	The highest reported SAR of this platform was kept; ≤ 0.8 W/kg (SAR(1g)), ≤ 2 W/kg (SAR(10g))
the test results:	Since highest reported SAR (1g,10g) on this EUT's platform obtained in accordance with KDB 447498 D04 (v01) was kept under 0.8 W/kg
	(SAR(1g)), kept under 3 W/kg (SAR(10g)), this EUT was approved to operate "Specific Set of Host Platforms."

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for partial body, 4 W/kg for hands (Extremity)) specified in FCC 47 CFR part 2 (2.1093) and had been tested in accordance with the measurement methods and procedures specified in FCC KDB publications and IEEE 1528-2013.

3.1.1 History of maximum SAR value in different platform - Informative (Reference purpose only)

- *. The following information indicates a highest SAR number of the different host platform in the past test. The SAR test results are not described in this report.
- *. In the past, this module had installed into the following host platforms and tested with measured highest reported SAR of < 0.8 W/kg (SAR(1g)), < 2 W/kg (SAR(10g)) (per KDB 447498 D01 (v06); multi-platform operation requirement).

		Highest Reported SAR [W/kg]								
		Host p	olatform (1) mod	el number: WM	5B04	Host	platform (2) mo	del number: W	M5B06	
		Refere	nce SAR test rep	ort: 14033664S-	A (*1)	Refer	rence SAR test n	eport: 13734845	S-A (*1)	
	Max.	Body-wom (Se	eparation 0 mm)	Extremity (Se	paration 0 mm)	Body-wom (S	separation 0 mm)	Extremity (Separation 0 mm)	
Band	Power	SAR	(1g)	SAR	SAR(10g)		SAR(1g)		R(10g)	
	[dBm]	Antenna 1	Antenna 2	Antenna 1	Antenna 2	Antenna 1	Antenna 2	Antenna 1	Antenna 2	
2.4 GHz WLAN (*2)	14	0.30	< 0.10	0.23	0.33	0.22	< 0.10	0.22	0.38	
5.2 GHz WLAN (*2)	13	0.30	< 0.10	0.43	0.41	0.39	< 0.10	0.47	0.45	
5.3 GHz WLAN (*2)	13	0.38	< 0.10	0.35	0.34	0.37	< 0.10	0.41	0.37	
5.6 GHz WLAN (*2)	13	<mark>0.40</mark>	< 0.10	0.39	0.38	0.50	< 0.10	0.45	0.35	
5.8 GHz WLAN (*2)	13	0.39	< 0.10	0.37	0.28	0.29	< 0.10	0.38	0.26	
Bluetooth	5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Simultaneous SAR per KDB 447498 D01 v06 (Simulated) (5 GHz WLAN+BTLE)		(0.56)	(0.57)	(0.88)	(0.89)	(0.56)	(0.57)	(0.88)	(0.89)	
Criteria Partial bod	v (head &	body): 1.6 W/kg	SAR (19)). Extr	emity: 40 W/kg	(SAR (10g)) fo	r general populat	ion/uncontrolled	exposure is spe	cified in FCC 47	

Criteria Partial body (head & body): 1.6 W/kg (SAR (1g)), Extremity: 4.0 W/kg (SAR (10g)) for general population/uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093).

Test Procedure SAR measurement: KDB 447498 D01(v06), KDB 248227 D01, KDB 865664 D01, IEC Std. 1528, UL Japan's SAR Work Procedures No.13-EM-W0429 and 13-EM-W0430.

^{*. &}quot;yellow marker" in the table; the highest Reported SAR (1g) and SAR (10g) of each band (2.4 GHz, 5 GHz) are shaded with yellow marker.

^{*1.} SAR evaluation and report publishing was done by Shonan EMC Lab. UL Japan.

^{*2.} WLAN operation mode: IEEE 802.11n(40HT)-SISO

^{*.} A transmission is performed from one of antenna 2 or antenna 1 (diversity). A transmission of 2.4 GHz WLAN and BT-LE is time-division-processing. Therefore, simultaneously transmitted SAR was only considered for the 5 GHz WLAN and BT-LE.

^{*. &}quot;yellow marker" in the table; the highest Reported SAR (1g) and SAR (10g) of each band (2.4 GHz, 5 GHz), on each host platform are shaded with yellow marker.

Page : 8 of 40

3.2 Test specification

The tests documented in this report were performed in accordance with the following standard: FCC 47 CFR Parts 2 (2.1093), IEEE Std.1528-2013, and the following FCC Published RF exposure KDB procedures:

FCC 47 CFR part 2 (2.1093)	Radiofrequency radiation exposure evaluation: portable devices
ANSI/IEEE C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3
ANSI/IEEE C95.1-1992	KHz to 300 GHz
IEEE Std. 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the
IEEE Std. 1326-2013	Human Head from Wireless Communications Devices: Measurement Techniques.
KDB 248227 D01	SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters v02r02
KDB 447498 D04	Interim General RF Exposure Guidance v01
KDB 447498 D03	OET Bulletin 65, Supplement C Cross-Reference v01
KDB 865664 D01	SAR measurement 100 MHz to 6 GHz v01r04
KDB 865664 D02	RF exposure compliance reporting and documentation considerations v01r02

In addition to the above, the following information was used:

	RF Exposure Procedure, DUT Holder Perturbations
TCB workshop, October 2016	When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification is required for each antenna, using the highest
	SAR configuration among all applicable frequency bands.
TCB workshop, April 2019	RF Exposure Procedure, 802.11ax SAR Testing
	RF Exposure Procedure, Tissue Simulating Liquids (TSL)
	-Effective February 19, 2019, FCC has permitted the use of single head tissue simulating liquid specified in IEC 62209 for all SAR tests.
TCB workshop, October 2019	-Mix and Match of traditional FCC SAR TSLs and IEC 62209 TSL in a single application is not permitted.
1	-TSL can be changed in a Permissive Change. If SAR increases and original SAR > 1.2 W/kg, additional SAR tests will be required.
	-If FCC parameters are used, 5 % tolerance. If IEC parameters, 10 %.

3.3 Exposure limit

Environments of exposure limit	Whole-Body (averaged over the entire body)	Partial-Body (averaged over any 1g of tissue)	Hands, Wrists, Feet and Ankles (averaged over any 10g of tissue)
(A) Limits for Occupational /Controlled Exposure (W/kg)	0.4	8.0	20.0
(B) Limits for General population /Uncontrolled Exposure (W/kg)	0.08	1.6	4.0

^{*.} Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

The limit applied to this device which tested in this report is;

 $\label{lem:controlled} General \ population / \ uncontrolled \ exposure, Partial-Body \ (averaged \ over \ any \ 1g \ of \ tissue) \ limit: 1.6 \ W/kg \ (*.\ Refers \ to \ clause \ 2.3) \\ General \ population / \ uncontrolled \ exposure, Hands \ (averaged \ over \ any \ 10g \ of \ tissue) \ limit: 4 \ W/kg \ (*.\ Refers \ to \ clause \ 2.3) \\$

3.4 Addition, deviation and exclusion to the test procedure

No addition, exclusion nor deviation has been made from the test procedure.

3.5 Test Location

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

*. A2LA Certificate Number: 1266.03 (FCC Test Firm Registration Number: 626366, ISED Lab Company Number: 2973D/CAB identifier: JP0001)

Place	Width \times Depth \times Height (m)	Size of reference ground plane (m)/horizontal conducting plane
No.7 Shielded room	$2.76 \times 3.76 \times 2.4$	2.76×3.76

^{*.} General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

9 of 40 Page

3.6 SAR measurement procedure

3.6.1 Normal SAR measurement procedure

Step 1: Confirmation before SAR testing

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. The SAR test reference power measurement and the SAR test were proceeded with the lowest data rate (which has the higher time-based average power typically) on each operation mode. Therefore, the average output power was measured on the lower, middle (or near middle), upper and specified channels with the lowest data rate of each operation mode. The power of other data rate was also measured to confirm the time-base average power and when if it's required. The power measurement result is shown in Section 5.

The EUT transmission power was verified that it was not more than 2 dB lower than the maximum tune-up tolerance limit when it was set the rated power. (KDB447498 D04 (v01))

Step 2: Power reference measurement

Measurement of the E-field at a fixed location above the central position of flat phantom (or/and furthermore an interpolated peak SAR location of area scan in step 2) was used as a reference value for assessing the power drop

Step 3: Area Scan (Area scan parameters: KDB 865664 D01 (v01r04).)

The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and suitable horizontal grid spacing of EUT. Based on these data, the area of the maximum absorption was determined by splines interpolation.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3-4 \text{ GHz} \le 12 \text{ mm}$ $4-6 \text{ GHz} \le 10 \text{ mm}$
Maximum area scan spatial resolution: ΔX_{Aura} , ΔY_{Aura}	When the x or y dimension of measurement plane orientation the measurement resolution x or y dimension of the test of measurement point on the test.	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Step 4: Zoom Scan and post-processing (Zoom scan parameters: KDB 865664 D01 (v01r04).)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

A volume of 30 mm (X) \times 30 mm (Y) \times 30 mm (Z) (or more) was assessed by measuring $7 \times 7 \times 7$ points (or more), \leq 3 GHz.

A volume of 28 mm (X) × 28 mm (Y) × 24mm (Z) (or more) was assessed by measuring 8×8×7 points (or more) (by "Ratio step" method (*1)), > 3 GHz.

When the SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are proceeded for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. If the zoom scan measured as defined above complies with both of the following criteria. or if the peak spatial-aver

SAR is below 0.1 W/kg, no additional measurements are needed.

*. The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal grid steps in both x and y directions and recorded. For 5 GHz band, SEMCAD Plot shows 4 mm, but the 3 dB point was tested at a distance greater than 4 mm in horizontally (which is step size of Δx, Δy).

For 2.4 GHz band, SEMCAD Plot shows 5 mm, but the 3 dB point was tested at a distance greater than 5 mm in horizontally (which is step size of Δx , Δy).

*. The ratio of the SAR at the second measured point to the SAR at the closest measured point at the x-y location of the measured maximum SAR value shall be at least 30 % and recorded.

			f≤3GHz	3 GHz < f ≤ 6 GHz
			≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
zoom scan spatial resolution, normal to	graded	Az _{zoom} (1): between 1st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
surface	grid	\[\Delta z_{Zoom}(n>1): \] between \[subsequent \] points	≤ 1.5 ·∆z _{ĭo}	_{om} (n-1) mm
Minimum zoom scan volume		x, y, z	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm
	Maximum zoom scan spatial resolution, normal to phantom surface	mesolution: Δx_{Zoom} . Δy_{Zoom} .	Zzoom scan Spatial Zzzoom	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Step 5: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 2. It was checked that the power drift is within ±5% in the evaluation procedure of SAR testing. The verification of power drift during the SAR test is that DASY system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position. The result is shown in SAR plot data of APPENDIX 2.

DASY system calculation Power drift value[dB] =20log(Ea)/(Eb) (where, Before SAR testing: Eb[V/m] / After SAR testing: Ea[V/m]) $Limit \ of power \ drift[W] = \pm 5\%; Power \ drift \ limit \ (X) \ [dB] = 10 log(P_drift) = 10 log(1.05/1) = 10 log(1.05) - 10 log(1) = \underline{0.21 dB}$ from E-filed relations with power; $S=E\times H=E^2/\eta=P/(4\times\pi\times r^2)$ (η : Space impedance) $\rightarrow P=(E^2\times4\times\pi\times r^2)/\eta$ Therefore, The correlation of power and the E-filed Power drift limit (X) $dB=10log(P_drift)=10log(E_drift)^2=20log(E_drift)$

From the above mentioned, the calculated power drift of DASY system must be the less than (±) 0.21 dB.

Step 6: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

- The all SAR tests were conservatively performed with test separation distance 0 mm. The phantom bottom thickness is approx. 2mm. Typical distance from probe tip to dipole centers is 1mm. The distance between the SAR probe tip to the surface of test device which is touched the bottom surface of the phantom is approx. 3 mm for 2.4GHz band and 2.4 mm for 5GHz band.
- "Ratio step" method parameters used; the first measurement point: "1.4mm" from the phantom surface, the initial z grid separation: "1.4mm", subsequent graded grid ratio: "1.4". These parameters comply with the requirement of KDB 865664 D01 and recommended by Schmid & Partner Engineering AG (DASY5 manual).

Test Report No.: 13734841S-A-R3
Page : 10 of 40

SECTION 4: Operation of EUT during testing

4.1 Operating modes for SAR testing

The EUT has BT LE and IEEE 802.11b/11g/11a/11n20-SISO/11n40-SISO/11ac20-SISO/11ac40-SISO/11ac80-SISO continuous transmitting modes. The frequency and the modulation used in the SAR testing are shown as a following.

Operation mode		BTLE	2	11b	11g	11n20	11n40	11a	11n20	11ac20	11n40	11ac40	11ac80	11a	11n20	11ac20	11n40	11ac40	11ac80
band			2.	4GHz ba	nd				U-l	NII-1 (5.	2 GHz)	(*4)			U-	NII-2A	(5.3 GF	łz)	
Tx band [MHz]	2	402~24	80	24	12~246	2	2422~ 2452	5	180~52	40	5190	,5230	5210	52	260~532	20	5270	,5310	5290
Antenna # (*1)		2 or 1		2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1
Bandwidth [MHz]		1		20	20	20	40	20	20	20	40	40	80	20	20	20	40	40	80
Max.power [dBm]		5		14	14	14	13	13	13	13	13	13	10.5	13	13	13	13	13	10.5
Modulation		GFSK		DSSS	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM
D/R [Mbps, MCS#]	1M-P	HY 2	M-PHY	1	6	MCS0	MCS0	6	MCS0	MCS0	MCS0	MCS0	MCS0	6	MCS0	MCS0	MCS0	MCS0	MCS0
Frequency tested [MHz]	244 (*2		n/a)	2412, 2437, 2462	n/a (*3)	n/a (*3)	n/a (*3)	n/a (*6)	n/a (*6)	n/a (*6)	5190, 5230	n/a (*6)	n/a (*5)	n/a (*6)	n/a (*6)	n/a (*6)	5270, 5310	n/a (*6)	n/a (*5)
Operation mode	11a	11n20	11ac20	11n40	11ac40	11ac80	11a	11n20	11ac2	20 11n/	11a	c40 11a	ac80						
band		Ţ	J-NII-20	C (5.6 GH	(z)				U-NII	-3 (5.8 0	GHz)								
Tx band [MHz]		500~558 560~57		5510,55	50,5670	5530		5745~5	825	57	55, 579	5 57	775						
Antenna # (*1)	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or	1 2 or	1 2o	r1 20	or 1						

		Toct	nama		So	ftware n	amo			Version	n		Do	ato
Frequency to [MHz]	ested	n/a (*6)	n/a (*6)	n/a (*6)	5510, 5550, 5670	n/a (*6)	n/a (*5)	n/a (*6)	n/a (*6)	n/a (*6)	5755, 5795	n/a	n/a (*5)	
D/R [Mbps, M	ICS#]	6	MCS0	MCS0	MCS0	MCS0	MCS0	6	MCS0	MCS0	MCS0	MCS0	MCS0]
Modulation	on	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	
Max.power [dBm]	13	13	13	13	13	10.5	13	13	13	13	13	10.5	
Bandwidth [MHz]	20	20	20	40	40	80	20	20	20	40	40	80	
Antenna#	(*1)	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1	

Combon	Test name	Software name	Version	Date	Storage location / Remarks
Contro	Power measurement	Labtool Operation	Ver.1.0 (FW Ver.41)	2021/7/19	*. Memory of platform (firmware)
softwa	SAR test	Labtool Operation	Ver.1.0 (FW Ver.42)	2022/4/11	*. Memory of platform (firmware)

^{*.} Max.power: Maximum power (tune-up limit power), D/R: Data rate, n/a: SAR test was not applied.

- *3. (KDB 248227 D01) Since reported SAR (1g, 10g) of DSSS mode which had highest output power was enough small, SAR test was only applied DSSS mode.
- *4. SAR test of U-NII-1 band was also applied for the reference purpose, even though the reported SAR(1g) and SAR(10g) of U-NII-2A band were enough low.
- *5. Since the maximum output power was lower than other mode, the SAR test was reduced.

*. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

(KDB 248227 D01,, SAR Guidance for Wi-Fi Transmitters) The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected.

*. SAR test reduction considerations

(KDB 447498 D04 (v01), General RF Exposure Guidance) Testing of other required channels within the operating mode of a frequency band is not required when the reported 1g or 10g SAR for the mid-band or highest output power channel is:

- (1) \leq 0.8 W/kg for 1g, or 2.0 W/kg for 10g respectively, when the transmission band is \leq 100 MHz
- (2) \leq 0.6 W/kg for 1g, or 1.5 W/kg for 10g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) ≤ 0.4 W/kg for 1g, or 1.0 W/kg for 10g respectively, when the transmission band is ≥ 200 MHz

The SAR has been measured with highest transmission duty factor supported by the test mode tool for WLAN and/or Bluetooth. When the transmission duty factor could not be 100%, the reported SAR will be scaled to 100% transmission duty factor to determine compliance. When SAR is not measured at the maximum power level allowed for production unit, the measured SAR will be scaled to the maximum tune-up tolerance limit to determine compliance.

(KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters) When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested.

For 2.4GHz band, the highest measured maximum output power channel of DSSS was selected for SAR measurement, When the reported SAR is \leq 0.8 W/kg, no further SAR test is required in this exposure configuration. Otherwise, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

For 5GHz band, the initial test configuration was selected accordance to the transmission mode with the highest maximum output power. When the reported SAR is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SRA result is ≤ 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

^{*1.} A transmission is performed from one of antenna 2 or antenna 1 (diversity). A transmission of WLAN(2.4GHz) and BT-LE is time-division-processing. Therefore, simultaneously transmitted SAR was only considered for the WLAN(5GHz) and BT-LE.

^{*2.} SAR test applies to a middle channel of BT LE mode.

^{*6. (}KDB 248227 D01) Initial SAR test was applied to the operation mode which has higher bandwidth with the highest tune-up power and lowest data rate (lowest modulation).

13734841S-A-R3 Test Report No.: 11 of 40 Page

4.2 RF exposure conditions

After considering the outline of platform the SAR test was applied to the platform surface in follows.

	E-lC		Antenna 1			Antenna 2	2	GAD
Setup	Explanation of SAR test setup plan	D	SAR Tested	/Reduced	D	SAR Tested	1/Reduced	SAR
-	(*. Refer to Appendix 1 for test setup photographs which had been tested.)	[mm]	BTLE	WLAN	[mm]	BTLE	WLAN	type
Front	A front surface (patient side) of platform was touched to the Flat phantom.	7.76	Reduced	Tested	7.76	Reduced	Tested	
Side (Right)	A right surface of platform was touched to the Flat phantom.	148.1	Reduce	d(*1)	281.7	Reduced (>	>200 mm)	
Side (Left) (Antenna 2)	A left surface (antenna 2 side) of platform was touched to the Flat phantom.	109.4	Reduce	d(*1)	19.8	Tested	Tested	Partial- body
Top	A top surface of platform was touched to the Flat phantom.	360.45	Reduced (>	>200 mm)	281.3	Reduced (>	>200 mm)	touch
Bottom (Antenna 1)	A bottom surface (antenna 1 side) of platform was touched to the Flat phantom.	17.55	Tested	Tested	52.7	Reduce	rd (*1)	
Back	A back surface (operator handling, etc.) of platform was touched to the Flat phantom.	4.24	Tested	Tested	4.24	Tested	Tested	Hand- hold

D: Antenna separation distance. It is the distance from the antenna inside platform the outer surface of platform which user may touch.

^{*1. [}SAR test exemption consideration by KDB 447498 D04 (v01)]

						-					Judge of S	AR test e	xemption	("Test "or"	Exempt") (upper row)/SARba	ased Thres	hold powe	r (lower ro	w)
											Ante	enna 1 sej	paration d	istance			Ante	enna 2 sep	paration di	istance	
Tx	Higher	Max. co	onducted	A	Antenna 1	1	A	Antenna 2	2	≤5mm	8 mm	18 mm	109 mm	148 mm	360 mm	≤5 mm	8 mm	20 mm	53 mm	281 mm	282 mm
mode	frequency	output	power	Gain	EF	RP	Gain	EF	RP.	Back	Front	Bottom	Left	Right	Top	Back	Front	Left	Bottom	Top	Right
mode	[MHz]	[dBm]	[mW]	[dBi]	[dBm]	[mW]	[dBi]	[dBm]	[mW]	SAR10g	SAR1g	SAR1g		SAR1g	SAR1g	SAR10g	SAR1g	SAR1g	SAR1g	SAR1g	SAR1g
BTLE	2480	5	3	3.33	6.18	4	3.33	6.18	4	Exempt			Exempt		Exempt	Exempt	Exempt	Exempt	Exempt	Exempt	Exempt
DILL	2400	3	3	5.55	0.10	3.33 0.16		_	7 mW	7 mW	31 mW	$> 100 \mathrm{mW}$	$> 100\mathrm{mW}$	$>\!100mW$	7 mW	7 mW	38 mW	$> 100 \mathrm{mW}$	> 100mW	>100 mW	
WLAN	2462	14	25	3.33	15.18	33	33 3.33 15.18 33		33	Test	Test		Exempt		Exempt	Test	Test	Exempt	Exempt	Exempt	Exempt
2.4 GHz	2402	14	20	3.33	13.16	33	3.33	15.16	33	7 mW	7 mW	31 mW	$> 100 \mathrm{mW}$	$>\!100mW$	$>\!100mW$	7 mW	7 mW	38 mW	$> 100 \mathrm{mW}$	$>\!100mW$	>100 mW
WLAN	5240	13	20	3.79	14.64	29	3.79	14.64	29	Test	Test	Test	Exempt	Exempt	Exempt	Test	Test	Test	Exempt	Exempt	Exempt
5.2 GHz	3240	13	20	3.17	14.04	2)	3.17	14.04	2)	4 mW	4 mW	21 mW	$> 100 \mathrm{mW}$	> 100mW	$>\!100mW$	4 mW	4 mW	26 mW	$> 100 \mathrm{mW}$	> 100 mW	> 100 mW
WLAN	5320	13	20	3.79	14.64	29	3.79	14.64	29	Test	Test		Exempt		Exempt	Test	Test	Test	Exempt	Exempt	Exempt
5.3 GHz	3320	13	20	3.17	14.04	49	3.19	14.04	25	4 mW	4 mW	21 mW	$> 100 \mathrm{mW}$	> 100mW	$>\!100mW$	4 mW	4 mW	26 mW	$> 100 \mathrm{mW}$	> 100 mW	> 100 mW
WLAN	5700	13	20	3.79	14.64	29	3.79	14.64	29	Test	Test		Exempt			Test	Test	Test	Exempt	Exempt	Exempt
5.6 GHz	3700	13	20	3.17	14.04	2)	3.17	14.04	2)	3 mW	4 mW	$20\mathrm{mW}$	$> 100 \mathrm{mW}$	$>\!100mW$	$>\!100mW$	3 mW	4 mW	25 mW	$> 100 \mathrm{mW}$	$>\!100mW$	>100 mW
WLAN	5825	13	20	3.79	14.64	29	3.79	14.64	29	Test	Test	Test	Exempt	Exempt	Exempt	Test	Test	Test	Exempt	Exempt	Exempt
5.8 GHz	3623	13	20	3.17	14.04	2)	3.17	14.04	2)	3 mW	4 mW	$20\mathrm{mW}$	$> 100 \mathrm{mW}$	> 100mW	$>\!100mW$	3 mW	4 mW	25 mW	$> 100 \mathrm{mW}$	$>\!100mW$	> 100 mW

Antenna separation distance is rounded to the nearest integer numbers (in mm) before calculation.

 Conclusion for consideration for SAR test reduction>

 The all SAR tests were conservatively performed with test separation distance 0 mm.

 For WLAN operation; "Back" and "Front" setup are applied the SAR test because near antenna section (higher than calculated threshold power), "Bottom" setup for antenna 1 is also applied the SAR test because of an antenna radiated slit is existed on these surface even though SAR test exclusion judge is "test can be reduced". The SAR test of other SAR test setup are reduced, because there have enough antenna separation distance and the SAR test exclusion judge was "test can be reduced".

For Bluetooth operation, the SAR test was applied with the worst SAR condition of WLAN mode to evaluate "simultaneous transmission" even though BT LE power is enough low.

SAR-based thresholds (Pth (mW) shown below table of "Example Power Thresholds [mW]" are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum time-averaged power or maximum time-averaged effective radiated power (ERP), whichever is greater. The SAR-based exemption is calculated by Formula (B.2) in below, applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), whichever is greater, of less than or equal to the threshold Pth (mW). When 10-g extremity SAR applies, SAR test exemption may be considered by applying a factor of 2.5 to the SAR-based exemption thresholds.

									Tal	ole:	Ex	am	ple	Pov	er	Fhr						R(1	g),	K	B 4	474	981	D01	(v0	7))									7									
٦																		Dist																		7] [
I				7 1	3 8	1	1	1	12	13	3 '	14	15	11	3 1	7	18	19	2			22	2:	3 :	24	25	26	3 2	7	28	29	3	0	35	4	0		50	1									
	2402	3	4	5 7	1 8	1	1	2	15	17	7 :	20	22	2:	5 2	8	32	35	35	_	12	46	50	0 :	55	59	64	6	8	73	78	8	4	112	14			220	11									
l	2412	3	4	5 7	7 8	1) 1	2	15	17		20	22	2	5 2		32	35			12	46				59	64			73	78	8	3	112			180		11									
Į	2450	3	4	5 7	1 8	1		2	15	17			22	2) 2	8	31	35				46				59	63	3 6	8	73	78	8	3	111	14			219	1									
1	2462	3	4	5 1	3	1	_	2	14	17	_	19	22	2:) 2	8	31	35	-	-	12	46	50		54	58	63	6	8	73	78	83	3	111	14		179	219	11									
	2480	3	4	5 1	3	1	1	2	14	1/	1	19	22	2	2	8	31	35	-			46	-	_	54.	58	63	5 6	1	72	.77	8.	2	111	14	13			1		Tir	D.1	Time	OTTOT D	e ror	Crite	PDEC	OURCES
-	3600 5180	2	3	9 :) !	1 8	- 11	U	11	13	3	16	18	12	1 2	3	26	29	3.	2 3	35	38	42	2 4	15	49	200	5 5	/	62	66	1/	1	96	112		158	195	ł		LAR	LED.I-	-IHKE	SHOLD	STUR	PINOT	ENTS	OUNCES
H	5240	4	4	3 4	11:	6	+	8	9	1		13	13	1	7 1	9	21	24	1 2	3 4	20	32	33	5	38	42	43	1 4	9	53	57	0	+	02	111	10	140	175	1		SUB	IECT TO	ROUTE	NE ENT	TRON	MENTA	I EVAL	LUATION
ş.	5260	1	5	3 4	1 2	6	+	8	9	1	+	13	14	11		9	21	24	2	3 /	29	32	35	5 7	28	42	45	1 4	9 .	52	56	8	1	83	11			174	F							_	_	
2	5320	41	2	3 7	1	6	+	9	G	10	1	12	14	10	1	9	21	23			29	32		5	38	41	4/	1 4	9	52	56	6	ń	83	10			173	RF So	urc	ce Fr	equency		Minin	ium l	Distanc	ė	Threshold
1	5500	1	2	3 4	1	1 6	+	7	9	10	1	12	14	10	1	8	21	23	2	3	28	31	3			41	44	4	8	51	55	5	9	82				172	£ MH			f _H MHz		/2n.		1	/2π	w
ı	5700	1	2	3 4	1 5	6		7	9	110	0	12	14	10	1	8	20	23	2	5 3	28	31	34	1	37	40	43	3 4	7	51	55	5	9	81	10	07	136	170				***			\vdash	-	_	W
t	5745	1	2	3 4	1 5	6		7	9	110	0	12	14	10	3 1	8	20	22	2	5 3	85	31	3	1	37	40	43	3 4	7	51	54	5	8	80	10	06	136	169	0.3		-	1.34	1	59 m	-	35	6 m	1.920 R ²
ı	5800	1	2	3 4	1 4	-6		7	9	10	0 3	12	14	10	5 1	8	20	22	2	5 3	28	30	33	3 :	36	40	43	3 4	7	50	54	5	8	80	10	06	136	169	1.24	_		20	2.0		_	-	_	2.450 D2/0
1	5825	1	2	3 4	1 5	-6		7	9	1(0 1	12	14	10	3 1	8	20	22	2	5 7	28	30	33	3 :	36	40	43	3 4	7	50	54	.5	8	80	10	06	135	169	1.34		-	30	3.	.6 m	-	1.5	6m	3,450 R ² /f ²
ī									Tab	de:	Ex	amı	ole l	Pow	er l	Chr	esho	olds	[m	WL	SA	RO	(0g)	, K	DB	447	498	Do	L (v	07)))								30		-	300	1	.6 m	-	159	mm	3.83 R ²
Т																		Dist				1													5				300		_	1,500	15	9 mm		21 (mm	0.0128 R ² f
[5	6	7	8 9	1	0 1	11	12	1	3	14	15	1	6 1	17	18	19	2	0	21	22	2	3	24	25	2	6 2	27	28	29	3	30	35	4	40	45	50		\rightarrow	-		-		-	-		-
[2402	7	10	13 1	7 2	2	6 3	31	37	4	3 .	49	.56	6	3 7	71	79	88	9	7 1	06	116	12	26	137	148	3 15	9 1	71	183	19	6 2	09	280	3			551	1,500		-	100,000	31.	8 mm	-	0.5	mm	19.2R2
1	2412	7	10	13 1	7 2	1 2	6 3	31	37	4	3	49	56	6	3 7	71	79	88	9	7 1	06	116	6 12	26	137	148	3 15	59 1	71	183	19	6 2	09	279	3	60	450	550	Cubcee	rinte	1 sec	H are lo	w sad h	inh 1 is	100000	Janath		
I	2450	7	10	13 1	7 2	1 2	3	31	36	4	2	49	55	6	3 7	70	78	87	9	6 1	05	115	5 12	25	136	147	7 15	58 1	70	182	19	4 2	07	278	3	58	448	548										
7	2462	7	10	13 1	7 2	2	6 3	31	36	4	2 .	48	.55	6	3 7	70	78	87	9	6 1	105	115	5 12	25	135	146	3 15	8 1	69	181	19	4 2	07	277	3	58	447	547	From	A.1	307(b)(3)(t)(C).	, modifi	ed by ar	iding	Minimi	on Dista	nce columns.
	2480	7	10	13 1	7 2	2	5 3	31	36	4	2	48	55	6	2 7	70	78	86	9	5 1	105	114	112	24	135	146	3 15	57 1	69	181	19	3 2	06	277	3	57	446	546				R	is in	meter	r fi	s in V	Hz	
31	3600	5	7	10 1	3 1	2	0 2	24	29	3	4	39	45	5	1 5	57	64	71	7	9	87	96	10	04	114	123	3 13	33 1	43	154	16	5 1	77	240	3	13	396	488	II	-								1 (4 1)
3	5180	4	5	8 1	0 1	1	6 1	19	23	2	7	32	36	4	2 4	17	53	59	6	6	73	80	8	8	96	104	111	13 1	22	132	14	2 1	52	209	2	76	352	437] 1	nn	esno			-			•	nula (A.1)
51	5240	4	5	7. 1	0 1	1	6	19	23	2	7	31	36	4	1 4	17	53	59	6	6	72	80	8	7	96	104	111	13 1	22	131	14	1 1:	52	208	2	75	350	436	1				(Dista	ance:	over	:40 c	m)	
51	5260	4	5	7 1	0 1	1	3 1	19	23	2	7	31	36	4	1 4	17	53	59	6	5	72	80	8	7	95	104	1 11	13 1	22	131	14	1 1	51	208	2	74	350	435	1									
ΞÌ	5320	4	5	7 1	0 1	1	5	19	23	2	7	31	36	4	1 4	16	52	58	6	5	72	79	8	7	95	103	3 11	12 1	21	131	14	0 1	51	207	2	73	349	434	1									
ħ	5500	4	5	7. 1	0 1	1	5	18	22	2	6	30	35	4	0 6	16	51	57	6	4	71	78	8	6	93	102	111	10 1	19	129	13	8 1	49	205	2	70	345	429	1									
ı	5700	3	5	7	9 1	1	5 1	18	22	2	Ř.	30	34	13	9 4	15	50	56	É	3	70	77	8	4	92	100	10	19 1	17	127	13	6 1	4R	202	2	67	341	425	1									
ı	5745	3	5	7	9 1	1	5 1	18	22	2	5	30	34	13	9 4	15	50	56	6	3	69	76	8	4	92	100	10	18 1	17	126	13	6 1	46	201	2	66	346	1 424	1									
h		3	5	7	9 1	1	5 7	8	21	2	5	30	34	13	9 4	14	50	56	ě	2	69	76	8	3	91	99	10	1 80	17	126	13	5 1	45	201	2	65	330	422	1									
ı	5825							18	21	2	5	29	34	3			50	56			69	76			91	99		18 1						200		65												
7		_	_	_	_	_	-	10.1	-	1-	<u> </u>	20		10	× 1		00	00	Ţ	- 1	00		10	Ϋ́	0.1	00	1.0	,01	,0	120	100	-11	10	200	1 -	.00	000	76.6	4	—								
al	culati	ng	to	m	ula																																			_								
								1	20	40)	f	0.3	G	Hz	51	<	1.5	G	Hz									(E	RI	20	cm (d/	20	cn	1)*	d	5	20 cm	1							1		\
	(mW)		rn.	n .		T	m.	_)																D.	(t	II	ń-			-9														- lo		- (60

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1).

Size of host platform: Refer to Appendix 1-1.

⁽Calculating formula) ERP (dBm) = (max. conducted output power, dBm) + (antenna gain, dBi) - 2.15

Test Report No.: 13734841S-A-R3 Page : 12 of 40

SECTION 5: Confirmation before testing

5.1 SAR reference power measurement (antenna terminal conducted average power) (WM01B's serial number 34:9F:7B:EF:DB:20-AT:2021/9/29)

				Pow	ver spec.	D	uty cyc	de	Ante	enna 2 (-di	vsw "0	") powe	er (WLAI	N or Blue	tooth)	Ar	ntenna 1 (-	divsw"1	") power	(WLAN	or Blueto	ooth)
Mode	Data rate [Mbps] or Index#	Freque		Typical	Tune-up limit (Max.)	Duty cycle	Duty factor	Scaled factor	Setting power	Burst av	erage	Δ from Max.	Tune-up factor	Time a	verage	Setting power	Burst a	verage	Δ from Max.	Tune-up factor	Time a	verage
		[MHz]		[dBm]	[dBm]	[%]	[dB]	[-]	[-]	[dBm]		[dB]	[-]	[dBm]	[mW]	[-]	[dBm]	[mW]	[dB]	[-]	[dBm]	
	PHY1	2402	0	3	5 5	64.4	1.91	1.55	3	3.44	2.21	-1.56	1.43	1.53	1.42	3	3.47	2.22	-1.53	1.42	1.56	1.43
	PHY1	2440	19	3		64.4	1.91	1.55	3		2.16	-1.66	1.47	1.43	1.39	3	3.37	2.17	-1.63	1.46	1.46	1.40
BTLE	PHY1	2480	39	3	5	64.4	1.91	1.55	3	3.12	2.05	-1.88	1.54	1.21	1.32	3	3.15	2.07	-1.85	1.53	1.24	1.33
	PHY2	2402	0	3	5 5	34.9	4.57	2.87	3	3.36	2.17	-1.64	1.46	-1.21	0.76	3	3.37	2.17	-1.63	1.46	-1.20	0.76
	PHY2	2440	19	3		34.9	4.57	2.87	3	3.24	2.11	-1.76	1.50	-1.33	0.74	3	3.26	2.12	-1.74	1.49	-1.31	0.74
-	PHY2	2480	39	3	5	34.9	4.57	2.87	3	3.04	2.01	-1.96	1.57	-1.53	0.70	3	3.03	2.01	-1.97	1.57	-1.54	0.70
	1 - 1 - 1	2412 2412	- 1	12	14 14	100	0.00	1.00	12 13(*1)	11.89 12.84	15.45 19.23	-2.11 -1.16	1.63 1.31	11.89 12.84	15.45 19.23	13 13	11.94 12.84	15.63 19.23	-2.06 -1.16	1.61 1.31	11.94 12.84	15.63 19.23
11b	1	2437	6	12	14	100	0.00	1.00	12		16.18	-1.10	1.55	12.09	16.18	12	12.13	16.33	-1.87	1.54	12.13	16.33
	1 1	2462	11	12	14	100	0.00	1.00	12		16.71	-1.77	1.50	12.23	16.71	12	12.26	16.83	-1.74	1.49	12.26	16.83
	6	2412	1	12	14	100	0.00	1.00	12		15.31	-2.15	1.64	11.85	15.31	13	11.89	15.45	-2.11	1.63	11.89	15.45
1.1	6	2412	1	12	14	100	0.00	1.00	13(*1)		19.05	-1.20	1.32	12.80	19.05	13	12.83	19.19	-1.17	1.31	12.83	19.19
11g	6	2437	6	12	14	100	0.00	1.00	12	12.05	16.03	-1.95	1.57	12.05	16.03	12	12.09	16.18	-1.91	1.55	12.09	16.18
	6	2462	11	12	14	100	0.00	1.00	12	12.19	16.56	-1.81	1.52	12.19	16.56	12	12.22	16.67	-1.78	1.51	12.22	16.67
11n20	MCS0	2412	1	12	14	100	0.00	1.00	12		15.96	-1.97	1.57	12.03	15.96	12	12.09	16.18	-1.91	1.55	12.09	16.18
-SISO	MCS0	2437	6	12	14	100	0.00	1.00	12		16.67	-1.78	1.51	12.22	16.67	12	12.27	16.87	-1.73	1.49	12.27	16.87
	MCS0	2462	11	12	14	100	0.00	1.00	12		17.22	-1.64	1.46	12.36	17.22	12	12.41	17.42	-1.59	1.44	12.41	17.42
11n40	MCS0	2422	3	11	13	100	0.00	1.00	11	11.05	12.74	-1.95	1.57	11.05	12.74	11	11.05	12.74	-1.95 -1.86	1.57	11.05	12.74
-SISO	MCS0 MCS0	2437 2452	-6	- <u>11</u> 11	<u>13</u>	100	0.00	1.00	<u>11</u> 11		13.06 13.30	-1.84 -1.76	1.53 1.50	11.16 11.24	13.06 13.30	- <u>11</u> 11	11.14 11.25	13.00 13.34	-1.75	1.53	11.14 11.25	13.00 13.34
	6	5180	36	11	13	100	0.00	1.00	12		15.49	-1.10	1.29	11.24	15.49	12	11.23	15.78	-1.02	1.26	11.23	15.78
	6	5200	40	11	13	100	0.00	1.00	12		15.42	-1.12	1.29	11.88	15.42	12	11.99	15.81	-1.02	1.26	11.99	15.78
	6	5220	44	11	13	100	0.00	1.00	12		15.81	-1.01	1.26	11.99	15.81	12	12.07	16.11	-0.93	1.24	12.07	16.11
	6	5240	48	11	13	100	0.00	1.00	12		15.42	-1.12	1.29	11.88	15.42	12	11.96	15.70	-1.04	1.27	11.96	15.70
	6	5260	52	11	13	100	0.00	1.00	12		15.10	-1.21	1.32	11.79	15.10	12	11.88	15.42	-1.12	1.29	11.88	15.42
	6	5280	56	11	13	100	0.00	1.00	12	11.63	14.55	-1.37	1.37	11.63	14.55	12	11.72	14.86	-1.28	1.34	11.72	14.86
11a	6	5300	60	11	13	100	0.00	1.00	12		15.74	-1.03	1.27	11.97	15.74	12	12.03	15.96	-0.97	1.25	12.03	15.96
114	6	5320	64	11	13	100	0.00	1.00	12		15.14	-1.20	1.32	11.80	15.14	12	11.86	15.35	-1.14	1.30	11.86	15.35
	6	5500	100	11	13	100	0.00	1.00	11		12.82	-1.92	1.56	11.08	12.82	11	11.03	12.68	-1.97	1.57	11.03	12.68
	6	5580 5700	116	11	13 13	100	0.00	1.00	11		12.97 12.94	-1.87	1.54 1.54	11.13 11.12	12.97 12.94	11	11.08 11.05	12.82 12.74	-1.92 -1.95	1.56	11.08 11.05	12.82
	6	5745	140 149	- <u>11</u> - 11	13	100	0.00	1.00	<u>11</u> 11		13.06	-1.88 -1.84	1.53	11.12	13.06	- <u>11</u> 11	11.10	12.74	-1.93	1.55	11.10	12.74 12.88
	6	5785	157	11	13	100	0.00	1.00	11		13.49	-1.70	1.48	11.30	13.49	11	11.23	13.27	-1.77	1.50	11.23	13.27
	6	5825	165	11	13	100	0.00	1.00	11		14.13	-1.50	1.41	11.50	14.13	11	11.39	13.77	-1.61	1.45	11.39	13.77
	MCS0	5180	36	11	13	100	0.00	1.00	12		16.14	-0.92	1.24	12.08	16.14	12	12.17	16.48	-0.83	1.21	12.17	16.48
	MCS0	5200	40	11	13	100	0.00	1.00	12	12.08	16.14	-0.92	1.24	12.08	16.14	12	12.18	16.52	-0.82	1.21	12.18	16.52
	MCS0	5220	44	11	13	100	0.00	1.00	12		16.48	-0.83	1.21	12.17	16.48	12	12.26	16.83	-0.74	1.19	12.26	16.83
	MCS0		48	11	13	100	0.00	1.00	12		16.07	-0.94	1.24	12.06	16.07	12	12.13	16.33	-0.87	1.22	12.13	16.33
	MCS0		52	11	13	100	0.00	1.00	12		15.70	-1.04	1.27	11.96	15.70	12	12.05	16.03	-0.95	1.24	12.05	16.03
20	MCS0		56	11	13	100	0.00	1.00	12		15.14	-1.20	1.32	11.80	15.14	12	11.89	15.45	-1.11	1.29	11.89	15.45
11n20 -SISO	MCS0 MCS0		60 64	11	<u>13</u>	100	0.00	1.00	- <u>12</u> 12		16.41 15.74	-0.85 -1.03	1.22 1.27	12.15 11.97	16.41 15.74	12 12	12.20 12.03	16.60 15.96	-0.80 -0.97	1.20	12.20 12.03	16.60 15.96
Ocac-	MCS0		100	- <u>11</u> - 11	13	100	0.00	1.00	11	11.25	13.74	-1.05	1.50	11.25	13.74	- <u>12</u> -	11.20	13.18	-1.80	1.51	11.20	13.18
	MCS0		116	11	13	100	0.00	1.00	11	11.31	13.52	-1.69	1.48	11.31	13.52	11	11.26	13.37	-1.74	1.49	11.26	13.37
	MCS0	5700	140	11	13	100	0.00	1.00	11		13.52	-1.69	1.48	11.31	13.52	11	11.23	13.27	-1.77	1.50	11.23	13.27
	MCS0	5745	149	11	13	100	0.00	1.00	11		13.65	-1.65	1.46	11.35	13.65	11	11.29	13.46	-1.71	1.48	11.29	13.46
	MCS0		157	11	13	100	0.00	1.00	11		14.09	-1.51	1.42	11.49	14.09	11	11.41	13.84	-1.59	1.44	11.41	13.84
	MCS0	5825	165	11	13	100	0.00	1.00	11		14.72	-1.32	1.36	11.68	14.72	11	11.56	14.32	-1.44	1.39	11.56	14.32
	MCS0	5180	36	11	13	100	0.00	1.00	12		16.14	-0.92	1.24	12.08	16.14	12	12.16	16.44	-0.84	1.21	12.16	16.44
	MCS0	5000	40	11	13	100	0.00		12		16.50	-0.92	1.24	12.08	16.14	12	12.17	16.48	-0.83	1.21	12.17	16.48
		5220		11	15	100	0.00		12		16.52		1.21	12.18	16.52	12	12.25	16.79	-0.75	1.19 1.22	12.25	16.79
	MCS0 MCS0	5240 5260	48 52	- <u>11</u> 11	13 13	100	0.00		12 12		15.78	-0.94 -1.02	1.24 1.26	12.06 11.98	16.07 15.78	12 12	12.13 12.05	16.33 16.03	-0.87 -0.95	1.22	12.13	16.33 16.03
	MCS0		56	11	13	100	0.00		12			-1.02	1.31	11.82	15.76	12	11.88	15.42		1.24	11.88	15.42
11ac20	MCS0		60	11	13	100	0.00		12			-0.84	1.21	12.16	16.44	12	12.20	16.60	-0.80		12.20	16.60
	MCS0		64	11	13	100	0.00		12		15.81		1.26	11.99	15.81	12	12.03	15.96	-0.97	1.25	12.03	15.96
	MCS0	5500		11	13	100	0.00		11			-1.74	1.49	11.26	13.37	11	11.20	13.18	-1.80	1.51	11.20	13.18
	MCS0	5580	116	11	13	100	0.00	1.00	11	11.31	13.52	-1.69	1.48	11.31	13.52	11	11.27	13.40	-1.73	1.49	11.27	13.40
	MCS0	5700	140	11	13	100	0.00		11	11.32	13.55	-1.68	1.47	11.32	13.55	11	11.22	13.24	-1.78	1.51	11.22	13.24
	MCS0			11	13	100	0.00		11			-1.65	1.46	11.35	13.65	11	11.28	13.43	-1.72	1.49	11.28	13.43
	MCS0			11	13	100	0.00		. 11			-1.50	1.41	11.50	14.13	- 11	11.41	13.84	-1.59	1.44	11.41	13.84
*1 C:		5825	165	11	13 52412 MI	100	0.00		11	11.69	14./6	-1.31	1.35	11.69	14.76	11	11.56	14.32	-1.44	1.39	11.56	14.32

^{*1.} Since the measured power of 2412 MHz on 11b and 11g mode with "12" power setting were more than 2dB lower than maximum tune-up power, the "13" power setting was used for power measurement and for SAR testing.

(cont'd)

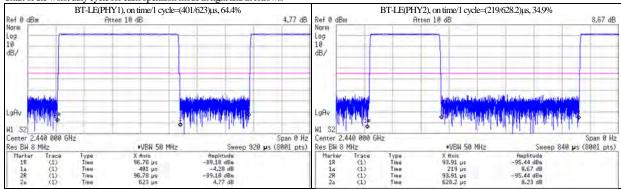
Test Report No.: 13734841S-A-R3
Page : 13 of 40

(cont'd)																						
	Б			Pov	ver spec.	D	uty cyc	le	Ante	enna 2 (-d	livsw "C)") powe	er (WLA	N or Blue	etooth)	Ar	tenna 1 (-	divsw"1	") power	(WLAN	N or Blueto	ooth)
Mode	Data rate [Mbps] or Index#	Frequ	iency	Typical	Tune-up limit (Max.)	Duty cycle	Duty factor	Scaled factor	Setting power	Burst a	verage	Δ from Max.	Tune-up factor	Time a	verage	Setting power	Burst a	verage	Δ from Max.	Tune-up factor	Time a	verage
		[MHz]		[dBm]	[dBm]	[%]	[dB]	[-]	[-]	[dBm]	[mW]	[dB]	[-]	[dBm]	[mW]	[-]	[dBm]	[mW]	[dB]	[-]	[dBm]	[mW]
	MCS0	5190	38	11	13	100	0.00	1.00	12	12.05	16.03	-0.95	1.24	12.05	16.03	12	12.13	16.33	-0.87	1.22	12.13	16.33
	MCS0	5230	46	11	13	100	0.00	1.00	12	12.12	16.29	-0.88	1.22	12.12	16.29	12	12.18	16.52	-0.82	1.21	12.18	16.52
	MCS0	5270	54	11	13	100	0.00	1.00	12	11.89	15.45	-1.11	1.29	11.89	15.45	12	11.96	15.70	-1.04	1.27	11.96	15.70
11=40	MCS0	5310	62	11	13	100	0.00	1.00	12	12.06	16.07	-0.94	1.24	12.06	16.07	12	12.11	16.26	-0.89	1.23	12.11	16.26
11n40 -SISO	MCS0	5510	102	11	13	100	0.00	1.00	11	11.25	13.34	-1.75	1.50	11.25	13.34	11	11.19	13.15	-1.81	1.52	11.19	13.15
-3130	MCS0	5550	110	11	13	100	0.00	1.00	11	11.28	13.43	-1.72	1.49	11.28	13.43	11	11.23	13.27	-1.77	1.50	11.23	13.27
	MCS0	5670	134	11	13	100	0.00	1.00	11	11.34	13.61	-1.66	1.47	11.34	13.61	11	11.23	13.27	-1.77	1.50	11.23	13.27
	MCS0	5755	151	11	13	100	0.00	1.00	11	11.38	13.74	-1.62	1.45	11.38	13.74	11	11.31	13.52	-1.69	1.48	11.31	13.52
	MCS0	5795	159	11	13	100	0.00	1.00	11	11.54	14.26	-1.46	1.40	11.54	14.26	11	11.45	13.96	-1.55	1.43	11.45	13.96
	MCS0	5190	38	11	13	100	0.00	1.00	12	12.04	16.00	-0.96	1.25	12.04	16.00	12	12.12	16.29	-0.88	1.22	12.12	16.29
	MCS0	5230	46	11	13	100	0.00	1.00	12	12.11	16.26	-0.89	1.23	12.11	16.26	12	12.18	16.52	-0.82	1.21	12.18	16.52
	MCS0	5270	54	11	13	100	0.00	1.00	12	11.88	15.42	-1.12	1.29	11.88	15.42	12	11.96	15.70	-1.04	1.27	11.96	15.70
11 40	MCS0	5310	62	11	13	100	0.00	1.00	12	12.06	16.07	-0.94	1.24	12.06	16.07	12	12.11	16.26	-0.89	1.23	12.11	16.26
11ac40 -SISO	MCS0	5510	102	11	13	100	0.00	1.00	11	11.25	13.34	-1.75	1.50	11.25	13.34	11	11.18	13.12	-1.82	1.52	11.18	13.12
-3130	MCS0	5550	110	11	13	100	0.00	1.00	11	11.28	13.43	-1.72	1.49	11.28	13.43	11	11.24	13.30	-1.76	1.50	11.24	13.30
	MCS0	5670	134	11	13	100	0.00	1.00	11	11.34	13.61	-1.66	1.47	11.34	13.61	11	11.23	13.27	-1.77	1.50	11.23	13.27
	MCS0	5755	151	11	13	100	0.00	1.00	11	11.38	13.74	-1.62	1.45	11.38	13.74	11	11.31	13.52	-1.69	1.48	11.31	13.52
	MCS0	5795	159	11	13	100	0.00	1.00	11	11.54	14.26	-1.46	1.40	11.54	14.26	11	11.90	15.49	-1.10	1.29	11.90	15.49
	MCS0	5210	42	8.5	10.5	100	0.00	1.00	9	9.49	8.89	-1.01	1.26	9.49	8.89	9	9.56	9.04	-0.94	1.24	9.56	9.04
11ac80	MCS0	5290	58	8.5	10.5	100	0.00	1.00	9	9.25	8.41	-1.25	1.33	9.25	8.41	9	9.31	8.53	-1.19	1.32	9.31	8.53
-SISO	MCS0	5530	106	8.5	10.5	100	0.00	1.00	8	8.77	7.53	-1.73	1.49	8.77	7.53	8	8.72	7.45	-1.78	1.51	8.72	7.45
	MCS0	5775	155	8.5	10.5	100	0.00	1.00	8	8.99	7.93	-1.51	1.42	8.99	7.93	8	8.90	7.76	-1.60	1.45	8.90	7.76

- *. The SAR test powers by setting power were not more than 2dB lower than maximum tune-up power (KDB 447498 D04 (v01) requirement).
- *. CH: Channel; Max: Maximum; n/a: not applied; (mode) BT-LE: Bluetooth Low Energy; 11b: IEEE 802.11b, 11g: IEEE 802.11g, 11a: IEEE 802.11a, 11n20-SISO: IEEE 802.11n(20HT)-SISO; 11n40-SISO: IEEE 802.11n(40HT)-SISO; 11ac20-SISO: IEEE 802.11ac(20VHT)-SISO, 11ac40-SISO: IEEE 802.11n(40VHT)-SISO, 11ac80-SISO: IEEE 802.11ac(80VHT)-SISO.
- *. Calculating formula:

 Burst power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)+(duty factor, dB)

 Time average power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)


 Duty cycle: (duty cycle, %) = (Tx on time, ms) / (1 cycle time, ms) × 100, where Duty factor (dBm) = 10 × log (100/(duty cycle, %))

 Duty cycle scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %)

 A from max. (Deviation form maximum power, dB) = (Burst power measured (average, dBm)) (Max.tune-up limit power (average, dBm))

 Power scaled factor [-] = 1/(10 ^ (*A from max., dB*/10))
- *. Date measured: September 29, 2021 / Measured by: H. Naka/ Place: Preparation room of No. 7 shield room. (25 deg.C./ 50 %RH)
- *. Uncertainty of antenna port conducted test (Average power); 1.3 dB/Uncertainty of Duty cycle and time measurement: 0.27 %

*. Chart of the worst duty cycle for each operation mode in right and in follows.

Test Report No.: 13734841S-A-R3
Page : 14 of 40

SECTION 6: SAR Measurement results

6.1 Tissue simulating liquid measurement

6.1.1 Target of tissue simulating liquid

Nominal dielectric values of the tissue simulating liquids in the phantom are listed in the following table. (Appendix A, KDB 865664 v01r04)

Target Frequency	Не	ead	В	ody
(MHz)	$\epsilon_{\rm r}$	σ(S/m)	$\epsilon_{\rm r}$	σ(S/m)
1800~2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95

Target Frequency	H	ead	В	ody
(MHz)	$\epsilon_{\rm r}$	σ(S/m)	$\epsilon_{\rm r}$	σ(S/m)
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

6.1.2 Liquid measurement (Liquid verification)

							Liq	uid pa	rameters	(*a)						ΔSAI	R Coef	ficients(*b)	
Г	T 1 1 4	y · · · · ·	Liquid		Peri	mittivi	ty (εr)[-]			Con	ductiv	ity [S	/m]		ΔS_{ℓ}	AR	Commention	
Frequency [MHz]	type	Temp.	depth of phantom	Torqut		Meas	ured		Δend,	Target]	Meası	ıred		Δend,	(1g)	(10g)	Correction required?	Date measured
[141122]		[deg.C.]	phantom [mm]	value	Value	∆er [%]	Interpo lated	Limit [%]	>48hrs [%] (*1)	volue	Value	Δσ [%]	Interpo lated	Limit [%]	>48hrs [%] (*1)	(1g) [%]	[%]	(*c)	
5190	Head	22.5	150	36.00	35.14	-2.4		10	begin	4.645	4.477	-3.6		10	begin	0.6	0.8	not required.	
5230				35.95	35.07	-2.5		10	begin	4.686	4.519	-3.6		10	begin	0.6	0.8	not required.	April 19,, 2022
5270				35.91	35.02	-2.5		10	begin	4.727	4.569	-3.3		10	begin	0.6	0.8	not required.	April 19,, 2022
5310				35.86	34.94	-2.6		10	begin	4.768	4.612	-3.3		10	begin	0.6	0.8	not required.	
5510	Head	22.5	150	35.63	34.60	-2.9		10	begin	4.973	4.830	-2.9		10	begin	0.7	0.9	not required.	
5550				35.59	34.54	-3.0		10	begin	5.014	4.870	-2.9		10	begin	0.7	0.9	not required.	April 20,. 2022
5670				35.45	34.37	-3.1		10	begin	5.137	5.012	-2.4		10	begin	0.7	0.9	not required.	
5755	Head	22.5	150	35.35	34.20	-3.3	abla	10	begin	5.224	5.118	-2.0	abla	10	begin	0.7	0.9	not required.	April 21,, 2022
5795				35.31	34.13	-3.3	\checkmark	10	begin	5.265	5.152	-2.1	\checkmark	10	begin	0.7	0.9	not required.	April 21,, 2022
2412	Head	22.5	150	39.27	39.63	0.9	abla	10	begin	1.766	1.82	3.1	$ \mathbf{\nabla}$	10	begin	1.3	0.7	not required.	
2437				39,22	39.61	1.0		10	begin	1.788	1.843	3.1		10	begin	1.3	0.7	not required.	April 22,, 2022
2440				39.22	39.61	1.0		10	begin	1.791	1.845	3.0		10	begin	1.2	0.6	not required.	April 22,, 2022
2462				39.18	39.57	1.0	\square	10	begin	1.813	1.862	2.7	✓	10	begin	1.1		not required.	

^{*1. &}quot;begin": SAR test has ended within 24 hours from the liquid parameter measurement, "< 48 hrs.": Since SAR test has ended within 48 hours (2 days) from the liquid parameter measurement and a change in the liquid temperature was within 1 degree, liquid parameters measured on first day were used on next day continuously, "value (%)": Since the SAR test series took longer than 48 hours, the liquid parameters were measured on every 48 hours period and on the date which was end of test series. Since the difference of liquid parameters between the beginning and next measurement was smaller than 5%, the liquid parameters measured in beginning were used until end of each test series. Calculating formula: "Aend(>48 hrs.) (%)"" = {(dielectric properties, end of test series) / (dielectric properties, beginning of test series) -1} × 100

Calculating formula: $\Delta SAR(1g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, Cer = 7.854E + xf^3 + 9.402E + 3xf^2 - 2.742E + 2xf + 0.2026 / C\sigma = 9.804E + 3xf^3 - 8.661E + 2xf^2 + 2.981E + 2xf + 0.7829$ Calculating formula: $\Delta SAR(10g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, Cer = 3.456 \times 10^{-3} xf^3 - 3.531 \times 10^{-2} xf^2 + 7.675 \times 10^{-2} xf + 0.1860 / C\sigma = 4.479 \times 10^{-3} xf^3 - 1.586 \times 10^{-2} xf^2 - 0.1972 \times f + 0.7717$ Since the calculated ΔSAR values of the tested liquid had shown positive correction, the measured SAR was not converted by ΔSAR corrected SAR (W/kg) = (Measured SAR (W/kg)) \times (100 - (\Delta SAR(\Omega)) / 100

*. Calibration frequency of the SAR measurement probe (and used conversion factors for each frequency.)

The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band

1110	the crainty is the RSS of the Convictine training	at canoration frequency and	a the uncertainty for the medicaled freq	uchcy band.	
Liquid	SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
Head	(2412, 2437, 2440, 2462) MHz	2450 MHz	within ± 5 0MHz of calibration frequency	7.35	± 12.0 %
Head	(5190, 5230, 5270, 5310) MHz	5250 MHz	within ± 110 MHz of calibration frequency	4.75	±13.1 %
Head	(5510, 5550, 5670) MHz	5600 MHz	within ± 110 MHz of calibration frequency	4.32	± 13.1 %
Head	(5755, 5795) MHz	5800 MHz	within ± 110 MHz of calibration frequency	436	+ 13 1 %

^{*}a. The target values of (2000, 2450, 3000, 5800) MHz are parameters defined in Appendix A of KDB 865664 D01. For other frequencies, the target nominal dielectric values shall be obtained by linear interpolation between the higher and lower tabulated figures. Above 5800MHz were obtained using linear extrapolation.

^{*}b. The coefficients in below are parameters defined in IEEE Std.1528-2013.

13734841S-A-R3 Test Report No.: Page 15 of 40

6.2 SAR results

	Test setu	10		Mode and Fro	oanona.	(*2)	Duty	ovolo	Dox	ver correc	tion	GA.	<u> </u>	14 17370					C-+	
	1 est sett	ıp		Mode (D/R)	[MHz]	CH	Duty		Max.					ults [W /l of multi- _]		CAD	SAR	SAR	Setup photo#	
ANT	Test position	Gap	Source	` ′	-		Duty	Duty scaled	tune-up	Measured conducted	Power scaled	(IVIAX				SAR type	Limit	plot#in Appx.	in	Remarks
#	rest position	[mm]	power	Mark with "*" is & frequ		mode	[%]	factor	limit	[dBm]	factor	Measured		SAR	Scaled	type	[W/kg]	2	Appx.	
Ston	1) 2.4 GHz B ar	nd (*1)	`	& nequ	iency.			nacion	[dBm]	[dDili]			[%]	corrected	(*b)				1-3	
2	Back	0	Battery	11b (1Mbps)*	2412*	1	100	1.00	14	12.84	1.31	0.181	+sign	n/a (*a)	0.237	10g	4	_	P1	Wide area scan
2	Back	0	Battery	11b (1Mbps)*	2437	6	100	1.00	14	12.09	1.55	0.169	+ sign	n/a (*a)	0.262	10g	4	_	P1	vvide area scari
2	Back	0	Battery	11b (1Mbps)*	2462	11	100	1.00	14	12.23	1.50	0.190	+ sign	n/a (*a)	0.285	10g	4	1a-2	P1	
2	Back	0	Battery	BT-LE (1Mbps)	2440	19	64.4	1.55	5	3.34	1.47	0.014	+ sign	n/a (*a)	0.032	10g	4	142	P1	
1	Back	0	Battery	11b (1Mbps)*	2412*	1	100	1.00	14	12.84	1.31	0.207	+sign	n/a (*a)	0.271	10g	4	-	Pl	Wide area scan
1	Back	0	Battery	11b (1Mbps)*	2437	6	100	1.00	14	12.13	1.54	0.189	+sign	n/a (*a)	0.291	10g	4	-	P1	-
1	Back	0	Battery	11b (1Mbps)*	2462	11	100	1.00	14	12.26	1.49	0.209	+sign	n/a (*a)	0.311	10g	4	1a-1	P1	-
1	Back	0	Battery	BT-LE (1Mbps)	2440	19	64.4	1.55	5	3.37	1.46	0.017	+sign	n/a (*a)	0.038	10g	4		P1	-
2	Front	0	Battery	11b (1Mbps)*	2412*	1	100	1.00	14	12.84	1.31	0.00456	+sign	n/a (*a)	0.006	1g	1.6	-	P2	Wide area scan
1	Front	0	Battery	11b (1Mbps)*	2412*	1	100	1.00	14	12.84	1.31	0.025	+ sign	n/a (*a)	0.033	1g	1.6	-	P2	Wide area scan
2	Left (ant.2)	0	Battery	11b (1Mbps)*	2412*	1	100	1.00	14	12.84	1.31	0.030	+ sign	n/a (*a)	0.039	1g	1.6	1b-2	P3	Wide area scan
2	Left (ant.2)	0	Battery	11b (1Mbps)*	2437	6	100	1.00	14	12.09	1.55	0.023	+ sign	n/a (*a)	0.036	1g	1.6	-	P3	-
2	Left (ant.2)	0	Battery	11b (1Mbps)*	2462	11	100	1.00	14	12.23	1.50	0.024	+sign	n/a (*a)	0.036	1g	1.6	-	P3	_
2	Left (ant.2)	0	Battery	BT-LE (1Mbps)	2440	19	64.4	1.55	5	3.34	1.47	0.00225	+sign	n/a (*a)	0.005	1g	1.6	-	P3	-
1	Bottom (ant.1)	0	Battery	11b (1Mbps)*	2412*	1	100	1.00	14	12.84	1.31	0.167	+sign	n/a (*a)	0.219	1g	1.6	1b-1	P4	Wide area scan
1	Bottom (ant.1)	0	Battery	11b (1Mbps)*	2437	6	100	1.00	14	12.13	1.54	0.128	+sign	n/a (*a)	0.197	1g	1.6	-	P4	-
1	Bottom (ant.1)	0	Battery	11b (1Mbps)*	2462	11	100	1.00	14	12.26	1.49	0.122	+sign	n/a (*a)	0.182	1g	1.6	-	P4	-
1	Bottom (ant.1)	0	Battery	BT-LE (1Mbps)	2440	19	64.4	1.55	5	3.37	1.46	0.00763	+sign	n/a (*a)	0.017	1g	1.6	-	P4	-
_	2) U-NII-2A (5			,				4							0.515					1
2	Back	0	Battery	11n40 (MCS0)*	5270	54	100	1.00	13	11.89	1.29	0.399	+sign	n/a (*a)	0.515	10g	4	2a-2	P1	-
2	Back	0	Battery	11n40 (MCS0)*	5310*	62	100	1.00	13	12.06	1.24	0.393	+sign	n/a (*a)	0.487	10g	4	-	P1	Wide area scan
1	Back	0	Battery	11n40 (MCS0)*	5270	54	100	1.00	13	11.96	1.27	0.587	+sign	n/a (*a)	0.745	10g	4	2a-1	P1	-
1	Back	0	Battery	11n40 (MCS0)*	5310*	62	100	1.00	13	12.11	1.23	0.556	+sign	n/a (*a)	0.684	10g	4	-	P1	Wide area scan
2	Front	0	Battery	11n40 (MCS0)*	5310*	62	100	1.00	13	12.06	1.24	0.00747	+sign	n/a (*a)	0.009	1g	1.6	-	P2	-
1	Front	0	Battery	11n40 (MCS0)*	5310*	62	100	1.00	13	12.11	1.23	0.073	+sign	n/a (*a)	0.090	1g	1.6	-	P2	-
2	Left (ant.2)	0	Battery	11n40 (MCS0)*	5310*	62	100	1.00	13	12.06	1.24	0.031	+ sign	n/a (*a)	0.038	1g	1.6	2b-2	P3	Wide area scan
1	Bottom (ant.1)	0	Battery	11n40 (MCS0)*	5270	54	100	1.00	13	11.96	1.27	0.305	+ sign	n/a (*a)	0.387	1g	1.6	- 21. 1	P4	 **** 1
1	Bottom (ant.1)	0	Battery	11n40 (MCS0)*	5310*	62	100	1.00	13	12.11	1.23	0.389	+sign	n/a (*a)	0.478	1g	1.6	2b-1	P4	Wide area scan
2	Back	0	Battery	11n40 (MCS0)*	5190	38	100	1.00	13	12.05	1.24	0.468	+ sign	n/a (*a)	0.580	10g	4	2c-2	P1	-
2	Back	0	Battery	11n40 (MCS0)*	5230*	46	100	1.00	13	12.12	1.22	0.423	+ sign	n/a (*a)	0.516	10g	4	-	P1	-
1	Back Back	0	Battery	11n40 (MCS0)* 11n40 (MCS0)*	5190	38 46	100	1.00	13 13	12.13 12.18	1.22	0.565	+ sign	n/a (*a)	0.689 0.718	10g	4	- 2- 1	P1	-
2	Left (ant.2)	0	Battery	11n40 (MCS0)* 11n40 (MCS0)*	5230* 5230*	46	100	1.00	13	12.18	1.21	0.593	+ sign	n/a (*a)	0.029	10g 1g	1.6	2c-1 2d-2	P1 P3	<u>-</u>
1	Bottom (ant.1)	0	Battery	11n40 (MCS0)* 11n40 (MCS0)*	5190	38	100	1.00	13	12.12	1.22	0.024	+ sign	n/a (*a)	0.029	1g	1.6	2U-2	P4	
1	Bottom (ant.1)	0	Battery Battery	11n40 (MCS0)* 11n40 (MCS0)*	5230*	46	100	1.00	13	12.13	1.21	0.313	+ sign + sign	n/a (*a) n/a (*a)	0.279	1g	1.6	2d-1	P4 P4	
	3) U-NII-2C (5			111140 (NCS0)**	3230	40	100	1.00	13	12.10	1.21	0.313	+ sign	IVa (·a)	USID	ıg	1.0	2U-1	Г4	
2	Back	0	Battery	11n40 (MCS0)*	5510	102	100	1.00	13	11.25	1.50	0.286	+sign	n/a (*a)	0.429	10g	4	-	P1	L
2	Back	0	Battery	11n40 (MCS0)*	5550	110	100	1.00	13	11.28	1.49	0.288	+ sign	n/a (*a)	0.429	10g	4	_	P1	
2	Back	0	Battery	11n40 (MCS0)*	5670*	134	100	1.00	13	11.34	1.47	0.295	+ sign	n/a (*a)	0.434	10g	4	3a-2	P1	
1	Back	0	Battery	11n40 (MCS0)*	5510	102	100	1.00	13	11.19	1.52	0.302	+ sign	n/a (*a)	0.459	10g	4	- Ju-2	P1	_
1	Back	0	Battery	11n40 (MCS0)*	5550	110	100	1.00	13	11.23	1.50	0.307	+ sign	n/a (*a)	0.461	10g	4	3a-1	P1	-
1	Back	0	Battery	11n40 (MCS0)*	5670*	134	100	1.00	13	11.23	1.50	0.293	+sign	n/a (*a)	0.440	10g	4	-	P1	-
2	Front	0	Battery	11n40 (MCS0)*	5670*	134	100	1.00	13	11.34	1.47	0.00348	_	n/a (*a)	0.005	1g	1.6	-	P2	
1	Front	0		11n40 (MCS0)*	5670*	134	100	1.00	13	11.23	1.50	0.022	+ sign	n/a (*a)	0.033	1g	1.6	-	P2	
2	Left (ant.2)	0	Battery	11n40 (MCS0)*		134	100	1.00	13	11.34	1.47	0.011	+ sign	n/a (*a)	0.016	1g	1.6	3b-2	P3	-
1	Bottom (ant.1)	0	Battery	11n40 (MCS0)*	5510	102	100	1.00	13	11.19	1.52	0.197		n/a (*a)		1g	1.6	-	P4	
1	Bottom (ant.1)	0	Battery	11n40 (MCS0)*	5550	110	100	1.00	13	11.23	1.50	0.190	+ sign	n/a (*a)	0.285	1g	1.6	-	P4	
1	Bottom (ant.1)		Battery	11n40 (MCS0)*	5670*	134	100	1.00	13	11.23	1.50	0.203	+ sign	n/a (*a)	0.305	1g	1.6	3b-1	P4	
Step 4	4) U-NII-3 (5.8	GHz) Band																	
2	Back	0	Battery	11n40 (MCS0)*		151	100	1.00	13	11.38	1.45	0.286		n/a (*a)		10g	4	-	P1	-
2	Back	0	Battery			159	100	1.00	13	11.54	1.40	0.297			0.416	10g	4	4a-2	P1	-
1	Back	0	Battery	11n40 (MCS0)*	5755	151	100	1.00	13	11.31	1.48	0.291		n/a (*a)		10g	4	4a-1	P1	-
1	Back	0	Battery	11n40 (MCS0)*		159	100	1.00	13	11.45	1.43	0.291			0.416	10g	4	-	P1	-
2	Front	0	Battery	11n40 (MCS0)*	5795	159	100	1.00	13	11.54	1.40	0.011		n/a (*a)		1g	1.6	-	P2	-
1	Front	0	Battery	11n40 (MCS0)*		159	100	1.00	13	11.45	1.43	0.026			0.037	1g	1.6	-	P2	-
2	Left (ant.2)	0	Battery	11n40 (MCS0)*	5795*	159	100	1.00	13	11.54	1.40	0.00977		n/a (*a)		1g	1.6	4b-2	P3	-
1	Bottom (ant.1)	0	Battery	11n40 (MCS0)*		151	100	1.00	13	11.31	1.48	0.231		n/a (*a)		1g	1.6	-	P4	<u> </u>
_1	Bottom (ant.1)	0	Battery	11n40 (MCS0)*	5795*	159	100	1.00	13	11.45	1.43	0.281	+sign	n/a (*a)	0.402	1g	1.6	4b-1	P4	<u> </u>

Notes:

hand) 0 Battery 11h40 (MCS0)* | 5/95* | 159 | 100 | 1.00 | 13 | 11.45 | 1.43 | 0.281 | +sign | n/a (*a) | 0.402 | 1g | 1.6 | 4b-1 | P4 |
The higher scaled (reported) SAR in each operation band is marked (shaded yellow marker).

Appx. Appendix, ant: antenna; (mode) 11b: IEEE 802.11b, 11h40: IEEE 802.11n(40HT)-SISO; Max.: maximum.; n/a: not applied. Gap: It is the separation distance between the platform surface and the bottom outer surface of phantom.

During test, the EUT was operated with full charged battery and connected an IF cable (except "Left" setup).

During SAR test, the radiated power is always monitored by Spectrum Analyzer.

Test Report No.: 13734841S-A-R3
Page : 16 of 40

*a. Since the calculated Δ SAR values of the tested liquid had shown positive correction, the measured SAR was not converted by Δ SAR correction. Calculating formula: Δ SAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - (Δ SAR(%)) / 100

*1. (KDB 248227 D01) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test of OFDM mode was reduced.

OFDM mode		imum tune-u DSSS		nce limit FDM	OFDM scaled factor [-]	I	OSSS worst rep	orted SAR val	ue	Estimated SAR value: OFDM [W/kg]	Exclusion limit [W/kg]	Standalone SAR test of OFDM mode
mode	[dBm]	[mW] (a)	[dBm]	[mW](b)	(b)/(a)×100	SAR type	Setup	Antenna	[W/kg]	OrDM[w/kg]	III III [VV/Kg]	require?
11g	14.0	25	14.0	25	1.00	10g	Back	Antenna 1	0.311	0.31	≤ 1.2	No
11n20	14.0	25	14.0	25	1.00	10g	Back	Antenna 1	0.311	0.31	≤ 1.2	No
11n40	14.0	25	13.0	20	0.80	10g	Back	Antenna 1	0.311	0.25	≤ 1.2	No
11g	14.0	25	14.0	25	1.00	1g	Bottom	Antenna 1	0.219	0.22	≤ 1.2	No
11n20	14.0	25	14.0	25	1.00	1g	Bottom	Antenna 1	0.219	0.22	≤ 1.2	No
11n40	14.0	25	13.0	20	0.80	1g	Bottom	Antenna 1	0.219	0.18	≤ 1.2	No

^{*. (}mode) 11b: IEEE 802.11b, 11g: IEEE 802.11g, 11n20: IEEE 802.11n(20HT)-SISO, 11n40: IEEE 802.11n(40HT)-SISO.

6.3 Simultaneous transmission evaluation

Result: Simultaneous transmission SAR measurement (Volume Scan) was not required because the sum of the calculated SAR (1g) was within 1.6 W/kg (SAR (1g) limit) and SAR (10g) was within 4 W/kg (SAR (10g) limit).

							Possil	ole simul	taneous	transmis	sion sce	enario						
			Highe	st Scale	d SAR(10g) @antenn:	a 2 (*1)					Hig	hest Sca	led SAI	R(10g) @antenn	a 1 (*1)		
SAR type	Worst SAR test position	WL [W/			LE /kg]	ΣSAR [W/kg]	Pass?	Volume scan?	Antenna separation distance	Worst SAR test position		LAN /kg]	BT [W/		ΣSAR [W/kg]	Pass?	Volume scan?	Antenna separation distance
	розноп	SAR	Band	SAR	Band				[mm]	position	SAR	Band	SAR	Band				[mm]
		0.285	2.4 GHz	0.032	2.4 GHz	*. not supported	n/a	-	-		0.311	2.4GHz	0.038	2.4 GHz	*. not supported	n/a	-	n/a
		0.580	5.2 GHz	0.032	2.4 GHz	0.612 (<4)	Pass				0.718	5.2 GHz	0.038	2.4 GHz	0.756 (<4)	Pass		
10 g	10 g Back	0.515	5.3 GHz	0.032	2.4 GHz	0.547 (<4)	Pass	not	0	Back	0.745	5.3 GHz	0.038	2.4 GHz	0.783 (<4)	Pass	not	0
_		0.434	5.6 GHz	0.032	2.4 GHz	0.466 (<4)	Pass	required.	(*. same antenna)		0.461	5.6GHz	0.038	2.4 GHz	0.499 (<4)	Pass	required.	(*. same antenna)
		0.416	5.8 GHz	0.032	2.4 GHz	0.448 (<4)	Pass				0.431	5.8 GHz	0.038	2.4 GHz	0.469 (<4)	Pass		,
		0.039	2.4 GHz	0.005	2.4 GHz	*. not supported	n/a	-	n/a		0.219	2.4GHz	0.017	2.4 GHz	*. not supported	n/a	-	n/a
		0.029	5.2 GHz	0.005	2.4 GHz	< 0.1 (< 1.6)	Pass				0.379	5.2 GHz	0.017	2.4 GHz	0.396 (< 1.6)	Pass		
1 g		0.038	5.3 GHz	0.005	2.4 GHz	< 0.1 (< 1.6)	Pass	not	0	Bottom	0.478	5.3 GHz	0.017	2.4 GHz	0.495 (< 1.6)	Pass	not	0
		0.016	5.6 GHz	0.005	2.4 GHz	< 0.1 (< 1.6)	Pass	required.	(*. same antenna)		0.305	5.6 GHz	0.017	2.4 GHz	0.322 (< 1.6)	Pass	required.	(*. same antenna)
		0.014	5.8 GHz	0.005	2.4 GHz	< 0.1 (< 1.6)	Pass				0.402	5.8 GHz	0.017	2.4GHz	0.419 (< 1.6)	Pass		

^{*1.} A transmission is performed from one of antenna 2 or antenna 1 (diversity). A transmission of WLAN(2.4GHz) and BT-LE is time-division-processing. Therefore, simultaneously transmitted SAR was only considered for the WLAN(5GHz) and BT-LE.

<SAR Summation Analysis>

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR of all simultaneous transmitting antennas in an operating mode and exposure condition is within the SAR limit (SAR(1g): 1.6 W/kg, SAR(10g): 4 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR is greater than the SAR limit (SAR(1g): 1.6 W/kg, SAR(10g): 4 W/kg), SAR test exclusion is determined by the SPLSR.

(Calculating formula) Per KDB447498 D04(v01), SPLSR = (SAR1 + SAR2)^1.5 / (minimum antenna separation distance, mm)

where; the minimum antenna separation distance is determined by the closest physical separation of the antennas, according to geometric center of the antennas.

6.4 SAR Measurement Variability (Repeated measurement requirement)

In accordance with published RF Exposure KDB procedure 865664 D01 (v01r04) SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- $1) \quad \text{Repeated measurement is not required when the original highest measured SAR(1g) is $< 0.80 \text{ W/kg}; steps 2)$ through 4)$ do not apply.} \\$
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Since all the measured SAR are less than 0.8 W/kg (SAR(1g), or 2 W/kg (SAR(10g)), the repeated measurement is not required.

6.5 Device holder perturbation verification

When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification (by Urethane form alone) is required by using the highest SAR configuration among all applicable frequency bands.

Since all the reported (scaled) SAR are less than 1.2 W/kg (SAR(1g), or 3 W/kg (SAR(10g)), the "device holder perturbation verification" measurement is not performed.

^{*}b. Calculating formula: Scaled SAR (W/kg) = (Measured SAR (W/kg)) × (Duty scaled factor) × (Power scaled factor) where, Duty scaled factor [-] = 100(%)/(duty cycle, %), Power scaled factor [-] = 10 ^(((Max.tune-up limit, dBm) - (Measured conducted, dBm))/10)

22 of 40 Page

APPENDIX 2: SAR Measurement data

Appendix 2-1: Worst Scaled (Reported) SAR Plot

Plot 1a-1: 2.4GHz band, SAR(10g), Antenna 1; Back & touch / 11b (1Mbps) / 2462 MHz

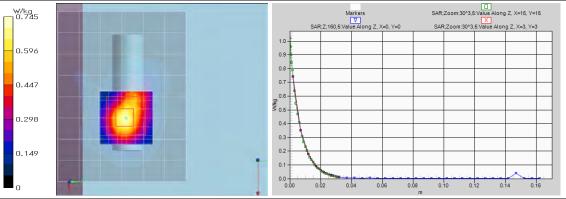
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: 11b(1Mbps, DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2462 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.862$ S/m; $\varepsilon_r = 39.57$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(7.35, 7.35, 0e 2462 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 2mm (Mechanical Surface Detection), z =1.0, 31.0, 161.0

touch.back.h24a/o24h12,2462,ant1,Rear&d0,b(1m)/

Area:96x72,stp12 (9x7x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.714 W/kg


Area:96x72,stp12 (81x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm; Maximum value of SAR (interpolated) = 0.744 W/kg

Z;160,5 (1x1x33): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.740 W/kg

Zoom:30^3,5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 20.33 V/m; Power Drift = -0.02 dB; Maximum value of SAR (measured) = 0.745 W/kg; Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.470 W/kg; SAR(10 g) = 0.209 W/kg (*. Smallest distance from peaks to all points 3 dB below = 8.6 mm; Ratio of SAR at M2 to SAR at M1 = 47.4%)

*. Date tested: 2022/4/22; Tested by: Hiroshi Naka; Tested place: No.7 shielded room, Remarks:

- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C. / (60-75) %RH, *. liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C. , in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 1b-1: 2.4GHz band, SAR(1g), Antenna 1; Bottom & touch / 11b (1Mbps) / 2412 MHz

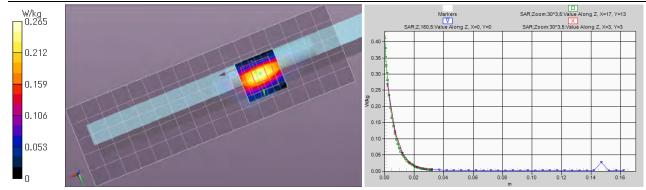
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: 11b(1Mbps, DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2412 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.82$ S/m; $\epsilon_r = 39.63$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(7.35, 7.35, 7.35) @ 2412 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 2mm (Mechanical Surface Detection), z =1.0, 31.0, 161.0

touch,side/24h25;2412,ant1,side(1)&d0,b(1m)/

Area:204x60,12 (18x6x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.167 W/kg


Area: 204x60,12 (171x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm; Maximum value of SAR (interpolated) = 0.370 W/kg

Z;160,5 (1x1x33): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.268 W/kg

Zoom:30^3,5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 12.36 V/m; Power Drift = -0.03 dB; Maximum value of SAR (measured) = 0.265 W/kg; Peak SAR (extrapolated) = 0.413 W/kg

SAR(1 g) = 0.167 W/kg; SAR(10 g) = 0.066 W/kg (*. Smallest distance from peaks to all points 3 dlB below = 5 mm; Ratio of SAR at M2 to SAR at M1 = 45.8%)

*. Date tested: 2022/4/22; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.5 deg.C. ±0.5 deg.C. (22.5 deg.C., in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

23 of 40 Page

APPENDIX 2: SAR Measurement data / Appendix 2-1: Worst Scaled (Reported) SAR Plot (cont'd)

Plot 2a-1: 5.3GHz band, SAR(10g), Antenna 1; Back & touch / 11n(40HT) (MCS0) / 5270 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5270 MHz; Crest Factor: 1.0

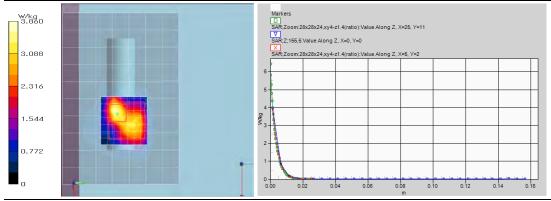
Medium: Head(v6.2204); Medium parameters used: f = 5270 MHz; $\sigma = 4.569 \text{ S/m}$; $\varepsilon_r = 35.02$; $\rho = 1000 \text{ kg/m}^3$

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.75, 4.75, 4.75) @ 5270 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch.back.h5b/5h12.53.3,ant1,5270,Rear&d0,n40(m0)/

Area:100x70,stp10 (11x8x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 3.19 W/kg


Area:100x70,stp10 (101x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 3.69 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 3.93 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 31.95 V/m; Power Drift = -0.05 dB; Maximum value of SAR (measured) = 3.86 W/kg; Peak SAR (extrapolated) = 6.43 W/kg

 $SAR(1\ g) = 1.48\ W/kg; SAR(10\ g) = 0.587\ W/kg \ (*. Smallest distance from peaks to all points 3 dB below = 5.1\ mm; Ratio of SAR at M2 to SAR at M1 = 64.4%)$

Remarks:

- *. Date tested: 2022/4/19; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C. / (60-75) %RH, *. liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C. , in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 2b-1: 5.3GHz band, SAR(1g), Antenna 1; Bottom & touch / 11n(40HT) (MCS0) / 5310 MHz

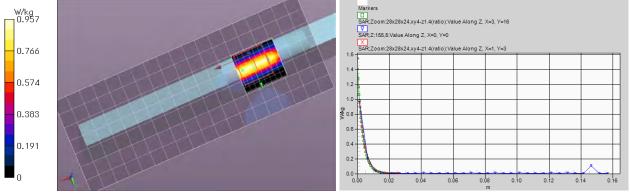
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0, PMF: 1); Frequency: 5310 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used: f = 5310 MHz; $\sigma = 4.612$ S/m; $\varepsilon_r = 34.94$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/1208 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.75, 4.75, 4.75) @ 5310 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,side1a/5h56.53.13,5310,ant1,side(1)&d0,n40(m0)/

Area:190x70,10 (20x8x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.756 W/kg


Area:190x70,10 (191x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.983 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.963 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (9x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 15.79 V/m; Power Drift = -0.11 dB; Maximum value of SAR (measured) = 0.957 W/kg; Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.389 W/kg; SAR(10 g) = 0.115 W/kg (*. Smallest distance from peaks to all points 3 dB below = 4.8 mm; Ratio of SAR at M2 to SAR at M1 = 66.1%)

- *. Date tested: 2022/4/19; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C. / (60-75) %RH, *. liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C. , in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

24 of 40 Page

APPENDIX 2: SAR Measurement data / Appendix 2-1: Worst Scaled (Reported) SAR Plot (cont'd)

Plot 2c-1: 5.2GHz band, SAR(10g), Antenna 1; Back & touch / 11n(40HT) (MCS0) / 5230 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5230 MHz; Crest Factor: 1.0

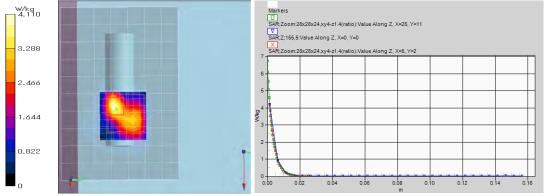
Medium: Head(v6.2204); Medium parameters used: f = 5230 MHz; $\sigma = 4.519 \text{ S/m}$; $\epsilon_r = 35.07$; $\rho = 1000 \text{ kg/m}^3$

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.75, 4.75, 4.75) @ 5230 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch.back.h5b/5h13.52.3,ant1,5230,Rear&d0,n40(m0)/

Area:100x70,stp10 (11x8x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 3.42 W/kg


Area:100x70,stp10 (101x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 3.82 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 4.19 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 32.70 V/m; Power Drift = -0.02 dB; Maximum value of SAR (measured) = 4.11 W/kg; Peak SAR (extrapolated) = 6.74 W/kg

 $SAR(1\ g) = 1.57\ W/kg; SAR(10\ g) = 0.593\ W/kg \ (*. Smallest distance from peaks to all points 3 dB below = 5.4 \ mm; Ratio of SAR at M2 to SAR at M1 = 65\%)$

Remarks:

- *. Date tested: 2022/4/19; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C. / (60-75) %RH, *. liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C. , in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 2d-1: 5.2GHz band, SAR(1g), Antenna 1; Bottom & touch / 11n(40HT) (MCS0) / 5230 MHz

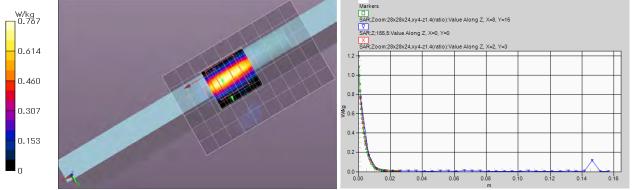
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0, PMF: 1); Frequency: 5230 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used: f = 5230 MHz; $\sigma = 4.519$ S/m; $\varepsilon_r = 35.07$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/1208 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.75, 4.75, 4.75) @ 5230 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,side1a/5h58.52.9,5230,ant1,side(1)&d0,n40(m0)

Area:100x60,10 (11x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.630 W/kg


Area:100x60,10 (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.828 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.778 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (9x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 14.56 V/m; Power Drift = -0.04 dB; Maximum value of SAR (measured) = 0.767 W/kg; Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.313 W/kg; SAR(10 g) = 0.092 W/kg (*. Smallest distance from peaks to all points 3 dB below = 5.6 mm; Ratio of SAR at M2 to SAR at M1 = 67%)

- *. Date tested: 2022/4/19; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: $(22-24) \deg.C./(60-75)$ %RH, *. liquid temperature: 22.5 deg.C. \pm 0.5 deg.C. $(22.5 \deg.C.)$; in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

25 of 40 Page

APPENDIX 2: SAR Measurement data / Appendix 2-1: Worst Scaled (Reported) SAR Plot (cont'd)

Plot 3a-1: 5.6GHz band, SAR(10g), Antenna 1; Back & touch / 11n(40HT) (MCS0) / 5550 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5550 MHz; Crest Factor: 1.0

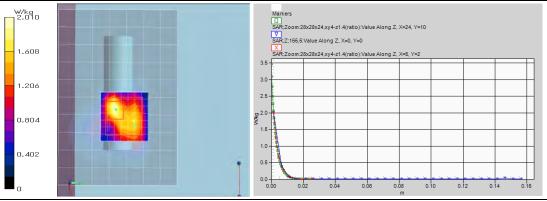
Medium: Head(v6.2204); Medium parameters used: f = 5550 MHz; $\sigma = 4.87 \text{ S/m}$; $\epsilon_r = 34.54$; $\rho = 1000 \text{ kg/m}^3$

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.32, 4.32, 4.32) @ 5550 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch.back.h5b/5h17.56.7,ant1,5550,Rear&d0,n40(m0)/

Area:100x70,stp10 (11x8x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.44 W/kg


Area:100x70,stp10 (101x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 2.00 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.01 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 20.26 V/m; Power Drift = 0.00 dB; Maximum value of SAR (measured) = 2.01 W/kg; Peak SAR (extrapolated) = 3.47 W/kg

 $SAR(1\ g) = 0.763\ W/kg; SAR(10\ g) = 0.307\ W/kg \ (*. Smallest distance from peaks to all points 3 dB below = 5.8 \, mm; Ratio of SAR at M2 to SAR at M1 = 61.8\%)$

Remarks:

- *. Date tested: 2022/4/20; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C. / (60-75) %RH, *. liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C. , in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 3b-1: 5.6GHz band, SAR(1g), Antenna 1; Bottom & touch / 11n(40HT) (MCS0) / 5670 MHz

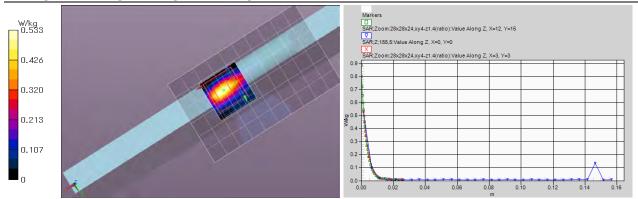
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0, PMF: 1); Frequency: 5670 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used: f = 5670 MHz; $\sigma = 5.012$ S/m; $\varepsilon_r = 34.37$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/1208 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.32, 4.32, 4.32) @ 5670 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,side1a/5h56.56.22,5670,ant1,side(1)&d0,n40(m0)/

Area:100x60,10 (11x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.406 W/kg


Area:100x60,10 (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.576 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.528 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 11.37 V/m; Power Drift = -0.00 dB; Maximum value of SAR (measured) = 0.533 W/kg; Peak SAR (extrapolated) = 0.885 W/kg

SAR(1 g) = 0.203 W/kg; SAR(10 g) = 0.054 W/kg (*. Smallest distance from peaks to all points 3 dB below = 4.8 mm; Ratio of SAR at M2 to SAR at M1 = 64.9%)

- *. Date tested: 2022/4/20; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C. / (60-75) %RH, *. liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C. , in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

13734841S-A-R3 Test Report No.: 26 of 40 Page

APPENDIX 2: SAR Measurement data / Appendix 2-1: Worst Scaled (Reported) SAR Plot (cont'd)

Plot 4a-1: 5.8GHz band, SAR(10g), Antenna 1; Back & touch / 11n(40HT) (MCS0) / 5755 MHz

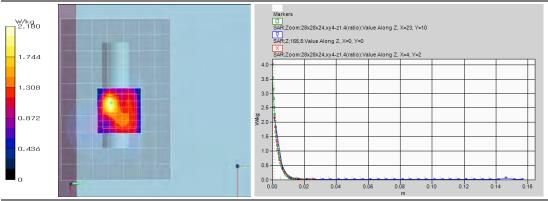
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5755 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used (interpolated): f = 5755 MHz; $\sigma = 5.118$ S/m; $\epsilon_r = 34.20$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe; EX3DV4 - SN7372; ConvF(4.36, 4.36, 4.36) @ 5755 MHz; Calibrated; 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,back,h5b/5h20.58.4,ant1,5755,Rear&d0,n40(m0)/

Area:100x70,stp10 (11x8x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.72 W/kg


Area:100x70,stp10 (101x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 1.99 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.13 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 22.77 V/m; Power Drift = -0.07 dB; Maximum value of SAR (measured) = 2.18 W/kg; Peak SAR (extrapolated) = 4.01 W/kg

SAR(1 g) = 0.804 W/kg; SAR(10 g) = 0.291 W/kg (*. Smallest distance from peaks to all points 3 dB below = 5.4 mm; Ratio of SAR at M2 to SAR at M1 = 60%)

Remarks:

- *. Date tested: 2022/4/21; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: $(22-24) \deg.C. / (60-75) \%RH$, *. liquid temperature: $22.5 \deg.C. \pm 0.5 \deg.C. (22.5 \deg.C.$, in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Plot 4b-1: 5.8GHz band, SAR(1g), Antenna 1; Bottom & touch / 11n(40HT) (MCS0) / 5795 MHz

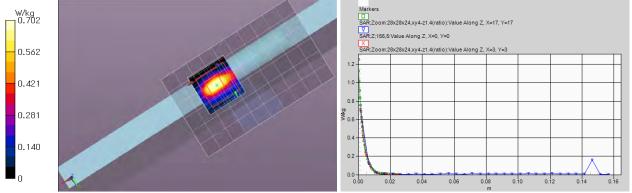
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5795 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used (interpolated): f = 5795 MHz; $\sigma = 5.152$ S/m; $\epsilon_r = 34.13$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.36, 4.36) @ 5795 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,side1a/5h63.58.15,5795,ant1,side(1)&d0,n40(m0)/

Area:100x60,10 (11x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.644 W/kg


 $\textbf{Area:100x60,10 (101x61x1):} \ Interpolated \ grid: \ dx=1.000 \ mm, \ dy=1.000 \ mm; \ Maximum \ value \ of \ SAR \ (interpolated)=0.890 \ W/kg$

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.710 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 13.39 V/m; Power Drift = 0.00 dB; Maximum value of SAR (measured) = 0.702 W/kg; Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.281 W/kg; SAR(10 g) = 0.078 W/kg (*. Smallest distance from peaks to all points 3 dB below = 5.1 mm; Ratio of SAR at M2 to SAR at M1 = 62.3%)

- *. Date tested: 2022/4/21; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C. / (60-75) %RH, *. liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C. , in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

27 of 40 Page

Appendix 2: SAR measurement data (cont'd)

Appendix 2-2: Other SAR Plots

Plot 1a-2: 2.4GHz band, SAR(10g), Antenna 2; Back & touch / 11b (1Mbps) / 2462 MHz

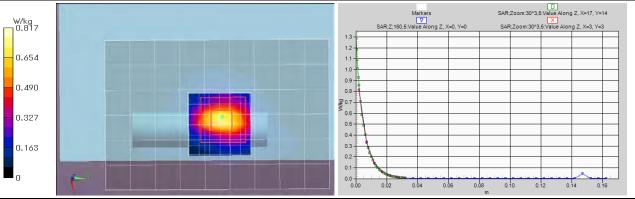
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: 11b(1Mbps, DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2462 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.862 \text{ S/m}$; $\epsilon_r = 39.57$; $\rho = 1000 \text{ kg/m}^3$ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: ODOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(7.35, 7.35, 7.35) @ 2462 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 2mm (Mechanical Surface Detection), z =1.0, 31.0, 161.0

touch,back,h24a/24h1;2462,ant0,Rear&d0,b(1m)/

Area:72x108,stp12 (7x10x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.666 W/kg


Area:72x108,stp12 (61x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm; Maximum value of SAR (interpolated) = 0.718 W/kg

Z;160,5 (1x1x33): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.816 W/kg

Zoom:30^3.5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 21.24 V/m; Power Drift = 0.12 dB; Maximum value of SAR (measured) = 0.817 W/kg; Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.481 W/kg; SAR(10 g) = 0.190 W/kg (*. Smallest distance from peaks to all points 3 dlB below = 6 mm; Ratio of SAR at M2 to SAR at M1 = 40.4%)

*. Date tested: 2022/4/22; Tested by: Hiroshi Naka; Tested place: No.7 shielded room, Remarks:

- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22-24) deg.C. / (60-75) %RH, *. liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C. , in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

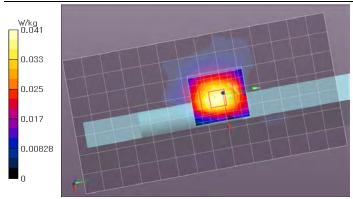
Plot 1b-2: 2.4GHz band, SAR(1g), Antenna 2; Left & touch / 11b (1Mbps) / 2412 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: 11b(1Mbps, DSSS) (UID: 0, Wi-fi_2.4GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 2412 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.82$ S/m; $\epsilon_T = 39.63$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN7372; ConvF(7.35, 7.35, 7.35) @ 2412 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 2mm (Mechanical Surface Detection), z =1.0, 31.0

touch.side/24h19;2412,ant0,side(0)&d0,b(1m)/


Area:84x168,12 (8x15x1): Measurement grid: dx=12mm, dy=12mm; Maximum value of SAR (measured) = 0.0354 W/kg

Area:84x168,12 (71x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm; Maximum value of SAR (interpolated) = 0.0698 W/kg

Zoom:30^3,5 (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 4.356 V/m; Power Drift = 0.20 dB; Maximum value of SAR (measured) = 0.0414 W/kg; Peak SAR (extrapolated) = 0.112 W/kg

SAR(1 g) = 0.030 W/kg; SAR(10 g) = 0.013 W/kg (*. Ratio of SAR at M2 to SAR at M1 = 53.1%)

*. Date tested: 2022/4/22; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: $(22\sim24)$ deg.C. / (60 \sim 75) %RH,
- *. liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Page : 28 of 40

Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

Plot 2a-2: 5.3GHz band, SAR(10g), Antenna 2; Back & touch / 11n(40HT) (MCS0) / 5270 MHz

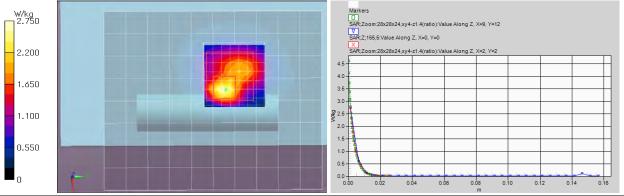
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5270 MHz; Crest Factor: 1.0 Medium: Head(v6,2204); Medium parameters used: f = 5270 MHz; $\sigma = 4.569$ S/m; $\epsilon_r = 35.02$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.75, 4.75, 4.75) @ 5270 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,back,h5a/5h1.53.1,ant0,5270,Rear&d0,n40(m0)

Area:80x100,stp10 (9x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.96 W/kg


Area:80x100.stp10 (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 2.22 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.71 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 26.65 V/m; Power Drift = -0.12 dB; Maximum value of SAR (measured) = 2.75 W/kg; Peak SAR (extrapolated) = 4.61 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.399 W/kg (* Smallest distance from peaks to all points 3 dB below = 5.4 mm; Ratio of SAR at M2 to SAR at M1 = 64.3%)

Remarks:

- *. Date tested: 2022/4/19; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.5 deg.C. ±0.5 deg.C. (22.5 deg.C., in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

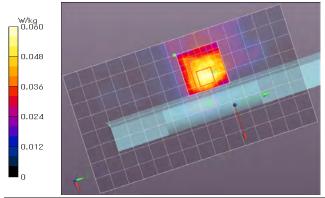
Plot 2b-2: 5.3GHz band, SAR(1g), Antenna 2; Left & touch / 11n(40HT) (MCS0) / 5310 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5310 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used: f = 5310 MHz; $\sigma = 4.612$ S/m; $\epsilon_r = 34.94$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.75, 4.75, 4.75) @ 5310 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

touch.side0a/5h47.53.11.5310.ant0.side(0)&d0.n40(m0)/


Area:80x150,10 (9x16x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.0558 W/kg

Area:80x150,10 (81x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.0602 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 3.779 V/m; Power Drift = 0.18 dB; Maximum value of SAR (measured) = 0.0595 W/kg; Peak SAR (extrapolated) = 0.115 W/kg

SAR(1 g) = 0.031 W/kg; SAR(10 g) = 0.020 W/kg (*. Ratio of SAR at M2 to SAR at M1 = 70.9%)

- *. Date tested: 2022/4/19; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH,
- *. liquid temperature: 22.5 deg.C. ±0.5 deg.C. (22.5 deg.C., in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Page : 29 of 40

Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

Plot 2c-2: 5.2GHz band, SAR(1g), Antenna 2; Back & touch / 11n(40HT) (MCS0) / 5190 MHz

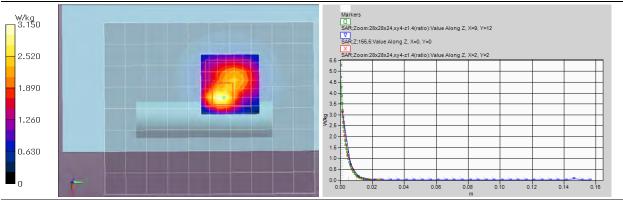
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5190 MHz; Crest Factor: 1.0 Medium: Head(v6,2204); Medium parameters used: f = 5190 MHz; $\sigma = 4.477$ S/m; $\epsilon_r = 35.14$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.75, 4.75, 4.75) @ 5190 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,back,h5a/5h3.52.2,ant0,5190,Rear&d0,n40(m0)/

Area:80x100,stp10 (9x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 2.34 W/kg


Area:80x100.stp10 (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 2.66 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 3.10 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 28.98 V/m; Power Drift = -0.14 dB; Maximum value of SAR (measured) = 3.15 W/kg; Peak SAR (extrapolated) = 5.29 W/kg

 $SAR(1\ g) = 1.27\ W/kg; SAR(10\ g) = 0.468\ W/kg \ (*. Smallest distance from peaks to all points 3 dB below = 5.7\ mm; Ratio of SAR at M2 to SAR at M1 = 64.3%)$

Remarks:

- *. Date tested: 2022/4/19; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH,
- *. liquid temperature: 22.5 deg.C. \pm 0.5 deg.C. (22.5 deg.C. , in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

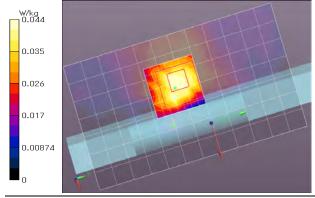
Plot 2d-2: 5.2GHz band, SAR(1g), Antenna 2; Left & touch / 11n(40HT) (MCS0) / 5230 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5230 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used: f = 5230 MHz; $\sigma = 4.519$ S/m; $\epsilon_r = 35.07$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.75, 4.75, 4.75) @ 5230 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

touch,side0a/5h48.52.7,5230,ant0,side(0)&d0,n40(m0)/


Area:70x120,10 (8x13x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.0502 W/kg

Area:70x120,10 (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.0556 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

 $Reference\ Value=3.346\ V/m; Power\ Drift=-0.00\ dB; Maximum\ value\ of\ SAR\ (measured)=0.0437\ W/kg; Peak\ SAR\ (extrapolated)=0.0680\ W/kg$

SAR(1 g) = 0.024 W/kg; SAR(10 g) = 0.015 W/kg (*. Ratio of SAR at M2 to SAR at M1 = 67.1%)

- $\hbox{*. Date tested: } 2022/4/19; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room, \\$
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.5 deg.C. \pm 0.5 deg.C. (22.5 deg.C. , in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Page : 30 of 40

Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

Plot 3a-2: 5.6GHz band, SAR(10g), Antenna 2; Back & touch / 11n(40HT) (MCS0) / 5670 MHz

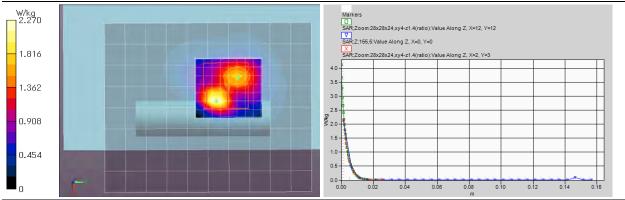
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5670 MHz; Crest Factor: 1.0 Medium: Head(v6,2204); Medium parameters used: f = 5670 MHz; $\sigma = 5.012$ S/m; $\epsilon_r = 34.37$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.32, 4.32, 4.32) @ 5670 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,back,h5a/5h4.56.1,ant0,5670,Rear&d0,n40(m0)/

Area:80x100,stp10 (9x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.41 W/kg


Area:80x100.stp10 (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 1.80 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.12 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 23.78 V/m; Power Drift = -0.00 dB; Maximum value of SAR (measured) = 2.27 W/kg; Peak SAR (extrapolated) = 4.22 W/kg

 $SAR(1\ g) = 0.845\ W/kg; SAR(10\ g) = 0.295\ W/kg \ (*.\ Smallest\ distance\ from\ peaks\ to\ all\ points\ 3\ dB\ below = 5.1\ mm; Ratio\ of\ SAR\ at\ M2\ to\ SAR\ at\ M1\ = 61.6\%)$

Remarks:

- *. Date tested: 2022/4/20; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- $*. \ liquid depth: 150 \ mm; Position: distance of EUT to phantom: 0 \ mm (2 \ mm to liquid); ambient: (22~24) \ deg. C. \ / (60~75) \ \% RH, \ depth: 150 \ mm; Position: distance of EUT to phantom: 0 \ mm (2 \ mm to liquid); ambient: (22~24) \ deg. C. \ / (60~75) \ \% RH, \ depth: 150 \ mm; Position: distance of EUT to phantom: 0 \ mm (2 \ mm to liquid); ambient: (22~24) \ deg. C. \ / (60~75) \ \% RH, \ depth: 150 \ mm; Position: distance of EUT to phantom: 0 \ mm (2 \ mm to liquid); ambient: (22~24) \ deg. C. \ / (60~75) \ \% RH, \ deg. C. \ / (60~75) \ \% RH, \ deg. C. \ / (60~75) \ \% RH, \ deg. C. \ / (60~75) \ \% RH, \ deg. C. \ / (60~75) \ \% RH, \ deg. \ de$
- *. liquid temperature: 22.5 deg.C. \pm 0.5 deg.C. (22.5 deg.C. , in check); *. White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

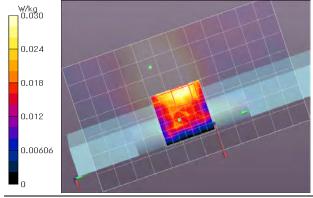
Plot 3b-2: 5.6GHz band, SAR(1g), Antenna 2; Left & touch / 11n(40HT) (MCS0) / 5670 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5670 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used: f = 5670 MHz; $\sigma = 5.012$ S/m; $\epsilon_r = 34.37$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.32, 4.32, 4.32) @ 5670 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

touch,side0a/5h49.56.23,5670,ant0,side(0)&d0,n40(m0)/


Area:70x120,10 (8x13x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.0363 W/kg

Area:70x120,10 (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.0765 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

 $Reference\ Value=2.115\ V/m; Power\ Drift=0.20\ dB; Maximum\ value\ of\ SAR\ (measured)=0.0303\ W/kg; Peak\ SAR\ (extrapolated)=0.0970\ W/kg$

SAR(1 g) = 0.011 W/kg; SAR(10 g) = 0.00413 W/kg (*. Ratio of SAR at M2 to SAR at M1 = 83%)

- $\hbox{*. Date tested: } 2022/4/19; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room, \\$
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: $22.5 \deg.C. \pm 0.5 \deg.C. (22.5 \deg.C.$, in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g) small=SAR(1g)

Page : 31 of 40

Appendix 2: SAR measurement data / Appendix 2-2: Other SAR Plots (cont'd)

Plot 4a-2: 5.8GHz band, SAR(10g), Antenna 2; Back & touch / 11n(40HT) (MCS0) / 5795 MHz

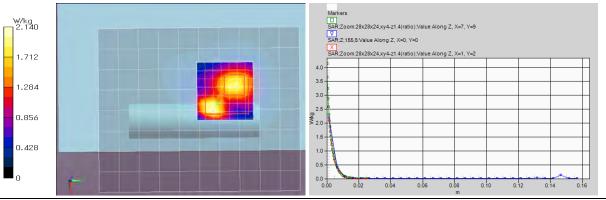
EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5795 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used (interpolated): f = 5795 MHz; $\sigma = 5.152$ S/m; $\epsilon_r = 34.13$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/1208/-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN7372; ConvF(4.36, 4.36, 4.36) @ 5795 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

touch,back,h5b/5h10.58.1,ant0,5795,Rear&d0,n40(m0)/

Area:80x100,stp10 (9x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.85 W/kg


Area:80x100,stp10 (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 2.09 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 2.19 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 20.63 V/m; Power Drift = -0.20 dB; Maximum value of SAR (measured) = 2.14 W/kg; Peak SAR (extrapolated) = 4.14 W/kg

SAR(1 g) = 0.807 W/kg; SAR(10 g) = 0.297 W/kg (*. Smallest distance from peaks to all points 3 dB below = 5.1 mm; Ratio of SAR at M2 to SAR at M1 = 60.8%)

Remarks:

- *. Date tested: 2022/4/21; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C./(60~75) %RH,
- *. liquid temperature: 22.5 deg.C. ±0.5 deg.C. (22.5 deg.C., in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

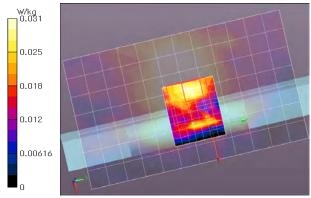
Plot 4b-2: 5.8GHz band, SAR(1g), Antenna 2; Left & touch / 11n(40HT) (MCS0) / 5795 MHz

EUT: Built-in Wireless Module with BT/Flat Panel Detector; Type: WM01B/WM5B05; Serial: 34:9F:7B:EF:DB:20/21MED-0327

Mode: n40(MCS0, OFDM) (UID: 0, Wi-fi_5GHz (0), Frame Length in ms: 0; PAR: 0; PMF: 1); Frequency: 5795 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used (interpolated): f = 5795 MHz; $\sigma = 5.152$ S/m; $\epsilon_r = 34.13$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

 $\begin{array}{l} \textbf{DASY Configuration:} \text{-}Electronics: DAE4 Sn626; Calibrated: } 2021/1208/-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN7372; ConvF(4.36, 4.36, 4.36) @ 5795 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), <math>z=1.0, 25.0$

touch,side0a/5h50.58.13,5795,ant0.side(0)&d0,n40(m0)/


Area:70x120,10 (8x13x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.0462 W/kg

Area:70x120,10 (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.0504 W/kg

Zoom:28x28x24,xy4-z1.4(ratio) (9x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 2.349 V/m; Power Drift = 0.19 dB; Maximum value of SAR (measured) = 0.0308 W/kg; Peak SAR (extrapolated) = 0.144 W/kg

SAR(1 g) = 0.00977 W/kg; SAR(10 g) = 0.00302 W/kg (*. Ratio of SAR at M2 to SAR at M1 = 69.4%)

- *. Date tested: 2022/4/21; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of EUT to phantom: 0 mm (2 mm to liquid); ambient: (22~24) deg.C. / (60~75) %RH,
- *. liquid temperature: 22.5 deg.C. ±0.5 deg.C. (22.5 deg.C., in check); *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test Report No.: 13734841S-A-R3 Page : 32 of 40

APPENDIX 3: Test instruments

Appendix 3-1: Equipment used

Test		0.00			4555	1	Calibrat	tion
Name	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Date	Interval (Month)
AT	SAT10-SARP1	160520	Attenuator	Weinschel - API Technologies Corp	4M-10	-	2020/12/11	12
AT	SPM-13	169910	Power Meter	Keysight Technologies Inc	8990B	MY51000448	2021/01/25	12
AT	SPSS-06	169911	Power sensor	Keysight Technologies Inc	N1923A	MY57270004	2021/01/25	12
AT	SRENT-15	160899	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185516	2021/01/26	12
AT	STM-G6	146207	Terminator	ЛFW	50T-128	-	2020/11/19	12
AT	SOS-26	191844	Humidity Indicator	CUSTOM Inc	CTH-201	-	2021/08/02	12

^{*.} AT (antenna terminal conducted power measurement) was measured September 29, 2021. (Refer to Section 5 in this report.)

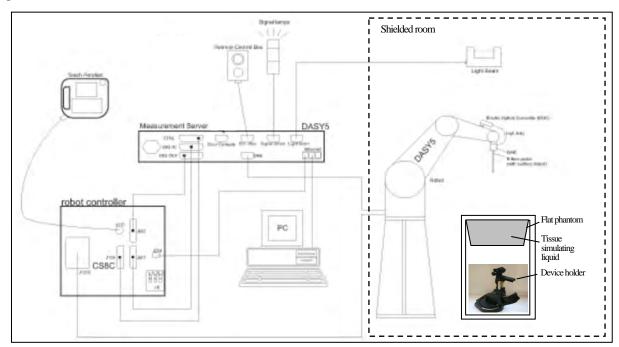
Test		Jan 1					Calibrat	tion
Name	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Date	Interval (Month)
SAR	COTS-SSAR-02	144885	DASY52 software	Schmid&Partner Engineering AG	DASY5 PRO	Ver.52.10.3.1513	4	-
SAR	COTS-SSEP-02	144886	Dielectric assessment software	Schmid&Partner Engineering AG	DAK	Ver.DAK1.10.317.11	-	
SAR	KAT10-P1	144882	Attenuator	Weinschel - API Technologies Corp	24-10-34	BY5927	2021/12/01	12
SAR	KCPL-07	146100	Directional Coupler	Pulsar Microwave Corp.	CCS30-B26	621	-	-
SAR	KDAE-01	144944	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	626	2021/12/08	12
SAR	KIU-08	145059	Power sensor	Rohde & Schwarz	NRV-Z4	100372	2021/09/18	12
SAR	KIU-09	145099	Power sensor	Rohde & Schwarz	NRV-Z4	100371	2021/09/18	12
SAR	KOS-14	144986	Thermo-Hygrometer data logger	SATO KEIRYOKI	SK-L200THIIa/SK-LTHIIa-2	015246/08169	2021/10/13	12
SAR	KPA-12	145359	RF Power Amplifier	Milmega	AS2560-50	1018582		-
SAR	KPB-R02	144987	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	7372	2021/04/23	12
SAR	KPFL-01	145560	Flat Phantom	Schmid&Partner Engineering AG	Oval flat phantom ELI 4.0	1059	2021/08/18	12
SAR	KPM-06	144989	Power Meter	Rohde & Schwarz	NRVD	101599	2021/09/18	12
SAR	KPM-08	145105	Power meter	Anritsu Corporation	ML2495A	6K00003356	2021/09/18	12
SAR	KPSS-04	144991	Power sensor	Annitsu Corporation	MA2411B	12088	2021/09/18	12
SAR	KRU-02	145106	Ruler(150mm,L)	SHINWA	12103		2022/02/16	12
SAR	KRU-04	145086	Ruler(300mm)	SHINWA	13134		2022/02/16	12
SAR	KRU-05	145087	Ruler(100x50mm,L)	SHINWA	12101		2022/02/16	12
SAR	KSDA-01	145090	Dipole Antenna	Schmid&Partner Engineering AG	D2450V2	822	2021/12/09	12
SAR	KSDH-01	145596	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter		2021/09/14	12
SAR	KSG-08	145109	Signal Generator	Rohde & Schwarz	SMT06	100763	2021/09/19	12
SAR	SALC-01	146112	Primepure Ethanol	Kanto Chemical Co., Inc.	14032-79			-
SAR	SAT20-SAR2	215438	Attenuator	To-Conne Co., Ltd.	SA-PJ-20	-	2022/02/07	12
SAR	SAT6-SAR1	145160	Attenuator	Huber+Suhner	6806.17.A	766429-1	2021/12/01	12
SAR	SCC-SAR2	145405	Coaxial Cable	Huber+Suhner	SF104A/11PC3542/11N451/4M	MY699/4A	2021/12/01	12
SAR	SEPP-R04	206293	Dielectric probe(~20GHz)	Schmid & Partner Engineering AG	DAK3.5	1079	2021/06/16	12
SAR	SOS-26	191844	Humidity Indicator	CUSTOM. Inc	CTH-201	-	2021/08/02	12
SAR	SOS-SAR2	201967	Digital thermomoter	HANNA	Checktemp-4	A01440226111	2021/10/13	12
SAR	SOS-SAR3	201968	Digital thermomoter	HANNA	Checktemp-4	A01310946111	2021/10/13	12
SAR	SRU-06	150560	Measuring Tool, Ruler	SHINWA	14001		2022/02/16	12
SAR	SSA-04	146176	Spectrum Analyzer	ADVANTEST	R3272	101100994	-	-
SAR	SSAR-02	146177	SAR measurement system	Schmid&Partner Engineering AG	DASY5	1324	-	-
SAR	SSDA-R02	145592	Dipole Antenna	Schmid&Partner Engineering AG	D5GHzV2	1092	2021/10/15	12
SAR	SSDH-02	145723	Laptop holder	Schmid&Partner Engineering AG	SM LH1 001 C			-
SAR	SSLHV6-01	207714	Head Tissue Simulating Liquid	Schmid&Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC	5	-
SAR	SSNA-01	146258	Network Analyzer	Keysight Technologies Inc	8753ES	US39171777	2021/11/09	12
SAR	SSRBT-02	145621	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F12/5L2QA1/A/01	2021/09/14	12
SAR	SWTR-03	146185	DI water	MonotaRo	34557433		-	-
			The state of the s					

^{*.} Local ID: SALC-01, the parameters of primepure Ethanol (as reference liquid) used for the simulated tissue parameter confirmation was defined the NPL Report MAT23 (http://www.npl.co.uk/content/conpublication/4295)

The expiration date of calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chain of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.


[Test Item] SAR: Specific Absorption Rate, AT: Antenna terminal conducted power

^{*.} Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

Test Report No.: 13734841S-A-R3
Page : 33 of 40

Appendix 3-2: Configuration and peripherals

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probes EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The DASY5 system for performing compliance tests consist of the following items:

- A standard high precision 6-axis robot (Stäubli TX/RX family) with controller, teach pendant and software.
- An arm extension for accommodating the data acquisition electronics (DAE).
- 2 An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements,
- mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6 The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- 7 A computer running Win7 professional operating system and the DASY5 software.
- 8 R Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- 9 The phantom.
- 10 The device holder for EUT. (low-loss dielectric palette) (*. when it was used.)
- 11 Tissue simulating liquid mixed according to the given recipes.
- 12 Validation dipole kits allowing to validate the proper functioning of the system.

13734841S-A-R3 Test Report No.: 34 of 40 Page

Appendix 3-3: Test system specification

TX60 Lsepag robot/CS8Csepag-TX60 robot controller

 Number of Axes Repeatability : ±0.02 mm

Stäubli Unimation Corp. Manufacture

DASY5 Measurement server

Calibration

•Features

: The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the

PC/104 bus of the CPU board. : No calibration required.

 Manufacture : Schmid & Partner Engineering AG

Data Acquisition Electronic (DAE)

Signal amplifier, multiplexer, A/D converter and control logic.

Serial optical link for communication with DASY5 embedded system (fully remote controlled). 2 step probe touch detector for mechanical surface detection and emergency robot stop (not in-

R version)

 $1 \,\mu\text{V}$ to $> 200 \,\text{mV}$ (16bit resolution and 2 range settings: $4 \,\text{mV}$, $400 \,\text{mV}$) Measurement Range

•Input Offset voltage $< 1 \mu V$ (with auto zero)

•Input Resistance $200\,\mathrm{M}\Omega$

> 10 hrs. of operation (with two 9 V battery) Battery Power Manufacture Schmid & Partner Engineering AG

Electro-Optical Converter (EOC61)

 Manufacture : Schmid & Partner Engineering AG

Light Beam Switch (LB5/80)

 Manufacture : Schmid & Partner Engineering AG

SAR measurement software

•Item Dosimetric Assessment System DASY5 Software version Refer to Appendix 3-1 (Equipment used) Manufacture Schmid & Partner Engineering AG

E-Field Probe

Model EX3DV4 (serial number: 7372) Symmetrical design with triangular core. Construction

Built-in shielding against static charges.

PEEK enclosure material (resistant to organic solvents, e.g., DGBE).

10MHz to 6GHz, Linearity: ±0.2 dB (30MHz to 6GHz) Frequency •Conversion Factors (CF): Head: (2.45, 5.25, 5.6, 5.8) GHz which were used. Directivity ± 0.3 dB in HSL (rotation around probe axis)

±0.5 dB in tissue material (rotation normal to probe axis)

 $10\mu W/g$ to > 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 $\mu W/g$) Dynamic Range

Overall length: 330 mm (Tip: 20 mm) Dimension

Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1mm

 Application High precision dosimetric measurement in any exposure scenario (e.g., very strong gradient

fields). Only probe which enables compliance testing for frequencies up to 6GHz with

precision of better 30%.

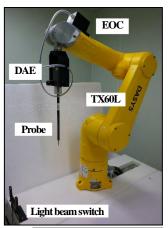
Manufacture : Schmid & Partner Engineering AG

Phantom

ELI 4.0 oval flat phantom Model Number

 Shell Material Fiberglass Shell Thickness : Bottom plate: 2 ±0.2 mm Bottom elliptical: 600×400 mm, Depth: 190 mm (Volume: Approx. 30 liters) Dimensions

 Manufacture Schmid & Partner Engineering AG


Device Holder

Device holder: In combination with the ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Transmitter devices can be easily and accurately positioned. The low-loss dielectric urethane foam was used for the mounting section of device holder.

•Material : Polyoxymethylene (POM) •Manufacture : Schmid & Partner Engineering AG

🗵 Laptop holder: A simple but effective and easy-to-use extension for the Mounting Device; facilitates testing of larger devices (e.g., laptops, cameras, etc.) according to IEC 62209-2.

•Material: Polyoxymethylene (POM), PET-G, Foam •Manufacture : Schmid & Partner Engineering AG

Test Report No.: 13734841S-A-R3
Page : 35 of 40

Data storage and evaluation (postprocessing)

The DASY5 software stores the measured voltage acquired by the Data Acquisition Electronics (DAE) as raw data together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and communication system parameters) in measurement files with the extension "da5x". The postprocessing software evaluates the data every time the data is visualized or exported.

The fields and SAR are calculated from the measured voltage (probe voltage acquired by the DAE) and the following parameters:

Probe parameters:	- Sensitivity			normi, ai0, ai1, ai2
	- Conversion Factor			convFi
	- Diode Compression Point			dcpi
	- Probe Modulation Response Factors			ai, bi, ci, d
Device parameters:	- Frequency			f
	- Crest factor			cf
Media parameters:	- Conductivity			σ
	- Relative Permittivity			ho

This parameters are stored in the DASY5 V52 measurement file.

These parameters must be correctly set in the DASY5 V52 software setup. They are available as configuration file and can be imported into the measurement file. The values displayed in the multimeter window are assessed using the parameters of the actual system setup. In the scan visualization and export modes, the parameters stored in the measurement file are used.

The measured voltage is not proportional to the exciting. It must be first linearized.

Approximated Probe Response Linearization using Crest Factor;

This linearization method is enabled when a custom defined communication system is measured. The compensation applied is a function of the measured voltage, the detector diode compression point and the crest factor of the measured signal.

$$\begin{aligned} V_i &= U_i + U_i^2 \cdot \frac{cf}{dcp_i} \\ \text{with} \quad V_i &= \text{linearized voltage of channel i in } \mu \text{V} & \text{(i = x,y,z)} \\ U_i &= \text{measured voltage of channel i in } \mu \text{V} & \text{(i = x,y,z)} \\ cf &= \text{crest factor of exciting field} & \text{(DASY parameter)} \\ dcp_i &= \text{diode compression point of channel i in } \mu \text{V} & \text{(Probe parameter, i = x,y,z)} \end{aligned}$$

The resulting linearized voltage is only approximated because the probe is not calibrated to this specific signal.

Field and SAR Calculation

The primary field data for each channel are calculated using the linearized voltage:

$$E-\text{fieldprobes}: \qquad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$
 with V_i = linearized voltage of channel i in μV (i = x,y,z) $Norm_i$ = sensor sensitivity of channel i in $\mu V/(V/m)^2$ for E-field Probes (i = x,y,z) $ConvF$ = sensitivity enhancement in solution E_i = electric field strength of channel i in V/m (i = x,y,z)

The RMS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

13734841S-A-R3 Test Report No.: 36 of 40 Page

Appendix 3-4: Simulated tissue composition and parameter confirmation

Liquid type	Head	Control No.	SSLHV6-01	Model No. / Product No.	HBBL600-10000V6/SL AAH U16 BC					
Ingredient: Mixture [%]	Wa	ater: >77, Ethanedio	ol: <5.2, Sodium petr	roleum sulfonate:<2.9, Hexylene Gly	vcol: <2.9, alkoxylated alcohol (>C ₁₆):<2.0					
Tolerance specification		$\pm10\%$								
Temperature gradients [% / deg.C]		permittivity: -	0.19 / conductivity: -0	0.57 (at 2.6 GHz), permittivity: $+0.31$ / \circ	onductivity: -1.43 (at 5.5 GHz) (*1)					
Manufacture	Schmid &	Partner Engineering	Partner Engineering AG Note: *1. speag_920-SLAAxyy-E_1.12.15CL (Maintenance of tissue simulating liquid)							

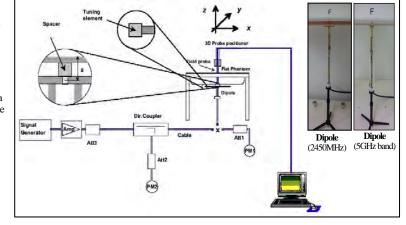
The dielectric parameters were checked prior to assessment using the DAK3.5 dielectric probe kit.

			Ami	hiont/	y · · · · ·	Liquid				Liq	uid para	meters ((*a)				ΔSAI	R (*b)
Date measured	Frequency	Liquid	Ambient/		Liquid	depth of		Permittivity (εr) [-]					Conductivity [S/m]					10-
Date measureu	[MHz]	type	ra. Cl	fo/ DIT	temp.	phantom	Toward	I	Measure	1	Δend,	Toward	N	<i>Aeasure</i>	d	Δend,	lg	10g
			[deg.C.]	[%RH]	[deg.C.]	[mm]	rargei	Meas.	$\Delta \epsilon r [\%]$	Limit	>48hrs	Target	Meas.	Δσ[%]	Limit	>48hrs	[%]	[%]
April 19, 2022	5250	Head	24	40~50	22.5	150	35.93	35.01	-2.6	10%	-	4.706	4.546	-3.4	10%	-	0.6	0.8
April 20, 2022	5600	Head	24	40~50	22.5	150	35.53	34.44	-3.1	10%	-	5.065	4.931	-2.6	10%	-	0.7	0.9
April 21, 2022	5800	Head	24	40~50	22.5	150	35.3	34.12	-3.4	10%	-	5.27	5.156	-2.2	10%	-	0.8	0.9
April 22, 2022	2450	Head	24	40~50	22.5	150	39.2	39.59	1.0	10%	-	1.80	1.852	2.9	10%	-	1.2	0.6

Calculating formula: \(\text{Aend}(\text{<48 hrs.}\) (%) = {(\text{dielectric properties, end of test series)} / (\text{dielectric properties, beginning of test series)} -1) \times 100\)
The target values of (2000, 2450, 3000 and 5800) MHz are parameters defined in Appendix A of KDB 865664 D01. For other frequencies, the target nominal dielectric values shall be obtained by linear interpolation between the higher and lower tabulated figures

	Standard								Interpolated & Extrapolated										
f A III-	Head	l Tissue	Body	Tissue	f	Head	Tissue	Body'	Tissue	f	Head	Tissue	Body	Tissue	f	Head	Tissue	Body	Tissue
f (MHz)	ET	σ [S/m]	er :	σ[S/m]	(MHz)	εr	σ[S/m]	εr	σ [S/m]	(MHz)	εr	σ [S/m]	εr	σ [S/m]	(MHz)	εr	σ[S/m]	εr	σ [S/m]
(1800-)2000	40.0	1.40	53.3	1.52	3000	38.5	2.40	52.0	2.73	5250	35.93	4.706	48.95	5.358	5750	35.36	5.219	48.27	5.942
2450	39.2	1.80	52.7	1.95	5800	35.3	5.27	48.2	6.00	5600	35.53	5.065	48.47	5.766					

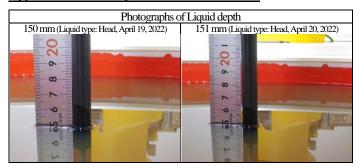
*b. The coefficients are parameters defined in IEEE Std. 1528-2013.


 $\Delta SAR(1g) = Car \times \Delta ar + C\sigma \times \Delta \sigma, Ca = -7.854E + 2xf^{3} + 9.402E + 3xf^{2} - 2.742E + 2xf + 0.2026 / C\sigma = 9.804E + 3xf^{3} + 8.661E + 2xf^{2} + 2.981E + 2xf + 0.7829$ $\Delta SAR(10g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, Cer = 3.456 \times 10^{-3} \times 1^{3} \cdot 3.531 \times 10^{-2} \times 1^{2} + 7.675 \times 10^{-2} \times 10.1860 / C\sigma = 4.479 \times 10^{-3} \times 1^{3} \cdot 1.586 \times 10^{-2} \times 1^{2} \cdot 0.1972 \times 1^{4} \cdot 0.7717 \times 10^{-2} \times$

Appendix 3-5: Daily check results

Prior to the SAR assessment of EUT, the Daily check was performed to test whether the SAR system was operating within its target of $\pm 10\%$. The Daily check results are in the table below.

			SAR	,	Daily check results (* Meas.: Measured, Cal.: Calibration value, STD: Standard value, n/a: not applicable)																	
	Emananar		ISAN	•		SAR (1g) [W/kg] (*d)								SAR (10g) [W/kg] (*d)								
Date	Frequency [MHz]	Limid	1g	10g	Meas.	ΔSAR-	1W	Tai	rget	Devi	ation	I imit	Docc	Moor	ΔSAR-	1W	Ta	rget	Devi	ation	Limit	Docc
	[WILIZ]	Type		- 0		correct		Cal.	STD		STD	[%]	9		correct		Cal.	STD	Cal.	STD	[%]	9
		**			()		Scarca	(*e)	(*f)	[%]	[%]	[/0]	•	()		Scaled	(*e)	(*f)	[%]	[%]		•
April 19, 2022	5250	Head	0.6	0.8	8.09	8.04	80.4	80	n/a	0.5	-	±10	Pass	2.37	2.35	23.5	22.8	n/a	3.1	ı	±10	Pass
April 20, 2022	5600	Head	0.7	0.9	8.82	8.76	87.6	85.1	n/a	2.9	-	±10	Pass	2.52	2.5	25.0	22.8	n/a	9.6	-	±10	Pass
April 21, 2022	5800	Head	0.8	0.9	8.37	8.3	83.0	83	78	0.0	6.4	±10	Pass	2.39	2.37	23.7	23.3	21.9	1.7	8.2	±10	Pass
April 22, 2022	2450	Head	1.2	0.6	13.7	13.54	54.16	52	52.4	4.2	3.4	±10	Pass	6.38	6.34	25.36	24.4	24	3.9	5.7	±10	Pass


- *. Calculating formula:
 - Δ SAR corrected SAR (1g,10g) (W/kg) = (Measured
- $SAR(1g,10g) (W/kg)) \times (100 (\Delta SAR(\%)) / 100$ The "Meas. (Measured)" SAR value is obtained at 250 mW for 2450 MHz, $100 \, mW$ for $(5250, 5600, 5800) \, MHz$
- *d. The measured SAR value of Daily check was compensated for tissue dielectric deviations (ASAR) and scaled to 1W of output power in order to compare with the manufacture's calibration target value which was normalized.
- *e. The target value is a parameter defined in the calibration data sheet of D2450V2 (sn:822) and D5GHZV2 (sn:1092) dipole calibrated by Schmid & Partner Engineering AG (Certification No. D2450V2-822_Dec21 and D5GHzV2-1092_Oct21, the data sheet was filed in this report).
- The target value (normalized to 1W) is defined in IEEE Std.1528.

Test setup for the system performance check->

Page : 37 of 40

Appendix 3-6: Daily check measurement data

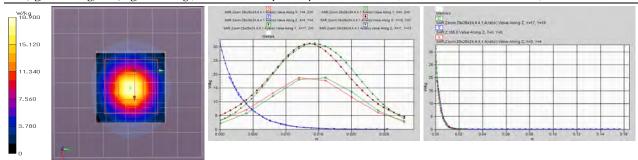
EUT: Dipole(5GHz); Type: D5GHzV2; Serial: 1092; Forward conducted power: 100mW

Communication System: CW (0) (*.UID: 0, Frame Length in ms: 0; Communication System PAR: 0; PMF: 1); Frequency: 5250 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used: f = 5250 MHz; $\sigma = 4.546$ S/m; $\varepsilon_r = 35.01$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/1208 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.75, 4.75, 4.75) @ 5250 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

Area:60x60,10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 18.1 W/kg


Area:60x60,10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm, Maximum value of SAR (interpolated) = 19.2 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 18.8 W/kg

Zoom:28x28x24,4,4,1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 69.68 V/m; Power Drift = -0.06 dB; Maximum value of SAR (measured) = 18.9 W/kg; Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.37 W/kg (* Smallest distance from peaks to all points 3 dB below = 7.9 mm; Ratio of SAR at M2 to SAR at M1 = 66.2%)

Remarks: *. Date tested: 2022/4/19; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

- *. liquid depth: 150 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 23 deg.C./(55~65) %RH,
- *. liquid temperature: 22.5(start)/22.4(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

EUT: Dipole(5GHz); Type: D5GHzV2; Serial: 1092; Power; 100 mW

Communication System: CW (0) (*.UID: 0, Frame Length in ms: 0; Communication System PAR: 0; PMF: 1); Frequency: 5600 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used: f = 5600 MHz; $\sigma = 4.931$ S/m; $\epsilon_r = 34.44$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.32, 4.32, 4.32) @ 5600 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

Area:60x60,10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 20.9 W/kg

 $\textbf{Area:60x60,10 (61x61x1):} \ Interpolated \ grid: \ dx=1.000 \ mm, \ dy=1.000 \ mm; \ Maximum \ value \ of \ SAR \ (interpolated)=22.3 \ W/kg$

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 21.1 W/kg

Zoom:28x28x24,4,4,1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 71.91 V/m; Power Drift = -0.03 dB; Maximum value of SAR (measured) = 21.1 W/kg; Peak SAR (extrapolated) = 37.4 W/kg SAR(1 g) = 8.82 W/kg; SAR(10 g) = 2.52 W/kg (* Smallest distance from peaks to all points 3 dB below = 7.4 mm; Ratio of SAR at M2 to SAR at M1 = 63.3%)

21.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.0000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.000

10.0000

10.0000

10.0000

10.0000

10.0000

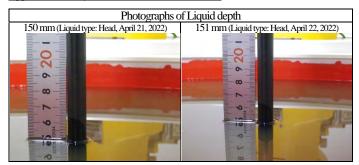
10.0000

10.0000

10.0000

10.0000

10.0000


10.

Remarks: *. Date tested: 2022/4/20; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

- *. liquid depth: 150 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 23 deg.C. / (55~65) %RH,
- * liquid temperature: 22.5(start) 22.4(end) 22.5(in check) deg.C.; * White cubic: zoom scan area, Red cubic: big=SAR(10g) small=SAR(1g)

Page : 38 of 40

Appendix 3-6: Daily check measurement data (cont'd)

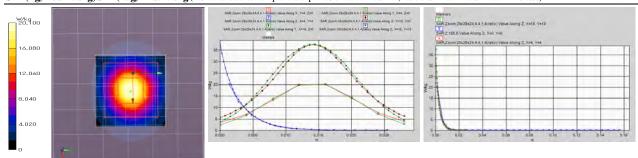
EUT: Dipole(5GHz); Type: D5GHzV2; Serial: 1092; Power; 100 mW

Communication System: CW (0) (*.UID: 0, Frame Length in ms: 0; Communication System PAR: 0; PMF: 1); Frequency: 5600 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used: f = 5800 MHz; $\sigma = 5.156$ S/m; $\varepsilon_r = 34.12$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/12/08 / -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) / -Probe: EX3DV4 - SN7372; ConvF(4.36, 4.36, 4.36) @ 5800 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 156.0

Area:60x60,10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 19.2 W/kg


Area:60x60,10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 20.8 W/kg

Z;155,5 (1x1x32): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 20.5 W/kg

Zoom:28x28x24,4,4,1.4(ratio) (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 67.65 V/m; Power Drift = -0.10 dB; Maximum value of SAR (measured) = 20.1 W/kg; Peak SAR (extrapolated) = 37.4 W/kg

SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.39 W/kg (*. Smallest distance from peaks to all points 3 dB below = 7.5 mm; Ratio of SAR at M2 to SAR at M1 = 61.6%)

Remarks:

- *. Date tested: 2022/4/21; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 23 deg.C. / (55~65) %RH,
- *. liquid temperature: 22.5(start)/22.4(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

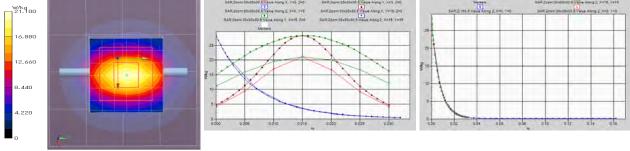
<u>EUT: Diploe(2.4GHz); Type: D2450V2; Serial: 822; Power; 250 mW</u>

Communication System: \overline{CW} (0) (*.UID: 0, Frame Length in ms: 0; Communication System PAR: 0; PMF: 1); Frequency: 2450 MHz; Crest Factor: 1.0 Medium: Head(v6.2204); Medium parameters used: f = 2450 MHz; $\sigma = 1.852$ S/m; $\epsilon_r = 39.59$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration: -Electronics: DAE4 Sn626; Calibrated: 2021/1208/-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section -DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)/-Probe: EX3DV4 - SN7372; ConvF(7.35, 7.35, 7.35) @ 2450 MHz; Calibrated: 2021/04/23 -Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0, 161.0

daily-h24a;kpb-r02(7372-2104),kdae-01(626),ksda-01(822-2112)/h2450,220418d,d10,250mw/

Area:60x60,15 (5x5x1): Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 20.1 W/kg


Area:60x60,15 (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm; Maximum value of SAR (interpolated) = 20.6 W/kg

Z;160,5 (1x1x33): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 21.2 W/kg

Zoom:30x30x30,5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Reference Value = 106.5 V/m; Power Drift = 0.01 dB; Maximum value of SAR (measured) = 21.1 W/kg; Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.38 W/kg (*. Smallest distance from peaks to all points 3 dB below = 9.2 mm; Ratio of SAR at M2 to SAR at M1 = 48.9%)

Domarke

- *. Date tested: 2022/4/22; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,
- *. liquid depth: 150 mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 23 deg.C. / (55~65) %RH,
- *. liquid temperature: 22.5(start)/22.4(end)/22.5(in check) deg.C.; *.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test Report No.: 13734841S-A-R3 Page : 39 of 40

Appendix 3-7: Uncertainty Assessment (SAR measurement/Daily check)

*. Although this standard determines only the limit value of uncertainty, there is no applicable rule of uncertainty in this. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

	3.1 % 6.2 % Vi, veff
Error Description (2.4-6GHz) Uncertainty Value Probability distribution Divisor ci (1g) ci (10g) ui (1g) ui (1g)	Vi, veff
A Measurement System (DASY5) (std. uncertainty) (std. uncertainty)	φ
	∞ ∞ ∞
2 Axial isotropy Error ±4.7 % Rectangular √3 0.71 0.71 ±1.9 % ±1.9 % 3 Hemispherical isotropy Error ±9.6 % Rectangular √3 0.71 0.71 ±3.9 % ±3.9 % 4 Linearity Error ±4.7 % Rectangular √3 1 1 ±2.7 % ±2.7 % 5 Probe modulation response (v09) ±5.5 % Rectangular √3 1 1 ±3.2 % ±3.2 %	σ σ
3 Hemispherical isotropy Error ±9.6 % Rectangular √3 0.71 0.71 ±3.9 % ±3.9 % 4 Linearity Error ±4.7 % Rectangular √3 1 1 ±2.7 % ±2.7 % 5 Probe modulation response (v09) ±5.5 % Rectangular √3 1 1 ±3.2 % ±3.2 %	∞ ∞
	∞
5 Probe modulation response (v09) $\pm 5.5\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 3.2\%$ $\pm 3.2\%$	_
1 11 11 11 11 11 11 11 11 11 11 11 11 1	00
6 Sensitivity Error (detection limit) $\pm 1.0\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 0.6\%$ $\pm 0.6\%$	
	∞
7 Boundary effects Error $\pm 4.3\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 2.5\%$ $\pm 2.5\%$	∞
8 Readout Electronics Error(DAE) $\pm 0.3\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 0.3\%$ $\pm 0.3\%$	∞
9 Response Time Error ±0.8 % Normal 1 1 1 ±0.5 % ±0.5 %	8
10 Integration Time Error (\approx 100% duty cycle) \pm 0% Rectangular $\sqrt{3}$ 1 1 0% 0%	∞
11 RF ambient conditions-noise (v09) $\pm 1.0\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 0.6\%$ $\pm 0.6\%$	8
12 RF ambient conditions-reflections $\pm 3.0\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 1.7\%$ $\pm 1.7\%$	∞
13 Probe positioner mechanical tolerance $\pm 3.3\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 1.9\%$ $\pm 1.9\%$	∞
14 Probe Positioning with respect to phantom shell $\pm 6.7\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 3.9\%$ $\pm 3.9\%$	∞
15 Max. SAR evaluation (Post-processing) $\pm 4.0\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 2.3\%$ $\pm 2.3\%$	∞
B Test Sample Related	
16 Device Holder or Positioner Tolerance (v09) ±3.2 % Normal 1 1 1 ±3.2 % ±3.2 %	5
17 Test Sample Positioning Error (v09) ±2.1 % Normal 1 1 ±2.1 % ±2.1 %	10
18 Power scaling $\pm 0\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 0\%$ $\pm 0\%$	∞
19 Drift of output power (measured, <0.2dB) $\pm 5.0 \%$ Rectangular $\sqrt{3}$ 1 1 $\pm 2.9 \%$ $\pm 2.9 \%$	∞
C Phantom and Setup	
20 Phantom uncertainty (shape, thickness tolerances) $\pm 7.5\%$ Rectangular $\sqrt{3}$ 1 1 $\pm 4.3\%$ $\pm 4.3\%$	∞
21 Algorithm for correcting SAR (e', σ: 10%) ±1.9 % Normal 1 1 0.84 ±1.9 % ±1.6 %	00
22 Measurement Liquid Conductivity Error (DAK3.5) ±3.0 % Normal 1 0.78 0.71 ±2.3 % ±2.1 %	7
23 Measurement Liquid Permittivity Error (DAK3.5) ±3.1 % Normal 1 0.23 0.26 ±0.7 % ±0.8 %	7
24 Liquid Conductivity-tempuncertainty (≤2deg.C.v6h) ±3.0 % Rectangular √3 0.78 0.71 ±1.4 % ±1.2 %	∞
25 Liquid Permittivity-tempuncertainty (\leq 2deg.C.v6h) $\pm 1.0\%$ Rectangular $\sqrt{3}$ 0.23 0.26 $\pm 0.1\%$ $\pm 0.2\%$	00
Combined Standard Uncertainty ($\sqrt{0902}$) $\pm 13.2\%$ $\pm 13.1\%$	945
* This measurement uncertainty laydget is suggested by IEEE Std 1528/2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Rudget) Per	

^{*.} This measurement uncertainty budget is suggested by IEEE Std.1528(2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget). Per KDB 865664 D01 (v01r04) SAR Measurement 100 MHz to 6 GHz, Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

Uncertainty of daily check (2.4	~6GHz) (*.v6h,ε&	σ tolerance: 10%, DAK3.5	5, CW) (v09	r02)		1g SAR	10g S	SAR
Combined measurement un	certainty of the m	easurement system	(k=1)			±10.8 %	± 10.	7%
Expan	ded uncertainty (l	x=2)				±21.6 %	±21.	4%
Error Description (2.4-6GHz)	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g)	ui (10g)	Vi, veff
A Measurement System (DASY5)						(std. uncertainty)	(std. uncertainty)	
1 Probe Calibration Error	±7.0 %	Normal	1	1	1	±7.0 %	±7.0 %	8
2 Axial isotropy error	±4.7 %	Rectangular	√3	0.71	0.71	±1.9 %	±1.9 %	8
3 Hemispherical isotropy error	±9.6 %	Rectangular	√3	0	0	0 %	0 %	8
4 Probe linearity	±4.7 %	Rectangular	√3	1	1	±2.7 %	±2.7 %	8
5 Probe modulation response (CW)	±0.0 %	Rectangular	√3	1	1	0 %	0 %	8
6 System detection limit	±1.0 %	Rectangular	√3	1	1	±0.6 %	±0.6 %	8
7 Boundary effects	±4.3 %	Rectangular	√3	1	1	±2.5 %	±2.5 %	8
8 System readout electronics (DAE)	±0.3 %	Normal	1	1	1	±0.3 %	±0.3 %	8
9 Response Time Error (<5ms/100ms wait)	±0.0 %	Rectangular	√3	1	1	0 %	0 %	8
10 Integration Time Error (CW)	±0.0 %	Rectangular	√3	1	1	0 %	0 %	8
11 RF ambient conditions-noise	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	8
12 RF ambient conditions-reflections	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	8
13 Probe positioner mechanical tolerance	±3.3 %	Rectangular	√3	1	1	±1.9 %	±1.9 %	8
14 Probe positioning with respect to phantom shell	±6.7 %	Rectangular	√3	1	1	±3.9 %	±3.9 %	× ×
15 Max. SAR evaluation (Post-processing)	±4.0 %	Rectangular	√3	1	1	±2.3 %	±2.3 %	8
B Test Sample Related								
16 Deviation of the experimental source	±1.9 %	Normal	1	1	1	±1.9 %	±1.9 %	∞
17 Dipole to liquid distance (10mm±0.2mm,<2deg.)	±2.0 %	Rectangular	√3	1	1	±1.2 %	±1.2 %	8
18 Drift of output power (measured, <0.1dB)	±2.3 %	Rectangular	√3	1	1	±1.3 %	±1.3 %	8
C Phantom and Setup								
19 Phantom uncertainty	±2.0 %	Rectangular	√3	1	1	±1.2 %	±1.2%	8
20 Algorithm for correcting SAR (e',σ: 10%)	±1.9 %	Normal	1	1	0.84	±1.9 %	±1.6 %	8
21 Liquid conductivity (meas.) (DAK3.5)	±3.0 %	Normal	1	0.78	0.71	±2.3 %	±2.1 %	00
22 Liquid permittivity (meas.) (DAK3.5)	±3.1 %	Normal	1	0.23	0.26	±0.7 %	±0.8 %	8
23 Liquid Conductivity-temp.uncertainty (≤2deg.C.v6h)	±3.0 %	Rectangular	√3	0.78	0.71	±1.4 %	±1.2 %	8
24 Liquid Permittivity-temp.uncertainty (≤2deg.C.v6h)	±1.0 %	Rectangular	√3	0.23	0.26	±0.1 %	±0.2 %	8
Combined Standard Uncertainty (v09r02)						±10.8 %	±10.7 %	
Expanded Uncertainty (k=2) (v09r02)						±21.6 %	±21.4 %	

^{*.} This measurement uncertainty budget is suggested by IEEE Std. 1528(2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget).

^{*.} Table of uncertainties are listed for ISO/IEC 17025.